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a b s t r a c t

In this paper we study a systematic and natural construction of canonical coordinates for the reduced
space of a cotangent bundle with a free Lie group action. The canonical coordinates enable us to compute
Poincaré–Birkhoff normal forms of relative equilibria using standard algorithms. The case of simple
mechanical systems with symmetries is studied in detail. As examples we compute Poincaré–Birkhoff
normal forms for a Lagrangian equilateral triangle configuration of a three-body system with a Morse-
type potential and the stretched-out configuration of a double spherical pendulum.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The theory of the reduction of Hamiltonian systems with
symmetry is well developed [1,2]. Although it is a classical subject
and goes back to the pioneers of mechanics, a modern theory was
only established in the 1970s. Themain idea can be summarized as
follows.

Let P be a symplecticmanifoldwith a symmetry groupG, and let
J : P → g∗ be an equivariant momentum mapping with respect to
the coadjoint action of G on g∗, where g∗ is the dual space of the Lie
algebra g of G. Then, under some regularity conditions, the reduced
space given by the quotient space Pµ := J−1(µ)/Gµ, where Gµ

is the isotropy group of µ ∈ g∗, is a symplectic manifold. A G-
invariant Hamiltonian function on P can be reduced to a function
on Pµ which generates the reduced dynamics.

The algebraic definition as a quotient makes it often difficult
to explicitly construct the reduced space Pµ and develop a good
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intuition for it. For example, Pµ is not necessarily a linear space
even if P is linear. This is the case, for example, in the n-body
problem: Although the translation reduced space is Euclidean, the
reduced space of rotations is in general not linear [3]. But as the
reduced space is a symplecticmanifold it follows from theDarboux
theorem that one can locally construct canonical coordinates so
that the reduced space locally becomes a linear symplectic space.
Such canonical coordinates are very useful. For example, they form
the starting point of standard algorithms for the computation of
the Poincaré–Birkhoff normal form at an equilibrium point of a
Hamiltonian system [4–8]. A Poincaré–Birkhoff normal form is a
main tool for the construction of center manifolds and the study
of bifurcations [9]. As an example of the former application we
mention the construction of the phase space structures which
govern reaction dynamics induced by saddle type equilibrium
points [10,11].

Themain objectives of this paper are twofold. The first objective
is the systematic construction of canonical coordinates for the re-
duced space Pµ in the case where P is a cotangent bundle and the
action of G on P is free. This construction is uniform in the sense
that Abelian and non-Abelian symmetries are treated on the same
footing. The second objective is to illustrate how the canonical

http://dx.doi.org/10.1016/j.physd.2013.10.007
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2013.10.007&domain=pdf
mailto:uciftci@nku.edu.tr
mailto:h.waalkens@rug.nl
mailto:h.w.broer@rug.nl
http://dx.doi.org/10.1016/j.physd.2013.10.007
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coordinates on the reduced space can be used to compute
Poincaré–Birkhoff normal forms at relative equilibria, i.e. the equi-
libria of the reduced system. This has numerous applications. An
example is the construction of the phase space structures which
govern reactions in rotating molecules where the reaction dynam-
ics is induced by saddle type relative equilibria [12]. To elaborate
on the rich field of applications in molecular dynamics we men-
tion as an extension of the work on point particle systems in [12]
the study of systems of rigid bodies which can be used to model
molecular complexes [13]. Many more examples can be given to
prove the need to combine symmetry reduction with Hamiltonian
normal forms. The literature on both symmetry reduction and nor-
mal forms is huge. In this paperwe try to distill themost important
aspects from either field that are necessary to combine the two.

We note that the computation of canonical coordinates for
a reduced space of a symplectic manifold in general [14,15] or
for specific cases such as, e.g., a cotangent bundle [16,17] and
more concretely for n-body systems [3,18] have at least implicitly
been studied in the literature before. However, for obtaining the
nonlinear terms of a Poincaré–Birkhoff normal form these works
have to be put into context, and a systematic study is missing.
Also the work on the computations of Poincaré–Birkhoff normal
forms of symmetry reduced Hamiltonians is mainly restricted to
Abelian Lie group actions. In this paper we present a systematic
approach which covers both the Abelian and the non-Abelian case
in a uniform way.

In the following we give a brief review of the existing literature
related to this paper. In order to obtain canonical coordinates on
the reduced space of a cotangent bundle with a Lie group action
we follow the method given in [16,17] which take a Lagrangian re-
spectively Poisson reduction point of view. A detailed survey on
cotangent bundle reduction and its history can be found in [19].
For the special case of the three-body reduction, our main refer-
ences are [20,3] to which we will come back in Section 4. As for
the Poincaré–Birkhoff normal form, one can find a detailed intro-
duction in [21]. One of the first applications of the normal form
theory to reduced spaces of symplectic spaces with a continuous
symmetry can be found in [22] where the symmetry group is the
circle group. An application to the restricted three-body problem
can be found in [23,24], for instance. In [25] normal form compu-
tations are done at Lagrange points by using a splitting method. In
another recent work [26] one can find a detailed study of normal
form for planetary systems. Normal form at relative equilibrium of
a general dynamical system are discussed in [27]. A recent review
of normal form theory in dynamical systems can be found in [8].

This paper is organized as follows. We start with a general
review of the action of Lie groups on tangent and cotangent
bundles in Section 2. This mainly serves to introduce some basic
material and settle the notation. Section 3 comprises the main
result of this paper which is a systematic construction of canonical
coordinates for the reduced space of a cotangent bundle with a
free action of a symmetry group. This includes the derivation of
the reduced Hamiltonian in canonical coordinates, a discussion
of special cases like Abelian symmetry groups and systems with
vanishing angular momenta in Section 3.3, a detailed discussion
of the case of simple mechanical systems (Section 3.4), and the
Poincaré–Birkhoff normal form of relative equilibria in Section 3.6.
Section 4 contains our first example which consists of the three-
body reduction. We review in this section how to derive a reduced
Hamiltonian in canonical coordinates in a way which does not
depend on the choice of a body-fixed reference frame, i.e. in the
language of Littlejohn and Reinsch [3] in a gauge independent way.
In Section 4.3we consider a Lagrangian equilateral triangle relative
equilibrium, and we compute a Poincaré–Birkhoff normal form at
such configurations. In Section 5 we study our second example
which is the double spherical pendulum. After obtaining canonical
coordinates for the reduced system, a normal form computation is
done at the relative equilibrium given by the so called stretched-
out solution. Conclusions are given in Section 6.
2. Lie group actions on tangent and cotangent bundles

In this sectionwe recall (mainly to introduce somenotation) the
symplectic actions of Lie groups on tangent and cotangent bundles
over a configuration space. For the details, we refer to [28,1,2,29].

