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Chapter 1
Introduction

Aperture arrays have become the design of choice for the low-frequency and mid-
frequency parts of the world largest radio telescope, the Square Kilometre Array
(SKA)1 (Hall 2004). An excellent example of an aperture array telescope is the LOw
Frequency ARray (LOFAR) (de Vos et al. 2009). It exploits the concept of a phased-
array, which is a field of dipoles phased up to synthesize a receiving aperture (so-called
a phased-array station shown in Fig.1.3, right panel) with a size corresponding to the
dipole field. Multiple stations of this kind can be combined in the classical way to
form a conventional synthesis telescope such as Westerbork Radio Synthesis Telescope
(WSRT).

Operation of such an unconventional radio telescope as a scientific instrument
for e.g. high quality radio imaging is more challenging than ever before (Wijnholds
et al. 2010). Their field of view (FoV), sensitivity, and resolution have increased sig-
nificantly as compared with conventional radio telescopes. They can detect many
unknown faint sources as well as the known bright sources in their wide FoV. Their
observations are corrupted by variable propagation path effects (e.g. the ionosphere
and other layers of the atmosphere) and variations in their primary beam pattern
(beam pattern of a phased-array station) in time and frequency. The corresponding
corrections have to be made per source in the FoV, and per element of the interfer-
ometer. The large number of elements provide high sensitivity on the one hand, but
poses a computational challenge in their data processing on the other hand. However,
the hierarchical structure in aperture arrays, explained in Wijnholds et al. (2010) al-
lows data reduction to some extent and more control over the data flow e.g. diagnosis
of failure in the array elements, station calibration, etc.

With the advent of such new radio telescopes, the 3rd generation of calibration
(3GC) has been introduced to the radio astronomical community by Noordam and
Smirnov (2010) to enable us to tackle both direction-independent effects (DIE) e.g.
the instrumental gain corruptions and direction-dependent effects (DDE) e.g. prop-

1http://www.skatelescope.org/
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10 Introduction

agation path effects and the primary beam pattern. Smirnov (2011a,b,c) has clearly
explained how the 3GC trend can be adopted by radio astronomical data reduction
packages. Examples of such calibration packges are blackboard self-cal (BBS) (Pandey
et al. 2008) and MeqTree (measurement equation tree)2 with additional diverse sim-
ulation and visualization capabilities.

Following the 3GC trend, Bregman (2012) has rigorously outlined the strategies for
handling wide-field radio interferometric data calibration in the framework of LOFAR.
Taking the ionospheric and tropospheric effects into account, he developes an optimal
calibration strategy with a focus on available computational resources, but less so
on optimal imaging methods. However, constraining the ionospheric parameters (van
der Tol et al. 2007; van der Tol 2009; Intema et al. 2009) and practical steps such as
cluster calibration (Kazemi et al. 2011) that solve the ambiguity problem and reduce
the parameter space in the calibration process, remain of significant importance for
ionospheric calibration.

The efficient representation of the primary beam with a few basis functions is an
important step forward for fast and accurate calibration and imaging. The ongoing
research aims for such an achievement (De Lera Acedo et al. 2011; Maaskant et al.
2012; Maaskant and Ivashina 2012; Craeye et al. 2012) using different type of basis
functions and different consideration for mutual coupling in the models.

In addition to the calibration challenges, we should improve the deconvolution
(imaging) process. In this process, the known bright sources are modelled and removed
such that the faint unknown sources in the background can appear. Some calibrator
sources are resolved and observed as extended structures, owing to the high resolution
of the instrument. Consequently, a more accurate source modelling is required for
the calibration process, which adds to the computational complexity. Therefore, we
require a deconvolution process in which the deconvolution method and its source
modelling scheme perform optimally and are computationally efficient.

Radio frequency interference (RFI) has become a significant issue due to the fact
that the phased-array stations are sensitive to all directions and observe a wide range
of frequencies. However, there are extensive bodies of research available in the field
of RFI detection and mitigation, which permit obtaining scientific results in an RFI-
harsh environment (Fridman and Baan 2001; Boonstra 2005; Offringa et al. 2010;
Offringa 2012; Hellbourg et al. 2012).

To make aperture array telescopes a true success for the SKA, we must understand
their particular engineering aspects and the corresponding challenges that they intro-
duce in exploiting the scientific data of the instrument. Imaging is a major scientific
application of these instruments, from which other modes of operation of the instru-
ment can benefit. Therefore, an essential first step is to model the data appropriately
taking into account all the corrupting factors. The next step is to utilise advanced and
appropriate signal processing techniques to effectively and efficiently perform different
stages of the data processing i.e. both calibration and deconvolution. Such effort was
made in Lampropoulos (2010), with a particular emphasis on the use of LOFAR for
detecting the signal of the epoch of reionisation (EoR). In this thesis, we continue

2http://www.astron.nl/meqwiki/
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this approach with emphasis on the use of a general data model, redundant visibility
information, a constrained calibration routine, and an optimal deconvolution process.

In the following section, we briefly explain the fundamentals of radio interferomet-
ric (aperture synthesis) image formation and its measures of quality in terms of the
calibration and deconvolution processes. In Sect. 1.2, we revisit the definition of the
measures of image quality i.e. the quantities that we would like to improve. Then, we
give a short overview of the aperture array features in Sect. 1.3. This helps to point
out how each of those new features contribute to the challenge of high quality imaging
and also enhance the scientific potentials of the instrument. To achieve excellent sci-
entific results with an aperture array telescope, these effects have to be tackled with
sufficient accuracy. In Sect. 1.4, we summarize how this thesis contributes to tackling
this problem in the chapters following this introduction.

We use LOFAR as an example to explain the structure of an aperture array tele-
scope, but the arguments remain general.

1.1 Aperture synthesis imaging

The fundamentals of aperture synthesis imaging are based on measuring the spatial
coherency or Fourier components of the celestial sources on different baselines in the
array. The signals from the celestial sources are corrupted by the propagation path
and instrumental effects leading to imperfect measurements. They are the so-called
uncalibrated visibilities, which have to be corrected in a process called calibration.

Due to the finite number of receivers, we only sample a finite number of the Fourier
components. Earth rotation aperture synthesis (Ryle 1962), allows us to sample a
larger number of Fourier components given the same number of receivers, but on an
irregular grid. Fig.1.1 shows an example of such sampling for the LOFAR telescope.
Aperture synthesis imaging would be a simple inverse Fourier transformation of the
calibrated visibilities, if they were sampled on a regular grid. Instead, we need to
remove the effect of this irregular sampling pattern (often referred to as the synthesised
beam or the point spread function (PSF)) from the true intensity (sky brightness
distribution) in a process called deconvolution.

Traditionally calibration is performed by separately observing strong point sources,
solving for the complex antenna gains using the known source flux density and posi-
tion and then, transferring the calibration solution to the observation of the unknown
field. The stability of the instrument and the atmosphere determine how frequently
such calibrator observations need to be made. This procedure is commonly known
as cross-calibration. In order to improve the dynamic range of an observation, it has
proven possible to perform a second order calibration using the sources in the field of
observation. This procedure is known as self-calibration (self-cal) (Thompson et al.
1986; Schwab and Bridle 1994). Self-cal has advanced from a process which solves for
only DIE e.g. instrument electronic gains to a process which solves for both DIE and
DDE e.g. the propagation path effects (Noordam and Smirnov 2010).

Self-cal and deconvolution cannot be disentangled. The self-cal process has an
iterative nature and needs to converge in each iteration. It starts with an initial
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Figure 1.1: An example of irregular sampling of the Fourier components using Earth
rotation synthesis technique. The observation is done at frequency f = 214 MHz using

LOFAR.

sky model, an accurate data model and imperfectly calibrated visibilities. In each
calibration iteration, the known bright sources are used to estimate the unknown pa-
rameters of instrument and propagation path effects. Then, the sky model is updated
by deconvolving and removing the known bright sources such that the faint sources in
the background can appear and be characterised. The calibration routine is repeated
using the updated sky model and the corrected data. It is continued until the un-
known parameters are calibrated for, all the known sources are removed, and ideally
the thermal noise limit is reached. The remaining radio image then reveals the faint
unknown background with minimum error or high quality. In the next section, we
revisit the definitions of the quality measures in imaging i.e. the quantities that we
would like to improve.

1.2 Measures of the image quality

Dynamic range and fidelity are measures of the quality of an image and are defined
in the next subsections.

1.2.1 Dynamic range

The dynamic range is defined as the ratio between the peak intensity and the noise
floor. As argued by Wijnholds and van der Veen (2008), the noise floor is the sum of
calibration errors, the confusion noise, and the receiver thermal noise. This implies
that calibration errors raise the noise floor. Therefore, one way to reduce the noise
floor is to perform a more accurate calibration, as the receiver thermal noise is fixed
(Yatawatta 2011b).
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1.2.2 Fidelity

Essentially, image fidelity is the measure referring to high-quality reproduction of an
image. It is mostly derived from the difference between the observed image, and the
true image. In aperture synthesis imaging, the true image is usually unknown. There-
fore, it is not straightforward to measure the image fidelity precisely this way (Wright
1999). However, it can be defined by the optimality in performing the deconvolution
process, by which the true image is estimated. This optimality is measured by the
Cramér-Rao bound (CRB). In estimation theory, the CRB gives a theoretical lower
bound on the error variance in the estimated parameter. Therefore, reaching the CRB
in the deconvolution process means achieving the image fidelity to the fullest possible
i.e. the most optimal deconvolution method using the most optimal source model-
ing scheme. Note that we referred to the deconvolution process as the deconvolution
method and its source modelling scheme.

Image fidelity clearly depends on the uv -coverage i.e. the pattern by which Fourier
components are sampled, that is determined by the array configuration, and the
duration and the bandwidth (or number of frequency channels) of the observation.
But the uv -coverage is not the only factor. We can still optimize our source modelling
scheme and methods of deconvolution (imaging), thus increasing the image fidelity.
This implies that quantifying the image fidelity only based on the uv -coverage is
inadequate. We shall therefore refer to a redefinition of image fidelity by Yatawatta
(2011b), who uses information theory, based on the Landau-Pollak theorem (Landau
and Pollak 1961; Slepian 1976). The Landau-Pollak theorem was derived to find the
most optimal representation of the signals which should have the most concentration
simultaneously in both time and frequency domains, so called time-limited band-
limited signals (Slepian 1976), with minimum number of basis functions (minimum
model order). Here, it is worth noting that in radio interferometric data, the time and
frequency domains translate to image and uv domains, respectively. Thus, the time-
limited term refers to the source limited boundary in an image (image-domain) and
the band-limited term refers to the limited area of the uv -coverage (visibility-domain)
of the interferometer, basically determined by the longest baseline.

In its simplest form, the Landau-Pollak theorem states that the number of degrees
of freedom to model any given source with compact support, ND, also known as the
Shannon number (Percival and Walden 1993; Simons et al. 2006) could be no greater
than the product of the area of the source in image domain, Alm and the area of the
source observed in the Fourier plane, Auv i.e. ND ≤ Alm ×Auv. Auv is limited by the
uv -coverage whereas Alm is limited by the noise floor (Slepian 1976). The noise floor
is determined by self-cal accuracy, which can be improved by more optimal source
models and deconvolution methods. At the same time, accurate recognition of the
source area for the deconvolution process should be provided by an accurate self-cal
process. This implies that image fidelity and dynamic range are intertwined as it is
presented in Fig. 1.2. It also implies that we can achieve full dynamic range, even
when the uv -coverage is poor (Yatawatta 2011b). This is made possible by using
optimal source modelling schemes and deconvolution methods.

This argument make us see the concept of redundancy in a new light. Redun-
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Figure 1.2: The relationship between fidelity and dynamic range in a typical radio interfero-
metric data reduction. The theoretical limits for fidelity is mainly given by the Landau-Polak
theorem. The dynamic range limit is mainly given by the Cramer-Rao lower bounds in cal-
ibration. A typical self-cal involves step-wise improvement of dynamic range and fidelity

until the limits are reached (Yatawatta 2011b). Courtesy of Sarod Yatawatta.

dancy has proven to improve the dynamic range imgaing with WSRT observations
(Noordam and de Bruyn 1982), but it has always been considered as a harm to the
image fidelity. On the contrary to this common notion, a new deconvolution method
based on using compressed sensing technique has proven to work optimally (thus,
high fidelity) for sparse signals (e.g. radio interferometric observation with poor uv -
coverage) (Candès and Romberg 2007; Levanda and Leshem 2008; Wiaux et al. 2009a;
McEwen and Wiaux 2011a). However, the effect of redundancy on the performance of
the deconvolution process, thus the quality of the final image using different methods
of deconvolution remains a critically important future research direction.

1.3 Aperture array radio telescopes

New generation radio telescopes exploit the concept of phased-arrays i.e. the con-
ventional reflector dish design (Fig.1.3, left panel) is replaced by a field of dipoles
(Fig.1.3, right panel). The dipoles are phased up to synthesize a receiving aperture
as an element of the interferometer. This is a so-called phased-array station e.g. the
low band antennas (LBAs) and high band antennas (HBAs) at a LOFAR station.
The type of dipole varies depending on the frequency of operation. Accordingly, the
number of them, their arrangements in the field, and their hierarchy of beamforming
vary to provide a certain sensitivity for the station.

Hierarchical system architecture is an important conceptual difference between
the new generation of radio telescopes and conventional ones. In LOFAR, a station
consists of phased-arrays, either sparse or dense. In the sparse phased-array stations,
the station elements are dipoles, which are digitally beamformed to synthesize a re-
ceiving aperture as a station such as the LBAs in a LOFAR station. Phased-arrays
operating above ∼ 100 MHz are often implemented as compound elements or tiles
such as the HBAs at the LOFAR stations or in the Electronic Multi-Beam Radio As-
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Figure 1.3: Left: Westerbork synthesis radio telescope as an example of a conventional radio
interferometer (the photo’s source: http://www.evlbi.org/network/network.html). Right:
Core of LOFAR telescope including low and high frequency dipole fields (the photo’s source:

http://www.lofar.org/about-lofar/image-gallery/latest-lofar-images)

tronomy ConcEpt (EMBRACE) system (van Ardenne et al. 2004; Kant et al. 2011).
The latter is an example of a very dense phased-array station, in which the distance
between the dipoles is smaller than half the wavelength. In these stations, the station
elements are phased-array tiles (e.g. Fig. 1.4, left most panel). A tile is a regular
arrangement of many dipoles, whose signals are added in phase to form an instan-
taneous beam (the first level of beam-forming). The tile output signals are digitally
phased up to synthesize a receiving aperture as a dense phased-array station. At
the next level in the beamforming hierarchy, the beam formed output of each station
is transported to the central correlator, in order to synthesize the whole telescope.
Hierarchical structure also serves the goal of significant reduction of the data to be
transferred to, and analyzed at the array central processor.

Fig. 1.4 shows the hierarchy of antenna systems in a phased-array station such
as the HBA. Each HBA tile consists of 16 dual polarized identical dipoles. The
output of the 16 dipoles of a certain polarization are coherently summed by an analog
beamformer to represent a tile. To do this, the output of each dipole is phase shifted,
and then summed with the output of all other dipoles in a tile. This makes the beam
a complex quantity, that introduces direction-dependent extra phase. The output of
each tile is transported to the station correlator to be correlated with the output of
other tiles. The resulting correlation matrix is called station visibility which is used
for engineering purposes e.g. detection of a failing element, RFI detection, station
calibration, etc.

Calibration has to be performed at different levels of this hierarchy to provide a
final, high dynamic range image of part of the sky as explained by Wijnholds et al.
(2010). Moreover, in closely located elements of a phased-array station, electromag-
netic interactions (known as mutual coupling in antenna engineering terminology)
between elements leads to dissimilarity between beams of the station elements and
correlated receiver noise. Each of these somehow affects the station calibration results.

A great practical advantage of the phased-array design is that the construction
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Figure 1.4: Hierarchy of antenna systems in a HBA station. Left: A 24-tiles HBA station.
Middle: One HBA tile, that is consist of 16 dual polarized dipoles. Right: A mechanical
design of a HBA dual polarized dipole i.e. two orthogonal bow-ties. Courtesy of LOFAR

project.

cost drops dramatically and a large radio telescope becomes affordable. But operation
of such an unconventional telescope is challenging in several aspects:

1. The dipoles are fixed on the ground and beam steering is done electronically.
This has the advantage of fast beam steering and even having multiple beams of
the same station, looking at different parts of the sky (potentially for different
science cases). But, this also means that the intrinsic beam shape of a station
(primary beam) keeps changing over time. The reason is that the beam steer-
ing is done electronically by assigning different beamforming weights during a
certain observation. This variation is predictable in theory. In fact, there is a
dipole plus array-factor beam model implemented in the BBS package (Pandey
et al. 2008), which tracks such variation during calibration of an observation.

Such implementation of the beam model in the BBS dismisses the mutual cou-
pling between the dipoles. Therefore, the feasibility and implementation of a
dipole plus array-factor model, which takes into consideration the mutual cou-
pling effect remains as an important issue to investigate. This becomes more
challenging in the case of HBA or EMBRACE like stations with extra level
of beamforming hierarchy. Ivashina (2011) presented numerical examples of a
multi-level hybrid beam modeling approach for aperture arrays. She concluded
that only 3 basis functions are sufficient to model the beam with a good ac-
curacy both in main beam and in sidelobes. One may consider studying how
to accomodate such primary beam representation in a 3GC package, either the
BBS or the MeqTree.

2. The sky rotates in the FoV of the station owing to the lack of a physical “equa-
torial” mount. Sky rotation in the FoV has been experienced in Very Large
Array (VLA) observation with an “alt-az” (altitude-azimuth) mount contrary
to WSRT observations, thanks to the equatorial mount of the telescope (see
Perley et al. (1985, Lecture. 8)). Sky rotation causes a variable noise when we
observe a certain patch of the sky containing faint sources, and a strong source
close to the field of interest comes in and out of the rotating sidelobes. Heywood
(2011) has demonstrated that such effect can be treated as a DDE and can be
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solved for using the corresponding technique to handle the DDEs. However, one
can argue that the rotation of the sky in the FoV is a geometrical effect, which
is known a priori and should be corrected for in the software (e.g. by the BBS),
instead of estimating for it as a DDE.

3. The dipoles length is seen differently from the point of view of different sources
at different locations, as demonstrated in Fig. 1.5. Therefore, their sensitivity
varies per source. Due to the same reason, the projection of the beam pattern
of a phased-array station (primary beam) on the celestial hemisphere varies
from one scanning angle to another, unlike a dish with equatorial mount, whose
beam projection remains the same for all directions of observation. Fig. 1.6
demonstrates this effect using the OSKAR3 simulator. It visualizes the pro-
jected beam of a phased-array station, formed toward different directions on
the celestial hemisphere.

Figure 1.5: The coordinate system, in which locations of the station antenna elements
can be expressed for aperture array stations. The x-axis is oriented towards east, the
y-axis is oriented towards north and the z-axis is pointing at the local zenith. This

illustration is courtesy of Oleg Smirnov.

In the case of dismissing the effect of beam projection, an un-polarized signal
is observed as a polarized one, as demonstrated in Lampropoulos (2010, Fig.
3.7) using MeqTree simulation module. Therefore, the projection effect can be
seen as the instrumental polarization (Smirnov 2011b). However, if an accurate
model of the beam of a phased-array station, that takes the projection effect into
account is provided, this effect should not be modelled as a separate effect i.e.
the instrumental polarization. Such consideration also reduces the parameter

3http://www.oerc.ox.ac.uk/research/oskar/
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Figure 1.6: Demonstration of the aperture array beam projection on the celestial
hemisphere using the OSKAR simulator.

space in calibration, thus improves the calibration efficiency, effectiveness, and
speed of convergence.

Ongoing research on efficient representation of the primary beam with a few
basis functions (De Lera Acedo et al. 2011; Maaskant et al. 2012; Maaskant and
Ivashina 2012; Craeye et al. 2012) can alleviate this problem eventually.

The antenna pattern of a dipole is largely isotropic and hence it can observe
the entire sky. A number of them, that are beamformed to represent a phased-array
station give a narrower FoV but still large as compared with the FoV of a conventional
dish (especially at low frequencies). Through this wide FoV, a large part of the sky is
observed. This is scientifically fascinating as we can do more science given the same
observing time, but it also means that:

1. the sky is observed through a patch of the ionosphere with spatial irregularity
on a scale (S in Fig. 1.7), much smaller than the FoV (V in Fig. 1.7) i.e.
calibration falls in the regimes 3 and 4, as illustrated in Fig. 1.7 and explained
in Lonsdale (2004). In regime 3, the ionosphere varies significantly over the FoV,
but similarly for all the array elements. In regime 4, different array elements
view different sections of the ionosphere. In both regimes, the ionosphere is
also variable over time and frequency. Aperture array calibration may also fall
in regime 1 or regime 2, obviously depending on the size and configuration of
the phased-array stations, and the frequency of observation that determine the
width of the FoV.

The propagation path effects and ways to calibrate for them in low frequency
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Figure 1.7: Calibration regiems instroduced by Lonsdale (2004).

and wide FoV aperture synthesis data have been extensively discussed by van
der Tol et al. (2007); van der Tol (2009); Intema et al. (2009); Bregman (2012).
van der Tol et al. (2007); van der Tol (2009) proposed a self-cal process using
physically justifiable extra constraints on the ionospheric parameters and the
peeling technique (Noordam 2004) to calibrate for such parameters. Peeling
technique is sequential self-cal on individual bright sources in the FoV. Their
approach was developed further as a technique called source peeling and atmo-
spheric modeling (SPAM) explained in Intema et al. (2009). Bregman (2012)
has thoroughly explained the propagation path effects and ways to tackle them
in detail. He indicated the direction for futher research in this field.

In addition, cluster calibration (Kazemi et al. 2011), which has a similar ap-
proach to the peeling technique constitutes a general amendment to wide FoV
calibration. It divides the observed sky into clusters centered at strong sources
in the FoV. It assumes certain parameters e.g. the ionospheric effects to be
similar for the other weaker sources in the same cluster. This reduces the pa-
rameter space in calibration, which is a major contribution to manageable data
calibration in wide-field astronomy.

2. the curvature of the celestial sphere is always present in aperture array observa-
tions owing to their wide FoV. This is the case regardless of the coplanarity of
the baselines. The sky curvature in aperture synthesis observations has been the
subject of discussion since the 70’s (Brouw 1971; Clark 1973). For an east-west
array this is not a problem as nicely shown by Brouw (1971). Otherwise, it is
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ignored on co-planar baselines given the narrow FoV of the conventional radio
telescopes (and observations in higher frequencies), while it has commonly been
tackled using facet-imaging (Perley and Bridle 1994) and w -projection methods
(Cornwell et al. 2008), on non-coplanar baselines. w-projection algorithm, that

performs faster than facet-imaging converts visibilities in 3D-space, f̃(u, v, w)

to visibilities in 2D-space f̃(u, v, w = 0) by projecting out the w-term to w = 0.
This method has clearly been explained in Cornwell et al. (2008). Thus, aper-
ture synthesis imaging has always been done in a 2D-plane. The reasons were
the convenience of image display in 2D, and the high computational cost of a
full 3D FFT.

The latest work in this area discusses the advantages of doing the data analysis
in 3D, on celestial sphere (Carozzi and Woan 2009; McEwen and Wiaux 2011b;
Bregman 2012). Carozzi and Woan (2009) suggested performing calibration on
celestial hemisphere in (l, m, n) coordinates, as none of the assumptions of the
narrow FoV and coplanary holds for new radio telescopes such as LOFAR. This
way, all-sky polarimetric calibration and imaging in a single telescope pointing
are possible without any step such as the sky faceting or w-projection. In the
deconvolution field, there is a growing interest in application of the compressed
sensing techniques in radio interferometric imaging owing to its linearity. Its
application for radio interferometric image deconvolution was introduced and
demonstrated by Levanda and Leshem (2008); Wiaux et al. (2009a). It was
enhanced further in research by McEwen and Wiaux (2011b,c,a), where its
improved performance in wide-field imaging in the celestial sphere (without w-
projection step) was demonstrated.

Moreover, significant ongoing research has focussed on improving the compu-
tational efficiency of higher order FFT e.g. 3D FFT (Frigo and Johnson 1998;
Frigo 1999; Frigo and Johnson 2005)4, allowing to reduce the computation cost
and speed.

However, this is arguable whether the 3D imaging on celestial sphere is the
potential future of aperture synthesis imaging.

All the aforementioned properties of the new radio telescopes affect their imaging
capabilities. The signals of interest experience all these effects, which we must take
into account in the data model properly. Then, we should correct for each of such
effects accurately to obtain the final image with minimum error, thus high dynamic
range.

In addition to the calibration challenges, we should improve the deconvolution
process. In this process, the known bright sources are modelled and removed such
that the faint unknown sources in the background can appear. Some calibrator sources
are resolved and observed as extended structures, owing to the high resolution of the
instrument. Extended sources should be modelled and removed optimally, which leads
to simultaneous improvement in both fidelity and dynamic range of the final image
as illustrated in Fig. 1.2.

4See the FFTW home page for the latest updates: http://www.fftw.org/
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CLEAN (Högbom 1974) is the first and most commonly used deconvolution method.
It has greatly served aperture synthesis imaging over the last decades. Its perfor-
mance, however degrades during the deconvolution of extended sources, owing to its
pixel-based source modelling scheme and the nominal resolution (or the PSF width)
limit of the interferometer. Fundamental limitations of CLEAN for deconvolution
of an extended source were first discussed by Brinks and Shane (1984). However,
they had not recognized its pixel-based source modelling scheme as the cause of that
limitation. As an improvement to CLEAN performance, Wakker and Schwarz (1988)
developed a multi-resolution CLEAN (MRC) by appropiately combining the results
of a number of conventional CLEAN operations with optimized parameters, each at a
different scale. Later Cornwell (2004); Bhatnagar and Cornwell (2004) recommended
a scale sensitive pixel-based source modelling scheme by representing the extended
source with a number of properly scaled and centered extended basis function com-
ponents. However, one can argue that a scale sensitive pixel-based source modelling
would still be limited by the resolution limit of the interferometer, when the source
extension is larger than the PSF width. Moreover, they acknowledged that they
cannot reliably specify the number of significant basis function components (model
order). An optimal alternative source modelling scheme is the use of orthonormal
basis functions that span the whole source area e.g. shaplets or prolate spheroidal
wave functions (PSWF). PSWF have proven to be the only set of basis functions
that provide the significant number of basis functions (Shannon number) and per-
form more effectively than other basis functions e.g. shapelets (Yatawatta 2011b).
However, they are computationally more expensive than shapelets. One can compute
them efficiently taking the approach suggested in Noorishad and Yatawatta (2011).

1.4 Outline and summary of the thesis

The scope of this thesis is to take a few steps towards high quality imaging with
aperture array telescopes, taking into consideration the computational efficiency of
each step.

In Chapter 2, we present and refine a general data model, in which the nature
of the noise terms and the direction dependent effects are well described. This view
reveals some potential improvements, that we suggest to be considered in algorithm
development e.g. for the calibration and deconvolution processes. In modelling the
data of a phased-array station, we also take into account the mutual coupling be-
tween the array elements. We view the mutual coupling effect, both in terms of
mutual impedances and as the cause of dissimilarity between the station elements
beam pattern. We discuss how each view leads to a different model of the same phys-
ical phenomenon i.e. electromagnetic interaction between the array elements. We use
the refined data model in the chapters that follow Chapter 2.

