7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Collaborative Software Architecting Through Knowledge Sharing
Liang, Peng; Jansen, Anton; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):

Liang, P., Jansen, A., & Avgeriou, P. (2010). Collaborative Software Architecting Through Knowledge
Sharing. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/f985ce84-4193-45ce-a985-38c6e68b6508

Chapter 17
Collaborative Software Architecting Through
Knowledge Sharing

Peng Liang, Anton Jansen, and Paris Avgeriou

Abstract In the field of software architecture, there has been a paradigm shift from
describing the outcome of the architecting process to documenting architectural
knowledge, such as design decisions and rationale. Moreover, in a global, distributed
setting, software architecting is essentially a collaborative process in which sharing
and reusing architectural knowledge is a crucial and indispensible part. Although
the importance of architectural knowledge has been recognized for a considerable
period of time, there is still no systematic process emphasizing the use of architec-
tural knowledge in a collaborative context. In this chapter, we present a two-part
solution to this problem: a collaborative architecting process based on architectural
knowledge and an accompanying tool suite that demonstrates one way to support
the process.

17.1 Introduction

According to a recent paradigm shift in the field of software architecture [3, 4, 24],
the product of the architecting process is no longer only the models in the various
architecture views, but the broader notion of Architectural Knowledge (AK) [23]:
the architecture design as well as the design decisions, rationale, assumptions, con-
text, and other factors that together determine architecture solutions. Architectural
(design) decisions are an important type of AK, as they form the basis underlying
software architecture [19]. Other types of AK include concepts from architectural
design (e.g., components, connectors) [35], requirements engineering (e.g., risks,
concerns, requirements), people (e.g., stakeholders, organization structures, roles),
and the development process (e.g., activities) [10].

P. Liang (=)

Department of Mathematics and Computing Science, University of Groningen, 9747 AG
Groningen, Netherlands

e-mail: liangp@cs.rug.nl

1. Mistrik et al. (eds.), Collaborative Software Engineering, 343
DOI 10.1007/978-3-642-10294-3_17, © Springer-Verlag Berlin Heidelberg 2010

344 P. Liang et al.

The entire set of AK needs to be iteratively produced, shared, and consumed
during the whole architecture lifecycle by a number of different stakeholders as
effectively as possible. The stakeholders in architecture may belong to the same or
different organization and include roles such as: architects, requirements engineers,
developers, maintainers, testers, end users, and managers etc. Each of the stake-
holders has his/her own area of expertise and a set of concerns in a system being
developed, maintained or evolved. The architect needs to facilitate the collaboration
between the stakeholders, provide AK through a common language for commu-
nication and negotiation, and eventually make the necessary design decisions and
trade-offs.

However, in practice, there are several issues that hinder the effective stakeholder
collaboration during the architecting process, which diminishes the quality of the
resulting product. One of these problems is the lack of integration of the various
architectural activities and their corresponding artifacts across the architecture life-
cycle [17]. The different stakeholders typically have different backgrounds, perform
discrete architectural activities in a rather isolated manner, and use their own AK
domain models and suite of preferred tools. The result is a mosaic of activities and
artifacts rather than a uniform process and a solid product.

This chapter focuses on how to integrate stakeholder-specific approaches and
tools related to the individual architecting activities. We propose a two-part solution
to this problem: a process and an accompanying tool suite. The first part integrates
requirements engineering (RE) and the various architecting activities (e.g., analysis,
synthesis, evaluation, maintenance etc.,) and their consumed and produced AK, as
well as the related stakeholders, into a single process model based on the principle
of sharing AK. Note that we have decided to take RE into account: even though it
is technically not part of the architecting process, they are closely intertwined and
affect one another [31].