Let G be a Lie group and letM be a manifold which is called the
configuration space. Let the map

G × M → M (1)
(g, s) → gs (2)

be a free and proper action of G on M . We denote the left-
translation which for a fixed g ∈ G, maps s ∈ M to gs by Lg .
The derived maps of Lg are denoted as follows. For s ∈ M , (Lg)∗ :

TsM → TgsM stands for the derivative map of Lg , and (Lg)∗ :

T ∗
s M → T ∗

g−1sM stands for the pull-back map of Lg . Let g denote
the Lie algebra of G. Then for ζ ∈ g, the corresponding infinitesimal
generator or fundamental vector field ζM at s ∈ M is defined by

ζM(s) =
d
dt


t=0


Lexp(tζ )s


. (3)

The G orbit through s ∈ M is given by Gs = {gs|g ∈ G} ⊂ M .
The fundamental vector fields ζM are tangent to the orbits Gs for
all s ∈ M . Moreover, the tangent space Ts(Gs) is spanned by the
fundamental vector fields at s.

We note that if M = G, i.e. the action is the group operation of
G, then the fundamental vector fields at g ∈ G are given by

ζG(g) =

Rg

∗
ζ , (4)

where ζ ∈ g and Rg is the right-translation by g [1].
The coadjoint action of G on the dual space g∗ of its Lie algebra

is defined as

⟨(Adg−1)∗ µ, ζ ⟩ = ⟨µ, Adg−1 ζ ⟩, (5)

for g ∈ G, µ ∈ g∗ and ζ ∈ g. Here ⟨, ⟩ stands for the pairing
between a co-vector and vector and

Adg ζ =
d
dt


t=0


g (exp (tζ )) g−1 (6)

is the adjoint action. The action on M can be lifted to TM and T ∗M
by the derived maps and both of the lifted actions are free when
the action on M is free. The lifted action on the cotangent bundle
is symplectic with respect to the natural symplectic structure on
T ∗M [28] and has a momentum mapping J : T ∗M → g∗ defined as

⟨J(s, p), ζ ⟩ = ⟨p, ζM(s)⟩, (7)

for (s, p) ∈ T ∗M . It is well-known that J is equivariant with respect
to the action of G on T ∗M and the coadjoint action of G on g∗

[28,1].
If M is a Riemannian manifold with a Riemannian metric k

which is invariant under the action of G, then the lifted action
on TM is also symplectic with respect to the symplectic structure
induced by the one on T ∗M and the corresponding momentum
mapping L is defined as

⟨L(s, v), ζ ⟩ = vT k ζM(s), (8)

for (s, v) ∈ TM [2].

3. Canonical coordinates in cotangent bundle reduction

In this section we will obtain canonical coordinates on the
symmetry reduced space. To this end we will we use a coordinate-
based approach to express cotangent bundle reduction in terms
of the orbit reduction scheme by Marle [30,29]. A more detailed
explanation of the notions used in the following subsection can be
found, e.g., in [16,17,31].



Ü. Çiftçi et al. / Physica D 268 (2014) 1–13 3
3.1. Reduction of the equations of motion

The shape space or internal space Q is defined as the quotient
M/G. As we assume that the action of G on M is free it follows
from standard theorems that M/G has a manifold structure and
M → Q is a fiber bundle [1]. Using the fiber bundle structure one
can locally obtain a coordinate system on M by choosing a local
coordinate system onQ ×G. Let us assume that a point inQ ×G has
coordinates (q, g). The coordinates q are called shape coordinates or
internal coordinates. Then by the decomposition [16]

T (Q × G) ∼= TQ × G × g (9)

a point in TM has coordinates (q, q̇, g, ġ). Now consider the body
angular velocity defined by

ξ = (Lg−1)∗ ġ, (10)

where (Lg−1)∗ denotes the differential of the left translation Lg−1 :

G → G, h → g−1h, at the unit element of G. The commonly
used notion of body angular velocity comes from the fact that in
the example where G is the rotational symmetry group SO(3) (see
Section 4) ξ is indeed the angular velocity in a body fixed frame.
We note that Eq. (10) is called the reconstruction equation as it can
be used to find the full dynamics corresponding to the reduced
one [2].

The key point in reduction is to note that the body angular
velocity is invariant under the group action. Namely, for h ∈ G,
define the curvem(t) = hg (t). Then

(Lm−1)∗ ṁ = (L(g−1h−1))∗ ((Lh)∗ ġ) = ξ . (11)

As ξ is invariant under the group action, the coordinates
(q, q̇, ξ) give a coordinate system on (TM)/G.

Let L : TM → R be a regular Lagrangian function, i.e, a function
for which the Legendre transform FL : TM → T ∗M defined as

FL(m, v) =
∂L
∂v

(m, v) (12)

is regular for all m ∈ M and v ∈ TmM [1]. Further assume that L is
invariant under the action of G. Then the function l : TM/G → R
given by

l(q, q̇, ξ) := L(q, q̇, g, ġ) (13)

is well-defined. This is done by passing to the coordinates (q, q̇, ξ),
and as the Lagrangian L is invariant, it is possible to put L in the
form of the function l in which the G coordinates disappear. Using
lwe can define momenta conjugate to q and ξ as

pq =
∂ l
∂ q̇

, (14)

and

η =
∂ l
∂ξ

, (15)

respectively. Here η is called the body angular momentum, and by
the chain rule,

η = (Lg)∗ pg , (16)

where pg = ∂L/∂ ġ is the conjugate momentum of g ∈ G [32]. Like
body angular velocity the notion body angular momentum again
comes from the context of reduction of rotational symmetries.
Similarly to the decomposition (9) we locally have

T ∗M ∼= T ∗Q × G × g∗ (17)

with coordinates (q, pq, g, pg). Similarly to the body angular
velocity the body angular momentum is invariant under the group
action. Hence we can view (q, pq, η) as coordinates on T ∗M/G.
Let H : T ∗M → R be the Hamiltonian obtained from the Leg-
endre transformation FL of the Lagrangian L [1], i.e., in coordinates

H(q, pq, g, pg) = q̇pq + ġpg − L(q, q̇, g, ġ). (18)

If L is invariant with respect to the action of G on TM then H is in-
variant with respect to the action of G on T ∗M and induces a func-
tion h on T ∗M/G given by

h(q, pq, η) := H(q, pq, g, pg). (19)

From the construction above one obtains for the momentummap-
ping J in (7) at z = (q, pq, g, pg) and for ζ ∈ g,

⟨J(z), ζ ⟩ = ⟨(pq, pg), ζM⟩

= ⟨(pq, pg), (0, (Rg)∗ζ )⟩

= ⟨pg , (Rg)∗ζ ⟩

= ⟨(Lg−1)∗η, (Rg)∗ζ ⟩

= ⟨(Adg−1)∗η, ζ ⟩. (20)

Here the first equality follows from the definition of the momen-
tum map (7), the second equality makes use of the decomposition
(9), the fact that ζM is tangent to the group orbit which we iden-
tify with G and (4), the third equality is clear, the fourth equality
uses (16) and the final equality follows from the definition of the
coadjoint action in (5) and (6).