In Chapter 3, we study the application of the redundancy method for the cali-
bration of phased-array stations with a regular layout e.g. HBA (Fig.1.4, left-most
panel). The initial motivation was that it is computationally cheaper and faster than
the commonly used model-based calibration method and it is sky model independent.



22 Introduction

Our results using real and simulated data of LOFAR HBAs demonstrate that the re-
dundancy calibration method performs better than model-based calibration method,
when redundancy is provided. Therefore, we recommend designing redundancy (or
at least exploiting the redundant mesurements) in both the station layout and the
array configuration of future aperture arrays. This is particularly true in the case of
the SKA aiming at a dynamic range requirement that surpasses any existing array
by an order of magnitude (Dewdney et al. 2010). In addition, redundancy provides a
powerful tool, from which system diagnostics can be obtained. We also conclude that
mutual coupling is the main limitation of the calibratability of a phased-array station,
regardless of the calibration method. For this reason, we recommend minimization of
the mutual coupling as a figure of merit in station configuration.

In Chapter 4, we present the refractive nature of the ionosphere as a DDE and
a source of inaccuracy in self-cal gain estimation results, assuming that the beam
model is known. We take advantage of the practical solution of cluster calibration
(Kazemi et al. 2011) and suggest a similar approach to that of van der Tol et al.
(2007) such that self-cal converges better to the true solution, in presence of the
refractive effect of the ionosphere. Our suggestion is to solve a constrained self-
cal for an array with an arbitrary geometry, using extra constraints as exploited in
redundancy calibration. We demonstrate that those constraints have a clear physical
justification, only when we observe a single source or multiple sources, that experience
similar ionospheric effect. We discuss how cluster calibration might reduce any other
observational scenario (shown in Fig. 1.7) to one, in which these constraints are
justified. We conclude that a constrained self-cal performs more optimally based on
our numerical CRB analysis and comparing it with the CRB of its unconstrained
version. Then, we solve a constrained self-cal taking two different approaches: the
sequential quadratic programming (SQP) technique and the logarithmic least squares
(LOGLS). Their results show that the SQP performs more accurately as compared
with the LOGLS, provided the same initial guess, and that self-cal can benefit from
the constraints used in the redundancy calibration formalism to perform more reliably
for gain calibration of an array with an arbitrary geometry.

In Chapter 5, we discuss the limitations of a pixel-based source modelling scheme
for modelling a source which is more extended than the PSF. We also discuss the
alternative use of orthonormal basis functions, that span the whole source area as
opposed to the pixel-based basis functions, for optimal modelling of the extended
sources in the deconvolution process. We give an overview of existing deconvolu-
tion methods and discuss how they can accommodate such source modelling scheme.
Following the promising results of using orthonormal basis functions, especially the
PSWFs (Yatawatta 2010, 2011b,a), we suggest a solution to reduce the computa-
tional cost of their implementation (Noorishad and Yatawatta 2011). Moreover, our
extensive discussion on the deconvolution problem, the corresponding methods and
source modelling schemes reveals that quantifying the image fidelity based on only
uv -coverage is inadequate.

Finally in Chapter 6, we summarize the insights, that we obtained throughout this
thesis to understand the aperture synthesis data processing of an aperture array tele-
scope. We also list several new questions to be pursued in new research projects. The
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clear answer to those questions will hopefully be a major step toward computationally
effective and efficient wide-field, high quality aperture synthesis imaging.
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Chapter 2
Array data model

In this chapter, we present the array data model (also known as the measurement
equation (ME)), which we will use in the next three chapters. It is essential to have
an accurate understanding of various physical and geometrical effects that contribute
in the array data formation and accommodate them in the data model. Therefore, we
dedicate this chapter to precisely present and refine a general data model, in which
the nature of the noise terms and the direction-dependent effects are well described.
This view reveals some potential improvements, that we suggest to be considered in
our algorithms development e.g. for the calibration and deconvolution processes.

25
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2.1 Data model of a phased-array station

A phased-array station is an array element in an aperture array telescope such as LO-
FAR. It actually synthesizes a receiving aperture, which substitudes a dish in the con-
ventional arrays. It is important to note that data formation both at a phased-array
station and at the whole synthesis array is based on the same principles. However,
some physical effects gain or lose their importance only due to the parameters e.g.
integration time, baseline length, and electromagnetic environment. In this section,
we obtain the data model or so-called measurement equation (ME) of a phased-array
station, in which all the array elements are included (a full ME). Mutual coupling,
which is not a dismissable effect in the phased-array stations is taken into account as
a matrix of mutual impedances in the data model in Eq. 2.11. The mutual coupling is
also studied as the cause of dissimilarities between the station element beams in Sect.
2.1.3. We explain how these dissimilarities can be taken into account as a DDE in a
gain matrix G0, in the data model in Eq. 2.16. In Sect. 2.1.2, we describe a general
noise expression for an array, where the nature of noise in the aperture synthesis data
is properly defined in terms of the different contributing factors.

In Sect. 2.2, we explain the reasons why we use a data model based on 2 × 2
Jones matrices at the whole synthesis array level. We note that 2×2 MEs are in fact,
the off-diagonal terms of the full ME, when the full polarization content of incoming
celestial signals is taken into account.

2.1.1 Data formation

We assume that we have a phased-array station such as a LBA station of LOFAR
presented in Fig. 2.1. The electromagnetic field probed by an antenna at position
r = (x, y) at time t can be described as a superposition of electromagnetic plane
waves, Es(k, t) coming from celestial sources at all directions in different frequencies.
This is represented in Eq. 2.1.

Figure 2.1: An LBA station of LOFAR as an example of a phased-array station, with
the simplest antennas, i.e. droopy dipoles (the photo source: http://www.astron.nl/). The

photo is courtesy of Hans Hordijk.
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E(r, t) =

∫ π

−π

∫ π
2

0

∫ ∞

−∞

Es(k, t)e−j(k.r−|k|ct)df |sinθ|dθdφ. (2.1)

Figure 2.2: Coordinate system to describe the antenna positions and the polarization of
the incoming plane waves. The antennas i.e. dipoles are arranged along x- and y- directions
to measure different polarization components. (l, m)- plane is tangential to the celestial

hemisphere at the phase center.

The wave vector k = −2πf�s/c fully characterizes the plane wave coming from an
arbitrary direction �s = (l, m, n), with frequency f . The coordinate system to describe
the antenna positions and the polarization of the incoming plane waves is presented in
Fig. 2.2. The following coordinates conversions hold: l = sinθcosφ, m = sinθsinφ, and
n = cosθ, where θ = 90◦ − el, φ = 90◦ − az, el and az denote elevation and azimuth,
respectively. The plane wave spectrum Es(k, t) = [eθ, eφ, er]

T describes the complex
amplitude distribution along the three polarization directions eθ, eφ and er. Since a
plane wave does not have a field component along the direction of propagation, the
field amplitude can be described by just two components, Es(k, t) = [eθ, eφ]T . The
plane waves may come from the following origins:

1. known sources (presumably point-like sources), which are used as calibrator
beacons.

2. extended structures such as the galactic plane and north polar spur, which are
sampled predominantly on short baselines i.e. the baselines < 4λ (λ is the
observed wavelength). This upper bound is set empirically and has proven
practical by Wijnholds (2008).
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3. homogeneous sky background noise.

4. RFI sources in the far-field of the array. We note that the assumption of a plane
wave does not hold for an RFI signal in the near-field.

To ease the discussion, that follows, we make several simplifying definitions and
assumptions:

1. The plane waves originate from only point-like sources (i.e. a source with com-
pact support) in the sky. A phased-array station does not have enough resolution
to resolve the sources owing to its short baselines.

2. The station antenna elements are simple dipole antennas, arranged along or-
thogonal x- and y- axis to measure different polarization components (see Fig.
2.2). One can construct the polarization information content of the measure-
ment using these two components.

3. We take into account only the dipoles arranged along one axis, either x-axis or
y-axis. This way, we can drop some mathematical complexities e.g. the vector
E in Eq. 2.1 is replaced by a scalar signal, s(k, t).

4. A station element is referred to an antenna including its corresponding electron-
ics. The station elements are assumed to be identical.

5. The propagation path effects can be dismissed, as the station data is snapshot,
with short integration time e.g. one second.1

6. We observe in only a narrow frequency subband (channel), thus the inner-most
integral in Eq. 2.1 drops.

A plane wave with wave vector k = −2πf�s/c impinging on an array element at
position, r and at time, t is decribed by

s(r,k, t) = s(k, t)e−j(kT r−|k|ct). (2.2)

This plane wave will induce a voltage in each dipole, vwavei
(k, t). It can be repre-

sented in a Thévenin equivalent circuit of dipole element number i depicted in Fig.
2.3 (Svantesson 1998). vind is the voltage induced in the i-th dipole due to the im-
pinging wave and electromagnetic interaction with other dipoles. The receiver device
is characterized by an electronic gain, g and the impedance ZT . ZA is the antenna
impedance, whose definition can be found in any antenna literature e.g. (Balanis
2005). vT , the voltage over the termination impedance ZT , is the measured output
voltage of the station element number i.

The total induced voltage in the i-th antenna element is then given by

vindi
(k, t) = vwavei

(k, t) −
∑
k �=i

IkZik, (2.3)

1Although there is no guarantee that those effects remain unchanged during capturing the snap-
shot data in all frequency subbands, which takes about 9 minutes for a LOFAR station.



2.1 Data model of a phased-array station 29

Figure 2.3: Thévenin equivalent circuit model of the i-th element of a station (Svantesson
1998).

where the first term is the voltage induced by the plane wave and the second term
is the induced voltage due to electromagnetic interaction between antenna i and k.
The latter effect is known as mutual coupling and is expressed in terms of a mutual
impedance Zik. Ik is the current at antenna k. Analytical expressions for both
terms are obtained by integrating over the surface of the antenna element. Such an
expression is somewhat trivial for a dipole but once the antenna element corresponds
to a surface,2 such expression gets a more complicated form (Maaskant 2010). A
closed form expression of a dipole beam pattern,3 Hi(�s) can be found in any antenna
reference book e.g. (Balanis 2005). The induced voltage due to the plane wave signal
coming from direction �s, s(ri,k, t) is simply given by

vwavei
(k, t) = s(ri,k, t)Hi(�s). (2.4)

Hi(�s) is the beam pattern of an individual element when it is not electromagnetically
interacting with any other element in the array. In an array made of mechanically
and electromagnetically identical elements, Hi(�s) is identical for all the elements. It
is also assumed to be known from electromagnetic studies of an antenna.

Assuming that we have p elements in an array, we write the circuit equations
for all antenna elements using the model in Fig. 2.3. It will result in a system of
equations, which can be expressed in form of matrix multiplications

vT (k, t) = GZTZ−1vwave(k, t), (2.5)

where vector vT = [vT 1, vT 2, ..., vT p]
T (size p × 1) contains the measured output

voltages. G = diag(g) (size p × p), g = [g1, g2, ..., gp]
T (size p × 1) contains the

intrinsic complex gain of the reciever elements. Z (size p× p) is an impedance matrix
whose diagonal elements are Zii = ZA + ZT and off-diagonal elements are mutual
impedances (Zij). Vector vwave = [vwave1, vwave2, ..., vwavep]

T (size p × 1) contains
the voltages induced by the plane wave on all antenna elements.

2Such as in the case of HBAs in LOFAR. There, an antenna element is a bow-tie (see Fig. 1.4,
the right most panel)

3Beam pattern is also known as response or sensitivity pattern.
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The plane wave signal is assumed to be narrow-band (Zatman 1998). This allows
us to present its different times of arrival at each antenna (located at ri) with a
different phase shift. This is represented as geometrical array-factor in

vT (k, t) = G (ZT + ZA)Z−1︸ ︷︷ ︸
M

Ĥ(�s)

⎡⎢⎢⎢⎢⎢⎣
e−jkr1.�s

e−jkr2.�s

...

e−jkrp.�s

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

geometrical array-factor

s(k, t), (2.6)

where Ĥ is the normalized response pattern. The mutual coupling effect is described
by the unit-less matrix, M (size p × p). If no coupling is present, it will reduce to
an identity matrix. Often the geometrical array-factor and the normalized response
pattern are combined into an array response vector (or steering vector), a(�s, r)

vT (k, t) = GMa(�s, r)s(k, t). (2.7)

We note that the array response vector carries the information of the element beam
patterns.

As formulated earlier in Eq. 2.1, the electromagnetic field probed by the antennas
is a superposition of electromagnetic plane waves coming from celestial sources at all
directions. If we take into account the contribution of q point sources illuminating
the array at time t, we obtain

vT (t) = GMAs(k, t), (2.8)

where s(k, t) = [s1(k1, t), s2(k2, t), ..., sq(kq, t)]
T (size q × 1) contains the plane waves

or i.d.d. (temporally independent and identically distributed) Gaussian signals com-
ing from q known celestial sources. A = [a1, a2, ...,aq] (size p×q) is the array response
matrix, that contains the array response vectors corresponding to each source on its
columns and is defined as

A = exp

(
−j

2π

λ
RLT

)
, (2.9)

where the matrix R = [r1, r2, ..., rp]
T (size p×3) is the stack of array element positions,

if the i-th element of the array is located at ri = [xi, yi, zi]
T . Likewise, the source

positions are stacked in a matrix L = [�s1, �s2, ..., �sq]
T (size q × 3), if the position of

the k-th calibrator source is �sk = [lk, mk, nk]T .
The elements of vector vT (t) in Eq. 2.8 are the superposition of voltages induced

by electromagnetic waves coming from q directions at time t and the voltages induced
due to mutual coupling between the station elements. In real observations, vT (t)
also carries the contribution of the homogeneous sky background noise (Tsky) and
the unresolved sky (extended sources), which experiences the same mathematical
operations as the q celestial signals from the strong point sources. The difference is
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that the summation (implemented in matrix multiplication) has to be replaced by
an integral. We will explain about the sky noise contribution in Sect. 2.1.2. The
receivers thermal noise signals (also assumed to be i.i.d. Gaussian), denoted with
vector n adds to vT (t).

vT (t) is sampled with period T . The n-th sample of the array signal vector x[n]
is given by

x[n] =

∞∑
−∞

(vT (t) + n)δ(t − nT ) = v[nT ] + n[nT ]. (2.10)

N samples can be stacked in a matrix X = [x[1],x[2], ...,x[N ]] (size p × N) which
denotes the short term integration data set or snapshot.

Radio interferometric measurements are based on measuring the spatial coherency
between antenna output signals, so-called visibilities. The array covariance matrix (or
correlation between all sampled voltages), R = E {

x[n]xT [n]
}
, can be estimated by

R̂ = XXT /N . Its expected value becomes

R = GMAΣsA
HMHGH + GMAΣskyA

HMHGH + Rrec︸ ︷︷ ︸
Σn

, (2.11)

where Σs = diag(σs) (size q × q) is sources spatial coherency or covariance matrix.
σs is a vector of the source fluxes. Rrec is the receiver noise covariance matrix. Σn

is a general expression of the noise terms, which is discussed in the next subsection.
Correlator intrinsic off-sets can be represented as an additive term to the covariance
matrix i.e. as a non-diagonal matrix. However, in Eq. 2.11 and throughout this
document, it is disregarded assuming that the correlator is designed perfectly.

As it was mentioned earlier, phased-array stations are especially sensitive to ex-
tended structures owing to their many short baselines. Since modelling them is com-
putationally hard and expensive, they are not used as calibrator beacons. Wijnholds
and van der Veen (2009b) phenomenologically model them as correlated noise. This
noise is in addition to the other sources of noise in Σn e.g. the sky noise and the
receiver thermal noise, which are discussed in the next subsection.

Station visibilities (R in Eq.2.11) are used for engineering purposes e.g. RFI
detection, station calibration.

We note that RFI sources in the far-field can be modelled in the same way as
celestial point sources, although they may have different statistical properties. How-
ever, the RFI sources either in the far-field or the near-field should be detected and
mitigated before calibration. Extensive studies have shown that this is possible both
at a phased-array station and at the whole synthesis array (Fridman and Baan 2001;
Boonstra 2005; Offringa et al. 2010; Hellbourg et al. 2012; Offringa 2012) (and many
references therein).

2.1.2 Noise terms

The noise correlation matrix, Σn in Eq. 2.11 can generally be represented by the
following terms



32 Array data model

Σn = Rrec + Rsky + Rsp, (2.12)

where Rrec, Rsky, and Rsp are the correlation matrices of the receivers thermal noise,
the background sky noise, and the spillover noise, respectively.

The low noise amplifiers (LNAs) connected to the antennas in a strongly coupled
array, generate noise waves towards their outputs, but also send reflected noise waves
back into the antenna array. These waves are then coupled into other receiver chan-
nels, giving rise to a correlated noise contribution, represented by the non-diagonal
matrix, Rrec. It is clear that depending on the antenna and LNA designs, sparsity and
density of the station elements layout, the term Rrec may be reduced to a diagonal
matrix, whose diagonal terms are noise power of i.i.d. Gaussian thermal noise signal
of the receivers.

Rsky, is defined as

Rsky = GMAΣskyA
HMHGH , (2.13)

where Σsky represents the sky noise coherency. Its elements, Σij
sky are obtained by in-

tegrating the homogeneous sky noise temperature, Tsky(Ω) through a pattern-overlap
integral between the ith and jth array element patterns (Ivashina et al. 2011)

Σij
sky =

kB

2π2η

∫
Ω

Tsky(Ω)[Ĥi(Ω)Ĥj(Ω)]dΩ, (2.14)

where Ω is the FoV, kB = 1.38×10−23 J/K is Boltzmann constant. η is the free-space
impedance. Tsky(Ω) is assumed to be stationary and constant in 0 < θ < π/2 and all
values of φ. Furthermore, it is a function of frequency (see Fig. 2.4) described by the
empirical equation in

Tsky(f) = T1K

(
(

c

f.l0
)2.55 + (

f

f0
)1.8

)
+ Tbg, (2.15)

where c = 3 × 108 m/s is the speed of light in vacumu, T1K is a constant equal to 1
Kelvin, l0 is a constant equal to 0.2008 m, f0 is a constant frequency equal to 10 GHz
and Tbg = 2.7 K is the cosmic background noise temperature.

Rsp can be modelled in the same way as Rsky, but Tsky(Ω) in Eq. 2.14 should be
set as only the ground noise (π/2 < θ < π and all values of φ). The ground noise is
generally set to have constant value of 300 K (Cortès Medell̀ın 2007). However, Rsp

is negligible as compared with Rsky and Rrec in general, and in aperture arrays, in
particular.

Depending on the frequency of observation, the antenna and receiver design, and
the sensistivity of the array, the term Rsky may or may not dominate the Rrec.
van Cappellen et al. (2004) have shown how an array of short dipoles becomes sky-
noise limited at low frequencies (see Fig. 2.4), such that the term Rrec in Eq. 2.12
becomes negligible.

The noise model in Eq. 2.12 has recently been presented in the literature concern-
ing phased-array feeds (PAF) for example by Jeffs et al. (2008) and Ivashina et al.
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Figure 2.4: Model of the sky noise temperature (van Cappellen et al. 2004).

(2011). But, it can be used as a generic noise model for any antenna array system
(Maaskant 2010). Cortès Medell̀ın (2007) has studied these terms in more details.

Statistical distribution of noise in data model is essential for the CRB derivation
and calibration. Usual assumption has always been a Gaussian distribution for the
noise, which may not hold. The data that we exploit for e.g. calibration are the
visibilities (R = ε

{
x[n]xT [n]

}
), which are the correlation of two Gaussian signals

(x[n] in Eq. 2.10). It is known that the correlation of two arbitrary Gaussian signals
has a Wishart distribution. Thus, the elements of noise correlation matrix (Σn), that
are the correlation of two Gaussian signals (station element output) have a Wishart
distribution in Eq. 2.11.4 This fact has also been noted in van der Tol and Wijnholds
(2006).

In absence of the mutual noise coupling, the thermal noise of each receiver (term
n in Eq. 2.10) is assumed to be a i.i.d. Gaussian signal, i.e. Rrec is diagonal. Receiver
noise coupling means that a fraction of thermal noise on one receiver is added to the
thermal noise of another receiver. It can be shown that noise on each station element
has still a normal distribution. This is plausible in view of large number of samples
(N) and according to the central limit theorem. However, in either case the noise
becomes of a Wishart distribution after correlation in Eq. 2.11.

At the synthesis array level, correlated receiver noise is very unlikely and Σn carries
the sky noise power on its off-diagonal and the receiver noise power on its diagonal
elements. At this level, one might integrate the data longer than that of snapshot
data (e.g. station visibilities). The noise pdf may or may not converge to a Gaussian
distribution again, depending on the number of visibility samples that are averaged.
Potential non-Gaussianity of the noise in the data model implies that we should

4Given that signal and noise are assumed to be independent.
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reconsider some fundamental assumptions in our calibration algorithms especially in
the ones that exploit the statistical properties of the noise e.g. (Yatawatta et al. 2008;
Kazemi et al. 2011, 2012).

In this subsection, we note two important issues:

1. Eq. 2.13 implies that the sky noise is convolved with the PSF just as the main
signals of interest. This is important in the aperture synthesis imaging. We
postpone a more detailed discussion about the consequences of this to Chapter
5.

2. As we explained the elements of Σn are non-Gaussian, in general i.e. the noise
added to the visibilities is non-Gaussian.

2.1.3 Mutual coupling and beam dissimilarities

The mutual coupling effect was represented in terms of mutual impedances in ma-
trix M in Sect. 2.1.1. This effect can be viewed differently. In its presence, some
part of the power received by the elements is absorbed while the rest of the power
is re-radiated to the other elements. The re-radiated power induces new currents in
the other elements. Consequently, the radiation pattern of the elements change. This
leads to dissimilarity of the element beam patterns despite that they are manufac-
tured identically. The mutual coupling effect depends on the array geometry and
the array electrical characteristics. In Sect. 2.1, the mutual impedances in matrix
Z and correspondingly the mutual coupling matrix, M account for this effect. How-
ever, relating M and dissimilarities of the antenna elements beam is not analytically
straightforward, especially for stations with a sophisticated antenna design (e.g. dual
polarized, wideband Bow-ties and Vivaldis) and hierarchical beamforming such as in
the LOFAR HBA and EMBRACE shown in Fig. 2.5. In such arrays, the mutual cou-
pling between each and individual diples has to be computed and we are interested
in their net effect as the mutual coupling between the station elements i.e. between
the tiles. Therefore, it has to be studied numerically.

We have done such numerical computations to check the dissimilarity of the ele-
ment beams for a 24-tile HBA station (Fig.2.5, right panel) using Computationally
Advanced and Efficient Simulator for ARrays (CAESAR) (Maaskant and Yang 2006;
Maaskant et al. 2008). Numerical computation for the EM simulation was done using
the Characteristic Basis Function Method (CBFM) which is the most numerically
efficient and accurate method available for large scattering problems (Prakash and
Mittra 2003; Yeo et al. 2003). Fig. 2.6 presents the simulation results when the
beams are formed toward the local zenith. Each subplot presents the beam patterns
of 24 tiles for a particular frequency in the φ = 0 plane. One can see that due to a
different mutual coupling environment, each tile has a slightly different beam pattern.
The mutual coupling effect is sufficiently small not to disturb the main beam but only
the far sidelobes which are at least 12dB lower than the main lobe. This is not a fa-
vorable condition for calibration, in particular when a strong source comes from the
sidelobes and causes significant disturbances in the measured visibilities (see Fig.3.4,
top-panel). This crucially harms the array calibratability, unless the beam model of
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Figure 2.5: Left: An EMBRACE station. The output signals of 72 dual-polarized Vivaldi
antennas are coherently summed to form a tile signal. Right: A 24-tile HBA station. The
output signals of 16 dual-polarized Bow-ties antennas are coherently summed to form a tile
signal. Station elements i.e. tiles are closely packed. The photos are courtesy of ASTRON.

each tile in the station is provided. This model has to be a model of the whole beam
i.e. both the main beam and the sidelobes, in all directions.

In this view of mutual coupling, it introduces a direction-dependent gain per source
and per array element, which may be modelled as G0 (size, p× q) being element-wise
multiplied to the array response matrix, A. Thus, the data model in Eq. 2.11
becomes:

R = G(G0 � A)Σs(A
H � GH

0 )GH + Σn (2.16)

Eq.2.16 and Eq.2.11 can both represent the data model (or the full ME) for a
phased-array station. Comparing Eq.2.16 with Eq.2.11, one may notice that direct
association of G0 and M is analytically impossible. Such comparison implies that
the relation G0p×q � A = Mp×pA must hold, so that both equations model the
same effects in the same data. Here, it is clear that G0 and M model different
effects, that are known to us. G0 (size p × q) represents the array element beam
dissimilarities, which has appeared as a direction-dependant gain being element-wise
multiplied with the array response matrix, A in Eq.2.16. M (size p × p) represents
the mutual impedances between the array elements, which has appeared as a matrix
being multiplied with the array response matrix in Eq.2.11. The problem arises when
we model any DDE, as a matrix of size p × p and estimate for it in the calibration
process, whereas a matrix of size p× q actually describes its physical effect. Then, we
certainly estimate for incorrect parameters. We study such an example in Chapter 4.

As it has been mentioned ealier, station visibilities are exploited for several engi-
neering purposes. After such processing, the output signals of the station elements
are weighted, summed (i.e. beamformed), and sent to the central processor. There,
a phased-array station is seen as an element of the whole aperture array telescope,
described in Sect. 1.3 and next section.
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Figure 2.6: Simulated beam pattern of the tiles in a 24-tile HBA station (Fig. 2.5, right)
using CAESAR. Each subplot presents the beam patterns of 24 tiles in a particular frequency
in φ = 0 plane. The beams are formed toward the local zenith. The dissimilarities in the

sidelobes are caused by the different mutual coupling environments of each tile.

2.2 Data model for the aperture array telescope

Obviously, the data model at the synthesis array level follows the same principles as
explained in Sect. 2.1 and led to the data model in Eq.2.16. But at this level, certain
effects lose their importance e.g. mutual coupling between the array elements and
the correlated receiver noise. At this level, the presence of mutual coupling between
the phased-array stations is least likely. But, the beam pattern of stations might be
different owing to their different size and orientation, which is modelled as a DDE
gain (G0 matrix in Eq.2.16). Some other effects gain more importance owing to the
array large baselines, improved sensitivity, and long integration time of observation.
Using the array long baselines entails that some point-like calibrator beacons e.g.
CasA are resolved and observed as extended sources. In this case, the source flux,
σs requires a more sophisticated model than a point-like source model (see Chapter
5). Unlike the measured visibilities at a station, the measured visibilities here are
used for the ultimate scientific imaging, taking advantage of the array high sensitivity
and resolution. Moreover, polarization studies of the images are an important scien-
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tific goal. The long integration time makes the presence of some effects important
e.g. sky rotation in the FoV, the primary beam variation over time, the propagation
path effects etc., which have to be taken into account in the data model. Each of
these can be expressed in a corresponding matrix properly accomodated in the full
ME such as Eq.2.16 (Boonstra and van der Veen 2003; van der Veen et al. 2004).
However, exploiting the full ME for e.g. calibration, when more parameters have to
be incorporated is not straightforward and is somewhat impractical. Hamaker et al.
(1996); Sault et al. (1996); Hamaker and Bregman (1996); Hamaker (2000) introduced
a 2×2 ME for modelling and analysing the radio interferometric data. The 2×2 ME
models the visibility measured on a baseline, taking into account the full polarization
information of the incoming signals. It uses 2 × 2 Jones matrices to model different
effects, that the signals experience from its origin to the interferometer correlator.
The reader is referred to Smirnov (2011a) for more details. Although the original mo-
tivation of this way of data modelling was to adopt the optical polarimetric formalism
and methodlogies to radio interferomentric data, a 2 × 2 ME is now commonly used
due the following reasons:

� The exploitation of the full ME becomes impractical, as the structure in the
matrices are not necessarily exploitable in a special way. For example, an ap-
propiate model of the DDEs is G0 (size p × q) being element-wise multiplied
with the array response matrix, A in Eq.2.16. The estimation of its parameters
is not straightforward using a full ME, as it is extensively discussed by van der
Tol et al. (2007).