The second part is the Knowledge Architect tool suite that supports the collabora-
tive architecting process by realizing and integrating different tools that correspond
to the various activities of the process. The tool suite demonstrates one way to sup-
port the process, which is derived from the requirements of our industrial partner;
there are other ways to support the same activities depending on the organization,
the domain, and the specific project at hand. Currently, the tool suite consists of the
following tools: the Document Knowledge Client supporting architects writing an
architecture document; the Excel and Python Plug-ins supporting system analysts
performing quantitative architectural analysis; the Knowledge Repository acting as
the central location to store all the relevant AK; the Knowledge Explorer allow-
ing other stakeholders to search, inspect, and trace AK; the Knowledge Translator
translating AK from one language to the other for easy understanding. An impor-
tant feature of the tool suite is that the individual tools share their AK for specific
activities through a central knowledge repository, thus providing traceability of the
AK and automated checking across a wide range of architecting activities.

Section 17.2 of this chapter discusses collaboration in software architecting and
the role of AK. Section 17.3 presents the integrated process for collaborative archi-
tecting, while Section 17.4 introduces the accompanying tool suite. Section 17.5

17 Collaborative Software Architecting Through Knowledge Sharing 345

elaborates on the details of collaboration by applying the process and tooling, exem-
plified through a running example . The paper ends with a discussion on related
work, followed by conclusions and directions for future work.

17.2 Theoretical Background

17.2.1 Collaboration in Software Architecting

Architecting is an inherently collaborative process between architects and several
stakeholders, who have various concerns and viewpoints. Software architecture:

e Allows stakeholders to work together, communicate, negotiate, and eventually
agree upon the architectural decisions and rationale [34].

e Defines the partition of both the technical architecture and the organizational
teams building the system [5].

e Resolves errors and deals with risks throughout the system [5].

e Documents the explicit AK of the organization and the project to facilitate future
evolution [4].

In [17] the authors of five industrial architecture design methods propose a com-
mon model for architecting, comprised of three fundamental architecting activities:
architectural analysis, synthesis, and evaluation. They identify the problem of lack
of integration between these activities and their corresponding artifacts, and they
propose to deal with this problem through the concept of a backlog: a collection
of needs, issues, problems, ideas, which binds the 3 architecting activities together.
Therefore, the backlog acts as a central knowledge artifact that is both produced and
consumed by the 3 activities, facilitating their integration. In a collaborative setting,
this integration problem is aggravated due to the distribution of stakeholders who
have different backgrounds and expertise. In our approach, we also propose knowl-
edge sharing as a promising solution, but at a larger scale: an elaborate set of AK
is shared and reused across the proposed architecting process. The shared AK pro-
vides a common language for the distributed stakeholders to communicate, reason,
and ensure their concerns are being addressed.

The general goals of collaboration in software engineering identified in [38]
include: “Driving convergence towards a final architecture and design”, “Managing
dependencies among activities, artifacts, and organizations”, “Identifying, record-
ing and resolving errors”, and “Recording organizational memory”. We specialize
these goals for collaboration in architecting and restate them as follows:

e Producing an integrated and consistent architecture document that has emerged
from iterative stakeholder negotiation and agreements.

e Managing the dependencies and establishing traceability among architecting
activities, artifacts and involved stakeholders.

346 P. Liang et al.

e Identifying, recording and resolving architectural conflicts, risks, inconsistency,
and incompleteness.
e Recording the knowledge which is relevant to the whole architecting process.

To evaluate how the proposed process and tool achieve these goals, we revisit
them in the Conclusions section.

17.2.2 Knowledge Management for Collaborative Architecting

A distinction is often made in Knowledge management (KM) between two
types of knowledge [30]: tacit (personalized) knowledge that resides in peo-
ple’s head, versus explicit knowledge that is codified in some form. The latter is
often further characterized as documented or formalized knowledge. Documented
knowledge is expressed in natural languages or drawings, e.g., Word and Excel
documents that contain architecture description and analysis models. Formal knowl-
edge is expressed (or annotated) in formal languages or models with clearly
specified semantics. Typical examples of this form include AK ontologies [22]
or AK domain models [2, 9, 10, 20, 21, 35, 36] that formally define con-
cepts and relationships (e.g., Design Decision related to Concern). They aim
at providing a common language for unambiguous interpretation by stakehold-
ers. Formal AK can better facilitate activities for architectural collaboration than
documented or tacit AK [10]. However, formal AK entails additional cost and
effort [8].