We thus obtain

J(z) = (Adg−1)∗η (21)

or equivalently

η = (Adg)∗J(z). (22)

Let Oµ stand for the coadjoint orbit through J(z) = µ ∈ g∗ for
some fixed µ ∈ g∗, i.e.

Oµ = {(Adg−1)∗µ|g ∈ G} ⊂ g∗. (23)

Then Eq. (22) gives that

η ∈ Oµ. (24)

As J is equivariant, it induces a map j : T ∗M/G → g∗/G. Now
consider the reduced space

Pµ := j−1(Oµ). (25)

By (24), we conclude that if J(z) = µ for z = (q, pq, g, pg) and
some fixed µ ∈ g∗, then for η = (Adg)∗J(z), we have (q, pq, η) ∈

Pµ, i.e. (q, pq, η) are coordinates on the reduced space.
The reduction to the space Pµ we described is a coordinate-

based form of the orbit reduction ofMarle [29]. For n-body systems,
the reduction procedure can be interpreted as passing to a body-
fixed frame (cf. Section 4). In fact, the space Pµ is symplectomorphic
to the Marsden–Weinstein reduced space J−1(µ)/Gµ, where Gµ is
the isotropy group of µ ∈ g∗. For us, the reduced space Pµ and
the coordinates (q, pq, η) form the basis for defining canonical
coordinates on the reduced phase space.

3.2. Canonical coordinates

The coordinates (q, pq, g, pg) defined above are clearly canoni-
cal, whereas the coordinates (q, pq, g, η) (as wewill see below) are
not canonical. By (14) and (15) we get the Poisson bracket equali-
ties

{qα, ηa} = {pqα , ηa} = 0 (26)

on T ∗M for all α and a. Now recall the identification ξ = (Lg−1)∗ ġ ,
and let (e1, . . . , el) be a basis of g, where l is the dimension of G.
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Choosing (qα, q̇α, ga, ξa) in place of (qα, q̇α, ga, ġa) as coordinates
on TM we get that [3]

{ηa, ηb} = −γ c
ab ηc, (27)

where γ c
ab are the structure constants given by [ea, eb] = γ c

ab ec .
This is in fact the same as the (−) Lie–Poisson bracket [2] on G. As
the Poisson structure on the coadjoint orbit Oµ is the reduced one
from the Lie–Poisson structure on G, the discussion above suggests
that if a canonical coordinate system (u, v) is chosen on Oµ such
that

η = η(u, v), (28)

then the coordinate system (q, pq, u, v) becomes a canonical
coordinate system on Pµ.

For a more detailed discussion of canonical coordinates on
coadjoint orbits, we refer to [33] among others. In our example
of the three body-problem in Section 4 the coadjoint orbits are
the body-angular momentum spheres. In this case the canonical
coordinates may be chosen as Deprit coordinates [34] on the body-
angular momentum sphere (see (87) below).

As for the dynamics, if one passes to the coordinates given in
(28), then the reduced Hamiltonian hµ := h|Pµ may be written in
the form

hµ = hµ(q, pq, u, v). (29)

Then the equations of motion for the reduced system have the
familiar form

ż = {z, hµ} (30)

for z = (q, pq, u, v).

Remark 3.1. It is known that the reduced space Pµ = J−1(Oµ)/G
is locally diffeomorphic to T ∗(M/G) × Oµ but the symplectic
structure on the reduced space is not the sum of the canonical
symplectic structures on T ∗(M/G) andOµ [29].Without going into
details we note that the canonical structure is indeed much more
involved [29]. However by passing to canonical coordinates the
Poisson structure on the reduced space has standard form.

3.3. Special cases

(1)G is Abelian. Consider the casewhere the Lie group is Abelian,
e.g. a torus group. The reduction strongly simplifies in this case.
Since the coadjoint action is trivial the well-known identifica-
tion [29]

J−1(Oµ)/G = T ∗Q (31)

is obtained. This shows that one can take the coordinates (qα, pα
q )

as the canonical coordinates on the reduced space, which is sym-
plectomorphic to T ∗Q . An example of this situation is given by the
translational motions of an n-body system [3]. We will explicitly
illustrate the Abelian case for the example of a double spherical
pendulum in Section 5. A detailed analysis of the Abelian case in
the Lagrangian setting can be found in [16].

(2) Vanishing angular momentum. With the notation above, if
η ≡ 0, then the coadjoint orbit is trivial as in the first special
case. Then the reduced space is symplectomorphic to T ∗Q . A well
studied example of a systemwith vanishing angular momentum is
the so called falling cat problem [35].

(3) Generalized rigid bodies. Suppose that M = G. Then Q is just
a point and

J−1(Oµ)/G = Oµ. (32)

This occurs, e.g., for a rigid body, where the configuration space
M is the rotation group SO(3) and the reduced space is the body-
angular momentum sphere.
3.4. Simple mechanical systems

The construction of canonical coordinates on the reduced
phase space and the reduction of the equations of motion can be
describedmore explicitly in the case of simplemechanical systems.
For a simple mechanical system with a Lie symmetry group G, the
Lagrangian is of the form

L(s, ṡ) =
1
2
ṡT k ṡ − V (q), (33)

where s is a coordinate systemonM , k is a Riemannianmetric onM
which is invariant under the action of G on M , and V is a potential
function which is also invariant and hence, if (q, g) is a coordinate
system on the local trivialization

M ∼= Q × G (34)

then V depends only on the shape coordinates q. The term ṡT k ṡ/2
is the kinetic energy which we will denote by K .

Let σ : Q → M be a local section of the fiber bundle, i.e. σ is
a right inverse of the projection π : M → Q . If a point q ∈ Q
is given, then a point s ∈ π−1(q) is of the form gσ(q) with some
g ∈ G. Set r = σ(q), then

ṙ =
∂r
∂q

q̇ (35)

by the chain rule.
Let the body velocities be defined as

v = (Lg−1)∗ṡ. (36)

By using the Leibniz rule [1] and the definition of the fundamental
vector field one obtains

v = ξM(r) + ṙ, (37)

where ξM is the fundamental vector field corresponding to ξ =

(Lg−1)∗ ġ ∈ g. The kinetic energy thus becomes

K =
1
2

vT k v =
1
2

ξM(r)T k ξM(r) + ξM(r)T k ṙ +
1
2
ṙT k ṙ. (38)

For ξ, ζ ∈ g, set

ξ T I ζ = ξM(r)T k ζM(r). (39)

Then I is a left-invariant inner product on g [2]. For G = SO(3)
(respectively g = so(3)), I is the moment of inertia tensor (see
Section 4). In order to decouple the kinetic energy in group and
shape terms, the so called mechanical connection is introduced [2].
The mechanical connection A : TM → g is defined as