� The large number of array elements requires larger inversion problems to be
solved in the calibration process. They become computationally expensive,
given that we must solve for more than two parameters per array element.
However, such inversions estimate a certain parameter for all the elements at
once.

A 2 × 2 ME models the visibility measured on a baseline between element i and
element j, Rij . It is in principle the off-diagonal term of the full ME in Eq.2.16,
when the polarization components of the incoming wave are fully taken into account.
Bs represents the source coherency in terms of its polarization components, for an
arbitrary source (a plane wave) in

Bs = Es(k, t)∗Es(k, t) = [eθ, eφ]H [eθ, eφ] =

⎡⎢⎣
〈|eθ|2

〉 〈
e∗φeθ

〉
〈eφe∗θ〉

〈|eφ|2
〉

⎤⎥⎦ . (2.17)

Then, the 2 × 2 ME, when q sources are present in the FoV can be expressed as

Rij =

q∑
s=1

Ji(�)Bs(�)Jj
H(�), (2.18)
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where J is the product of the Jones matrices of all the physical effects that a signal
experiences,

Ji = JinJin−1...Ji1. (2.19)

Some J’s do not vary with (l, m, n =
√

1 − l2 − m2). They are so-called uv-plane
effects e.g. receiver gain. Some J’s do vary with (l, m, n). They are so-called image-
plane effects e.g. ionosphere. The order of the terms in Eq. 2.19 are important,
because matrices do not commute in general. Jin is the reciever gain and Ji1 is the
first effect e.g. the ionospheric Faraday rotation, that the source experiences. Eq.
2.19 can be rewritten

Ji = Jin...Jik+1︸ ︷︷ ︸
uv-plane effects: Gi

Ki Jik−1...Ji1︸ ︷︷ ︸
uv- and lm-plane effects: Ei

, (2.20)

where Ki carries the phase shift due the different time of arraival of the source signal
at the baseline element i. In Eq. 2.18, the uv-plane terms can be taken out of the
summation operation changing it to

Rij = Gi

(
q∑

s=1

KiEi
Bs

n
Ej

HKj
H

)
Gj

H . (2.21)

If we expand the K terms, the Fourier kernel becomes apparent

Rij = Gi

⎛⎜⎜⎝ q∑
s=1

Ei
Bs

n
Ej

H︸ ︷︷ ︸
apparent sky

F.T. kernel︷ ︸︸ ︷
e2πfj(uij l+vijm+wij(n−1))

⎞⎟⎟⎠Gj
H . (2.22)

Note that Eq. 2.22 is a 3D Fourier transform of the apparent sky in the Cartesian
coordinates denoted by (l, m, n), where n is constrained to be

√
1 − l2 − m2. In other

words, Eq. 2.22 is a 3D Fourier transform of the projected apparent sky on unit
celestial sphere. If the FoV is narrow (n � 1) and/or the coplanary assumption holds
(w � 0), Eq. 2.22 is replaced by a 2D Fourier transform in

Rij = Gi

⎛⎜⎝ q∑
s=1

EiBsEj
H

F.T. kernel︷ ︸︸ ︷
e2πνj(uij l+vijm)

⎞⎟⎠Gj
H . (2.23)

Since none of the aforementioned assumptions holds for new radio telescopes such
as LOFAR, Carozzi and Woan (2009) suggested using a 3D ME expressed in Eq.
2.22 with a simple conversion, that converts the Bs terms from (θ, φ, r) to (l, m, n)
coordinates. This way, all-sky polarimetric calibration and imaging in a single tele-
scope pointing are possible without any step such as the sky faceting or w-projection.
Moreover, significant ongoing research has been carried out on computational efficieny
of higher order FFT e.g. 3D FFT (Frigo and Johnson 1998; Frigo 1999; Frigo and
Johnson 2005), allowing to reduce its computation cost and speed. We continue this
discussion in Chapter 5 and 6.
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2.3 Summary

In this chapter, we presented the array data model precisely. The following notes
capture a synopsis:

� Mutual coupling in a phased-array station cannot be dismissed. It has conse-
quences for its calibratability, which we will discuss in Chapter 3. Although
such effect has been taken into account in array signal processing literature e.g.
Manikas and Fistas (1994), it has always been dismissed in the calibration of
the phased-array stations in radio astronomical application. Fig.2.6, shows the
result of an intensive electromagnetic simulation to make this point for the first
time in aperture array community.

� A more rigorous study of the noise statistical properties of the visibility samples
is very essential. Noise in the visibility data is non-Gaussian, in general, as
also noted earlier by van der Tol and Wijnholds (2006). It may converge to a
Gaussian, if a significant number of visibility samples are averaged to represent
the data, according to the central limit theorem. Such study is important as the
Gaussianity of the noise is a fundamental assumption in many signal processing
algorithms, in particular in the calibration algorithms, that are based on the
statistical properties of noise e.g. (Yatawatta et al. 2008; Kazemi et al. 2011,
2012). Studying whether the performance of these calibration methods improves
with the assumption of noise non-Gaussianity is beyond the scope of this thesis,
but remains an essential issue to be studied.

� An appropiate model of the DDE (modelled as G0) is presented in Eq. 2.16,
when we use the full ME. In other words, a data model in which G0 (size
p × q) is element-wise multiplied with the array response matrix (G(G0 �
A)Σs(G0 � A)HGH + Σn) correctly accommodates the DDE, rather than a
data model in which G0 (size p × p) is multiplied with the array response ma-
trix (GG0AΣsA

HGH
0 GH +Σn). Choosing the latter model leads to estimating

for the incorrect parameters, although it makes the estimation process straight-
forward.

A data model based on 2 × 2 ME is more reliable for modelling the DDEs, but
it has its own limitations e.g. a 2 × 2 ME takes the information of an isolated
baseline into consideration whereas a full ME takes as much information as
possible into consideration in an estimation process. As a result, using the
constraints that involve all the array elements for the calibration routine based
on 2 × 2 ME is not straighforward. We will discuss this further in Chapter 4,
where we study a constrained self-cal routine using a full ME.

� As it was discussed in Sect. 2.1.2, the sky background noise in the image plane
experiences the same physical and geometrical effects, as the signals of interest
(signals from the astronomical sources used for self-calibration) received by the
interferometer. As a result, the sky background noise (the prominent noise term
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at low-frequencies) is convolved with the PSF as well. The consequences of this
will be discussed in Chapter 5.

The receivers noise signals do not come from the image plane and are assumed to
be i.i.d. Gaussian signals. These imply that they should not correlate between
the array elements, thus do not appear in the off-diagonal terms of the visibility
matrix (Eq. 2.11). In other words, at the synthesis array, sky noise is the noise
in the visibility data, not the receiver thermal noise. However, this condition is
met better with longer integration time, in practice.



Chapter 3
Station calibration

In this chapter, we assess the benefits and limitations of using the redundant visibility
information in regular phased-array systems to improve the quality of the calibration.

Regular arrays offer the possibility of using redundant visibility information to
constrain the calibration of the array independently of a sky model and a beam model
of the station elements. This requires a regular arrangement of the configuration of
array elements and identical beam patterns.

We revised a previously developed calibration method for phased-array stations
using the redundant visibility information in the system and applied it successfully to
a LOFAR station. The performance and limitations of the method were demonstrated
by comparing its application to real and simulated data. The main limitation is the
mutual coupling between the station elements, which leads to non-identical beams and
stronger baseline-dependent noise. Comparing the variance in the estimated complex
gains with the CRB indicates that redundancy is a stable and optimum method for
calibrating the complex gains of the system.

Our study shows that the use of the redundant visibility does improve the quality
of the calibration in phased array systems. In addition, it provides a powerful tool,
from which system diagnostics can be obtained. Our results demonstrate that de-
signing redundancy in both the station layout and the array configuration of future
aperture arrays is recommended. This is particularly true in the case of the SKA
aiming at a dynamic range requirement that surpasses any existing array by an order
of magnitude (Dewdney et al. 2010).

Redundancy Calibration of Phased Array Stations
P. Noorishad, S. J. Wijnholds, A. van Ardenne, and J. M. van der Hulst

Astronomy & Astrophysics, 545, A108, 2012.
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3.1 Introduction

An important conceptual difference between the next generation of radio telescopes
and conventional ones is their hierarchical system architecture. An excellent example
is the LOFAR (de Vos et al. 2009). In LOFAR, a station consists of phased-arrays
that are either sparse or dense. In the sparse phased-array stations such as the LBAs
in a LOFAR station, the station elements are dipoles that are digitally beam-formed
to synthesize a receiving aperture. Phased-arrays operating above ∼ 100 MHz are
often implemented as compound elements or tiles, such as the HBAs at the LOFAR
stations or in EMBRACE, (van Ardenne et al. 2004; Kant et al. 2011), the latter
being is an example of a very dense phased-array station. In these stations, the
station elements are phased-array tiles (e.g. Fig. 3.1). A tile is a regular arrangement
of many dipoles whose signals are added in phase to form an instantaneous beam
(the first level of beam-forming). The tile output signals are digitally phased up to
synthesize a receiving aperture. At the next level in the beam-forming hierarchy,
the beam-formed output of each station is transported to the central correlator to
synthesize the whole telescope. Calibration has to be performed at different levels of
this hierarchy to provide a final, high dynamic range image of part of sky, as explained
by Wijnholds et al. (2010).

Figure 3.1: Twenty-four-tile HBA station. Each tile is one station element. This is the
station configuration for most of LOFAR’s HBA stations, including the LOFAR core (CS302).

It is clear that a station like this is highly redundant.

In this chapter, we concentrate on the calibration at station level to ensure that
the station beam is stable over time and frequency. A robust calibration as part of
the beam-forming process should guarantee a stable beam pattern of the station for
data going to the central correlator. This is crucial for the dynamic range of the final
images made using data from the entire array.

In a phased-array station, the output of all station elements can be correlated.
These correlations are called station visibilities, which are used for engineering pur-
poses e.g. station calibration and RFI detection/mitigation. These correlations in-
clude many short baselines on which extended structures such as the galactic plane
are captured. The most commonly used calibration methods for phased-array stations
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are model-based, such as a multi-source calibration method (Wijnholds and van der
Veen 2009a). A model-based calibration method requires the presence of one or more
relatively unresolved point sources such as CasA and a model of the extended struc-
tures (see Fig.3.2). Modelling an extended structure is computationally difficult and
expensive. Wijnholds and van der Veen (2009b) phenomenologically model it as cor-
related noise and estimate the parameters of interest for calibration using a weighted
alternative least squares (WALS) approach. However, the model-based methods are
in general iterative methods, which usually converge after several iterations.

A regular arrangement of station elements has the advantage that it provides re-
dundant baselines, i.e. baselines of the same physical length and orientation. The use
of redundant baseline information for calibration was introduced by Ishiguro (1974). It
was exploited further for image sharpness in optical imaging by Hamaker et al. (1977).
Noordam and de Bruyn (1982) demonstrated high dynamic range radio imaging us-
ing the WSRT redundant baselines information. Wieringa (1991) mathematically
formulated a linear calibration algorithm based on using the redundant baseline in-
formation. Its linearity, independence of a sky model, low computational cost, and
proven efficiency for precision calibration of WSRT observations motivated us to in-
vestigate the use of redundancy calibration to phased-array stations. The redundancy
calibration algorithm uses the data of all redundant baselines to obtain a convergent
calibration solution in a single step.

However, redundancy calibration in phased-array systems requires additional con-
siderations, when compared to the regular WSRT. This is essentially because of their
different design concept e.g. the closely located elements of a phased array station
experience mutual coupling between elements that leads to non-identical beams of
the station elements and to correlated receiver noise.

In this chapter, we refine the standard data model presented in the phased-array
signal processing literature to account for baseline-dependent corruptions in terms of
the coupling effects. Using this refined data model, we briefly introduce the two cali-
bration methods i.e. model-based and redundancy. This helps us to achieve a clearer
understanding of the potential and limitations of both calibration methods. We also
revise the redundancy method formalism presented by Wieringa (1991); Liu et al.
(2010) to capture the nature of baseline dependent errors that affect the calibration
accuracy. Some implementation issues are raised and investigated using observed and
simulated data of LOFAR HBA stations. We evaluate the redundancy calibration
performance by comparing the variance in its results with the CRB and the plots of
residuals for the corrected data after redundancy calibration. We also discuss limiting
factors for its applicability.

Although we used HBA data to demonstrate the applicability and efficiency of the
redundancy method, the analysis in this chapter is relevant to any phased array that
is to be calibrated using redundant visibility information.
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Figure 3.2: The sky imaged by HBA tiles at 14:10:20 UTC on 29 June 2009. The Galactic
plane appears in the north-west, the sun appears in the south-west. One can also see their
corresponding grating response in the image. The image is presented in the (l, m)-coordinates
l = cos(el)sin(az) and m = cos(el)cos(az), where el and az denote elevation and azimuth,

respectively.

3.2 Methods

3.2.1 Data model for phased-arrays

The standard data model for phased array stations presented in the literature assumes
that in the absence of RFI and any coupling effects, a phased-array of p elements has
a signal vector, x(t) = [x1(t), x2(t), ..., xp(t)]T that can be expressed as

x(t) = ΓΦ

(
q∑

k=1

aksk(t)

)
+ n(t) = ΓΦAs(t) + n(t), (3.1)

where s(t) is a q × 1 vector containing q mutually independent i.i.d. (temporally
independent and identically distributed) Gaussian signals. The covariance matrix of
the sources signals is Σs = diag(σs) (size q × q), where σs is a vector of the source
fluxes. They are also assumed to be narrow band, so we can define the q spatial
signature vectors ak, which include both the phase delays due to the geometry and
the directional response of the receiving elements (assumed to be identical). The
vectors ak are called the array response vectors which, are usually normalized. The
receiver noise signals ni(t) are assumed to be mutually independent i.i.d. Gaussian
signals in a p × 1 vector n(t) and uncorrelated. Thus, the noise covariance matrix
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becomes Σn = diag(σn) (size p × p). The amplitudes and the phases of direction-
independent complex gains (gi’s), that have to be calibrated are γ = [γ1, γ2, ..., γp]

T

and φ = [ejφ1 , ejφ2 , ..., ejφp ]T . Correspondingly, Γ = diag(γ) and Φ = diag(φ). In
addition, A = [a1,a2, ...,aq] (size p×q) is a stack of the array response vectors. Before
computing the coherency, the output voltage of each element, x(t) is sampled at time
interval T . The nth sample of the array signal vector x[n] is given by

x[n] =

∞∑
−∞

x(t)δ(t − nT ) = x(nT ), (3.2)

N samples can be stacked in a matrix X = [x[1],x[2], ...,x[N ]] (size p×N), which
denotes the short-term integration data set or snapshot. The array covariance matrix
or the visibility matrix describing the correlation between all sampled voltages can
be estimated by R̂ = XXT /N , whose expected value becomes either

R = ΓΦAΣsA
HΦHΓH + Σn (3.3)

or

R = GAΣsA
HGH + Σn. (3.4)

Correlator errors can be represented as an additive term to the covariance matrix, i.e.
as a non-diagonal matrix. However, in Eq. 3.3 and throughout this paper, they are
disregarded assuming that the correlator is designed perfectly.

We note that γi could accommodate the overall amplitude gain of both the receiver
system and the atmospheric disturbances, and φi the corresponding phase shift. In the
case of station calibration, we do not calibrate for atmospheric disturbances assuming
that the snapshot data of a station is not affected. However, there is no guarantee that
those effects remain unchanged during capturing the snapshot data in all frequency
subbands, which takes about 9 minutes for a LOFAR station.

In phased-arrays such as the HBA stations of LOFAR, or EMBRACE, the antenna
elements are closely packed. This causes mutual coupling between them, i.e. not all
the power received by the elements is absorbed but some of the power is reradiated
to the other elements. The reradiated power induces additional currents in the other
elements. Consequently, the radiation pattern of the elements changes. This leads to
a lack of similarity between the element beam patterns, and consequently different
array response vectors despite their physical identicalness (as considered in A). Beam
dissimilarities can be modeled as a direction-dependent gain, G0 (size p × q) being
element-wise multiplied by the array response vectors

R = G(G0 � A)Σs(G0 � A)HMHGH + Σn. (3.5)

As studied by Svantesson (1998) and explained in Chapter 2, mutual coupling can be
directly represented by a matrix of mutual impedances, M (size p × p) in the data
model

R = GMAΣsA
HMHGH + Σn. (3.6)
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One may note that a direct association of M and G0 cannot be expressed analytically.
It requires a numerical evaluation that we present in Sect.3.3.1. For simplicity and to
continue our argument, we use the data model in Eq. 3.6.

Mutual coupling may not only act on the signal, but also on the system noise.
The LNAs connected to the antennas in such an array, generate electromagnetic
noise waves towards their outputs, but also send electromagnetic noise waves back
into the antenna array. These waves are coupled into other receiver channels, giving
rise to a correlated noise contribution. This effect is known as noise coupling, which
contributes as Rrec in a general and non-diagonal noise correlation matrix represented
as:

Σ′n = Rsp + Rsky + Rrec (3.7)

where Rsp is the spillover noise correlation matrix that is usually negligible as com-
pared with Rsky which is the sky noise contribution. Crosstalk in the back-end adds
another baseline-specific correlated noise term, which we disregard here. The general
data model for the visibility matrix becomes:

R = GMAΣsA
HMHGH + Σ′n. (3.8)

We note that Σ′n is not a diagonal matrix, unlike Σn. It can be shown that noise
from each station element still has a normal distribution in view of the large number
of samples and according to the central limit theorem. Therefore, the off-diagonal
elements of Σ′n that appear in Eq. 3.10, have a Wishart distribution.

The noise model in Eq. 3.7 has recently been presented in the literature for PAFs,
for example by Jeffs et al. (2008); Ivashina et al. (2011). But, it can be used as a
generic noise model for any antenna system (Maaskant 2010). It is clear, however,
that depending on the antenna and LNA designs, the electrical characteristics of the
array, and both the sparsity and density of the station element layout, the strength of
mutual coupling varies. Thus, the term Rrec may be replaced by uncorrelated receiver
noise in this definition.

3.2.2 Model-based calibration method

The model-based calibration problem was formulated as a least squares minimization
problem by Wijnholds and van der Veen (2009a). Here, we rewrite it using the refined
data model given in Eq.3.8

{ĝ, σ̂n} = argmin
g,σn

‖GMAΣsA
HMHGH + Σ′n − R̂‖2

F . (3.9)

This estimates the noise and complex gain of each receiver element using the measured
visibility, R̂ and the modeled visibility GMAΣsA

HMHGH+Σ′n, where Σs and A are
assumed to be known. We can calculate them, if we specify the time of observation,
the telescope geometry and the known source parameters. In the presence of the
coupling effects (M and Σ′n), estimation results are biased, unless either an accurate
beam model of each individual element is provided or the matrix M is known. In
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this case, one can handle the effect of the correlated noise using a WALS approach
(Wijnholds and van der Veen 2009b).

Fig. 3.2 shows a sky map scanned by HBA tiles. One can see the Galactic plane
owing to the many short baselines and the Sun as the dominant radio source. Given
the beam models of the station elements, the WALS method treats the extended
structure as correlated noise and estimates the parameters of interest. However, the
model-based methods are in general iterative methods that usually converge after
several iterations.

3.2.3 Redundancy calibration method

The basic assumption of redundancy calibration is that the redundant baselines sam-
ple the same Fourier component of the sky (AΣsA

H). This assumption holds if the
array response vectors of the redundant baselines are the same i.e. the element beams
are identical. We therefore begin with the most general data model given in Eq. 3.8
to understand the limitations of this method for a phased-array station.

To build up the system of equations for the redundancy calibration algorithm, we
represent an off-diagonal element of R in Eq. 3.8 as

Rij = gig
∗
j

[
MAΣsA

HMH
]
ij

+ Σ′nij
. (3.10)

We note that correlator offsets could contribute as additive corrupting factors in Σ′nij
.

Since Σs in Sect. 3.2.1 is a diagonal matrix, one can expand Eq. 3.10 to

Rij = gig
∗
j MiiM

∗
jj

true visibility︷ ︸︸ ︷
q∑

q=1

AiqσqA
∗
jq (3.11)

+ gig
∗
j

q∑
q=1

⎛⎜⎜⎝ p∑
p1=1
p1 �=i

p∑
p2=1
p2 �=j

Mip1M
∗
jp2

Ap1qA
∗
p2qσq

⎞⎟⎟⎠
︸ ︷︷ ︸

additive term due to mutual coupling

+Σ′nij
.

This shows that the mutual coupling produces baseline-dependent multiplicative and
additive terms by influencing signals directly and noise indirectly (Rrec in Eq. 3.7).
This violates the fundamental assumption of redundancy i.e. we do not observe
redundant visibilities on physically redundant baselines (see Fig. 3.4, top).

Without loss of generality, MiiM
∗
jj = 1 (or they can be absorbed in the gains).

To establish an analogy between Eq. 3.11 and the redundancy method formalism in
(Wieringa 1991), we define the term

eij = gig
∗
j

q∑
q=1

⎛⎜⎜⎝ p∑
p1=1
p1 �=i

p∑
p2=1
p2 �=j

Mip1M
∗
jp2

Ap1qA
∗
p2qσq

⎞⎟⎟⎠ + Σ′n,ij (3.12)
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and rewrite the Eq. 3.11 as:

Robs
ij = Rtrue

ij gig
∗
j + eij (3.13)

or

Robs
ij = Rtrue

ij gig
∗
j (1 +

eij

Rtrue
ij gig∗j

)︸ ︷︷ ︸
wij

(3.14)

where Robs
ij and Rtrue

ij are the observed and the theoretical redundant visibilities,
respectively, gi and gj are the element complex gains and wij can be defined as a
baseline-dependent error that affects the accuracy of the calibration results.

We take the natural logarithm of both sides of the equation Eq. 3.14 to obtain

ln Robs
ij = ln|γi| + ln|γj | + i(φj − φi) + ln Rtrue

ij + ln(wij). (3.15)

In the absence of mutual coupling, the first term of eij drops and the second term
reduces the contribution of Rrec. The only correlated contributing terms come from
Rsky and Rsp, which are negligible depending on the signal-to-noise ratio (S/N) of
the observation. We assume that we have such a case where we can ignore eij . We
equate the amplitude and the phase values to decouple the system of equations for
the phases and the amplitudes

ln|Robs
ij | = γ

′

i + γ
′

j + ln|Rtrue
ij | (3.16)

ψobs
ij = φj − φi + ψtrue

ij , (3.17)

where |Rij | and ψij are the amplitude and the phase of a complex visibility. Since we
have to specify the absolute flux level, we set

Σγ
′

i = 0. (3.18)

We also have to constrain the element phase. We can enforce this constraint by
specifying that the sum of all element phases is zero

Σφi = 0. (3.19)

Furthermore, there may also be an arbitrary linear phase slope over the array. This
phase slope corresponds to a position shift of the field. This arises because a re-
dundancy solution does not provide an absolute position. This can be absorbed into
either the true visibilities or the element phases. For a two-dimensional array, we
constrain x and y in the same manner as

Σp
i=1φixi = 0 (3.20)

Σp
i=1φiyi = 0, (3.21)
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where xi and yi are the (x, y) coordinates of the array elements. Eq. 3.16- Eq. 3.21
formulate the redundancy calibration method as two overdetermined systems of linear
equations for phases and amplitudes that can be solved in a single-step least squares
solution. For instance, the phase estimator can be symbolized as Ephθ = Ψobs and
solved using the pseudo-inverse

θ̂ =
[
ET

phEph

]−1
ET

phΨ
obs, (3.22)

where θ = [φ1, φ2, ..., φp, ψ
true
1 , ψtrue

2 , ..., ψtrue
m ] is the vector of parameters to be esti-

mated, m is the number of distinct redundant baselines, Eph is the coefficient matrix,
and Ψobs is the vector of the observed redundant phases and right sides of Eq.3.19-
Eq.3.21. Setting a phase reference for element phases, is done after the phase estima-
tion.

We note that we came to the solution in Eq. 3.22, because we ignored the baseline-
dependent noise. In its presence, our problem takes the form of Ephθ + β = Ψobs

(expanded in Eq. 3.24). The estimated parameters will deviate as

ε ≡ θ − θ̂ =
[
ET

phEph

]−1
ET

phβ, (3.23)

where β = vec(∠(ln(wij))). If the array mutual coupling is significant, redundant
baselines do not provide redundant visibilities Theu, redundancy calibration method
cannot be applied. estimator. In the case of a weakly coupled array, the vector β

still carries the correlated noise produced by Rsp and Rsky. Assuming that each has
a Wishart distribution in Eq.3.12, their statistical distribution changes in vector β.
This was taken into account in deriving the results in Sect. 3.3.2.
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Since the created system of equations e.g. Eq. 3.24 is highly sparse, they are
computationally fast. Most importantly, they are independent of a sky model but
their accuracy is affected by the S/N of the observed sky as discussed by Liu et al.
(2010). They require identical beams of station elements and a regular arrangement
of antennas to provide a sufficient number of redundant baselines. One can then,
estimate the element complex gains in a single step.

3.3 Implementation using real and simulated data

3.3.1 Verification of redundancy fundamental assumption

As mentioned earlier, redundancy translates into verifying the similarities among the
element beams in a station. We checked this for a 24-tile HBA station similar to the
one shown in Fig.3.1 using CAESAR (Maaskant and Yang 2006; Maaskant et al. 2008).
The numerical computation of the EM simulation was done using the CBFM, which
is the most numerically efficient and accurate method available for large scattering
problems (Prakash and Mittra 2003; Yeo et al. 2003). Fig. 3.3 presents the simulation
results when the beams are formed toward the local zenith. Each subplot presents
the beam patterns of 24 tiles for a particular frequency in the φ = 0 plane. One can
see that owing to the different mutual coupling environment, each tile has a slightly
different beam pattern. The mutual coupling effect is sufficiently small not to disturb
the main beam but only the far sidelobes which are at least 12dB weaker than the main
lobe. However, it is not a favorable condition in general for redundancy calibration.
On the basis of this simulation, we expect to observe non-redundant visibilities on
redundant baselines when a strong source falls in the sidelobes. This was confirmed
by the real observation presented in Fig. 3.4, top panel. In this observation, owing to
the absence of a strong source in the main beam, the non-identical sidelobes have the
chance to play a significant role in disturbing the redundancy while in the observation
shown in Fig. 3.4, bottom panel, one strong source in the main beam seems to be
sufficient to dominate the influence of other possible strong sources observed in the
direction of the non-identical sidelobes. There is of course a different contribution
from the correlated background noise or sky noise (Rsky) in Fig. 3.4, top and bottom
panels.