A(s, ṡ) = I−1L(s, ṡ), (40)

where L is themomentummap given in (8), and I−1
: g∗

→ g is the
linear map associated with the inner product I. At any point s ∈ M ,
the tangent space to TsM may be decomposed as

TsM = Vs + Hs, (41)

where Vs is the tangent space to the orbit Gs, and Hs is the space
which is orthogonal to Vs with respect to the metric k. A tangent
vector w ∈ TsM may be written in this decomposition as

w = versw + horsw. (42)

It turns out that [2]

versw = [A(s, w)]M(s) (43)

and

L(s, horsw) = 0. (44)



Ü. Çiftçi et al. / Physica D 268 (2014) 1–13 5
With respect to this decomposition ṙ may be written in the form

ṙ = ver ṙ + (ṙ − ver ṙ). (45)

If a new metric d is introduced by

q̇T d q̇ := (ṙ − ver ṙ)T k (ṙ − ver ṙ), (46)

which is called the horizontal metric, and if we define the map
AQ : TQ → g by

AQ q̇ := A ṙ, (47)

then after rearranging terms the kinetic energy assumes the form

K =
1
2

(ξ + AQ q̇)T I (ξ + AQ q̇) +
1
2
q̇T d q̇. (48)

This compact form of the kinetic energy reflects the decomposition
of it into vertical and horizontal energies. Finally the Lagrangian in
coordinates (q, q̇, ξ) is given by

l(q, q̇, ξ) =
1
2

(ξ + AQ q̇)T I (ξ + AQ q̇) +
1
2
q̇T d q̇ − V (q). (49)

If the body angular momentum is defined by

J = (Lg−1)∗L, (50)

then it is seen that

J = I (ξ + AQ q̇). (51)

On the other hand, the conjugate momenta of q and ξ are obtained
as

pq =
∂ l
∂ q̇

= d q̇ + AT
Q J, (52)

and

η =
∂ l
∂ξ

= I (ξ + AQ q̇), (53)

respectively. Note here that η = J. Finally the Hamiltonian can be
written as

h(q, pq, J) =
1
2
JT I−1 J + (pq − AT

Q J)T d−1 (pq − AT
Q J) + V (q), (54)

where d−1 denotes the metric on T ∗M corresponding to d. This
Hamiltonian is an extension of the N-body ro-vibrational Hamil-
tonian in [3] to general simple mechanical systems.

Remark 3.2. Eq. (52) shows that due to the presence of magnetic-
like terms the momenta pq corresponding to the shape space
coordinates q do not belong to the cotangent space T ∗(M/G) [29].
This point clarifies what is noted in Remark 3.1.

3.5. Relative equilibria of simple mechanical systems

A point in T ∗M is called a relative equilibrium point if its pro-
jection into the reduced space is a critical point of the reduced
Hamiltonian. So we are interested in the equilibria of the function
hµ : Pµ → R for some fixed µ ∈ g∗. We will give some criteria for
relative equilibria for simple mechanical systems.

From Eq. (54) the equations of motion are obtained to be [3,36,
37,15,38]

J̇ = −ad∗

∂h/∂J J

q̇ =
∂h
∂pq

= d−1 (pq − AT
Q J),

ṗq = −
∂h
∂q

= −
1
2

∂

∂q


(pq − AT

Q J)T d−1 (pq − AT
Q J)


+

∂Veff

∂q
,

(55)
where
∂h
∂J

= I−1 J − AQ d−1(pq − AT
Q J) (56)

and

Veff =
1
2
JT I−1 J + V (q) (57)

is the effective potentialwhich, for Abelian actions, agrees with the
so called amended potential [2,39,40].

Then the conditions for having a relative equilibrium are

pq = AT
Q J,

ad∗

I−1 J J = 0,

∂

∂q
Veff = 0.

(58)

In the examples of the three-body problem and the double
spherical pendulum in Sections 4 and 5 the conditionswill be given
in a more explicit form.

3.6. Poincaré–Birkhoff normal form at a relative equilibrium point

The Poincaré–Birkhoff normal form is a main tool in dynamical
systems theory. It allows one (if certain conditions are satisfied)
to study the dynamics of a nonlinear system in the neighborhood
of an equilibrium point by approximating it by a ‘simpler’ system.
This has many applications, e.g., in the study of bifurcations and
the computations of center manifolds [4–7]. The simpler system is
constructed order by order of the Taylor expansion of the original
system at the equilibrium point by a suitable choice of coordinates
at each order. ForHamiltonian systems, the coordinate transforma-
tions are sought to be symplectic. As the dynamics (i.e. the vector
field) is generated by a Hamilton function the simplification can
be described completely in terms of a simplification of the Hamil-
ton function. There are well established algorithms which can be
implemented on a computer andwhich allow one to compute nor-
mal forms to any desired order. As the starting point for these algo-
rithms is a Hamiltonian system with canonical coordinates on the
linear symplectic spaceRf

×Rf where f denotes the number of de-
grees of freedom it is crucial for the application of these algorithms
to relative equilibria of symmetry reduced Hamiltonian systems to
explicitly construct canonical coordinates on the reduced space as
described in the subsections above.

We will in this paper restrict ourselves to Poincaré–Birkhoff
normal forms at equilibrium points where the eigenvalues
associated with the linearized Hamiltonian vector field JD2H are
purely imaginary. Here J denotes the standard symplectic matrix
and D2H is the Hessian of the Hamiltonian H . We will denote the
eigenvalues by±iωk, k = 1, . . . , f . Assuming that the eigenvalues
are independent over the field of rational numbers (i.e. in the
absence of resonances), the Poincaré–Birkhoff normal form yields a
symplectic transformation to new (normal form) coordinates such
that the transformed Hamiltonian function truncated at order n0
of its Taylor expansion assumes the form

HNF(I1, . . . , If ) =

f
k=1

ωkIk + h.o.t., (59)

where Ik, k = 1, . . . , f , are constants of motions which (when
expressed in terms of the normal form coordinates) have the form

Ik = p2k + q2k, k = 1, . . . , f , (60)

and HNF is a polynomial of order n0/2 in Ik, k = 1, . . . , f and hence
of order n0 in p and q (note that only even orders n0 of a normal
form make sense). The algorithm to compute this transformation
is given in [41]. We will apply it to the examples of relative
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Fig. 1. Definition of the Jacobi vectors s1 and s2 and the corresponding angle φ.

equilibria of a three-body system and a double spherical pendulum
in Sections 4.3 and 5.3, respectively.

4. Three-body systems

In this section we review the reduction of a three-body system
for which we then write the reduced Hamiltonian in canonical
coordinates following Section 3 (see also [12]). As an example
we discuss a triatomic molecule with a Morse-type potential for
which we compute the Poincaré–Birkhoff normal form about an
equilibrium point given by an equilateral triangle configuration.

4.1. Reduced equations of motion

Consider a system of three bodies with masses m1,m2,m3 and
position vectors x1, x1, x1 ∈ R3, respectively, without external
forces acting on the three bodies. The symmetry of overall transla-
tions can be reduced by introducing mass-weighted Jacobi vectors
which are defined as

s1 =
√

µ1(x1 − x3),

s2 =
√

µ2


x2 −

m1x1 + m3x3
m1 + m3


,

where

µ1 =
m1m3

m1 + m3
, µ2 =

m2(m1 + m3)

m1 + m2 + m3
(61)

are reduced masses (see Fig. 1).
Excluding collinear (and hence also collisional) configurations

we obtain the six-dimensional translation-reduced configuration
space

M = {s = (s1, s2) : λs1 + µs2 ≠ 0

for all (λ, µ) ∈ R2
\ {0}


⊂ R3

×R3 . (62)

Proper rotations g ∈ SO(3) act onM in the natural way

g(s1, s2) = (gs1, gs2). (63)

OnM this action is free and it thus follows that the shape space

Q := M/SO(3) (64)

has a manifold structure which turns out to be diffeomorphic to
R3

+
= {(x, y, z) ∈ R3

: z > 0} [20]. The canonical projection
M → Q defines a principal bundle with structure group SO(3).
This principal bundle is trivial [20] and has holonomy group SO(2)
yielding a geometric reduction [42].

The Lie algebra g = so(3) of G = SO(3) can be identified with
R3 where the Lie algebra structure becomes the vector product ‘×’.
By using the bi-invariant inner product on g, or equivalently the
dot product on R3, one can identify g∗ also with R3. With these
identifications the fundamental vector field corresponding to ζ ∈ g

at s = (s1, s2) is

ζ (s) = (ζ × s1, ζ × s2). (65)
The momentum mapping L : TM → g∗, following (8), is given by

L = s1 × ṡ1 + s2 × ṡ2. (66)

After choosing a body-fixed frame one can obtain the corre-
sponding body-fixed Jacobi vectors by

si = g ri, i = 1, 2, (67)

where g ∈ SO(3) is the matrix relating the body-fixed frame and
the space-fixed frame. As g depends on three coordinates, e.g. Euler
angles, there are three shape space coordinates qα , α = 1, 2, 3,
remaining to parametrize the two vectors r1 and r2.

The kinetic energy is given by

K =
1
2

3
i=1

mi ẋ2i =
1
2

2
i=1

ṡ2i . (68)

The corresponding metric k thus is Euclidean. Defining body
velocities according to

vi = gT ṡi, i = 1, 2, (69)

(cf. (36)), and using the shape coordinates and their time deriva-
tives one can rewrite the body velocities as

vi = gT


ġ ri +

3
α=1

g
∂ri
∂qα

q̇α



= gT ġ ri +
3

α=1

∂ri
∂qα

q̇α.

The body angular velocity ξ is the vector in R3 corresponding to
Ξ ∈ g given by

Ξ = gT ġ, (70)

which is the reconstruction equation (10). Then one has

vi = ξ × ri +
3

α=1

∂ri
∂qα

q̇α (71)

which corresponds to the general expression (37). Since the mo-
ment of inertia tensor I is given by

Iu = r1 × (u × r1) + r2 × (u × r2), (72)

for u ∈ R3, the mechanical connection AQ =


A1
A2
A3


is obtained to be

Aα = I−1

r1 ×

∂r1
∂qα


+ I−1


r2 ×

∂r2
∂qα


. (73)

Then the kinetic energy becomes

K =
1
2

ξT I ξ +

3
α=1

(ξT IAα) q̇α +
1
2

3
α,β=1

hαβ q̇α q̇β , (74)

where

hαβ =

2
i=1

∂ri
∂qα

T ∂ri
∂qβ

. (75)

Using that the horizontal metric is

dαβ = hαβ − AT
α IAβ (76)

(see (46)) allows one to write the kinetic energy in the compact
form

K =
1
2

3
α,β=1

(ξ + Aαq̇α)T I (ξ + Aβq̇β) +
1
2
dαβ q̇α q̇β . (77)
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Following (50) the body angular momentum is given by

J = gT L = r1 × v1 + r2 × v2. (78)

Then by Eq. (71) and one has

J = I ·


ξ +

3
α=1

Aα q̇α


. (79)

The conjugate momenta are given by

η =
∂K
∂ξ

= I ·


ξ +

3
α=1

Aα q̇α


= J, (80)

and

pα =
∂K
∂ q̇α

=

3
β=1

dαβ q̇β + JT Aα. (81)

Thus the Hamiltonian takes the form

h =
1
2
JT I−1 J +

1
2

3
α,β=1

dαβ(pα − JT Aα)(pβ − JT Aβ) + V , (82)

where V = V (q1, q2, q3) is the potential.
Let us now make the expressions above more explicit by in-

troducing coordinates. As the shape coordinates (q1, q2, q3) we
choose Jacobi coordinates (r1, r2, φ) which are defined as [3]

r1 =
√
r1 · r1, r2 =

√
r2 · r2, φ = cos−1(r1 · r2/(r1r2)),

0 ≤ φ ≤ π, (83)

(see Fig. 1). Choosing then the axes xb, yb, zb of a body-fixed frame
according to the so called xxy-gauge1 shown in Fig. 2, one obtains
for the moment of inertia tensor, metric and mechanical connec-
tion [3]

I =

 r22 sin2 φ −r22 sinφ cosφ 0
−r22 sinφ cosφ r21 + r22 cos2 φ 0

0 0 r21 + r22

 , (84)


dµν


=


1 0 0
0 1 0

0 0
r21 r

2
2

r21 + r22

 , (85)

and

Ar1 = Ar2 = (0, 0, 0), Aφ =


0, 0,

r22
r21 + r22


, (86)

respectively.
Putting the results above together the Hamiltonian in terms of

Jacobi coordinates becomes

h(r1, r2, φ, p1, p2, p3, J)

=
1
2


r21 + r22 cos2 φ

r21 r
2
2 sin2 φ

J21 +
2 cosφ

r21 sinφ
J1J2 +

1
r21

J22 +
1

r21 + r22
J23

+ p21 + p22 +
r21 + r22
r21 r

2
2


p3 −

r22
r21 + r22

J3

2


+ V (r1, r2, φ),

where J = (J1, J2, J3). Here ∥J∥ is conserved so the coadjoint
orbit is the body angular momentum sphere S2(∥J∥). One choice

1 We note that the choice of a body-fixed frame corresponds to the choice of the
local section σ of the fiber bundle M → Q in Section 3.4. The gauge theoretical
interpretation of this choice is studied in great detail in [3].
Fig. 2. Definition of a body-fixed frame according to the xxy-gauge.