Fig. 3.4 presents two data sets obtained to verify the use of redundancy in a HBA
station. The observations were made on 5 September 2009. The tile beams in a HBA
station (in the LOFAR core, known as CS302) were formed toward the local zenith.
We let the sky drift over the FoV of the station. We captured the station visibilities
approximately every 10 minutes (integration time of one second per frequency channel
for 512 frequency channels). The bandwidth of the frequency channels is 195 kHz and
the frequency range is 100− 200 MHz. On the right panel, the local sky viewed from
CS302 is presented to show the sources that have contributed to the visibilities shown
in the left panel.

Since the mutual coupling environment changes at lower elevations, dissimilarities
between the main beams are consequently found up to 1 − 2dB. Real observations
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have shown less disturbance in the main beam at lower elevations (see Sect. 3.3.2 and
Appendix B).

Figure 3.3: Simulated beam pattern of the tiles in a 24-tile HBA station using CAESAR.
Each subplot presents the beam patterns of 24 tiles in a particular frequency in φ = 0 plane.
The beams are formed toward the local zenith. The dissimilarity between the sidelobes is

caused by the different mutual coupling environments of each tile.

On the basis of the EM simulation by CAESAR (Fig. 3.3) and real observations
(Fig. 3.4), we conclude that the best case scenario for redundancy calibration of
an HBA station is to have a strong source in the main lobe when the beams are
identical. However, the dissimilarities of the sidelobes introduce non-redundancy or
systematic errors that cannot be eliminated by any statistical method or a longer
integration time. Therefore, we must investigate whether the contribution of other
strong sources, which may fall in the non-identical sidelobes, is significant. To quantify
this systematic error in the visibility measured on a given baseline, we present the
following example. At 21:29:04 UTC on 24 November 2009, at an HBA station called
RS208 located at (lon = 6.9196◦, lat = 52.6699◦), four strong sources were in the FoV,
as shown in Fig. 3.5. In Fig. 3.5, the tile beams were formed toward 3C461 (CasA),
which was thus at the phase center. The sources 3C405 (CygA), 3C400, and 3C144
(TauA) have fallen in the sidelobes. The tile beams and their standard deviation at
120MHz, at these sources are also depicted in Fig. 3.5. The total complex visibility
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Figure 3.4: An observation performed with a HBA station on September 5, 2009 at 13:13:48
UTC in which redundancy calibration fails (top), as well as an observation with the same
station at 23:02:01 UTC in which the redundancy calibration is successful (bottom). The
left panels show the measured visibilities for three distinct types of redundant baselines. The
right panels show the local sky model at the time of observation, where the strongest sources
on the sky are superimposed on a contour plot of the element beam pattern at 170 MHz.

observed on a certain baseline, Dλ is computed as

Robs = |Robs|ejψobs

=

∫
s

Λ(�)I(�)e−j2πDλ.�dΩ (3.25)

where Λ(�) ≡ A(�)/A0 is the normalized tile reception pattern at σ, A0 is the response
at the beam center and I(�) is the source flux. Since there are four dominant strong
sources in the FoV, we assume that the integral can be replaced by a summation.
The complex plane in Fig. 3.6 right panel, shows the summations of the visibility
vectors as they were observed through hypothetically identical sidelobes, Rtotal (solid
line), as well as their summation when they were attenuated differently by the actual
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non-identical sidelobes, R
′

total (dotted line). We computed the systematic errors in
the phase and the amplitude of the visibility by assuming the complex vector to be
Rtotal = R3C461 + R3C144 + R3C405 + R3C400 using Eq. 3.25. For this, we choose
the baseline type given in Fig. 3.8, rightmost panel (D) and frequency f = 120MHz
for Dλ = D/λ, where λ is the wavelength. We set the average beam pattern of all 48
tiles as the identical beam for the term A(�) whose values are shown in Fig. 3.5 at
different source locations, as the quantity beam level. We use Λ(�) = A(�)/A(�3C461).
The source fluxes, I(�) are given in Table 3.1. We also compute R

′

total = R
′

3C461 +

R
′

3C144 + R
′

3C405 + R
′

3C400. The computation settings are as before except that
A(�) is not identical this time, but deviated from the average beam pattern by the
standard deviation values shown in Fig. 3.5 at different source locations, as the
quantity std(Beam). The bias introduced to the amplitude and the phase of R

′

total

as compared with Rtotal are presented in the first row of Table. 3.1.

We steer the beam toward each available strong source and repeat the calculation
to predict the systematic error due to the other sources in the sidelobes with different
standard deviations. The results are presented in Table 3.1. We can conclude that
tracking CasA provides the best redundancy in the observed visibilities.

Table 3.1: A-team radio sources in the FoV of RS208, on 24 of November 2009 at 21:29:04
UTC and the predicted levels of systematic errors in the amplitudes and the phases of the
redundant visibility due to the contribution of other strong sources through non-identical
sidelobes. The baselines given in Fig. 3.8, rightmost panel and frequency, f = 120MHz were

chosen for the computations.

Calibrator source Source flux [Jy] Normalized error in Γ Error in Φ[rad]

3C461 (CasA) 8609 0.07 0.06

3C405 (CygA) 8100 0.20 0.09

3C400 540 0.93 0.01

3C144 (TauA) 1420 0.84 0.28

Note: Γ and Φ denote amplitudes and phases, respectively.

The plot of the residuals for the corrected redundant visibilities shown in Fig.
3.8 confirms the results in Table 3.1. Fig. 3.8 reveals the non-redundancy in the
measured visibilities (in terms of amplitudes and phases). In Table 3.1, we predict
the same quantities, which are caused by non-identical sidelobes. There is a few
percent of discrepancy between the predicted residuals and their actual values in our
observation. This can be explained by our simplifying assumption about the number
of strong sources in the FoV. However, Table 3.1 can play an instrumental role for
station calibration.
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Figure 3.5: A-team radio sources in the FoV of an HBA station called RS208 on 24
November 2009 at 21:29:04 UTC. Tile beams are streered toward 3C461 to provide the most
redundant visibilities. The values of the average reception pattern of 48 tiles, A(�), and their
standard deviation, std(A(�)) at 120 MHz have also been indicated at other source locations.

3.3.2 Redundancy calibration performance

To study the redundancy calibration performance, we tracked CasA on 24 November
2009 from 15:25:43 UTC until 22:12:19 UTC. Running a redundancy calibration on
48 captured data sets during this observation, provided very stable results for the
receiver complex gains over time. This is an indication of the system stability and
a working calibration routine, which operated approximately every 10 minutes. We
compare the variance in the estimated complex gains over 48 runs of redundancy
calibration with the CRB in Fig. 3.7. These quantities for the amplitudes and the
phases are presented in two separate plots, as their estimators were decoupled in
Sect. 3.2.3. The CRB (or the theoretical minimum variance) and the actual variance
in the estimated parameters over time are in good agreement. The small difference
between them can be explained by their not having exactly the same S/N from one
observation to another during our survey from 15:25:43 UTC until 22:12:19 UTC,
while the predicted S/N for this observation is S/N � 0.75, following the analysis in
(Wijnholds and van Cappellen 2011). This predicted value was used to compute the
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Figure 3.6: Total complex visibility on a certain baseline due to the contribution of all
strong sources shown in Fig.3.5. The ones that contribute through non-identical sidelobes
introduce non-redundancy or systematic errors into the total redundant visibility. This has
been demonstrated in a complex plane on the right. The solid line shows the visibility vectors
as they were observed through hypothetically identical sidelobes. The dotted line shows the
visibility vectors when they are attenuated differently by the actual non-identical sidelobes.

presented CRB in Fig. 3.7.

We also studied the residuals for the corrected redundant visibilities. Fig. 3.8
shows an example of the residuals in both the amplitudes and phases of the corrected
visibilities on a distinct type of redundant baseline. The snapshot is captured at
21:29:04 UTC, when CasA is at high elevation. The first row compares the results
after redundancy calibration to those after the model-based calibration in the second
row. The type of redundant baseline is depicted on the station configuration in the
rightmost panel. The integration time is one second per frequency channel. More
plots of the residuals from the same observation are presented in Appendix B, Fig.
B.1 and Fig. B.2. By comparing them, one may note that the baseline length does
not make a significant difference in the residuals. The residuals are on the order of
2 − 5% in both phases and amplitudes. Because a strong source such as CasA in
the FoV dominates the effect of any possible correlated noise, this can be explained
by not having 100% identical main beams or the corruption due to the nonidentical
sidelobes (see Table. 3.1). However, these results are satisfactory. Moreover, Fig.
3.7 showed that the estimated complex gains, which are our parameters of interest in
a station calibration, are very stable. This is due to the constraints on them in the
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Figure 3.7: Theoretical minimum variances in the estimated amplitudes and phases of
the complex gains or CRB compared with their actual variance. These quantities for the
amplitudes and the phases are presented in two separate plots as their estimators were

decoupled in Sect. 3.2.3.

formalism of the redundancy calibration.
Using the data captured at 15:25:43 UTC, when CasA is at low elevation, reveals

slightly larger residuals in the order of 5− 10% (see Appendix B, Fig. B.3- Fig. B.5).
This is due to a different mutual coupling environment which leads to less identical
beams in either the main lobe or the sidelobes.

The residuals also show that the two calibration methods perform almost equally
well, although the redundancy method behaves more consistently. The model-based
calibration has slightly larger residuals on short baselines, e.g. up to ∼ 0 − 1% in
phases and ∼ 0 − 2% in amplitudes, whereas it shows similar residuals as the redun-
dancy calibration on long baselines. Extended structures such as the Galactic plane
or north polar spur, are captured on short baselines. Modelling them is computa-
tionally expensive and impractical. Therefore, in the model-based method, one has
to discard the visibilities measured on short baselines to simplify the measured sky
for a corresponding simple sky model, while the redundancy method is sky-model-
independent. Experiment has shown that discarding the equations of short baselines
in the redundancy calibration routine, will not improve its results significantly.

Moreover, the model-based methods are sensitive to RFI sources, as their presence
confuses the sky model. Since the redundancy calibration is independent of the sky
model, it is less sensitive to RFI in the far-field. Comparing the plots in the first
row of Fig. 3.8 with the plots in its second row, one may note that more frequency
channels had to be flagged in the model-based calibration.

As discussed by Liu et al. (2010), redundancy calibration quality depends on
the S/N of the observed sky, although it is independent of a sky model. Liu et al.
(2010) showed that the estimated parameters are affected differently in the presence
of baseline-dependent noise, assuming that it is Gaussian noise. The vector β in
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Figure 3.8: Plots of the residuals for corrected redundant visibilities in terms of phases
and amplitudes on a given set of redundant baselines. The first row shows the results after
redundancy calibration. The second row shows the result after model-based calibration. The
data is taken from the observation done on 24 November 2009 at 21:29:04 UTC, when CasA
is at high elevation. The station configuration of RS208 is shown in the rightmost panel.
The corresponding redundant baselines to each redundant visibility are also depicted on the

station layout, with the same color code.

Eq. 3.23 reveals a non-Gaussian baseline dependent noise. We have taken this into
consideration in the following results. After adding different levels of a non- i.i.d.
Gaussian noise to the output vector of the array (Eq. 3.1), we simulated the station
visibility assuming that the station elements have identical beams. We used the sta-
tion configuration of RS208 (see Fig. 3.8, rightmost panel). The complex gains were
estimated over 100 runs of Monte-Carlo simulation for different S/N’s per visibility.
The variance of the error in the estimated complex gains (over simulation runs with
different random noises) versus different S/N’s per visibility is shown in Fig. 3.9.
These plots indicate that the variances in the estimated complex gains, which are our
parameters of interest in a station calibration, are the same for the different tiles. This
illustrates the stability of the algorithm. However, an analysis of this nature is very
array-configuration-dependent, as the array configuration determines the coefficient
matrices by which our estimators are defined.
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Figure 3.9: The variance of the estimated complex gains in terms of amplitude (left) and
phase (right) versus the (S/N)−1 per visibility. Each color represents the estimated complex

gain of a tile whose number is mentioned in the legend.

3.3.3 Limitations of the redundancy calibration

The applicability of the redundancy calibration is limited by the following factors:

1. The station configuration.

2. Mutual coupling between the station elements, which leads to:

� non-identical element beams.

� the presence of baseline dependent noise.

3. the signal-to-noise ratio across the observed sky.

The station configuration can influence the suitability of redundancy in different
ways. The redundancy calibration method requires a regular arrangement of station
elements. In a station with p elements, one needs a sufficient number of distinct types
of redundant baseline to have a system of equations in which all station element gains
are involved. The more redundant the station’s baselines are, the less information
in the measured visibilities will be missed in the computation. This is not a concern
in the HBA stations, as they are highly redundant. We denote by I the ratio of
the number of the measured visibilities that are used in the computations, to the
total number of the measured visibilities. The station configuration also determines
the coefficient matrices i.e. Eph or Eampl for the phase and amplitude estimators,
respectively. The condition number is a relative error magnification factor i.e. errors
in the right-hand side of a linear system of equations can cause errors κ(Eph) times
as large in the solution. Fig. 3.10 shows three different configurations for the HBA
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stations in the LOFAR system. After recognizing the redundant baseline in a certain
configuration, one can calculate the aforementioned quantities, which are given in
Table 3.2. This table shows that RS208 is the most reliable configuration, from the
redundancy calibration point of view. However, these quantities can be figures of merit
when we design for redundancy within the stations and in terms of the arrangement
of the stations within the whole array.

Configuration and element spacing in a station are usually decided based on ob-
taining low sidelobes of the station beam. Minimizing the mutual coupling between
the station elements should be taken into consideration as other important figures of
merit in a station layout for the sake of redundancy applicability. This consideration
serves a twofold goal, obtaining identical element beams at least in the main beam
and minimizing the receiver correlated noise (Rrec). The dissimilarities between the
element beams introduces systematic errors that cannot be eliminated by either any
statistical method or a longer integration time. In the presence of the baseline depen-
dent noise, the estimated parameters will deviate from their true values as given by
Eq. 3.23. Quantifying this deviation for a given array, requires a good understanding
of the noise terms in Eq. 3.7, especially Rrec. The correlated noise terms are difficult
to model analytically (Maaskant 2010). One may use a powerful and generic tool
called CAESAR to compute them numerically using its ElectroMagnetic (EM) and
MicroWave (MW) simulators, which is indeed an ongoing project at the HBA and
EMBRACE stations. Primary results from the MW-simulation for an HBA station
have demonstrated a negligible contribution of Rrec. However, Fig. 3.9 indicates
that whatever the effect of the calibration accuracy may be, it does not make the
redundancy algorithm unstable.

Table 3.2: Station configuration and the condition of the redundancy calibration

Station no. of DRB size(Eph) size(Eampl) κ(Eph) κ(Eampl) I

RS208 84 1127× 132 1125× 132 52.72 9.74 99.65%

CS302 113 1123× 161 1121× 161 6.74e16 9.99 99.29%

CS004 72 547 × 120 545 × 120 8.42e16 1.73e15 48.22%

Note: Station column represents some LOFAR station names, each implying a
different station configuration. DRB stands for distinct redundant baseline.

3.4 Discussion

We have studied the applicability of redundancy calibration to phased-array stations
for the first time. The performance of this calibration method was demonstrated
using data acquired with a new telescope, LOFAR. This required new considerations
to the original design of conventional arrays e.g. WSRT and VLA. We took them
into account by refining the data model. Reformulating the redundancy calibration
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Figure 3.10: Three different station configuration for HBA stations.

formalism using the new data model, helped us to understand its potential, limitations
and the effects of non-Gaussian baseline-dependent noise on the calibration accuracy.

We must consider both obtaining identical beams for station elements and min-
imizing the correlated noise as figures of merit for the configuration and spacings
between the elements within a station in SKA pathfinders and the SKA itself. This
is definitely necessary, regardless of the calibration method used. For the redundancy
method, it is fundamental, while having identical element beams saves computational
capacity and time for model-based methods.

In the plots of residuals and Table 3.1, we have demonstrated how non-identicalness
of the beams leads to systematic errors that cannot be eliminated by any statistical
methods or longer integration time. Since, identical element beams are fundamental
especially for the redundancy calibration, similar EM-simulations to those presented
here, are highly recommended for any array. Moreover, redundancy turns out to be
an extremely suitable diagnostic tool for recognizing and monitoring failing station
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elements. This is of concern in arrays with large number of elements, such as LOFAR
and SKA. It is currently being used for this purpose in the LOFAR system.

Wide-field science with new radio telescopes such as SKA (van Ardenne et al.
2009), demands an enormous amount of signal processing and computational capac-
ity. This is mainly due to the large number of elements, the variable beams, and the
effect of the ionosphere over a large FoV requiring considerable calibration on the raw
data. This has extensively been treated in the thesis work of Bregman (2012). The
redundancy calibration results encourage us to recommend considering redundancy
in the SKA configuration, both at the station and whole array level. In large inter-
ferometers such as SKA, where the baselines are non-coplaner, one has to however,
think of redundancy in uvw -space, however, not only in uv -space. Redundancy can
be applied to the gain calibration of the whole array in specific regimes where the
stations observe the sky, through the same ionospheric patch. It also saves compu-
tational capacity and gives a more accurate estimate of the telescope gains than the
model-based gain calibration. This is of course a major step forward in achieving
radio images of higher dynamic range.

3.5 Conclusion

For the first time, we have studied the applicability and limitations of redundancy
calibration in phased array stations using both real and simulated data of a new
telescope, that uses aperture array technology such as LOFAR. The results clearly
show that the additional contraints provided by redundant baselines do improve the
quality of the calibration and in addition provide a powerful tool for system diagnostics
at different levels of the telescope phased-array hierarchy (both intra-station and
inter-station). The merit of redundancy in the station and full array layout and
the additional advantage for diagnostics are clearly demonstrated by this study. We
therefore recommend to ensure redundancy in both the station layout and the array
configuration of future aperture arrays, in particular the SKA, where the required
dynamic range will be an order of magnitude beyond any existing array. Because
redundancy gives a better handle on characterizing the state of the system, it provides
in addition a model-independent diagnostic tool for subsystems such as a station.

However, the effect of redundancy on the performance of the deconvolution pro-
cess, thus the quality of the final image using different methods of deconvolution
remains a critically important future research direction. Chapter 5 provides a suit-
able background, based on which one can insightfully plan such research project.



Chapter 4
A constrained self-calibration

In the 3rd generation of calibration (3GC), self-cal solves for more parameters per
array element i.e. both the direction-independent effects (DIE) and the direction-
dependent effects (DDE) in different stages. Direction-independent gain calibration
takes place in the first stage, which should be done accurately. In 3GC, accurate
gain calibration becomes even more important as the errors at this stage propagate
to the next stages of the calibration. Such error propagation was not of concern in
the 2nd generation of calibration (2GC). One way to improve the calibration results
is to constrain the calibration routine at each stage such that it converges better to
the true solutions.

In this chapter, we examine the refractive nature of the ionosphere as a DDE and a
source of inaccuracy in gain calibration results. To avoid such error, we suggest solving
a constrained self-cal for an array with an arbitrary geometry, using extra constraints
as exploited in redundancy calibration. Those constraints are based on a physical
model of the ionosphere refractive effect. We demonstrate that the constraints have a
clear physical justification, only when we observe a single source or multiple sources,
that experience similar ionospheric effect. We discuss how cluster calibration might
reduce any other observational scenario to the one, in which these constraints are
justified.

Self-cal is formulated as a non-linear least squares problem. Its constrained version
can be solved using sequential quadratic programming (SQP) technique, if it cannot
be linearized. We conclude that a constrained self-cal performs more optimally based
on our numerical CRB analysis and comparing it with the CRB of its unconstrained
version. Then, we solve a constrained self-cal taking two different approaches: the
SQP and the logarithmic least squares (LOGLS). Their results show that the SQP
performs more accurately as compared with the LOGLS, provided the same initial
guess, and that self-cal can benefit from the constraints used in the redundancy cal-
ibration formalism to perform more reliably for gain calibration of an array with an
arbitrary geometry.

63
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4.1 Introduction

The term self-cal refers to a calibration scheme, that uses the observed known sources
as the calibration beacons (Thompson et al. 1986; Schwab and Bridle 1994). Perform-
ing an accurate self-cal has been a challenge with the advent of new radio telescopes
with wide fields of view, and operating at very low frequencies such as LOFAR (de
Vos et al. 2009), a prominent pathfinder towards SKA. Therefore, 3GC1 has been
introduced to the radio astronomical community by Noordam and Smirnov (2010).
3GC enables us to tackle the instrumental gain corruptions (known as DIE) and
other corrupting effects such as propagation path effects (known as DDE). Smirnov
(2011a,b,c) has clearly explained how the 3GC trend can be implemented in radio
astronomical data reduction packages.

In the 3GC approach, self-cal solves for telescope direction-independent complex
gain, at its first stage. Those gains are instrument intrinsic properties and ideally
should not show a large variation over time or frequency. However, the accuracy
of gain calibration is affected by several sources of error. Two major sources of er-
ror, which are known as DDE are: a) propagation path effects, of which the Earth’s
ionosphere is the most dominant one, especially at low frequencies and b) variation
of the station “primary“ beam pattern over its field of view. The latter introduces
a systematic error in gain calibration results, which cannot be eliminated by longer
integration time or more iterations. Thus, it must be understood and separated from
any other stochastic DDE such as the ionosphere. The variation in the beam pat-
tern of a phased-array station over time is due to different beamforming weightings
while observing a target for a long time. Its variation over frequency is due to elec-
tromagnetic properties and the design of the station antenna. Both causes of beam
variability are deterministic and should be known a priori. In general, having a good
knowledge of the instrument beam pattern is an absolute necessity. In this chapter,
we assume that the antenna beam pattern of the array elements are identical and
known. In contrast, ionosphere acts as a random refractive sheet and introduces a
direction-dependent gain per source and per array element, that must be calibrated
out. In the 3GC approach, ionospheric calibration takes place after gain calibration.
However, the ionosphere disturbances in the measured data affect the accuracy of
gain calibration results in the first stage.

The impact of inaccurate direction-independent gain calibration on the dynamic
range of the final image has been known and well-understood for decades (Perley
et al. 1985, Lecture. 10). In the 3GC approach, accurate gain calibration becomes
even more important as those errors at this stage propagate to the next stages of the
calibration and are magnified by the condition number of the corresponding Jones
matrices (Carozzi 2011). Therefore, it is an incorrect notion that the errors, made
at one stage of calibration can be handled at later stages. This emphasizes the
importance of performing an accurate estimation at each stage of the calibration
routine.

The problem of accurate direction-independent gain calibration in the presence

11GC relies on instrumental stability. In 2GC, self-cal solves only for two parameters (the ampli-
tude and the phase of a complex gain) per array element (Noordam and Smirnov 2010).
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of the DDEs has been acknowledged by all recent literature on radio interferometric
data calibration. Here, we summarize the most recent work. First, let us categorize
the calibration algorithms in two groups: a) covariance fitting in form of a least
squares problem, briefly explained in Sect. 4.2, and b) expectation maximization.
Among the first group are the works by Boonstra and van der Veen (2003), van
der Tol et al. (2007), and Wijnholds and van der Veen (2009a). Boonstra and van
der Veen (2003) study several calibration algorithms using a single calibrator source.
They acknowledge that the gain solutions carry the effects of the propagation path.
van der Tol et al. (2007) reformulate self-cal by taking into account the DDE and
multiple calibrator sources in their data model. The motivation behind this is the
wide FoV of the new radio telescopes leading to the presence of multiple calibrator
sources in their observations. They recognize a unitary ambiguity in this model-
based calibration formalism. They mathematically prove how this unitary ambiguity
leads to un-calibratibility of the array (or singularity of the Fisher information matrix
(FIM) in the CRB derivation). Their suggested solution is to add deterministic and
physically justifiable constraints to a group of parameters, that are estimated in the
calibration routine. They constrain the ionospheric parameters. Wijnholds and van
der Veen (2009a) also consider the DDE and multiple calibrator sources in the data
model, but they model the DDE differently. They suggest a WALS algorithm, that
iteratively solves for the direction-independent gains of the array elements, their noise
powers, and the direction-dependent gains in the direction of the calibrator sources.
But, there is no mathematical proof that taking the WALS approach can sort out
the unitary ambiguity in the calibration solutions. Therefore, providing some a priori
and physically justifiable information to constrain the calibration parameters, so that
the calibration routine converges to the true solutions seems inevitable. This has
thoroughly been discussed by van der Tol et al. (2007). Moreover, it is generally
known that the more parameters we estimate using the same observation, the larger
the variance we allow in the estimated parameters.

Among the second category of calibration algorithms is the space alternating gen-
eralized expectation maximization (SAGE) calibration technique (Yatawatta et al.
2008; Kazemi et al. 2011, 2012), which exploits the statistical properties of the noise.
Although this technique reaches a superior calibration performance and convergence
speed, as compared with the least squares-based (model-based) calibration method,
the authors also acknowledged that the use of some justifiable constraints on pa-
rameters space is required to force the calibration routine to converge to the true
solutions.

An excellent example of such constraints are the ones used in the redundancy
calibration (Eq. 3.20 and Eq. 3.21). They are used to avoid ionospheric/tropospheric
errors in the gain calibration results, which predominantly appear as a phase shift
over the array. In Sect. 4.3, we show that those constraints are physically justifiable
only, when we calibrate against a single source or multiple sources, that experience the
same ionosphere disturbances. However, as it was discussed by Kazemi et al. (2011),
we should always calibrate against a single source in wide-field radio interferometric
data processing to reduce the parameters space. It is done by clustering the observed
sky in facets centered at the strong sources in the field, and assuming that certain
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effects e.g. ionosphere disturbances are the same for all the other sources in that facet.
Thus, our constraints are justified, if the fixed parameter in the facet is the ionosphere.
Moreover, calibration using a single source does not suffer from the unitary ambiguity
(see the mathematical proof in van der Tol et al. (2007)). This condition is provided
taking the cluster calibration approach. In Sect. 4.4, we demonstrate that a single
ionospheric screen casues a phase shift over the array in gain calibration results. For
this demonstration, we use a single calibrator source and a one-dimensional linear
equi-spaced array (LEA) only in order to obtain a clear slope and compare it with
the predicted slope in Sect. 4.3. Prior to suggesting a solution to avoid such an error
in gain calibration results, we show that using the aforementioned constraints indeed
improves the optimality of the self-cal gain estimation by the CRB analysis in Sect.
4.5. We note that our constraints involve all the array elements. Therefore, we use
self-cal formalism using a full ME as it is done in Boonstra and van der Veen (2003);
van der Tol et al. (2007); Wijnholds and van der Veen (2009a), and explained in Sect.
4.2. Then, we suggest solving a constrained self-cal for an array with an arbitrary
geometry to avoid such an error in the complex gain solutions in Sect. 4.6. Our
approach is very similar to that of (van der Tol et al. 2007) i.e. adding deterministic
and physically justifiable constraints to a group of parameters, that are estimated.
van der Tol et al. (2007) constrain the ionosphere parameters whereas we propose to
constrain the phases of the direction-independent complex gain of the array elements.
Our problem becomes a non-linear constrained least squares problem. To solve that,
we take two approaches: a) using the linearized version of the model-based calibration
called logarithmic least squares (LOGLS) studied in Boonstra and van der Veen (2003)
and b) the state of the art approach in non-linear optimization known as sequential
quadratic programming (SQP) (Fletcher 1980; Gill et al. 1981). We conclude that
a constrained self-cal achieves a more accurate gain estimation result, the impact of
which on the final image has been known for decades (Perley et al. 1985, Lecture. 10)
and has analytically been calculated by Wijnholds and van der Veen (2008).