Fig. 3. Coordinate lines on the angular momentum sphere of (u, v) defined
according to (87).

of canonical coordinates on S2(∥J∥) are the so called Deprit
coordinates which are defined as [34]

(J1, J2, J3) = (v,

r2 − v2 sin u,


r2 − v2 cos u), (87)

where r = ∥J∥ (see Fig. 3), then the reduced Hamiltonian h|S2(r)
becomes

hr(r1, r2, φ, p1, p2, p3, u, v)

=
1
2


r21 + r22 cos2 φ

r21 r
2
2 sin2 φ

v2
+

2 cosφ

r21 sinφ
v

r2 − v2 sin u

+
1
r21

(r2 − v2) sin2 u +
1

r21 + r22
(r2 − v2) cos2 u + p21 + p22

+
r21 + r22
r21 r

2
2


p3 −

r22
r21 + r22


r2 − v2 cos u

2


+ V .

4.2. Lagrangian equilateral triangle configurations

As a concrete example of a three-body system we choose the
Morse-type potential given by

V =

3
1≤i<j≤3

exp(−2(rij − d0)) − 2 exp(−(rij − d0)), (88)
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a b

Fig. 4. (a) The magnitude r of the angular momentum as a function of the size of the Lagrangian equilateral triangle parametrized by b (see (92)). (b) The energy as given
by the effective potential Veff =

1
2

r2

r21+r22
+ V (see (96)) for the Lagrangian relative equilibria as a function of r .
where rij is the distance between the ith and the jth particles. The
parameter d0 determines the side length of the equilateral triangle
at which the potential has a minimum. In Jacobi coordinates one
has

r13 =
r1

√
µ1

, (89)

r23 =


µ1r21
m2

3
+

r22
µ2

+
2
√

µ1r1r2 cosφ

m3
√

µ2
, (90)

r12 =


µ1r21
m2

1
+

r22
µ2

−
2
√

µ1r1r2 cosφ

m1
√

µ2
. (91)

A Lagrangian equilateral triangle relative equilibrium is a planar
motion where the shape is a constant equilateral triangle. The
angular momentum is orthogonal to the plane of the motion. The
mass-weighted Jacobi vectors are then of the form

re1 =
√

µ1(b, 0, 0),

re2 =
√

µ2


b
2


m3 − m1

m1 + m3


, ±

√
3
2

b, 0


,

(92)

where the parameter b is determined by the magnitude of the
angular momentum r or conversely, choosing a value for b de-
termines r . The corresponding Jacobi coordinates (re1, r

e
2, φ

e) are
easily computed using (83).

Now we find the values of the other coordinates and the pa-
rameter r at the equilibria specified by b. Following (82) a relative
equilibrium satisfies [37]

J ×

I−1

· J


= 0, (93)

pα = J · Aα, (94)

∂

∂qα


1
2
JT I−1 J + V


= 0. (95)

By Eq. (93) J is an eigenvector of I−1 at a relative equilibrium point.
For a Lagrangian equilateral triangle relative equilibrium,we know
that in the xxy-gauge (see Fig. 2) J is pointing in the z-direction
of the body frame. Hence J = (0, 0, r). From (87) we find the
corresponding canonical coordinates (ue, ve) = (0, 0). Inserting
J = (0, 0, r) and using the block structure of the inertia tensor in
(84) Eq. (95) reduces to

∂

∂qα


1
2

r2

r21 + r22
+ V


= 0. (96)
Weuse this equation to find themagnitude of the angularmomen-
tum r for a Lagrangian equilateral triangle (re1, r

e
2, φ

e) specified by
a given parameter b in (92). Finally, inserting (86) in (94) the con-
jugate momenta are obtained to be

pe1 = pe2 = 0, pe3 =
(re2)

2

(re1)2 + (re2)2
r. (97)

Fig. 4a shows the magnitude of the angular momentum r as a
function of the Lagrangian equilateral triangle specified by b. One
sees that for a given value of r , there are two (or no) Lagrangian
equilateral triangle of different sizes. The corresponding energies
given by the effective potentialVeff =

1
2

r2

r21+r22
+V at these equilibria

are shown in Fig. 4b. For a given value of r , the smaller Lagrangian
triangle has the smaller energy.

Asmentioned above at a relative equilibriumpoint the body an-
gularmomentumvector J is an eigenvector of I−1. So,when looking
for relative equilibria in general one would like to diagonalize I−1

which is possible when passing to a principal axes frame. We note
that the corresponding shape coordinates are called Draght’s coor-
dinates [3,20]. Aswewere only interested in Lagrangian equilateral
triangle configurations in this paper, the commonly used Jacobi co-
ordinates were also useful in the study of these relative equilibria
since I−1 is diagonal in the third component which corresponds
to the direction of the body fixed angular momentum in the xxy-
gauge.

4.3. Normal form around Lagrangian equilateral triangle relative
equilibria

We now apply the procedure explained in Section 3.6 to com-
pute the Poincaré–Birkhoff normal form around the Lagrangian
equilibria. We choose unit masses, the parameter d0 in the Morse
potential in (88) equal to 6 and the parameter b specifying the side
length of the Lagrangian equilateral triangle in (92) equal to 6.5.
This gives the Jacobi coordinates

qe1 ≡ re1 =
√

µ1b =
6.5
√
2
,

qe2 ≡ re2 =
√

µ2b


3
4

=
6.5
√
2
,

qe3 ≡ φe
=

π

2
.

(98)

Solving (96) for r we find re = 19.8302179854.
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The momenta conjugate to the Jacobi coordinates are

pe1 = 0,
pe2 = 0,

p33 =
(re2)

2

(re1)2 + (re2)2
r = 9.9151089927.

(99)

The eigenvalues of the matrix JD2hr that gives the linearized
vector field are

±iω1 = ±i 0.2362174000,
±iω2 = ±i 0.4693542718,
±iω3 = ±i 1.1749259437,
±iω4 = ±i 1.1984363284.

(100)

So we can immediately read off that the equilibrium is of ellip-
tic linear stability. We note that a well established method for
determining the stability of reduced systems is the reduced en-
ergy–momentum method which was introduced in [40]. For an ap-
plication to the three-body problem, see also [43]. The reduced
energy–momentummethod does however not provide a means to
compute higher order normal forms as we will do now.

Since we are only interested in demonstrating the basic
principle of a normal form computation we will restrict ourselves
to the normal of order 4. We start from the fourth order Taylor
expansion of the Hamiltonian hr at the relative equilibrium. It
has 212 nonvanishing terms and we refrain from writing them
down. The symplectic matrixM which yields the linear symplectic
transformation after which the quadratic part of the Hamiltonian
assumes the form

h(2)
r,2 =

4
k=1

ωk(p2k + q2k) (101)

can be defined as

M = [c1Re v1, c2Re v2, c3Re v3, c4Re v4,
c1Im v1, c2Im v2, c3Im v3, c4Im v4] (102)

where the column vectors are the real and imaginary parts of
eigenvectors vk of JD2hr for the eigenvalues iωk with coefficients

ck =
1

√
Re vk · JIm vk

, k = 1, . . . , 4. (103)

We find that the matrixM is given by Box I.
Following the next step in the normal form procedure we find that
the normal form of order 4 is given by

h(4)
r NF = 2.1181531267 + 0.2362174000 I1 + 0.4693542718 I2

+ 1.1749259437 I3 + 1.1984363284 I4
− 1.4978871558 I21 − 7.7221894156 I1I4
− 0.9580186364 I24 + 6.4183166825 I1I3
− 8.1361397396 I3I4 − 0.8641444715 I23
− 0.2175152611 I1I2 − 0.2069751620 I2I4

− 0.1815241432 I2I3 + 0.0089977794 I22 . (105)

The Hamiltonian h(4)
r NF is obtained from the general approach de-

scribed in this paper. It yields an integrable nonlinear approxima-
tion of the 3-body problem reduced by the non-Abelian symmetry
group SO(3) which can be used to study the motion in the neigh-
borhood of the Lagrangian equilateral relative equilibria. Higher
order terms can be obtained following the normal form procedure.
The computations of the eigenvalues and eigenvectors and the Tay-
lor expansion were carried out using the computer algebra pack-
ageMaple. The normalization computationswere done using aC++
Fig. 5. The double spherical pendulum.

programwritten by one of the authors following the algorithm de-
scribed in [41].

5. The double spherical pendulum

In this section we study the reduction of the double spherical
pendulum (for a more detailed survey, we refer to [39]). We
again introduce canonical coordinates on the reduced space in the
light of Section 3. We use these to compute the Poincaré–Birkhoff
normal form at the relative equilibrium given by a so called
stretched-out solution.

5.1. Reduced equations of motion

Consider two coupled spherical pendulawithmassesm1 andm2
and position vectors s1 and s2 defined as in Fig. 5, moving without
friction under the influence of a gravitational force −akwhere a is
a positive constant and k is the unit vector in the z-direction.

If the lengths of s1 and s2 are l1 and l2, respectively, then the
configuration space isM = S2(l1) × S2(l2). The Lagrangian is

L(s1, s2, ṡ1, ṡ2) =
1
2
m1 ∥ṡ1∥2

+
1
2
m2 ∥ṡ1 + ṡ2∥2 (106)

−m1 a sT1 k − m2 a (s1 + s2)T k. (107)

The system is invariant under rotations around the z-axis. So the
symmetry group is the Abelian group SO(2) ∼= S1 whose action on
M is given by

(s1, s2) → (gθ s1, gθ s2), (108)

where gθ is the rotation by the angle θ about the z-axis. We can
identify the Lie algebra of S1 with span(k). An element of the Lie
algebra is then an angular velocity vector of the form ωk with
ω ∈ R and the corresponding fundamental vector field is ω (k ×

s1, k × s2). For the angular momentum, we find according to (8)

⟨L(s1, s2, ṡ1, ṡ2), ωk⟩ = ω(m1ṡT1 (k × s1)

+m2(ṡ1 + ṡ2)T (k × s1 + k × s2)) (109)

or

L =

kT (m1(s1 × ṡ1) + m2(s1 + s2) × (ṡ1 + ṡ2))


k. (110)
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4)


0 0.2245619939 0 0 0 0 0 0
0.5952500442 0 0.5952500442 −0.6459181965 0 0 0 0

−0.5952500442 0 −0.5952500442 −0.6459181965 0 0 0 0
0 0 0 0 0.2590186725 0 −0.2590186725 0
0 0 0 0 0 4.4531132913 0 0
0 0 0 0 0.1406084178 0 0.6993747200 −0.7740918318
0 0 0 0 −0.1406084178 0 −0.6993747200 −0.7740918318

−3.2144619462 0 0.6462635772 0 0 0 0 0

 . (10

Box I.
If the body frame is chosen such that the x-axis coincides with
s⊥1 , where s⊥1 is the projection of s1 onto xy-plane, and if we
introduce polar coordinates (r, θ) in the xy-plane then we obtain
for the body-fixed position vectors

r1 =


r1, 0, −


l21 − r21


, (111)

r2 =


r2 cosϕ, r2 sinϕ, −


l22 − r22


. (112)

Note that through the choice of the sign of the square roots in
the last components these equations are restricted to downward
pointing configurations. As r1, r2, ϕ are invariant under the group
action we can take them as shape coordinates on the three-
dimensional shape space Q = S2(l1) × S2(l2)/S1.

The moment of inertia tensor

I = m1 ∥r⊥1 ∥
2
+ m2 ∥(r1 + r2)⊥∥

2, (113)

where r⊥1 is the projection of r1 onto the xy-plane, can be written
in terms of the shape coordinates as

I = (m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22 . (114)

Accordingly, we get for the mechanical connection

Ar1 = −
m1m2r2 sinϕ

I
, Ar2 =

m1m2r1 sinϕ

I
,

Aϕ =
m1m2r2(r1 cosϕ + r2)

I
,

(115)

and the entries of the matrix d which gives the horizontal metric
are

d11 =
l21(m1 + m2)

2(l21 − r21 )
−

m2
1m

2
2r

2
2 sin2 ϕ

(m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22
,

d12 =
1
2
m2

cosϕ + r1r2

 1
l21 − r21


l22 − r22

+
2m2

1m2sin2ϕ

(m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22

 ,

d13 =
1
2
m2r2


− 1

+
2m2

1m2r2(r1 cosϕ + r2)
(m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22


sinϕ,

d22 = m2


l22

2l22 − 2r22
−

m2
1m2r21 sin2 ϕ

(m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22


,

d23 = −
m2

1m
2
2r1r2(r1 cosϕ + r2 sinϕ)

(m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22
,

d33 = m2r22


1 −

m2
1m2(r1 cosϕ + r2)2

(m1 + m2)r21 + 2m2r1r2 cosϕ + m2r22


.

The left-action of the group on the tangent bundle is trivial, so
J = L. The conjugate momenta of the shape coordinates are given
by

pα =
∂L
∂qα

=

3
β=1

gαβ q̇β + J Aα. (116)

Thus the Hamiltonian takes the form

h =
1
2

I−1J2 +
1
2

3
α,β=1

dαβ(pα − J Aα)(pβ − J Aβ) + V , (117)

where V = −m1 a

l21 − r21 − m2 a (


l21 − r21 +


l22 − r22 ) is the

potential. Observe here that as L is conserved, J is also conserved
and can be viewed as a parameter.

The reduced equations of motion are

q̇α =
∂hr

∂pα

= dαβ(pβ − J Aβ),

ṗα = −
∂hr

∂qα

= −
∂

∂qα


1
2
{I−1J2 + dαβ(pα − J Aα) (pβ − J Aβ)} + V (q)


,

(118)

where we denote by r the z-component of the conserved angular
momentum J.