4.2 Self-cal, a non-linear least squares problem

In the radio astronomical terminology, self-cal refers to the calibration of a tele-
scope using sky signals in the observation as reference sources (Thompson et al. 1986;
Schwab and Bridle 1994). It can solve for the direction-independent electronic com-
plex gain (in terms of amplitude γi and phase φi), and the noise power (σi) of the
array elements in vector θ, in a least squares covariance fitting

θ̂ = argmin
θ

∥∥∥R̂ − R(θ)
∥∥∥2

F
(4.1)

θ = [γ1, γ1, ..., γp, φ1, φ2, ..., φp, σ
2
1 , σ2

2 , ..., σ
2
p]T ,

where φ1 is assumed to be the phase reference (φ1 = 0), because an absolute phase

definition is meaningless. R(θ) = GAΣsA
HGH+Σn and R̂ are the modelled and the

measured array output covariance matrices (visibilities), respectively. G (size p × p)



4.2 Self-cal, a non-linear least squares problem 67

is a diagonal matrix whose elements are the complex electronic gains, gi = γie
φi . It

is assumed that the calibrator sources have known position and fluxes (Σs). Thus,
the array response matrix, A = [a1,a2, ...,aq ] is known and defined as

A = exp

(
−j

2π

λ
RLT

)
, (4.2)

where the matrix R = [r1, r2, ..., rp]
T (size p×3) is the stack of array element positions,

if the i-th element of the array is located at ri = [xi, yi, zi]
T . Likewise, the source

positions are stacked in a matrix L = [�1, �2, ..., �q]
T (size q × 3), the position of the

k-th calibrator source is �k = [lk, mk, nk]T . λ is the wavelength. p is the number of
the array elements and q is the number of the calibrator sources. Then, an adequate
sky model can be represented by

AΣsA
H . (4.3)

One can point out two major issues here:

1. The unitary ambiguity is present in Eq. 4.1. The unitary ambiguity means that
one obtains different complex gain solutions for the instrument using different
observations, while those complex gains are the instrument intrinsic properties
and should not depend on what we observe. As it was mathematically described
by van der Tol et al. (2007), without further constraint to reduce the degrees
of freedom of θ, the solution of Eq. 4.1 is not identifiable through a single
measurement.

2. In the presence of a DDE e.g. the ionosphere, an appropiate model of such
an effect is a matrix G0 (size p × q), element-wise multiplied with the ar-
ray response matrix, A. Thus, the data model becomes: R1(θ) = G(G0 �
A)Σs(G0�A)HGH +Σn. This makes the estimation of G0 (size p× q) param-
eters not straightforward, as extensively discussed by van der Tol et al. (2007).
Modelling it in a matrix G0 (size p × p) such that the data model becomes:
R2(θ) = GG0AΣsA

HGH
0 GH +Σn (Wijnholds and van der Veen 2009a) leads

to estimation of incorrect parameters, although this data model makes the es-
timation process straightforward.

Using the data model in R1(θ), a supplementary step is to apply physically justi-
fiable constraining models, as discussed by van der Tol et al. (2007). The constraints
should fully affect the underlying statistical distribution of the signal samples, that
are correlated to form the visibilities, in R̂. van der Tol et al. (2007) use such con-
straining models on ionospheric parameters. Here, we take a similar approach but
constrain the complex gains in the same manner as is done in redundancy calibra-
tion (Wieringa 1991). Those constraints are to set the phase gradient over the array
caused by the source position shift, to zero. In Sect. 4.3, we demonstrate the physical
justification of those constraints.

Without loss of generality, we reduce the vector of parameters to be estimated
in self-cal to only complex gains θ = [γ1, γ1, ..., γp, φ2, φ3, ..., φp]

T . It was also shown
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in van der Tol and Wijnholds (2006) that the impact of unknown diagonal Σn on
complex gain estimation is none. Moreover, for any estimate of the complex gains ĝ,
the optimal estimate of Σ̂n is still given by Σ̂n = diag(R̂ − ĝĝH).

We note that the array elements are assumed to have the same and known beam
pattern towards the q source signals received by the array.

4.3 Ionosphere and phase gradient over the array

The ionosphere acts as a random refractive sheet, shifting the positions of the sources
in the FoV. This causes a DDE modelled by the matrix G0, whose structure depends
on the calibration regime (explained in Lonsdale (2004)) of our observation. In the
most general case, it is

G0 =

⎡⎢⎢⎢⎢⎣
e−j2π

r1.Δ�11
λ e−j2π

r1.Δ�21
λ · · · e−j2π

r1.Δ�q1
λ

e−j2π
r2.Δ�12

λ e−j2π
r2.Δ�22

λ · · · e−j2π
r2.Δ�q2

λ

...
...

. . .
...

e−j2π
rp.Δ�1p

λ e−j2π
rp.Δ�2p

λ · · · e−j2π
rp.Δ�qp

λ

⎤⎥⎥⎥⎥⎦ , (4.4)

in which q sources are shifted differently with respect to each array element. Δ�qp is
the position shift of the q-th source with respect to the p-th array element.

We show how the position shifts of the calibrator (reference) sources are trans-
formed into the errors on the self-cal gain estimation results. Due to the diagonality
of G in the data model, R1(θ) the position shifts in G0 can be absorbed in the
G matrix introducing direction-dependent errors on direction-independent complex
gains. These errors can be studied by computing a matrix L (size p × p), that holds
the relation G0 � A = LA, and is diagonalized by an eigen-value decomposition.
Intuitively, we expect that the position shifts of the calibrator sources in Eq. 4.4 lead
to errors in both phase and amplitude of the complex gains. However, the simplest
case to study is when we observe a single source, q = 1 or the shifts, Δ�qp are all the
same for all the sources in the FoV. In both cases, we can write

G0 � A =

⎡⎢⎢⎢⎢⎣
e−j2π

r1.Δ�

λ 0 · · · 0

0 e−j2π
r2.Δ�

λ · · · 0
...

...
. . .

...

0 0 · · · e−j2π
rp.Δ�

λ

⎤⎥⎥⎥⎥⎦A = LA. (4.5)

Then, we obtain a naturally diagonal matrix L. The diagonal elements of L could be
element-wise multiplied to the diagonal terms of matrix G = diag(g) in R1(θ), for
the cost of keeping an known sky model (AΣsA

H in R1(θ)) for solving Eq. 4.1. This
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way, the error is absorbed in the complex gains resulting to an inaccurate complex
gain estimation. In such a case, we estimate for matrix G′ = GL, that is

G′ =

⎡⎢⎢⎢⎣
γ1e

jφ1 0 · · · 0
0 γ2e

jφ2 · · · 0
...

...
. . .

...
0 0 · · · γpe

jφp

⎤⎥⎥⎥⎦L =

⎡⎢⎢⎢⎢⎣
γ1e

j(φ1−2π
r1.Δ�

λ
) 0 · · · 0

0 γ2e
j(φ2−2π

r2.Δ�

λ
) · · · 0

...
...

. . .
...

0 0 · · · γpe
j(φp−2π

rp.Δ�

λ
)

⎤⎥⎥⎥⎥⎦ .

This has changed the vector g = [γ1e
jφ1 , γ2e

jφ2 , ..., γpe
jφp ]T to

g′ = [γ1e
j(φ1−2π

r1.Δ�

λ
), γ2e

j(φ2−2π
r2.Δ�

λ
), ..., γpe

j(φp−2π
rp.Δ�

λ
)]T . (4.6)

If we rewrite it in

g
′ = [γ1e

j(φ1−2 π
λ

(Δlx1+Δmy1)), γ2e
j(φ2−2 π

λ
(Δlx2+Δmy2)), ..., γpej(φp−2 π

λ
(Δlxp+Δmyp))]T (4.7)

it becomes clear that a phase slope, −2π
λ(Δlx + Δmy) has been added to the phases

of the complex gains and the amplitudes have remained unaffected. This phase slope
is over the position of the array elements (x, y). Therefore, the element numbering
is important for recognizing such a slope. In a regular array either 1-D LEA or 2-D
(Uniform Linear Array: ULA), it comes naturally. Note that in an array with an
arbitrary geometry, one has to number the elements in x or y in ascending order.

Eq. 4.4 is the most realistic case for the aperture array telescopes, as their calibra-
tion mainly falls in the regime, where either the ionosphere varies significantly over
the FoV (regime 3) or where different array elements view different sections of the
ionosphere (regime 4) (see Fig. 1.7 and Lonsdale (2004)). But as discussed earlier,
using the cluster calibration (Kazemi et al. 2011), our problem is always reduced to
its simplest form in Eq. 4.5, thus the justification presented here can always hold.

In the next subsection, we demonstrate how the source position shift is absorbed
in the self-cal gain estimation results, given that a correct sky model is provided for
solving Eq. 4.1.

4.4 Predicted phase gradient in self-cal results

We have set up a simple simulation to demonstrate how self-cal gain estimation results
are affected by a position shift of the calibrator source (Δl, Δm). We choose a one-
dimensional LEA array of p = 40 elements only in order to obtain a clear slope
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and compare it with the predicted slope in Eq. 4.7. But, in the following sections,
we will use an arbitrary array geometry for our analysis. Here, the gain amplitude
γi are chosen randomly in the interval γ0 − Δγ and γ0 + Δγ, where γ0 = 1 is the
nominal gain amplitude, and Δγ = 0.2 is a spreading parameter. The gain phase
φi lies uniformly distributed between 0 and Δφ = 0.2 radian, where Δφ < 2π. The
astronomical calibrator source is a zero mean complex Gaussian signal with unit
power. The frequency is f = 170 MHz, thus λ = 1.7635 m. The calibrator is shifted
by Δl = 0.02. We solve for the complex gains using Eq. 4.1. The noise is dismissed
for this simulation. Noisy simulated data can be used in further studies. We set
the spreading parameter small to obtain a slope close to what we predicted by Eq.
4.7, −2π Δl

λ = −0.0713. This is only to get our point across clearly. The results are
presented in Fig. 4.1. From these results, it is clear that a shift in position of the
calibrator source has been translated to a phase slope over the array, in the phases
of the complex gain estimation results. We expected this from the theory explained
earlier and captured in Eq. 4.7.

Figure 4.1: Estimated complex gains using Eq. 4.1, in terms of amplitudes (left) and
phases (right) using a single source once at (l, m) = (0.3,−0.7) (blue star) and once shifted
0.02 in l direction (red squares). The array geometry is a LEA and the spreading parameter
is small. These are only in order to obtain a clear slope and compare it with the predicted

slope −2π Δl

λ
= −0.0713.

The redundancy calibration (Wieringa 1991) constrains the phases of the complex
gains, such that the phase slope over both x and y is forced to be zero. Those
constraints are expressed in Eq. 3.20 and Eq. 3.21, which we rewrite in
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f(θ) =

⎡⎢⎢⎣
p∑

i=1

φixi

p∑
i=1

φiyi

⎤⎥⎥⎦ =

[
φxT

φyT

]
=

[
0
0

]
= 02×1. (4.8)

Without loss of generality and for mathematical convenience, we rewrite them as

f(θ) =

[
θ[01×p|x]T

θ[01×p|y]T

]
= 02×1, (4.9)

where xi and yi are the (x, y) coordinates of the array elements stacked in the vectors
xT and yT (size 1 × p), respectively.

In Sect. 4.6, we suggest solving a constrained self-cal to avoid the phase slope
error in its gain estimation results using the constraints in Eq. 4.9. Thus, we intend
to incorporate the phase slopes into the calibration formalism as physically accepted
constraints, rather than treating them separately in a later stage of the calibration.
We use an array with an arbitrary geometry to demonstrate that such slope is observed
even when we have an irregular non-liner array and that our suggested solution avoids
the corresponding error in the self-cal gain estimation results.

An important assumption is that an intrinsic phase slope over the array is very
unlikely.

4.5 Optimality of a constrained self-cal

In the signal processing literature, a standard and robust step to ensure whether
a constrained algorithm works more optimally than its unconstrained version is to
compute the CRB. We accomplish such computation in this section. The CRB anal-
ysis determines limiting estimation error variance under various model assumptions.
The CRB on the error variance for any unbiased estimator is given by the diagonal
elements of matrix C (Kay 1993), given in

C = E
(
(θ̂ − θ)(θ̂ − θ)T

)
≥ 1

N
J−1, (4.10)

where E(.) is expectation operation, N is the number of samples, and J is the Fisher
information matrix (FIM). Stoica and Ng (1998) have proven that under parametric
and continuously differentiable constraints, f(θ) = 0 (such as the constrains in Eq.
4.9), the CRB is expressed by

C = E
(
(θ̂ − θ)(θ̂ − θ)T

)
≥ 1

N
U(UT JU)−1U, (4.11)

where U is a matrix whose columns form an orthonormal basis for null-space of the
gradient matrix of the constrains matrix

F(θ) =
∂f(θ)

∂θT
. (4.12)
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Closed form relations for the CRB for self-cal were derived in earlier work (Boon-
stra and van der Veen 2003; Wijnholds and Boonstra 2006; van der Tol et al. 2007),
thus J is known. We numerically study the effect of our constraints on the CRB using
Eq. 4.11 and the constraints, f(θ) in Eq. 4.9. The results are presented in Fig.4.2.
It shows that using the constraints indeed reduces the CRB or equivalently increases
the optimality of the self-cal gain estimation. One may notice that the amplitudes
are not affected. This is because we only constrained the phases.

Figure 4.2: The effect of parametric constraints on the error variance in the self-cal gain
estimation results. It shows that the level of variance in phases is lower by using the con-
straints. An array of 48 element with an arbitrary geometry has been used. The x-axis
represents the index for the parameters θ = [γ1, γ2, ..., γp, φ2, φ3, ..., φp]

T . It shows that us-
ing the constraints indeed reduces the CRB or equivalently increases the optimality of the

estimation.

Deriving an analytical expression for the constrained CRB remains as a further
step to be taken.

4.6 Suggested solutions to a constrained self-cal

Self-cal formulated in Eq. 4.1 is a nonlinear least squares problem. Constraining Eq.
4.1 means solving a constrained nonlinear problem, which is to minimize the objective
or cost function J(θ), subject to the constraints in Eq. 4.9 given in
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J(θ) = J(γ, φ) =
∥∥∥R̂ − R(θ)

∥∥∥2

F
(4.13)

subject to : f(θ) =

[
θ[01×p|x]T

θ[01×p|y]T

]
= 02×1.

Here, we face constraining a complex quantity, which boils down to constraining
either amplitude and phase or real and imaginary parts, separately. One cannot
physically constrain an imaginary quantity as it does not have a physical meaning.
Therefore, we take a natural logarithm of the complex quantity, θ to separate the
amplitudes and phases. Since we intend to optimize only the phase estimation, we
redefine f(θ) in Eq. 4.13, reducing it to only the phase parameters, φ in

f(φ) =

[
φxT

φyT

]
= 02×1. (4.14)

All algorithms to solve a problem such as the one in Eq. 4.13 are well-known to be
iterative, thus computationally intensive, unless the problem can be linearized. Here,
we take both approaches a) the closed-form linearized version of Eq. 4.1, originally
presented as LOGLS algorithm in Boonstra and van der Veen (2003) and b) the state
of the art method in non-linear optimization known as SQP (Fletcher 1980; Gill et al.
1981).

4.6.1 Constrained logarithmic least squares

Boonstra and van der Veen (2003) propose a closed-form linearized version of the
problem in Eq. 4.1, that has the computationally complexity of 2p2, where p is the
number of elements in an array. They decouple amplitude and phase estimation by
taking an element-wise natural logarithm of Eq. 4.1. The phase optimization problem
as formulated in Eq. 4.13 becomes

φ̂ = argmin
φ,k

‖Is(vI + k2π) − Is[1⊗ I − I ⊗ 1]φ‖2
F (4.15)

subject to : f(φ),

where vI = vec(Im ln(R̂)), k (size 1× p2) is a vector of nuisance integer parameters,
and Is (size (p2 − p) × p2) is a selection matrix, that is constructed from a p2 × p2

indentity matrix by removing its rows 1, (p + 1) + 1, 2(p + 1) + 1, ..., p2. Eq. 4.15 is
solved in a closed form in

φ̂ = (CH
e Ce)

−1CH
e (ve + 2πke), (4.16)

where
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Ce =

⎡⎢⎢⎣
C

et
1

f1
f2

⎤⎥⎥⎦ , ve =

⎡⎢⎢⎣
vI

φ1

0
0

⎤⎥⎥⎦ , ke =

⎡⎢⎢⎣
k

0
0
0

⎤⎥⎥⎦ , (4.17)

where ei is the i-th unit vector (all zeros except for the i-th element) and fi is the
i-th row of the constraint matrix, f . Suppose that we have an initial guess φ◦ of φ.
Then, k is obtained by rounding the entries of Cφ◦ − vI to the nearest multiple of
2π: k = round((2π)−1(Cφ

◦ − vI)).
All the conventional solutions for a constrained linearized problem in (Lawson

and Hanson 1974) are essentially applicable here. The presented solution in Eq. 4.16,
however is the least complicated one.

4.6.2 Sequential quadratic programming

An alternative solution to our problem in Eq. 4.13 is direct optimization without
explicit linearization using SQP technique. The principal idea in SQP technique is to
formulate a QP sub-problem based on a quadratic approximation of the Lagrangian
function given as

L(φ, λ) = J(φ) +

m∑
i=1

λifi(φ), (4.18)

where λi is the Lagrange multiplier and fi(φ) is the i-th row of the constraint matrix.
The QP sub-problem is

min
1

2
dTHkd + ∇J(φ)Td (4.19)

subject to : ∇fi(φ)Td + fi(φ) = 0,

where dk is a search direction to decrease a merit function (Gill et al. 1981). Hk is
the Hessian of the Lagrangian function in Eq. 4.18, that can be computed using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The solution is used to form a
new iteration by

φk+1 = φk + αkdk, (4.20)

αk is the step length parameter, that is determined by an appropriate line search pro-
cedure so that a sufficient decrease in the merit function is obtained. This technique
has been implemented in a function called fmincon in the MATLAB optimization
toolbox. The reader is referred to its documentation for further details.

We applied the two aforementioned algorithms (LOGLS and SQP) for the simu-
lated data to solve a constrained self-cal. An array with an arbitrary geometry is used
to simulated the array visibilities, R̂ in Eq.4.1. The rest of the simulation settings are
the same as the simulation in Sect. 4.4. The results are given in Fig. 4.3. This figure
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presents the array geometry in left panel, that is used for obtaining the estimation
results in right panel. The right panel shows that one can observe a phase slope in
the self-cal gain estimation results for an array with an arbitrary geometry, although
the slope is not as clear as it is in Fig. 4.1. To obtain these results, we used the
true value of the phase vector as the initial guess for these algorithms. The results
presented required only one iteration. It is clear that the SQP performs better as
compared with the LOGLS. Although its formalism is more sophisticated and general
than the LOGLS, it performs fast due to its efficient implementation in MATLAB.

Figure 4.3: An array with arbitrary geometry (left). This array geometry is used for
simulating R̂ and R to solve a constrained self-cal (Eq. 4.13) by running two different
methods, a) constrained LOGLS and, b) SQP shown in the right panel. These results are
obtained after only one iteration, provided the true value as the initial guess. Note: a 2π
jump is seen in a few points in the top-right of the plot. This is taken care of in a more

advanced implementation of self-cal.

It is known that the performance of all iterative methods depends on the accuracy
of the initial guess. But, more iterations should improve their performance, if an
inaccurate initial guess is provided. Further work is required to study the accuracy
of the SQP performance versus the accuracy of the initial guess, or the number of
required iterations to converge (speed of convergence), when an inaccurate initial
guess is provided for this algorithm.

4.7 Conclusion

In this chapter, we examined the refractive feature of the ionosphere as a DDE that
is a source of error in the self-cal gain estimation results. We suggested a constrained
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self-cal to force the calibration algorithm to converge to the true gain solution, in the
presence of this effect. We used the constraints, which the redundancy calibration has
exploited (its formalism in Wieringa (1991)). Before solving a constrained self-cal, we
took two steps:

1. We showed that those constraints have a clear physical justification, only when
we observe a single source or multiple sources, that experience similar iono-
spheric effect. We discussed how cluster calibration might reduce any other
observational scenario to the one, in which these constraints are justified.

This also means that those constraints are not justified for the station calibra-
tion, which falls in calibration regime 3. This is a fair point to make, after the
discussion in Sect. 4.3.

2. We performed a numerical CRB analysis. The results proved that our suggested
constrained self-cal performs more optimally than unconstrained self-cal.

Finally, we took two different approaches (LOGLS and SQP) to test the perfor-
mance of our suggested solution. The results are presented in Fig. 4.3. It demon-
strates that:

1. the predicted slope in Fig. 4.1 is also observed in an array with an arbitrary
geometry (not necessarily with an LEA geometry).

2. the self-cal can benefit from the constraints used in the redundancy calibration
formalism to perform more reliably for gain calibration of such an array.

3. for this purpose, the SQP performs more accurately as compared with the
LOGLS, provided the same initial guess.

However, we should note that we solved a constrained self-cal in Sect. 4.6 using
a full ME, because our constraints involved all the array elements at once instead of
individual baselines. Given that 3GC emphasizes the use of a 2 × 2 ME i.e. use of
the data of an isolated baseline in the estimation process, we should seek a feasible
way of implementing the constraints such as the ones applied in this chapter, in 3GC
packages. This remains as an important challenge to tackle.

We also note that we discussed the first category of calibration i.e. the covariance
fitting represented by Eq. 4.1. An extensive research on the second category of cali-
bration algorithms has resulted in developing SAGE (Yatawatta et al. 2008; Kazemi
et al. 2011) and Ordered Subsets-SAGE (OS-SAGE) (Kazemi et al. 2012). They are
proven to be more accurate and computationally more efficient than the first category.
However, this does not reduce the importance of constraining the calibration routine
to converge to the true solutions, as Kazemi et al. (2011) concluded as well. This is
the main point, that we emphasize in this chapter. Constraining gain calibration is
one step.

We recommend constraining the other stages of the calibration routine in 3GC by
as much a priori information about the instrument and the propagation path as is
possible. The examples are:
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1. the use of the ionospheric constraining model in van der Tol et al. (2007).

2. the use of a proper and complete model of the primary beam (both main lobe and
sidelobes) that includes the effect of mutual coupling with additional physically
justifiable constraints e.g. certain level of main lobe and sidelobes known from
the electromagnetic studies, or beam positivity etc. This has been dismissed
completely, thus far.

The work presented in this chapter is at a preliminary stage. We propose the
following further steps:

1. Derive an analytical expression for the constrained CRB in Eq. 4.11.

2. Compare the performance of the SQP with other competitive methods of op-
timization such as trust-region-reflective or active-set (Gill et al. 1981), imple-
mented in the same programming language with the same level of efficiency.

3. Reproduce the results in Fig. 4.3 using noisy data and more than one iteration,
to test the convergence accuracy and speed of the optimization methods.

4. Compare the performance of the SQP (as the method of choice thus far) versus
the accuracy of the initial guess.

5. Investigate a feasible solution for constraining the 2 × 2 ME-based calibration
packages, not only the direction-independent gains but also other parameters.
This can be done by providing the calibration routine with as much a priori
information about the instrument and the propagation path features as possible.
Examples of such constraints were given earlier.

6. Study whether the SAGE or OS-SAGE can also benefit from the constraints
discussed in this chapter for a better performance.

7. Study whether the constrained self-cal produces a result that is comparable to
the current SAGE or OS-SAGE, and whether it is computationally more or less
expensive. This is an open question and a promising area of future research.
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Chapter 5
Optimum modelling of an extended

source in image deconvolution

To achieve the ultimate goal of high fidelity high dynamic range radio imaging, the
bright known sources in the FoV (either point-like sources or extended structures)
have to be modelled and removed accurately such that the faint unknown sources
in the background can appear with minimum error. To this end, we discuss the
use of orthonormal basis functions, that span the whole source area as opposed to
the pixel-based basis functions, for optimal modelling of the extended sources in the
deconvolution process. We will give an overview of existing deconvolution methods
and discuss how they can benefit from this scheme. Following the promising results
of using orthonormal basis functions, especially the prolate spheroidal wave functions
(Yatawatta 2010, 2011b,a), we suggest a solution to reduce the computational cost of
their implementation (Noorishad and Yatawatta 2011).

Based on:
Efficient computation of prolate spheroidal wave functions in radio astronomical source modeling

P. Noorishad, and S. Yatawatta
11th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
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5.1 Introduction

Radio interferometers measure the Fourier components of the brightness distribution
in the sky on an irregularly filled plane using Earth rotation synthesis technique.
Aperture synthesis imaging would reduce to a simple Fourier inversion, if we had the
Fourier components sampled on a regular filled grid. Levanda and Leshem (2010)
have demonstrated how this sub-Nyquist sampling results in aliasing inside the image
after a Fourier inversion and limits the image dynamic range. Aliasing has also been
physically interpreted as an effect caused by the high sidelobes of the synthesis array
response (also known as the PSF). We remove the effect of the PSF from the true
intensity in a process called deconvolution. The deconvolution in interferometric data
analysis is basically an ill-posed inversion problem, which can be formulated as follows.
We assume that f̃(up, vp) is the sampled visibility at the p-th point in the visibility
plane (Fig. 5.1, a) and f(lq, mq) is the intensity of the q-th pixel in an image (Fig.
5.1, b). The region of interest (ROI) or signal support is the area of a source in an
image.

Figure 5.1: (a) Sampling points (total Na) in the Fourier (visibility) plane. (b) Image of
N rectangular pixels, with the support area (or ROI) in white. The ROI has Nb pixels.

With co-planar approximation, the quantities f̃(up, vp) and f(lq, mq) are related
by the van Cittert-Zernike theorem (Brouw 1975) as

f̃(up, vp) =

N−1∑
q=0

f(lq, mq)e
−j2π(lqup+mqvp), (5.1)

f(lq, mq) =

Na−1∑
p=0

f̃(up, vp)e
j2π(lqup+mqvp),

p ∈ [0, Na − 1], q ∈ [0, N ],

where Na is the total number of sampling points in visibility domain. N is the total
number of pixels in the image. Moreover, it is only after the calibration that we can
assume that the visibilities are the Fourier components of the true sky image (Eq.
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5.1). For simplicity in formulating the deconvolution problem, we assume that we

have calibrated visibilities, f̃(up, vp) throughout this chapter.
As it was discussed in Chapter 2 (Sect. 2.1.2), the sky background noise in the

image plane experiences the same physical and geometrical effects, as the source signal
received by the interferometer. As a result, the sky background noise is convolved
with the PSF as well. Since it is prominent especially at low-frequencies, a more
accurate representation of the relation in Eq. 5.1 is

f̃(up, vp) =
N−1∑
q=0

(f(lq, mq) + nq)e
−j2π(lqup+mqvp). (5.2)

where nq represents the sky background noise added to the image value f(lq, mq). If

we collect all the visibility points in the vector f̃ 1 and all image points (pixels) values
in the vector f , we can rewrite Eq. 5.2 in form of matrix multiplication as

f̃ = T(f + n), (5.3)

f̃ ≡ [f̃(u0, v0), ..., f̃(uNa−1, vNa−1)]
T ,

f ≡ [f(l0, m0), ..., f(lN−1, mN−1)]
T ,

n ≡ [n0, ..., nN−1]
T .