5.2. Relative equilibria

Because of the triviality of the coadjoint action the conditions
to have a relative equilibrium (58) reduce to

pα = J Aα,

∂

∂qα


1
2

I−1J2 + V (q)


= 0.
(119)

As shown in [39] there are two types of relative equilibria: the so
called cowboy branch and the stretched-out solution that we will
concentrate on in the following and which is shown in Fig. 6. For
a stretched-out relative equilibrium, we have ϕ = 0. We find r1
and r2 from solving (119) (using the computer algebra program
Maple). The corresponding momenta are obtained from (116). We
will in the following choose all parameters to have unit values,
i.e. m1 = l1 = m2 = l2 = a = 1. The energy of the stretched-out
relative equilibrium as a function of J for this choice of parameters
is shown in Fig. 7a.

5.3. Normal form around stretched-out relative equilibria

The stretched-out relative equilibria are known to be sta-
ble [39]. In agreement with this result we find that the eigenval-
ues of the matrix JD2hr associated with the linearized vector field
of the reduced system at the stretched-out relative equilibria are
purely imaginary. The frequencies ωk, k = 1, 2, 3, are shown in
Fig. 7b as a function of r .

For the normal form computation, we consider the relative
equilibrium point which has r = 1. For the position of this relative
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Fig. 6. A stretched-out relative equilibrium solution of the double spherical
pendulum in which the two masses are aligned with the point of suspension and
move along circles.

equilibrium, we find

qe1 ≡ re1 = 0.4425598655,
qe2 ≡ re2 = 0.5656579210
qe3 ≡ ϕe

= 0,
p1 = 0,
p2 = 0,
p3 = 0.4704091824.

(120)

The Taylor expansion of the reduced Hamiltonian to order 4
has 186 nonvanishing terms at this relative equilibrium. The
eigenvalues associated with the linearized vector field are

±iω1 = ±i 1.2572610531,
±iω2 = ±i 1.4864684140,
±iω3 = ±i 2.6603546311.

(121)

Wedefine the symplecticmatrixM which transforms the quadratic
part of the Hamiltonian to the form

3
k=1 ωk(p2k + q2k) analogously

to (102) in Section 4.3. We find Eq. (122), given in Box II.
Following the normal form procedure we get for the 4th order
normal form

h(4)
r NF = −2.2056999577 + 1.2572610531I1

+ 1.4864684140I2 + 2.6603546311I3
+ 0.0467015469I21 − 5.8213832524I1I3
+ 0.0875786340I23 + 0.1772800788I1I2

− 0.0932948515I2I3 − 0.0419637147I22 . (123)

The Hamiltonian h(4)
r NF yields an integrable nonlinear approxima-

tion of the double spherical pendulum reduced by the Abelian
symmetry group SO(2) in the neighborhood of the stretched-out
relative equilibrium. Similarly to the 3-body case in Section 4.3 the
normal form of the reduced system is obtained from the general
approach in this paper which demonstrates the effectiveness and
generality of the approach. As described in Section 4.3 the compu-
tationswere carried usingMaple and aC++programwritten by one
of the authors.

6. Conclusions and outlook

In this paper we provided a general perspective on the con-
struction of canonical coordinates for the reduced spaces of Hamil-
tonian systems given by cotangent bundles with a free Lie group
action. The general approach presented in this paper allows one
to treat the reduction of Abelian and non-Abelian group actions on
the same footing. The case of simplemechanical systemswas stud-
ied in detail. The approach was illustrated for a 3-body problem
and the double spherical pendulum which involve non-Abelian
and Abelian symmetries, respectively. We used the canonical co-
ordinates to compute the Poincaré–Birkhoff normal forms at the
relative equilibria given by the Lagrangian equilateral triangle con-
figuration in the 3-body problem and the stretched-out solution
of the double spherical pendulum. The Poincaré–Birkhoff normal
form gives a nonlinear approximation of the local dynamics of
the reduced system in the neighborhood of the relative equilibria.
This goes beyond thewell established reduced energy–momentum
method which gives the stability of the relative equilibria [40]
and enables one, e.g., to give nonlinear approximations of the cen-
ter manifolds of relative equilibria. The use of a Poincaré–Birkhoff
normal form for the computation of the center manifolds of sad-
dle type equilibria has in recent years been demonstrated in the
study of reaction type dynamics [10,11]. The study of this paper
allows one to carry over these results to the case of saddle type
relative equilibria which induce reaction type dynamics in rotat-
ing molecules [12]. In this context also the reconstruction of the
full dynamics from the reduced one is of great interest. We leave
this issue for a future paper and instead refer to [44,45] for some
general background on this important problem.

In this paper we excluded Lie group actions with isotropy
which have been studied, e.g., in [15] or [37,18] for the case of
n-body systems. Our future studies concern how isotropy can be
a b

Fig. 7. (a) Energy of the stretched-out relative equilibrium as given by the effective or amended potential Veff =
1
2 I−1J2 + V (q) (see (119)) as a function of the angular

momentum r . (b) Frequencies of the stretched-out relative equilibrium as a function of r .
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2)
M =


0.3720476175 −0.3116300067 0.4202281883 0 0 0

−0.5712604029 −0.3238407419 −0.5369033436 0 0 0
0 0 0 2.2390869882 −0.2974563002 −2.2029538091
0 0 0 −0.8426837965 −1.6576611267 1.8964495311
0 0 0 0.3873035344 −1.4365053634 −1.4081719163

−0.6854444155 0.0612664420 −0.2510237658 0 0 0

 . (12

Box II.
incorporated in the approach presented in this paper to do, e.g., a
normal form analysis for 3-body systems with linear equilibrium
configurations. Another related problem is the development of
a normal form algorithm which is coordinate independent or in
the jargon of [3] gauge independent. This problem is considered
in [46] and its generalizations to cotangent bundles in general
seems worth studying.

Recently considerable progress was made in nonholonomic
mechanics (see, e.g., [32,47] and the references therein). It might
be possible to use these techniques to develop a non-canonical
Poincaré–Birkhoff normal form related to the results of this
paper.

Finally we mention that it would be interesting to transfer the
results of this paper to quantummechanical systems. Analogously
to the Poincaré–Birkhoff normal formof an equilibriumpoint there
is a quantum normal form built on the symbol calculus of pseudo
differential operators by which one can locally approximate a
quantum Hamilton operator. In the case of elliptic equilibria
this allows one to compute quantum energy spectra with high
precision. For saddle type equilibria, the quantum normal form
can be used to compute efficiently quantum reaction rates and the
associated Gamow–Siegert resonances (see [48,49] and also the
references therein for quantum normal forms in general). It would
be interesting to transfer these results to relative equilibria of
rotational symmetry reduced molecular systems. The dependence
of the quantization of quantum reaction rates in the hydrogen
exchange reaction as a function of the angular momentum has,
e.g., been studied in [50] using ab initio quantum computations.
It would be interesting to compare these results to a quantum
normal computation. The geometric approach for quantum 3-
body problems presented in [20] could be very useful for this
purpose.
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