The matrix T (size Na×N) contains e−j2π(lqup+mqvp) on its q-th row and p-th column.
n is the sky noise vector with the same length as f . For the deconvolution problem, we
are interested in optimally extracting information of f given the observed visibilities,
f̃ and the PSF. If we multiply both sides of Eq. 5.3 with the term TH , we obtain

TH f̃ = THT(f + n),

f = (THT)−1(TH f̃ − THTn). (5.4)

In usual terminology, TH f̃ is the dirty image, THT is the dirty beam or the PSF, and
THTf represents the convolution of the true image with the PSF. Eq. 5.4 gives an
approximate solution, when no exact solution exists, provided that (THT)−1 exists
(T has full row rank). Eq. 5.4 is an ill-posed problem that performs well, when
the first term dominates (Briggs 1995). In the case of weak extended (large scale)
emission, the effect of the second term (noise) is significant. It is simple to see that
without explicitly incoporating a priori information, which fundamentally separates
the two terms, such features in f cannot be recovered.

1Note that the visibility points can be arranged in any order in vector ef . But a suitable vector ef is
a vector made by stacking the columns of the calibrated visibility matrix, R i.e. ef = vec(R̂−Σrec).
This arrangement simplifies the comparison of different deconvolution methods, in particular least
squares imaging in Eq. 5.28. with the general formulation of the deconvolution problem in Eq. 5.4.
See Appendix. C.
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We note that the optimality of image reconstruction performed by the inversion
in Eq. 5.4, fundamentally defines the image fidelity.

The deconvolution problem has been approached in several different ways, since
the inception of radio interferometry. CLEAN (Högbom 1974) is the first and most
commonly used deconvolution method. It has greatly served aperture synthesis imag-
ing over the last decades. Its performance, however degrades during the deconvolution
of extended sources, owing to its pixel-based source modelling scheme and the nominal
resolution (or the PSF width) limit of the interferometer. Fundamental limitations
of CLEAN for deconvolution of an extended source were first discussed by Brinks
and Shane (1984). However, they had not recognized its pixel-based source modelling
scheme as the cause of that limitation. As an improvement to CLEAN performance,
Wakker and Schwarz (1988) developed a multi-resolution CLEAN (MRC) by appropi-
ately combining the results of a number of conventional CLEAN operations with op-
timized parameters, each at a different scale. Later Cornwell (2004); Bhatnagar and
Cornwell (2004) recommended a scale sensitive pixel-based source modelling scheme
by representing the ROI with a number of properly scaled and centered extended
basis function components. However, one can argue that a scale sensitive pixel-based
source modelling would still be limited by the resolution limit of the interferometer,
when the source extension is larger than the PSF width. Moreover, they acknowledged
that they cannot reliably specify the number of significant basis function components.
The effect of pixelization on the dynamic range has also been studied numerically by
Cotton and Uson (2008), and analytically and statistically by Yatawatta (2010).

For improving the source modelling scheme in the maximum entropy method
(MEM), similar effort was made by Pantin and Starck (1996); Maisinger et al. (2004),
who recommended decomposing the extended source to the non-orthonormal, redun-
dant discrete à trous wavelets with multiple scales (Pantin and Starck 1996) and with
the potential of spanning the whole source area (the ROI) (Maisinger et al. 2004).

Chang and Refregier (2002); Refregier (2003); Berry and Withington (2004) demon-
strated the application of shapelets (a set of orthonormal basis functions) for astro-
nomical image analysis. Yatawatta (2010) analytically proved that source modelling
based on the use of 2-D orthonormal basis functions that span the whole ROI e.g.
shapelets achieves the theoretical noise bound or CRB (Cramér-Rao Bound), regard-
less of the source structure. He emphasizes the use of such basis functions as opposed
to decomposing the image to the pixels with either the same size or scalable sizes, as
had been proposed by Cornwell (2004); Bhatnagar and Cornwell (2004). This way,
one can overcome the resolution limit of the interferometer for the sources that ex-
tend larger than the PSF width. Later, he demonstrated the superiority of the prolate
spheroidal wave functions (PSWF) for source modelling as compared with shapelets
(Yatawatta 2011a,b), with minimum number of significant basis functions.

Since achieving the CRB means an estimation with minimum error, we conclude
that the use of orthonormal basis functions provides an optimum source modelling
scheme for inverse problem in Eq. 5.4 or improves the image fidelity, from which most
of the deconvolution methods can benefit.

In Sect. 5.2, we explain further the underlying reasons for seeking a more optimum
source modelling scheme for the extended sources as opposed to the pixel-based source
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modelling schemes. We discuss three suitable candidates for the orthonormal basis
functions i.e. shapelets, PSWFs, and Franks basis functions in the corresponding
subsections. A good overview of most deconvolution techniques and their source
modelling scheme is given by Levanda and Leshem (2010). In Sect. 5.3, we extend it
from the point of view of their capability in removal of the extended sources. In Sect.
5.3.6, we separate them into two groups of locally and globally optimum solutions,
among which the second group can accommodate the use of orthonormal basis for their
source modelling scheme. Following the promising results of using orthonormal basis
functions, especially the PSWFs (Yatawatta 2010, 2011b,a), we suggest a solution to
reduce their computational cost in Sect. 5.4.

5.2 Orthonormal basis functions in source modelling

There are several ways to represent an arbitrary signal x(l, m) in an arbitrary domain
to identify its information content. Wavelets are special sets of basis functions, that
allow the efficient representation of a signal. This representation is done by the linear
decomposition of the signal into series of localized basis functions such as pi(l, m)
with different shapes and weights (coefficients), as it is given in

x(l, m) =

M∑
i

cipi(l, m), (5.5)

In imaging applications, these basis functions can potentially span the whole ROI.
Then, Eq.5.5 can be rewritten in a matrix form

x = Pc, (5.6)

where the matrix P contains M basis functions in its columns and vector c contains M
model coefficients. This representation is as opposed to the pixel-based representation
of an image, that models the ROI by associating a weighted delta function, δ(.) to
each point (pixels within the ROI), as it is given in

x(l, m) =

Nb∑
i=1

xiδ(l − li, m − mi). (5.7)

In the deconvolution problem in Eq. 5.4, the pixels of the dirty image are coupled
due two reasons. First, the pixels of the underlying true image are inherently not
independent in the presence of extended emission. The second reason of coupling is
the PSF. The main lobe of the PSF has a finite width (proportional to the diffraction
limit of the synthesized aperture) and significant wide-spread sidelobes. Ignoring
the coupling due to the PSF possibly only results into slower convergence. However,
ignoring the inherent coupling of pixels for extended emission leaves the residuals, that
are correlated at scales larger than the resolution element (Bhatnagar and Cornwell
2004). Therefore, a source modelling scheme, that fundamentally separates noise
from signal is required. From the analytical and statistical studies by Yatawatta
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(2010, 2011b,a), we have learned that such an scheme can be optimally implemented
using the orthonormal basis functions that span the whole ROI.

Earlier in Chang and Refregier (2002); Refregier (2003); Berry and Withington
(2004), it was proven that shapelets provide a way to model extended sources by a
closed form and linear construction of the orthonormal basis. But this technique
requires additional constraints such as information theoretic bounds to limit the
model order (or number of significant basis functions) (Yatawatta 2010). Yatawatta
(2011b,a) has shown that the use of PSWF provides an optimal source model for an
extended source, with minimum number of basis functions and less artifacts outside
the ROI. Unlike shapelets, the PSWF do not require additional explicit constraints
from information theory to limit the model order, as it is implicitly considered in
their mathematical derivation, see (Slepian 1961; Yatawatta 2011a). But PSWF do
not have closed-form expressions and are derived by solving an eigen-function equa-
tion (represented by Eq. 5.13). This makes their construction computationally more
expensive than shapelets (Yatawatta 2011b). In Sect. 5.4, we propose a solution for
computing PSWF in an efficient way.

As an alternative to the PSWF, Wei and Lamahewa (2010) have derived a new set
of orthonormal basis functions using the general constrained variational method of
Franks (Franks 1969, Ch. 6), which generalizes the PSWF derivation. Their obtained
set of orthonormal basis functions exhibits results comparable with the PSWF, but
with a flatter main lobe (that may make their use more favorable in imaging). In
Sect. 5.2.3, we derive an expression for computing the Franks functions applicable
for discrete and 2-D signals i.e. aperture synthesis imaging.

In the following subsections, we give a brief explanation for each set of aforemen-
tioned orthonormal basis functions for deconvolution in aperture synthesis imaging,
such that we understand their differences and capabilities to handle an extended
source modelling.

5.2.1 Shapelets

In image plane, the shapelet basis function pn(l, m, β) is given by

pn(l, m, β) =
Hn1(β

−1l)Hn2(β
−1m)e

− (l2+m2)

2β2

(2(n1+n2)πβ2n1!n2!)
1
2

, (5.8)

where β is the model scale, and the integers n1 and n2 define the model order. Hn1

and Hn2 are the Cartesian Hermite polynomials that make the shapelet basis func-
tions invariant within a scale factor, under Fourier transformation i.e. pn(u, v, β) =
pn(l, m, 1/πβ). Thus, the Fourier transform of a basis function is a scaled version of
itself. Then, deconvolution can be done both in the image-plane (Yatawatta 2011b)
and in the uv -plane (Chang and Refregier 2002) with the same level of complexity
and accuracy. In either case, the deconvolution reduces to some linear operations.
For instance, in the image-plane implementation, we estimate the model coefficients
in vector, m (size ND × 1) by a least-squares fitting in
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f = Pm, m̂ = P†f , (5.9)

where, each column of P (size N × ND) is one basis function in Eq. 5.9 evaluated at
the image grid point and f (size N × 1) is the vectorized value of the source image.

Then, we find the equivalent basis function in the Fourier domain: P̃ = THP and
subtract the model from the observed data, z

r = z − P̃m̂. (5.10)

We continue until the residual r is noise-like i.e. the known source has properly been
removed.

ND is the number of significant basis functions (or model order)2, which is not
known using shapelets for the source modelling. Yatawatta (2010, 2011b) demon-
strated that ND has to be set by the Landau-Pollak theorem (Slepian 1976) using
shapelets. In its simplest form, this theorem states that the number of degrees of
freedom to model any given source with compact support (the ROI), ND cannot be
greater than the product of the area of the source in the image domain, Alm and the
area of the source observed in the Fourier plane, Auv i.e. ND ≤ Alm × Auv.

Yatawatta (2011b) showed that the application of the PSWF for an image rep-
resentation leads to a better concentration of the signal energy (as a measure of
information content within the ROI). He ascribed this to the fact that the Cartesian
basis function performs less efficient in representing an arbitrary shape in an image
as compared with the spheroidal basis functions. He also showed that PSWF does
this with a minimum number of significant basis functions, without explicit use of
any information theoric bounds.

5.2.2 Prolate spheroidal wave functions

According to the theory of Fourier transforms, a signal cannot be both time-limited
and band-limited simultaneously. However, in many real life applications, we seek
signal models that have the greatest energy concentration both in time and the fre-
quency domains (Landau and Pollak 1961; Slepian 1976). This perspective led to the
derivation of PSWF (Slepian 1961), from which the astronomical signals (like any
time-limited, band-limited signal) can greatly benefit.

It is worth noting that in radio interferometric data, the time and frequency do-
mains translate to image and visibility domains, respectively. Thus, the time-limited
term refers to the source’s limited boundary (the ROI, or the signal support) in an
image and the band-limited term refers to the limited area of the measured visibilities
by the interferometer, basically determined by the longest baseline.

For a complete mathematical derivation of the PSWF for a 2-D discrete signal
modelling, the reader is referred to Lindquist and Yang (2006); Yatawatta (2011a),

2also known as the Shannon number (Percival and Walden 1993; Simons et al. 2006)
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and references therein.3 We will mention a few key mathematical relations of PSWF
derivation for studying the problem for its computational cost, as follows: Referring
to Fig. 5.1- b and Eq. 5.5, we aim to obtain a representative basis function, p(l, m)
for a source that maximizes the energy in the ROI i.e. the larger the ratio given in
5.11, the less artifacts remain outside the ROI.

λ =

∑
(l,m)∈ROI |p(l, m)|2∑

(l,m) |p(l, m)|2 , (5.11)

the vectorized form of which can be written as

λ =
‖IT

b p‖2

‖p‖2
, (5.12)

where IT
b , (size Nb × N) is a selection matrix to select the pixels that belong to the

ROI. Nb is the number of pixels in the ROI. N is the total number of pixels in the
image. After several mathematical operations, we obtain an eigen-function equation
(see Lindquist and Yang (2006))

IT
b TH(TTH)†TIbη = λη. (5.13)

Then, the PSWF basis can be obtained by eigenvalue-decomposition of the kernel, K
(size Nb × Nb) given as

K = IT
b TH(TTH)†TIb, (5.14)

(λi, ηi) is the i-th eigenvalue and eigen vector pair of K, that gives the i-th basis
vector as

pi =
1

λi
TH(TTH)†TIbηi. (5.15)

We stack the ND significant basis vectors (e.g. the ones with largest eigenvalues) in
P = [p0,p1, ...,pND−1]. Matrix P can be used in the deconvolution problem just as
the shapelets in the computations in Eq. 5.9 and Eq. 5.10.

In Eq. 5.14, most of the computations are required first to find the pseudo-inverse
term, (TTH)† (size Na × Na) and secondly, to find the eigenvalue decomposition
of K (size Nb × Nb). Note that the rank of (TTH)† is at most N and usually
Na � N > Nb.

4 By properly down-sampling both the Fourier plane sampling points
(reducing Na) as well as the image pixels (reducing N and Nb) we can significantly
cut down the cost of computations. In Sect. 5.4, we explain how this can be done
efficiently, followed by an example.

3Lindquist and Yang (2006) studied the application of the PSWF for Magnetic Resonance Imaging
(MRI), where they also have sparse non-uniform Fourier samples, similar to radio interferometric
data.

4Be reminded that Na, Nb, and N are number of visibility points, number of pixels in the ROI
and total number of image pixels, respectively.
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5.2.3 Generalized 2-D Franks basis functions

Franks (1969, Ch. 6), generalizes the PSWF derivation by solving a general con-
strained variational problem, in which the signal is weighted in both time and fre-
quency domains. It is stated as follows. For a given signal with finite energy (x(t)),
extermize (minimize or maximize) the arbitrary weighted energy either in the time-
domain or in the frequency domain, to obtain the optimal waveform signal. Suppose
w(t) ≥ 0 is an arbitrary weighting function in the time domain, V (f) ≥ 0 is an ar-
bitrary weighting function in the frequency domain. Following Franks (1969, Ch. 6),
this general variational problem is equivalent to extermizing

G = μ1I1 + μ2I2 + I3, (5.16)

where μ1 and μ2 are two Lagrange multipliers and I1, I2, and I3 are three quadratic
functionals defined as

I1 ≡< wx, x >=

∫ +∞

−∞

w(t)|x(t)|2dt,

I2 ≡< V X, X >=

∫ +∞

−∞

V (f)|X(f)|2df,

I3 ≡< x, x >=< X, X >= 1,

where x and X are the signal of interest and its Fourier transformed, respectively. I1

and I2 represent the energy concentration of the signal in time and frequency domains,
respectively. I3 is the signal energy content. Wei and Lamahewa (2010) have solved
the problem stated in Eq. 5.16 and obtained a set of orthonormal basis functions
by setting the signal weights as w(t) = t4 (or the 4th order moment), and V (f) = 1
within the limited frequency band and V (f) = 0 outside the frequency band. Their
obtained basis functions exhibit a flatter behavior in the main lobe as compared with
the PSWF, which may make them a better representative of the source area in an
image. Here, we derive the analytical expressions to facilitate its application for the
deconvolution problem in radio interferometric imaging (2-D discrete signals). In such
a case the terms I1, I2, and I3 are

I1 =

∫∫
w(l, m)|f(l, m)|2dldm,

I2 =

∫∫
V (u, v)|f̃(u, v)|2dudv,

I3 =

∫∫
|f(l, m)|2dldm =

∫∫
f̃(u, v)|2dudv = 1.

Earlier in Eq. 5.3, we represented the image and visibility values in vectors f =
f(l, m) and f̃ = f̃(u, v), respectively i.e. f and f̃ represent 2D functions, the values of
which are collected in the corresponding vectors. This allows us to simplify the I1,
I2, and I3 expressions for a 2D function in
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I1 =< Wf , f >=‖ W
1
2 f ‖2,

I2 =< Vf̃ , f̃ >=‖ V
1
2 f̃ ‖2,

I3 =< f , f >=‖ f ‖2= 1,

where W (size N × N), V (size Na × Na) are diagonal weighting matrices in image
and visibility domains, respectively. Like in PSWF derivation, here the objective is
to find basis functions (and their conterparts in the visibility domain) that maximize
the energy in the ROI. IT

b p represents the selection of the pixels that belong to the
ROI from the full image vector p. Using the relation p̃ = Tp in Eq. 5.4, I1, I2, and
I3 expressions in the ROI are

I1 =‖ W
1
2 IT

b p ‖2=‖ W
1
2 IT

b TH p̃ ‖2= tr(p̃HTIbWIT
b TH p̃),

I2 =‖ V
1
2 p̃ ‖2= tr(p̃HVp̃),

I3 =‖ IT
b p ‖2=‖ IT

b TH p̃ ‖2 .

Note that W, V, and f are real, thus (.)H is replaced by (.)T in the derivations. We

define ξ � Ψp̃, where Ψ � (TTH)
1
2 and rewrite the I1, I2, and I3 terms

I1 = tr(ξHΨ−HTIbWIT
b THΨ−1ξ),

I2 = tr(ξHΨ−HVΨ−1ξ),

I3 = tr(ξHΨ−HTIbI
T
b THΨ−1ξ).

Then, by substituting the terms in Eq. 5.16, the optimization problem becomes

ξ = argmax
ξ

tr(ξH Ψ−H
(
TIb(μ1W + I)IT

b TH + μ2V
)
Ψ−1︸ ︷︷ ︸

K

ξ), (5.17)

subject to: ‖ ξ ‖= 1,

The solution to Eq. 5.17 is the largest eigenvalue, eigenvector pair of the matrix
K = Ψ−H

(
TIb(μ1W + I)IT

b TH + μ2V
)
Ψ−1.

Eq. 5.14 and Eq. 5.17 show that the derivation of the PSWF and Franks basis
functions are independent of the signal itself. The shape of the ROI (represented by
Ib) and the PSF determine those basis functions. Studying the effect of the array
configuration (translated to the PSF) on the number of significant basis functions
and their performance in source modelling might be an interesting subject. It may
give us a guideline, based on which we can choose the best array configuration (or
certain visibility points) to achieve the best image fidelity possible.
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5.3 Deconvolution techniques

The deconvolution problem in radio astronomy has been approached in various ways.
In this section, we briefly introduce the existing deconvolution methods. This gives
us a suitable and unified background to understand and compare their potential and
limitations in handling extended sources. In Sect. 5.3.6, we also discuss how they
can accommodate the use of orthonormal basis functions in their source modelling
scheme to achieve a high image fidelity.

5.3.1 CLEAN and its variants

CLEAN (Högbom 1974) is the earliest method invented for the radio astronomical
deconvolution problem. CLEAN and its variants use a pixel-based source modelling
scheme with either similar-scale (Högbom 1974; Clark 1980) or multi-scale pixel size
(Cornwell 2004; Bhatnagar and Cornwell 2004).

Högbom (1974) and Clark (1980) assume a collection of point sources as a model
for an extended source by associating a weighted delta function to each pixel,

fM =

N∑
i

fiδ(ri) =

N∑
i

fiδ(l − li, m − mi), (5.18)

and solves for the strengths, fi and positions, ri = (li, mi) iteratively in a least squares
fit. The algorithm is sequential and in each sequence, the pick in the residual image
is modelled, fitted to the data, and subtracted.

At first order, the convergence becomes slow in deconvolution of an extended
source (as might be expected since one is trying to identify a potentially large number
of pixels one by one), and instability occurs (Cornwell 1983). To overcome this limi-
tation, multi-scale CLEAN (Cornwell 2004) and adaptive scale pixel (ASP)-CLEAN
(Bhatnagar and Cornwell 2004) were invented, that basically model the extended
structures with appropriately scaled and centered extended components, m(ri, αi)

fM =
∑

i

wim(ri, αi) =
∑

i

wim(δ(ri), αi), (5.19)

where αi is the component scale and wi is an associated weight. The component
shape is chosen to be

m(r, α) = Ψ(r)

(
1 −

( |r|
α

)2
)

, (5.20)

where Ψ(r) is an approximated prolate spheroidal wave function (originally proposed
by Brouw (1975)) or a suitably scaled Gaussian function at r = (l, m). Both ap-
proaches seek a locally best fit to the observed data for each pixel model. Mutli-scale
CLEAN algorithm works simultaneously on all scales, that are pre-computed, instead
of computing them sequentially. The pixel scales are arbitrary chosen with a bias
towards small scales to enable the algorithm to model the asymmetric source struc-
tures. In contrast, ASP-CLEAN estimates the best fit ASP (weight, scale, location)
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at the location of the peak in the residual image in each iteration. One major problem
is that the significant number of basis functions or degrees of freedom (DOF) is still
unknown in these methods.

CLEAN in all its forms is a greedy algorithm i.e. it takes a heuristic approach
to make the locally optimal choice at each stage hoping that it achieves a global
optimum.

Fundamental limitation of the pixelization in modelling the extended sources is
when the centroid of point sources does not exactly match pixel coordinates on a
regular grid, and the extended sources require more than a few clean components.
The effect of pixelization and choice of grid on the dynamic range in imaging has nu-
merically been studied in Cotton and Uson (2008). Yatawatta (2010) has analytically
proven that CLEAN with a pixel-based source modelling scheme (Eq. 5.18) fails to
perform satisfactorily, when two point sources are too close (closer than the resolution
limit) or if the source is partially resolved. He has also shown that making the image
grid smaller (expecting that accuracy of modelling the extended sources improves),
is a futile effort by presenting the CRB analysis. In general, using any pixel-based
algorithm would still be limited by resolution limit of the interferometer in case of
a barely resolved sources (Yatawatta 2010). It is also known that in such cases, the
residuals are correlated with the source structure (Bhatnagar and Cornwell 2004).

5.3.2 Maximum entropy method

MEM was introduced to radio astronomy by Gull and Daniell (1978), and optimized
and implemented in AIPS by Cornwell and Evans (1985). For radio astronomical
image deconvolution, the MEM solution is given by solving the following Lagrangian
optimization problem (or maxmizing J w.r.t. image values, f(l, m))

J = H − α.χ2 − β.F, (5.21)

where α and β are the Lagrange multipliers. H is a relative entropy used as a
measure of resemblance between the prior image, b5 and a constructed image using
the observed visibilities, f . It is defined as

H(f |b) = −
N∑

i=1

filn(fi/bi). (5.22)

In Eq. 5.21, χ2 is the goodness of the fit in the corresponding visibility domain for
b, that is obtained by

χ2 =

Na∑
i=1

wi|b̃(ui, vi) − f̃(ui, vi)|2, (5.23)

5It is usually a low resolution version of the observed source.
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where b̃ = Tb. F is total energy6 in the MEM image that is to be the total energy
in the observed image and it also implies the image positivity constraint.

F =

N∑
i=1

bi =

N∑
i=1

fi (5.24)

The solution to Eq. 5.21 is discussed by Cornwell and Evans (1985). Although Eq.
5.21 seeks a globally optimum solution, its quality and speed of convergence depends
on the quality of the prior image, b and how f is modelled in its reconstruction process
using the measured visibilities. f can be represented by pixels (using CLEAN and its
variants), by non-orthogonal, redundant discrete à trous wavelets (Pantin and Starck
1996; Maisinger et al. 2004) or by orthonormal basis functions e.g. shapelets or PSWF
(Yatawatta 2011a). The latter remains untested for MEM.

Pantin and Starck (1996); Maisinger et al. (2004) recommended the use of non-
orthonormal basis functions as opposed to the orthonormal basis functions, referring
to Lang et al. (1996) and Langer et al. (1993), who claim a better denoised results
using non-orthonormal basis functions. On the contrary, the analytical argument in
combination with demonstrations on real radio astronomical data have proven that
the orthonormal basis functions are the optimal choice (Yatawatta 2011a). Future
work may compare these two sets of basis functions for MEM performance.

5.3.3 Least squares minimum variance imaging

Least squares minimum variance imaging (LS-MVI) is a matrix based sequential
source removal algorithm. It was inspired by the matrix based techniques for di-
rection of arrival (DOA) estimation. It is formulated as a constrained beamforming
problem such that we minimize interference from point sources coming from sidelobes
while observing a point source in direction of � = (l, m)

ŵ(�) = argmin
w

q−1∑
k=1

wH
k (�)R̂kwk(�) (5.25)

subject to:

q−1∑
k=1

wH
k (�)ak(�) = 1,

where wk = [w1,w2, ...,wK ]T is the beamforming vector, ak is the array response
vector toward the source in direction � = (l, m). q is the number of point sources.
The intensity estimation is a LS estimation in

fi = argmin
fi

∑
k

‖R̂− fiak(l, m)aH
k (l, m)‖2

F , (5.26)

subject to: fi ≥ 0,

6Note that here, the measure of energy is the summation of the pixel values, given the positivity
constraint, whereas in Eq. 5.11, it is the square root of the summation of the squared absolute values
of the pixels. The latter is a more general definition without the positivity constraint.



92 Optimum modelling of an extended source in image deconvolution

that is basically the same fitting process in CLEAN. Estimation is done for each
point recognized as a pick in the residual, fi in a closed form solution. For further
analytical details, the reader is referred to Leshem and van der Veen (2000); Ben-David
and Leshem (2008); Levanda and Leshem (2010). The sequential nature of LS-MVI
technique makes it a greedy algorithm like CLEAN. Thus, it is not globally optimum.
Despite its more sophisticated model for dirty image than CLEAN and a closed-form
intensity estimation solution, this method suffers from the same limitations as CLEAN
for deconvolving an extended source. This is because an extended source has to be
modelled as a superposition of point sources, which have to be tackled one by one.
Note that Eq. 5.26 can accommodate the flux estimation for a vector e.g. f containing
all image pixels instead of the pixels values (scalar fi), sequentially. Least squares
imaging (LSI) well-studied by Wijnholds (2010), accommodates that property. This
means it can estimate for the source fluxes in one step by seeking a global optimum.

5.3.4 Least squares imaging

Like LS-MVI technique, LSI is a matrix based technique. It was inspired by the model-
based calibration algorithm (Wijnholds 2010) i.e. the image parameters (intensities
and positions) can be estimated, just as the calibration parameters in the process of
fitting the observed data to its model. It seeks a global optimum by solving a least
squares covariance fitting, given in

f̂ = argmin
f

‖Wc

(
R̂ − Σn

)
Wc − WcGAΣAHGHWc‖2

F , (5.27)

where R̂ is the measured visibility matrix. GAΣAHGH is the array data model.
Wc is a weighting matrix, and Σn is the noise correlation matrix. As it was discussed
in Chapter 2, Σn carries the correlated sky noise on its off-diagonal and the receiver
noise on its diagonal.

Eq. 5.27 should be equivalent of a maximum likelihood (ML) estimation problem,
given the large number of signal samples. It should give a statistically efficient esti-
mate of the image intensity,7 with an optimal choice of the weighting, that is proven
to be Wc = R−1/2 (Wijnholds 2010). A closed form solution to the problem in Eq.
5.27 is

f̂ = (GA ◦ GA)†vec(R̂ − Σn). (5.28)

For imaging, it boils down to estimating the intensity on every image point (pixel)
i.e. by assuming a data model with a source present at every pixel. Thus, it suffers
from the pixelization limitation, that we discussed earlier in Sect.5.2 and Sect. 5.3.1,
although it seeks a globally optimum solution.

Assuming that the array is calibrated i.e. G is known, Eq. 5.28 resembles Eq. 5.4.
If we expand the array response vector, A in Eq. 5.28, we actually obtain exactly the

7The position parameters are usually estimated simultaneously with Eq. 5.27, which is not of
interest in our argument here.
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same relation, the optimal solution to which is in an orthonormal space (Yatawatta
2010). The reader is referred to Appendix. C for more clarity.

Unlike the LS-MVI technique, LS imaging is a non-sequential algorithm and seeks
a global optimum. Nevertheless, it may converge after several iterations.

5.3.5 Compressed sensing

Radio astronomical signals as time-limited, band-limited sparse signals can be op-
timally reconstructed using compressed-sensing (CS) techniques (Rudelson and Ver-
shynin 2006). In imaging applications, this is done by minimizing a �1 based cost
function, ‖f(l, m)‖�1

in the image domain subject to the constraints of image positiv-
ity and the measured visibility data. It is fomulated as

min ‖f(l, m)‖�1
= min

N∑
l=1

N∑
m=1

f(l, m), (5.29)

subject to : f = T† f̃ .

Since image values, f(l, m) are positive quantities, Eq. 5.29 can be solved by linear
programming techniques. Several recovery algorithms such as fixed point continua-
tion (FPC) (Hale et al. 2007) and total variation (TV) (Chambolle and Lions 1997)
minimization are proposed specifically for solving an l1-norm minimization problem
(e.g. the one in Eq. 5.29). These algorithms are known to be robust but have different
speeds of convergence.

As discussed by Candès and Romberg (2007), the CS technique relies on two
principles: sparsity, which relates to the signal of interest, and coherency, which
relates to the sensing modality (for our application, it is the uv -coverage expressed in
matrix T). A signal is called k-sparse if its representation in an orthonormal space
R

m (P = [p0,p1, ...,pk, ...,pm−1]) has at most k nonzero (or significant) entries. As
discussed earlier in Sect. 5.2.1, ND or the Shannon number defines the significant
number of basis functions to optimally represent a signal. Thus, the signal should be
ND-sparse for the best image fidelity.

Coherency serves as a rough characterization of the degree of similarity between
the sparsity and measurement systems. It is defined as

μ(T,P) =
√

m . max
k≥1,j≤m

|〈Tk,Pj〉 |. (5.30)

For coherency to be close to its minimum value, each of the measurement vectors or
rows of matrix T must be uncorrelated with the columns of P. Coherency guarantees
the accuracy of the minimization in Eq. 5.29. Donoho et al. (2006) have shown that
accurate reconstruction occurs for k-sparse signal when k < 1

2 (1 + 1
μ ), where μ is the

coherency defined in Eq. 5.30.
There is a growing interest in application of the CS technique in radio interfero-

metric imaging owing to its linearity. Its application for radio interferometric image
deconvolution was introduced and demonstrated by Levanda and Leshem (2008);
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Wiaux et al. (2009a). It was enhanced further in research by McEwen and Wiaux
(2011b,c,a), where its capability in wide-field imaging in the celestial sphere (without
w-projection step) was demonstrated. But, they used a constant w-term for all the
visibilities in their demonstrations, which is not an adequate representation of the real
observations. Wiaux et al. (2009b,c) showed that the CS performance improves in
(u, v, w)-space as compared with (u, v)-space, by taking advantage of a phenomenon
known as spread spectrum, that increases the incoherency.

We note that regardless of the recovery algorithm, the constraint of the measured
visibility data (f = T† f̃ ) is assumed to be done in an orthonormal space of R

m for
an optimal signal recovery (Candès and Romberg 2006, 2007). However, the basis
functions are not specified. The PSWF explicitly provide the significant number of
the basis functions, ND (sparsity is known) while no other set of orthonormal basis
functions does that. The CS performance using the PSWF or Franks basis functions
remains unstudied.

5.3.6 Summary

Sect. 5.3 provides a general overview of the studied or developed deconvolution tech-
niques for radio interferometric astronomical imaging. One can summarize them into
two major categories:

1. locally optimum methods such as CLEAN and its variants (MRC, multi-scale
CLEAN, and ASP-CLEAN), and LS-MVI.

2. globally optimum methods such as MEM, LSI, and CS.

In the first category, a pixel-based source modelling is used, the limitations to
which was extensively discussed. Although, multi-scale CLEAN and ASP-CLEAN
improved the CLEAN performance by considering a scale-senstive pixel-based source
modelling scheme, they are still limited by the resolution limit of the interferometer
for the sources, that extend larger than the PSF width. Moreover, the number of
significant basis or degrees of freedom (DOF) is still unknown.

In the second category, MEM is a nonlinear problem formalism unlike the LSI
and CS. LSI is reduced to the problem formalism in Eq. 5.4. MEM and CS both
use the constraint of the measured data, which can be optimally represented in an
orthonormal space.

The methods that seek a globally optimum solution such as MEM, LSI and CS can
accommodate the use of orthonormal basis functions, that span the whole source area
as their source modelling scheme. Moreover, PSWF derivation is constrained by the
Shannon number, ND, providing the number of significant basis functions required
for an optimal source representation. Non-orthonormal redundant discrete à trous
wavelets, that span the whole source area have previously been considered for radio
astronomical source modelling (Maisinger et al. 2004). A robust comparison of these
two classes of basis functions for radio astronomical imaging remains to be done.
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5.4 Efficient computation of the PSWF

The application of orthonormal basis functions such as PSWF for accurate source
modelling of the extended sources in radio astronomy was discussed earlier. They
are of great importance for high fidelity, high dynamic range imaging with new radio
telescopes as well as conventional ones. But the construction of PSWF is computa-
tionally expensive compared to other closed form basis functions. In this section, we
suggest a solution to reduce its computational cost by more efficient construction of
the matrix kernel (Eq. 5.14), in several steps explained in the following subsections.
We achieve this by down-sampling both the Fourier plane visibilities as well as the
image pixels.

Most astronomical (as well as other) images are represented by a regular 2-D array
of rectangular pixels. This is required for efficient storage and display purposes and
moreover, comes naturally as a by product of the FFT in imaging. We propose the use
of Delaunay triangulation (Persson and Strang 2004) as opposed to regular gridding
of an image for a finer selection of the ROI during the PSWF kernel construction.
Delaunay triangulation allows to select fewer number of pixels outside the ROI and
make a finer selection of the image inside the ROI to represent the image during
the construction of PSWF. We will show that the computational efficiency improves
without loss of information. Once the PSWF basis has been constructed in this
manner, we revert back to the original pixel grid by interpolation and thereafter,
conventional imaging operations can be applied.

5.4.1 Downsampling the visibility

Since we already have an irregular set of Na sampling points on the Fourier plane, it is
straightforward to downsample this to a lower value N

′

a, which is already presented in
(Yatawatta 2011a). However, we can do even better by combining this with imaging
weights. Each point on the Fourier plane, (say p) has a weight associated with it,
ρ(up, vp) ∈ [0, 1]. Prior to taking the Fourier transform in Eq. 5.3, we multiply each

data point f̃(up, vp) by this weight. When we downsample, we generate a uniformly
distributed random number r(up, vp) ∈ [0, 1] and if r(up, vp) ≤ ρ(up, vp) we select the
p-th point.

5.4.2 Reducing the image pixels but finer selection of the ROI

The motivation behind reducing the number of image pixels is that not all the pixels
are required to define the ROI (because of the Landau-Pollak theorem) while we
construct the PSWF. In Fig. 5.2 (a), we have shown the ROI of the source as well as
the PSF. The amount of information can be loosely translated to the number of PSFs
that we can pack within the ROI, as shown in Fig. 5.2 (b). The optimal way to pack
the PSFs within the ROI boils down to a circle packing problem, which is generally
understood as NP-hard.

Therefore, we follow a heuristic approach: Instead of solving a packing problem,
we construct an irregular grid of triangles to cover the ROI as well as the area of
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Figure 5.2: (a) The ROI of an extended source and the PSF (the ellipse). (b) The ROI
covered by the PSF (an ellipse packing).

the image outside the ROI. Obviously, we employ Delaunay triangulation for this
purpose. We shall illustrate this with an example as follows: In Fig. 5.3, we have
shown an image of an extended radio source. This image (dimensions 118 × 64) has
7552 pixels.

In Fig. 5.4, we have shown the ROI for this source, which has 1826 pixels to repre-
sent the amount of information present. Therefore, we have generated the Delaunay
triangulation for the ROI and its exterior as shown in Fig. 5.5 such that the triangle
size within the ROI is smaller than the exterior triangles. We take the centroids of
the triangles as our reduced grid to generate the PSWF. Therefore, we end up with
a total number of pixels of 1220 while the ROI has 1080 pixels.

Figure 5.3: A test image of an extended radio source, with dimensions 118 × 64 pixels.
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Figure 5.4: The ROI of the source in Fig. 5.3. The total image has 7552 pixels while the
ROI has 1826 pixels.

Figure 5.5: Delaunay triangulation of the image in Fig. 5.3. The triangulation inside
the ROI has 1080 triangles while the triangulation outside the ROI has 140 triangles. The

triangle size within the ROI is made smaller than the exterior triangles.

5.4.3 Reducing cost of pseudoinverse in kernel relation

The computational cost of Eq. 5.14 mostly involves evaluation of the pseudoinverse
(TTH )†. Instead of directly evaluating this, we solve a set of linear equations such
as:

(TTH + γI)x = Ax = y (5.31)

where γ is a small positive regularization parameter. Depending on the context, we
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are given y and we need to find x. The solution of the linear system for x is done
using Q-less QR factorization.8

Given QR = A (where Q is unitary and R is upper triangular), we first solve

RHRx̃ = AHy (5.32)

for x̃ and make one step correction:

r = y − Ax̃ (5.33)

solve RHRẽ = AHr

x = x̃ + ẽ

to get the solution x. Note that matrix A represents an arbitrary matrix in this sub-
section and should not be mistaken with the array response matrix, which appeared
in Eq. 5.27.

5.4.4 Results

To demonstrate how our solution works in practice, we give results on the construction
of PSWF for the extended source shown in Fig. 5.3. The source was observed by
the LOFAR radio telescope during system testing. For an 8 hours of observation, we
obtain, Na = 7896636 data points on the Fourier plane. We reduce this to N

′

a = 11041
points by applying our downsampling scheme as explained in section 3.1.

We use the method of Persson and Strang (2004) to generate conforming Delaunay
triangulations for the ROI and the exterior of the image. Selection of triangle scales
for inside and outside of the ROI (see Fig. 5.5), has to be done in such a way that
the least amount of information is lost. For this observation, the PSF minor diameter
is about d = 4.2 × 10−5 radians. To achieve the most appropriate triangulation, we
have set different scales for the triangles inside the ROI (a × d) and outside the ROI
(b × d), where a, b are the parameters that we vary.

We show the eigenvalue spectrum of the kernel K, for different values of a and b in
Fig. 5.6. The eigenvalue spectrum gives us a measure of information a certain basis
can represent. By the results shown in Fig. 5.6, we see that in most settings, we get
about 100 basis functions that carry significant information, which is close to the limit
given by Landau-Pollak theorem for this case. We approximate the geometry of ROI
(Ib) by selecting different triangulation scales (a and b). This explains why there are
slightly different eigenvalue spectrum. The basis functions are still data independent
and they depend only on the shape of the ROI.

Once we obtain the basis functions for the downsampled grid, we interpolate
back to the original image grid to get the basis vectors corresponding to the original
image. Let P be the matrix whose columns correspond to the interpolated basis

8In linear algebra, a QR factorization (also called a QR decomposition) of a matrix is a de-
composition of an arbitrary matrix A into a product A = QR of an orthogonal matrix Q and an
upper triangular matrix R. QR factorization is often used to solve the linear least squares problem
efficiently.
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vectors. Then, we study the Frobenious norm of PHP− I and the condition number
of PHP in Fig. 5.7. This, in addition to the eigenvalue spectrum in Fig. 5.6 give
us a benchmark to choose the most suitable triangulation (or values of a and b). If
the basis vectors are orthonormal, we will obtain the lowest value for the Frobenious
norm. Fig. 5.7 (a) shows that the optimality of the source modelling is not affected
significantly from one setting to another, because the basis vectors are orthonormal
with negligible errors, thus the CRB remains minimum (Yatawatta 2010). Moreover,
the condition number of PHP helps us to understand how its condition affects the
further computation. Ultimately, these conclude that the setting with a = 0.2 and
b = 2.1 is the most suitable one to fulfill the aforementioned criteria. By this setting,
we downsample to N

′

= 3270 pixels in which the ROI has N
′

b = 3199 pixels. In
contrast, the original pixel grid has N = 7552 and Nb = 1826.

Figure 5.6: Eigenvalue spectrums for different triangulations, with varying a and b.

The use of PSWF for source modelling and deconvolution of extended sources was
proposed earlier in (Yatawatta 2011b,a). Here, we suggested a scheme to reduce its
computational cost. By using the Delaunay triangulation, we can significantly reduce
the cost of construction of PSWF. We have also shown by a real example that we do
not lose information by this cost reduction. Further improvement will focus on finer
selection of the ROI i.e. the boundary of the ROI is represented with more triangle
pixels.
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Figure 5.7: (a) Frobenious norm of PHP−I (scaled by 1/N2
basis where Nbasis is the number

of basis functions) for different triangulations (varying a and b) of the image. (b) Condition
number of PHP for different triangulations.

5.5 Summary and conclusions

In this chapter we presented the deconvolution problem for an extended source. We
explained the limitations of using a pixel-based (with either pixels of the same size or
scalable sizes) source modelling scheme for such problem. We explained an alternative
way of representing an extended source using the orthonormal basis functions that
span the whole ROI in an image. Based on studies (Chang and Refregier 2002;
Refregier 2003; Berry and Withington 2004; Yatawatta 2010; Wei and Lamahewa
2010; Yatawatta 2011b,a), that recommend the use of orthogonal basis functions for
astronomical source modelling, we presented three sets of orthogonal basis functions
i.e. shapelets, PSWFs, and Franks basis functions. The latter remained unstudied in
radio astronomical application but has demonstrated promising potential (Wei and
Lamahewa 2010) to be a suitable alternative to PSWFs.

We gave a comprehensive overview of the deconvolution techniques that have been
used in aperture synthesis imaging. The aim was to provide a suitable and unified
platform to discuss their potential and limitations for handling an extended structure.
In Sect. 5.3.6, we summarized that globally optimal deconvolution techniques (MEM,
LSI, and CS) can accommodate the use orthonotmal basis functions, that span the
whole ROI, as their source modelling scheme for an optimal performance, thus high
image fidelity. Based on the analytical arguments and demonstration on real data in
Yatawatta (2010, 2011a,b), we recommended PSWF as the selected set of orthonor-
mal basis functions. One important reason is the fact that using the PSWF implicitly
provides the significant number of the basis functions (model order or DOF), while
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no other set of basis functions does that (see the argument in Slepian (1961, 1976)).
To support its computationally affordable application, we also suggest a solution to
reduce their computational cost in Sect. 5.4. We proposed to use Delaunay trian-
gulation to construct an irregular grid with fewer number of pixels outside the ROI
and a finer selection of the image inside the ROI to represent the image during the
construction of PSWF with a kernel matrix of smaller size.

Given the extensive overview of the deconvolution methods and the new source
modeling scheme, it becomes evident that image fidelity depends on the deconvolution
method as well as the source modeling scheme that is considered for the deconvolution
process. Therefore, viewing the image fidelity as a function of only the uv -coverage
(which usually translates into the array configuration) is inadequate. To achieve the
image fidelity to the fullest, we must perform a deconvolution process in the most
optimal manner i.e. use the most optimal deconvolution method and most optimal
source modelling scheme. Theoretically, the CS technique using PSWF should fulfill
such expectation.

In summay therefore, the open questions are:

� Is a set of the Franks basis functions a better alternative than the PSWFs in
radio astronomical source modelling?

� Does MEM perform better using the shapelets or the PSWFs as compared with
its performance using the well-accepted non-orthogonal, redundant discrete à
trous wavelets?

� Does CS perform more optimally using the PSWFs or Franks basis functions?

� Given a certain array configuration (thus given a certain uv -coverage), which
deconvolution process (i.e. deconvolution method and its source modelling
scheme) would perform most optimally i.e. provide the best fidelity?

� Does a deconvolution process based on using the CS method and the PSWFs
source modeling scheme provide the image fidelity to the fullest?
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Chapter 6
Summary and outlook

Here, we summarize the insights obtained in this thesis regarding improving aperture
synthesis data processing. We have recognized several issues which need further re-
search. These will be addressed in this chapter and constitute a major step toward
computationally effective and efficient wide-field, high quality synthesis imaging.

6.1 Summary

Achieving high fidelity, high dynamic range images has been a never-ending quest in
radio astronomy. The advent of aperture array radio interferometers such as LOFAR
(de Vos et al. 2009), now operational as an important pathfinder for the SKA (Hall
2004), crucially demands the continuation of this quest so that their ground-breaking
scientific outcome can be delivered. To make such unconventional telescopes a true
success for the SKA, we must understand their particular engineering aspects and
the corresponding challenges that they introduce in exploiting the scientific data of
the instrument. Imaging is a major scientific application of these instruments, from
which other modes of operation of the instrument can benefit. For this reason, we
aimed to take some steps towards computationally effective and efficient high quality
imaging.

In radio astronomy, self-cal and deconvolution are two intertwined processes. This
implicitly means that the two measures of image quality i.e. fidelity and dynamic
range are also two intertwined quantities as discussed in Yatawatta (2011b). Fidelity
is the optimality in the image reconstruction process known as deconvolution and
dynamic range is defined as the ratio between the peak intensity and the noise floor
in the image. The noise floor is the net summation of calibration errors, confusion
noise, and thermal noise (Wijnholds and van der Veen 2008). Accurate calibration
reduces the noise floor (the thermal noise is fixed), thus improves dynamic range
while performing an accurate calibration depends on the optimality (fidelity) of the
deconvolution process i.e. the deconvolution method and its source modelling scheme.
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At the same time, accurate recognition of the source area for the deconvolution process
should be provided by an accurate self-cal process. This is an important insight, as
achieving high fidelity, high dynamic range imaging with new radio telescopes is more
challenging than ever before.

Aperture array telescopes have high sensitivity, wide FoV, and high resolution as
compared with the conventional ones. They can detect many unknown faint sources as
well as the known bright sources in their wide FoV. Their observations are corrupted
by variable propagation path effects (e.g. the ionosphere) and variations in their
primary beam pattern in time and frequency. These are known as the DDEs. The
corresponding corrections have to be made per source in the FoV, and per element of
the interferometer. All these entail a large computational load in the data processing
as discussed in Wijnholds et al. (2010). Therefore, any new algorithm to exploit the
data of such instrument (e.g. imaging and calibration algorithms) should be both
optimal and computationally cheap.

An initial step to reduce the computational load is by exploiting the hierarchical
structure in an aperture array telescope. This structure serves a two-fold goal, a)
data reduction b) system health management e.g. station beam stability for the
central processor. Each phased-array station has a local processor, at which station
visibilities are computed for some engineering purposes e.g. station calibration and
RFI detection. In Chapter 3, we investigated the application of redundancy method
for the calibration of the phased-array stations with a regular configuration e.g. HBAs,
as a sky model independent method that is computationally cheaper and faster as
compared with the model-based calibration methods. The main results are:

� Use of redundant information in the visibilities allows a more accurate calibra-
tion than the methods that are only model-based. In addition, we can improve
the phase solution with additional constraints on the ionospheric refraction.

� Redundancy also provides a powerful model-independent tool for system diag-
nostics at different levels of the telescope phased-array hierarchy (both intra-
station and inter-station).

� Mutual coupling between the elements of a phased-array station seriously af-
fects the calibratability of the station, regardless of the calibration method.
Therefore, we recommend minimization of the mutual coupling as a figure of
merit in a station configuration. Otherwise, a rigorous electromagnetic study
is required that results in either the beam model (including both main lobe
and sidelobes) of each and individual station element or the model of mutual
impedances between the station elements. This should be avoided, as it calls
for more computational resources at the station local processor.

For the two first reasons, we recommend redundancy in the configuration of both the
phased-array stations and the whole array. SKA configurations must offer redundant
baselines, that allows us to use the redundancy calibration to improve the dynamic
range of the imaging. Redundant baselines in the SKA core are also recommend
in Bunton (2011) for power saving in the correlator and image processing. Wijn-
holds and Noorishad (2012) also proposed an optimal calibration scheme for regular
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arrays. Moreover, there are several variants of redundancy calibration (Li and Er
2006; Heidenreich and Zoubir 2011; Heidenreich et al. 2012), that are more optimal
and computationally cheaper than its formalism in Wieringa (1991); Noorishad et al.
(2012); Wijnholds and Noorishad (2012), but have never been tested for radio astron-
omy. They exploit the Toeplitz structure in the visibility matrix and use the diagonal
and the super-diagonal terms of the visibility matrix as opposed to its original formal-
ism (Wieringa 1991), that exploits only and all the off-diagonal terms of the visibility
matrix.

After station calibration the outputs of the station elements are beamformed to
represent an element of the whole aperture array telescope e.g. a HBA station of
LOFAR.

Following the 3GC trend, calibration at the whole array level involves correction for
the corruptions due to the propagation path effects e.g. ionosphere and the instrument
properties e.g. beam pattern, known as the DDEs. Although these effects are tackled
by estimating a DDE gain, we believe that we should treat them differently, because
of two important reasons a) these effects are of different natures i.e. the ionosphere
(the propagation path effects, in general) is stochastic in nature but beam pattern
and even its variability are deterministic effects b) the more parameters we estimate
in the calibration process, the larger inaccuracy we allow in the estimated parameters.
Our suggestion is to model the beam pattern of a phased-array station taking into
account the mutual coupling effect and understand its variability as a function of
beamforming weights and the failing station elements. Such model of beam and
beam variability should include the whole beam i.e. both the main beam and the
sidelobes. This is highly recommended because of high sensitivity of the array, thus
detecting also weak sources from any angle. It should also take the projection effect
(Fig. 1.6) into account, so that we do not need to model that effect as an instrumental
polarization. Such beam modelling approach will save computational capacity and
time, if the beam is modelled efficiently with a few basis functions as studied by
De Lera Acedo et al. (2011); Maaskant et al. (2012); Maaskant and Ivashina (2012);
Craeye et al. (2012). We should also constrain such beam model with additional
physically justifiable constraints e.g. certain level of main lobe and sidelobes known
from the electromagnetic studies, or beam positivity etc. Then, we can provide our
acquired knowledge of beam as a prior information to the calibration routine instead
of estimating for it as a DDE gain. Providing such beam model is a major step
towards convergence of the calibration algorithm to the true solutions.

Such constraining beam model is required regardless of the calibration algorithm,
whether based on a least squares approach (Boonstra and van der Veen 2003; van
der Tol et al. 2007; Wijnholds and van der Veen 2009a) or on the expectation maxi-
mization approach (Yatawatta et al. 2008; Kazemi et al. 2011). Although the need of
providing the calibration algorithm with some extra constraints has been recognized
as a necessity, not much has been done to put this idea into practice. Investigating
such an issue becomes even more important, because the beam model and its varia-
tion affect the data of different mode of operation of an instrument, differently. Thus,
they must be understood very well and used as an extra constraint in the calibration
routine.
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In Chapter 4, we assumed that the beam model is known well and provided for
self-cal. We studied the effect of the refractive property of ionosphere as a DDE that
is a source of inaccuracy in self-cal gain estimation results. We suggested solving a
constrained self-cal for an array with an arbitrary geometry, using extra constraints
as exploited in redundancy calibration (Wieringa 1991). We demonstrated that those
constraints have a clear physical justification, only when we observe a single source or
multiple sources, that experience similar ionospheric effect. We discussed how cluster
calibration might reduce any other observational scenario (illustrated in Fig.1.7) to
one, in which these constraints are justified.

Self-cal is formulated as a non-linear least squares problem. Its constrained ver-
sion can be solved using SQP technique, if it cannot be linearized. We concluded
that a constrained self-cal gain estimation is performed more optimally based on our
numerical CRB analysis and comparing it with the CRB of its unconstrained version.
Then, we solved a constrained self-cal taking two different approaches: the SQP and
the LOGLS. The main results are:

� The self-cal can benefit from the constraints used in the redundancy calibration
formalism to perform more reliable gain estimation for an array with an arbi-
trary geometry. We note that this became possible using cluster calibration in
wide-field observations.

� It is worth noting that our suggested solution, which is similar to that of van
der Tol et al. (2007), also avoids the unitary ambiguity in self-cal results.

We explained the problem using a full ME. One may argue that constraining
the calibration routine is not straightforward, when it is formulated in 2 × 2 MEs,
supported by the 3GC. One potentially feasible way of constraining such calibration
formalism is to provide accurate model of parameters e.g. beam model (Maaskant
et al. 2012; Maaskant and Ivashina 2012) and to use cluster calibration to avoid the
ambiguity problem.

Calibrated visibilities (the Fourier samples of the true sky brightness) are used in
the deconvolution process. To achieve the ultimate goal of high fidelity high dynamic
range radio imaging, the bright known sources in the FoV (either point-like sources or
extended structures) have to be modelled and removed accurately such that the faint
unknown sources in the background can appear with minimum error. To this end,
we gave an overview of the deconvolution methods and their corresponding source
modelling scheme in Chapter 5. We discussed the main limitations of a pixel-based
(either with pixels of the same size (Högbom 1974; Clark 1980) or multi-scale (Corn-
well 2004; Bhatnagar and Cornwell 2004)) source modelling scheme for a source that
extends larger than the PSF. To overcome such limitations, the use of orthonormal
basis functions, that span the whole source area has been proposed as an optimal
source modelling scheme (Yatawatta 2010). Following the promising results of using
orthonormal basis functions, especially the PSWFs, which also provide the significant
number of the required basis functions (Yatawatta 2011b,a), we suggest a solution to
reduce their computational cost (Noorishad and Yatawatta 2011). The main results
are:
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� Globally optimal deconvolution methods such as MEM, LSI, and CS can ac-
commodate the use of orthonormal basis functions (that span the whole ROI
for the extended sources) as their source modelling scheme, that leads to a
deconvolution process with minimum error, thus maximum fidelity.

� PSWF is the only set of orthonormal basis functions that provide the significant
number of required basis functions (Shannon number) or the model order. This
is an important property as compared to other sets of basis functions.

� We have a solution in hand for significantly reducing the computational cost
the PSWFs in several steps. We proposed to use Delaunay triangulation to
construct an irregular grid with fewer number of pixels outside the ROI and a
finer selection of the image inside the ROI to represent the image during the
construction of PSWF. We can control the size of the triangulation without
losing information. Once the PSWF basis has been constructed in this manner,
we revert back to the original pixel grid by interpolation. We showed that the
computational efficiency improves without loss of information.

� Our extensive discussion on the deconvolution problem, the corresponding meth-
ods and source modelling schemes reveals that quantifying the image fidelity
based on only uv -coverage is inadequate.

� The application of orthonormal Franks basis functions (Franks 1969, Ch. 6),
as the generalized form of PSWFs remained in a very early stage of study in
Chapter 5. They are expected to have a flatter lobe as compared with the
PSWFs, based on the analysis and weighting scheme presented in Wei and
Lamahewa (2010), thus better representation of the source area in an image.

Although the urge of using a source modelling scheme based on the scalable
basis functions for the extended sources, as opposed to a pixel-based source mod-
elling scheme has already been discussed in several bodies of research (Refregier 2003;
Maisinger et al. 2004; Cornwell 2004; Bhatnagar and Cornwell 2004; Cotton and Uson
2008; Yatawatta 2010), orthonormal basis functions, that potentially span the whole
ROI are not yet well-accepted in the radio astronomical community, as the optimal
choice. This can be done by investing some time in the application of PSWF and
Franks basis functions for the radio astronomical source modelling and demonstrate
their superiority to the other sets of basis functions.

6.2 Outlook

The radio interferometric data (visibilities) are the irregular and sparse samples of a
time-limited, band-limited signal, that can be optimally modelled using orthonormal
basis function (Slepian 1961) (especially in the case of modelling an extended source),
and can be optimally recovered using CS technique with far less samples (Rudelson
and Vershynin 2006). This unconventional view of radio astronomical data has proven
promising for a significant improvement in the image quality (Levanda and Leshem
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2008; Yatawatta 2010; McEwen and Wiaux 2011a) as compared to standard CLEAN
and its variants (Högbom 1974; Clark 1980; Brinks and Shane 1984; Wakker and
Schwarz 1988; Cornwell 2004; Bhatnagar and Cornwell 2004). The CS technique
assumes an orthonormal space for the optimum signal recovery (Candès and Romberg
2007). However, the set of orthonormal basis function is not specified. The application
of PSWF and Franks basis functions as an potential improvement in the performance
of the CS technique becomes an interesting research question.

Given the wide FoV of phased-array stations, the curvature of the celestial sphere
cannot be dismissed in aperture array observations, thus in their calibration and
deconvolution processes. In the conventional arrays, this effect has been visible only
on non-coplanar baselines and tackled using facet-imaging (Perley and Bridle 1994)
and w -projection methods (Cornwell et al. 2008) such that the aperture synthesis
imaging has always been done in a 2D-plane. Matrix-based data modelling and data
analyzing (van der Veen et al. 2004) allows us to incorporate the w -term of the
visibility domain, and seek a globally optimal solution in the deconvolution process
itself, thus in the calibration process. Taking into account the presence of the w-term
in the visibility relation in Eq. 5.1, one may simply notice that the relation in Eq.
5.3 can still hold, except that matrix T contains e−j2π(lqup+mqvp+(nq−1)wp) on its q-th
row and p-th column, in this case. The size of the matrix T, thus its corresponding
computational cost remains unchanged. This implies that we are able to do 3D
imaging in celestial sphere as opposed to w -projection and that 3D imaging should
reduce the computational load of the deconvolution process. However, there has been
no analytical or numerical evaluation of the computational cost or performance of this
approach as opposed to the w -projection using real data or even realistic simulated
data.

Although this possibility was initially discussed in the 70’s (Brouw 1971; Clark
1973), it did not attracted enough attention due to the convenience of image display in
2D, and high computational cost of FFT in 3D space, at the time. The latest reseach
in the field of radio astronomical data analysis have discussed the advantages of the
data analysis in 3D on celestial sphere (Carozzi and Woan 2009; McEwen and Wiaux
2011b; Bregman 2012). Moreover, significant ongoing research has been carried out
on the computational efficiency of higher order FFT e.g. 3D FFT (Frigo and Johnson
1998; Frigo 1999; Frigo and Johnson 2005), allowing to reduce the computation cost
and speed.

While the deconvolution process in 3D (on the celestial hemisphere) has not been
tested for MEM or LSI, it has been tested for the CS (Wiaux et al. 2009b; McEwen
and Wiaux 2011b). In fact, the CS technique benefits from an phenomenon known
as spread spectrum in (u, v, w)-space instead of in (u, v)-space with their projected
w -term. Wiaux et al. (2009b,c) showed that spread spectrum increases the data
incoherency, thus improves the CS algorithm performance. In their analysis, they
used a constant w -term for all visibility points, which is not a proper representation
of real observations in wide-field imaging. Such realistic analysis remain an important
research question, given that the CS technique has attracted some attention in the
radio astronomical community and perform better in 3D space.

In view of the CS technique, redundancy in the measured data should not harm the
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image fidelity,1 to the contrary of the common notion, that seeks a filled uv -coverage
to guarantee a higher image fidelity. An interesting question is how the image fidelity
gets affected, having redundancy in the measured data, thus sparser samples of the
visibility points. The answer to this question is important as the redundant baselines
in the SKA core are recommend in several bodies of research e.g. (Bunton 2011;
Noorishad et al. 2012). Moreover, the SKA configuration provides so many redundant
baselines by default, that allows us to use the redundancy calibration, and improve
the dynamic range imaging (Noordam and de Bruyn 1982).

The argument of array configuration for an optimal operational performance of the
interferometer (in particular in imaging) is very important. However, all attempts in
this regards have been made without keeping an eye on the methods of deconvolution
(Lal et al. 2009; Millenaar and Bolton 2010; Wijnholds 2012). Given the extensive
overview of the deconvolution methods and the new source modelling scheme, it be-
comes evident that viewing the image fidelity as a function of only the uv -coverage
(which usually translates to the array configuration) is inadequate.

Last but not least, the data model discussed in Chapter 2 revealed some important
issues including the non-Gaussianity of the noise, that is a fundamental assumption for
many algorithms in the calibration and the deconvolution, especially in the calibration
methods exploiting the statistical properties of the noise such as (Yatawatta et al.
2008; Kazemi et al. 2011, 2012). An interesting research question is whether the
performance of those calibration methods would change taking non-Gaussianity into
account.

In summary, the open questions are:

� Is 3D imaging the future of wide-field aperture synthesis imaging as a compu-
tationally more efficient and effective choice as compared with the conventional
step of w -projection in decovolution process?

� Will the CS technique provide the image fidelity to the fullest using PSWFs or
Franks basis functions in deconvolution of the extended sources?

� How does redundancy (i.e. larger sparsity in the observed data) affect the
fidelity of the final image when using the CS technique?

� How applicable are the other implementations of the redundancy calibration
for aperture synthesis data processing, given that they are proven to be more
optimal than the redundancy calibration currently in use in aperture synthesis
community?

� Are the Franks orthonormal basis functions a better choice than the PSWF for
modelling the extended sources?

� How do the speed and accuracy of convergence in a calibration routine improve
by providing a complete beam model as explained earlier with some extra phys-
ically justifiable constraints known a prior e.g. expected level of sidelobes and
main lobe from its electromagnetic studies?

1Given that after calibration, only one data point represents the redundant measurements.
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� How effectively do we constrain the calibration routine formulated using 2 × 2
MEs?

� Will the performance of the calibration methods, that exploit the statistical
properties of noise change, considering the non-Gaussianity of the noise?

� How to incorporate all the essential criteria in a station configuration to meet
its calibratability (e.g. minimum mutual coupling) and yet fulfill other criteria
as an interferometer element (e.g having a certain level of sidelobes)?

To achieve the ultimate goal of high quality imaging, thus accurate calibration
(from which all other instrument modes of operation can benefit), questions such
as the ones raised here should be answered to serve the scientific goals of the radio
telescopes of the future. We expect that further research in this area will prove to be
very valuable if not essential.



Appendix A
Abbreviations and notations

A.1 Abbreviations and acronyms

3C third Cambridge (catalog)

1GC first Generation of Calibration

2GC second Generation of Calibration

3GC third Generation of Calibration

AIPS Astronomical Image Processing System

ASTRON Netherlands Institute for Radio Astronomy

ASP-CLEAN Adaptive Scale Pixel CLEAN

BBS BlackBoard Selfcal

BFGS Broyden-Fletcher-Goldfarb-Shanno

CLEAN iterative beam removal technique (Högbom 1974)

CBFM Characteristic Basis Function Method

CAESAR Computationally Advanced and Efficient Simulator for ARrays

CRB Cramér-Rao Bound

CS Compressed Sensing

DDE Direction Dependent Effect

DIE Direction Independent Effect
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DOA Direction of Arrival

EM ElectroMagnetic

EMBRACE Electronic Multi-beam RAdio Astronomy Concept

EoR Epoch of Reionozation

FFT Fast Fourier Transform

FIM Fisher Information Matrix

FoV/FOV Field-of-View

FPA Focal Plane Array

FPC Fixed Point Continuation

HBA High Band Antenna

HPBW Half Power Beam Width

i.i.d. independent identically distributed

LBA Low Band Antenna

LEA Linear Equi-spaced Array

LOFAR Low Frequency Array

LOGLS logarithmic least squares

LS Least Squares

LS-MVI Least Squares Minimum Variance Imaging

ME Measurement Equation

MEM Maximum Entropy Method

ML Maximum Likelihood

MeqTree measurement equation tree

MRC Multi-Resolution CLEAN

MRI Magnetic Resonance Imaging

MW MicroWave

MWA Murchison Wide-field Array

OSKAR Beamforming simulation for the SKA aperture array
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PAF Phased Array Feed

pdf probability distribution function

PSF Point Spread Function

PSWF Prolate Spheroidal Wave Function

RFI Radio Frequecny Interference

SAGE Space Alternating Generalized Expectation maximization

SDR Spatial Dynamic Range

ROI Region of Interest

SKA Square Kilometre Array

SPAM Source Peeling and Atmospheric Modeling

SQP Sequential Quadratic Programming

SNR Signal-to-Noise Ratio

ThEA Thousands Eelement Array

TV Toatal Variation

ULA Uniform Linear Array

URA Uniform Rectangular Array

UTC Coordinated Universal Time

VLA Very Large Array

WALS Weighted Alternating Least Squares

WLS Weighted Least Squares

WSRT Westerbork Synthesis Radio Telescope
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A.2 Notations

A.2.1 Symbols

a, A italic lower or upper case characters denote scalars
A bold upper case characters denote matrices
1m×n m × n matrix filled with ones
0m×n m × n matrix filled with zeros
I idendity matrix of appropiate size
.̂ estimated value

A.2.2 Operations

E(.) expectation operation
δ(.) delta or Dirac function
∂
∂x (.), ∇ gradient of a function w.r.t. x
(.)T transpose
(.)H Hermitian or conjugate transpose
(.)−1 inverse
(.)† pseudo-inverse
e(.) element-wise application of the exponential function
< . > inner product of two vestors

(̄.) or (.)∗ conjugate
vec(.) stacks the columns of a matrix A into a vector denoted by b = vec(A)
diag(.) converts a vector to a diagonal matrix, with vector placed on the main diagonal
round(.) rounds up to an integer
� Hadamard or element-wise product of two matrices or vectors
⊗ Kronecker product of two matrices or vectors
◦ Khatri-Rao or column-wise Kronecker product of two matrices
tr(.) trace of a matrix
Aij (i, j) element of a matrix A

ln(.) natural logarithm
‖.‖F Frobenius norm
‖.‖�1 �1-norm
‖.‖ Euclidian norm
|.| absolute value
κ(.) returns the condition number of a matrix
∠(.) returns the angle or phase of a complex number



Appendix B
Plots of residuals for corrected

redundant visibilities

In order to study the performance of the redundancy and model-based methods for
phased-array station calibration, we present additional plots of the residuals for the
corrected redundant visibilities here. The data is taken from our observational cam-
paign on 24 November 2009. Fig. B.1 and Fig. B.2 show similar results of the same
data set (captured at 21:29:04 UTC, when CasA was at high elevation) presented in
Fig.3.8 but for different baselines, shown in the rightmost panel.

Fig. B.3- B.5 show similar results using the data captured at 15:25:43 UTC,
when CasA was at low elevation. They reveal slightly larger residuals in the order of
5− 10% than the results in Fig. 3.8, Fig. B.1 and Fig. B.2. This is due to a different
mutual coupling environment which leads to less identical beams in either the main
lobe or the sidelobes. As discussed in Sect. 3.3.2, we still see smaller residuals after
redundancy calibration as compared with the model-based method.
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116 Plots of residuals for corrected redundant visibilities

Figure B.1: Plots of the residuals for corrected redundant visibilities in terms of phases
and amplitudes on a given set of redundant baselines. The first row shows the results after
redundancy calibration. The second row shows the result afters model-based calibration.
The data is taken from an observation done on 24 November 2009 at 21:29:04 UTC, when
CasA was at high elevation. The station configuration of RS208 is shown in the rightmost
panel. The corresponding redundant baselines to each redundant visibility are also depicted

on the station layout, with the same color code.
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Figure B.2: Continued from Fig. B.1.
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Figure B.3: The plots of the residuals for corrected redundant visibilities in terms of phases
and amplitudes on a given set of redundant baselines. The first row shows the results after
redundancy calibration. The second row shows the result afters model-based calibration.
The data is taken from the observation done on 24 November 2009 at 15:25:43 UTC, when
CasA was at low elevation. The station configuration of RS208 is shown in the rightmost
panel. The corresponding redundant baselines to each redundant visibility are also depicted

on the station layout, with the same color code.
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Figure B.4: Continued from Fig. B.3.
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Figure B.5: Continued from Fig. B.4.



Appendix C
Vectorizing the calibrated visibilities

In Chapter 5, we assume that we have calibrated visibilities, in order to explain the
deconvolution techniques. The calibrated data is modeled as

R = AΣsA
H + Σn, (C.1)

where all the corruptinmg factors have been corrected for. A is the array response
matrix (described in Eq. 2.9 in Chapter 2) and Σn is the general noise term (described
in Sect. 2.1.2 in Chapter 2). We remember that the term Σn carries the background
sky noise (Rsky) on its off-diagonal terms and the receiver thermal noise (Rrec) on its
diagonal terms. It was discussed that the sky noise is convoluted by the PSF, in the
same way as the celestial signals of interest. To make this point clear, we expand Σn

to its terms, and rewrite Eq. C.1 as

R = AΣsA
H + AΣskyA

H + Rrec = A(Σs + Σsky)A
H + Rrec, (C.2)

where, the first term implies the convolution of signals and the sky noise with the
PSF. In fact, a more accurate definition of the calibrated data is when the thermal
reciever noise is also known and removed from the data, thus it is

R − Rrec = A(Σs + Σsky)AH . (C.3)

In Chapter 5 in Eq. 5.3, we reformated the calibrated data into a vector f̃ , which
can be obtained by applying the operator vec(.) to Eq. C.3 as

f̃ = vec(R − Rrec) = vec(A(Σs + Σsky)AH). (C.4)

Given the following linear algebric relation for arbitrary matrices of B, X, and C in

vec(BXC) = (CT ⊗ B)vec(X), (C.5)

we can subsitude the terms in Eq. C.4 as follows: B = A, X = Σs + Σsky , and

C = AH . Then, we obtain the following relation for the vector of visibilities, f̃
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122 Vectorizing the calibrated visibilities

f̃ = (A ⊗ A) vec(Σs + Σsky)︸ ︷︷ ︸
image-plane signals: f + n

. (C.6)

Comparing Eq. 5.4 with Eq. C.6, the relation between the array response matrix, A

and the measurement matrix, T becomes clear, and that is

T = A ⊗ A. (C.7)

Moreover, in Sect, 5.3.4, we concluded that the formalism of the LSI deconvolution
technique in Eq. 5.28 reduces to Eq. 5.4 assuming a calibrated array i.e. G in Eq.
5.28 is known and corrected for. If we replace the gain matrix G with a unity matrix
in Eq. 5.28, it will reduce to Eq. C.6.
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Nederlandse Samenvatting

Het zijn grote vragen die sterrenkundigen bezighouden: “Hoe heeft het huidige Heelal
zich gevormd uit het Heelal van vlak na de Oerknal?”, “Hoe ontstaan sterrenstelsels?”,
“Hoe worden sterren geboren, en hoe gaan ze weer dood?”, “Hoe is het Zonnestel-
sel ontstaan?”, “Wat is de wisselwerking tussen sterrenstelsels onderling?”, en “Zijn
mensen op Aarde de enigen die zich deze vragen stellen?”. Deze en vele andere sterren-
kundige en kosmologische vragen hebben geleid tot grote technologische vooruitgang
in zowel het bouwen van verschillende instrumenten, alsook de algoritmes waarmee
wij de hiermee vergaarde gegevens efficiënt kunnen verwerken. Hierdoor verleggen we
voortdurend de grenzen van ons begrip van het Heelal waarin we leven.

Waarnemingen

Hemellichamen zoals sterrenstelsels stralen voortdurend elektromagnetische golven
(licht) uit, over een breed spectrum. Deze golven reizen alle kanten op het Heelal
in, waaronder de onze, richting Aarde. Om deze hemellichamen beter te begrijpen,
verzamelen we deze golven met de verschillende instrumenten die tot onze beschikking
staan. Deze informatie verwerken en bestuderen we aan de hand van zo efficiënt
mogelijke algoritmes. Het elektromagnetische spectrum is gellustreerd in figuur C.1,
van de langste golflengtes die kennen we in de vorm van radiogolven (∼ 104 Hz) tot
gammastraling (∼ 1020 Hz).

De verschillende frequenties licht zijn gerelateerd aan verschillende fysische of che-
mische processen die zich in deze objecten plaats vinden. Wetenschappers willen
deze verschijnselen helemaal leren begrijpen; hoe bijvoorbeeld het ene fenomeen te-
rugkoppeling heeft op het andere. Het is hiervoor dus van belang de objecten in
alle verschillende frequenties waar te nemen. De bijbehorende technologie kan ech-
ter sterk verschillen per golflengtegebied. Om bijvoorbeeld röntgenstraling waar te
nemen, moeten we een telescoop de ruimte insturen, omdat de atmosfeer de meeste
rntgenstraling, en diens schadelijke neveneffecten, tegenhoudt. Sterrenkunde in zicht-
baar licht kan alleen bedreven worden op plaatsen met mooi weer, omdat wolken al
het zichtbare licht verstrooien. Radiogolven boven de 10 MHz hebben geen last van
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Figuur C.1: Het diagram toont het hele spectrum der elektromagnetische golven. De
onderste schaal toont objecten van een grote die vergelijkbaar is met de bijbehorende golf-
lengte, die daarboven is aangegeven. De bovenste blauwe lijn toont de doorlaatbaarheid
van de atmosfeer voor deze golven; dus welk percentage van de straling het aardoppervlak

bereikt. Bron: http://ds9.ssl.berkeley.edu/LWS_gems/2/espec.htm, �UC Regents.

wolken en bewegen zich vrij door de atmosfeer. Hierdoor is het ook mogelijk deze
waar te nemen vanaf de grond, en in het bijzonder ook vanuit het bewolkte Nederland,
zoals bij de telescopen in Westerbork (WSRT) gebeurt.

Radiosterrenkunde

De WSRT is een hele rij van schotelantennes. Elke schotel reflecteert radiogolven naar
zijn brandpunt, waar een ontvanger is gëınstalleerd. De techniek om de zo ontvangen
signalen van alle veertien schotels te combineren tot een afbeelding heet interferome-
trie. Door deze techniek kunnen we profiteren van het grotere totale oppervlak van
alle spiegels samen, en van een sterk verbeterde resolutie. Hoe groter het ontvang-
stoppervlak, des te groter wordt de gevoeligheid van het instrument, en kunnen we
zwakkere objecten waarnemen. De grote afstand van de schotels onderling maakt het
mogelijk afbeeldingen te synthetiseren van een hoge resolutie. De afstand tussen twee
ontvangers wordt ook wel basislijn genoemd. Elke combinatie van twee ontvangers in
de opstelling vormen een basislijn van de interferometer.
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LOFAR

Om dus betere afbeeldingen te maken van sterrenstelsels, hebben we altijd grotere
en gevoeligere telescopen nodig. Om zulke grote observatoria te bouwen met schotel-
antennes is een dure onderneming en de constructie vergt heel veel tijd. ASTRON,
het Nederlandse instituut voor radiosterrenkunde, heeft LOFAR ontwikkeld en gere-
aliseerd; een instrument met een onconventioneel ontwerp: fasegestuurde antennes.
Dit ontwerp maakt het een stuk goedkoper en sneller om een grote telescoop op te
bouwen. Ook zijn de wetenschappelijke toepassingen legio. Eén van de voordelen is
dat LOFAR meerdere delen van de hemel in één keer kan waarnemen, doordat de kijk-
richting van een fasegestuurde antenne elektronisch bepaald wordt. Deze eigenschap
versneld het verzamelen van wetenschappelijke data op een manier die niet mogelijk
is met conventionele technieken.

Het mechanische deel van LOFAR heeft een heel eenvoudig ontwerp, het bestaat
uit duizenden simpele dipoolantennes. Dit moeten we bekopen in de data-analyse.
Het onconventionele ontwerp van LOFAR betekent ook dat we nieuwe methodes moe-
ten ontwikkelen voor het analyseren en begrijpen van de waarneemgegevens, en deze
te verwerken tot wetenschappelijke resultaten. Met dit oogpunt, zijn er verschillende
studies verricht door ASTRON in nauwe samenwerking met Nederlandse universitei-
ten, waaronder die in Groningen, Leiden en Delft. LOFAR heeft alleen een succes
kunnen worden dankzij deze samenwerking. We hebben fantastische prestaties laten
zien in het ontwikkelen en toepassen van vernieuwende methodes in signaal analyse,
om zo uitmuntende wetenschappelijke resultaten te kunnen presenteren aan de hand
van LOFAR waarnemingen. Dit proefschrift heeft bijgedragen in deze prestaties.

Figuur C.2: Vierentwintigtegelige HBA opstelling: Elke tegel is een element van een HBA
station. Deze opstelling wordt gebruikt in veruit de meeste HBA stations die LOFAR rijk is,
inclusief de stations op de superterp, het centrum van LOFAR nabij Exloo. Een opstelling

als deze telt veel redundante basislijnen.
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Redundantie

We geven een voorbeeld uit dit proefschrift, dat geholpen heeft LOFAR data beter te
begrijpen. De HBA (High Band Antenna) stations vormen een onderdeel van LOFAR
dat gericht is op het hogere deel van het frequentieberijk van LOFAR. Ze staan in een
regelmatige opstelling. In figuur C.2 zien we het HBA station met aanduiding CS302.
Deze opstelling leidt er toe dat veel van de combinaties van antennes precies dezelfde
onderlinge afstand en oriëntatie hebben. Deze basislijnen zijn in feite overbodig, ofwel:
redundant. De gemeten data op een basislijn is de correlatie tussen de twee signalen die
tegels ontvangen. Van redundante basislijnen krijgen we deze informatie dus dubbel.
Deze dubbele informatie wordt niet weggegooid, maar helpt ons om de antennes aan
elkaar te ijken. Dit werkt alleen onder de aanname dat de betrokken antennetegels
identiek zijn. Omdat de tegels zo dicht op elkaar zitten, zullen ze elkaar enigszins
bëınvloeden. Hierdoor gaat deze aanname niet op. Het signaal dat we ontvangen van
verschillende redundante basislijnen zal dus niet helemaal identiek zijn. We hebben
de HBA tegels gesimuleerd met het programma CAESAR. De resultaten van deze
simulaties lieten zien dat de verschillende tegels in de opstelling elkaar inderdaad
elektromagnetisch bëınvloeden, zodat hun ontvangstpatronen van elkaar verschillen.

Zoals ook in figuur C.3 te zien is, heeft het ontvangstpatroon een aantal zijlobben.
Dit betekend dat we de antennes niet perfect op één plek kunnen richten. Het te meten
signaal zal altijd ‘besmet’ worden door objecten die zich in de zijlobben bevinden. Het
is in deze zijlobben dat we de grootste verschillen vinden tussen ‘ideale’ redundantie
en het echte instrument. Als een signaal dus afkomstig is uit een van de zijlobben,
meten we geen redundantie, waar dat wel het geval is als het signaal afkomstig is
uit de hoofdlob. De grafieken in figuur C.3 bevestigen deze voorspelling. Rechts
zien we een projectie van de hemel met het ontvangstpatroon van de HBA en een
aantal heldere bronnen die we op een gegeven moment kunnen waarnemen. Links
zien we de overeenkomstige data die we met een HBA station kunnen meten, op drie
verschillende redundante basislijnen. Dit laat zien dat de aanwezigheid van slechts één
enkele heldere bron in een van de zijlobben de redundante data aanzienlijk verstoort
(vergelijk onder met boven). Ook zien we dat een sterke bron waargenomen in de
hoofdlob juist redundante informatie oplevert.

Conclusie

Dit soort studies zijn belangrijk om de IJkbaarheid van een fasegestuurde antenne
stations, en dan in het bijzonder die met een regelmatige opstelling (zoals HBA’s)
te begrijpen. IJkbaarheid van deze instrumenten is een belangrijke stap richting het
kunnen synthetiseren van radio-afbeeldingen van hoge kwaliteit. In dit proefschrift
hebben we nog meer van dit soort theoretische technieken bestudeerd om dit doel te
bereiken. Deze studies leggen ook een belangrijke basis voor verder onderzoek in deze
richting.
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Figuur C.3: Twee waarnemingen die zijn uitgevoerd met een HBA station op 5 septem-
ber 2009. De eerste om 13:13:48 UTC, waar zgn. redundantie-ijking mislukt (boven), de
tweede met hetzelfde station op de zelfde dag, om 23:02:01 UTC waar de redundantie-ijking
slaagt (onder). Links zien we de gemeten signalen voor drie verschillende redundante ba-
sislijnen. Rechts is een projectie van de hemel ten tijde van de waarneming afgebeeld. We
zien de helderste bronnen aangeduid, alsmede een indicatie van de hoofd- en zijlobben in het

ontvangspatroon.

Toekomst

Het succes van LOFAR heeft er toe geleid dat het ontwerp van LOFAR ook overge-
nomen wordt in delen van de nieuw te bouwen Square Kilometre Array, ’s Werelds
grootste en gevoeligste toekomstige radiotelescoop. SKA wordt ontworpen en ge-
bouwd door een internationaal consortium van instituten waar ook Nederland een
grote bijdrage aan levert. Dit maken zowel ASTRON als betrokken Nederlandse
universiteiten tot een zeer boeiende werkomgeving.
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