Based on the knowledge types, Hansen et al. classify KM in two strategies
[16]: codification aims at codifying knowledge and making it available for any-
one through knowledge repositories; personalization, helps people to communicate
knowledge instead of storing it. Both KM strategies are employed in software engi-
neering activities [33]: most research and industry practice has been associated with
codification [11], while personalization has been given less attention. In this chap-
ter, we mainly focus on codified AK in collaborative architecting. Personalization is
also valuable, and will be further investigated in our future work.

17.3 A Process for Collaborative Software Architecting

The architecting process involves several stakeholders due to its cross-cutting nature
from requirements to implementation. For large projects, several teams may work
simultaneously on different parts or in different development stages of the whole
system, and exchange information. AK is the most important part of the exchanged
information and is of paramount importance to the architecting process.

To investigate the role of AK in the architecting process, we have closely co-
operated with our industrial partner, Astron (the Dutch radio astronomy institute),
which develops large and complex software systems for radio telescopes. What
makes these systems interesting from a collaborative AK perspective is: (1) the
development consortium consisting of multiple international partners, (2) the long

17 Collaborative Software Architecting Through Knowledge Sharing 347

development time of nearly a decade, (3) the long required operational lifetime of
at least 20 years.

In this context, we first identified and described the requirements to manage AK
in the architecting process of Astron through a number of use cases using our earlier
work [37]. We subsequently identified the AK needed to execute these use cases
and expressed this knowledge in a domain model [20]. Using both the domain and
the use cases, we derived and generalized a collaborative architecting process that
integrates the different architecting activities. To support this general process within
Astron, we developed a tool suite, which is presented in Section 17.4.

Figure 17.1 illustrates this derived process in terms of activities and AK produced
and consumed. Furthermore, it visualizes the close interaction between architecture
(solution space) and requirements (problem space), as they are closely intertwined
[31]. Every architecting activity can provide feedback to the RE activity, as new
insights, acquired during architecting, lead to a better understanding of the prob-
lem domain. It is noted that the AK-based architecting process is not sequential,
but highly iterative and incremental: achieving an acceptable architecture requires
an iterative design and evaluation process that allows refinement to address new

Problem space | | Solution space

. Architect, Designer,
= —— Architecture reviewer

P
< /3. Evaluate solutions ™,
f (.

Solutions Q Choose one /

Architect, Anal
esigner, Progr

/" 2.Propose |

b=

Choice + |
\ Rationale |

Requirement . solutions
engineer, / 3 <
Customer, o

End-user =
C 4. Evaluate <
(architecture & Modify",
the architecture

~ description

Problem
Cause
Decision topics

/0. Requirements
“_ engineering /
— _— Architecture

Issues) Evaluation & AN
Requirements ek Modified i

Drivers Descriotion | Arcrllitect Designer,

Risks - Architecture reviewer

Concerns

Architect, Analyst, Designer/
Requirement engineer

Legend

(' Activity) Architectural i

Knowledge

Fig. 17.1 The architecting process from an AK perspective

348 P. Liang et al.

requirements and trade-offs. The architecting activities and the related RE activity
are briefly described as follows:

(0) Requirements engineering. This activity fuels the architecting process with dif-
ferent elements (e.g., requirements, drivers, decision topics, risks, and concerns)
from the problem space. These form the main input for the activity of scop-
ing the problem space. Requirements engineers, customers and end-users are
typical stakeholders.

(1) Scope problem space. The architect selects the architecturally significant ele-
ments from the problem space and distills them into a concrete problem. To put
the problem in perspective, a cause (e.g., from technical aspects) of the problem
is described as well. This scoping is needed, as the problem space is usually too
big, thereby forcing the architect to focus only on the key issues. Typical stake-
holders of this activity are: architects, analysts, designers, and requirements
engineers.

(2) Propose solutions. The architect uses the existing architecture description and
the problem of the previous step, in order to come up with one or more solu-
tions that (partially) address the problem. Architects, analysts, designers, and
programmers are typical stakeholders in this activity.

(3) Evaluate solutions & choose one. The architect evaluates the solutions, and
makes a design decision by selecting among the proposed solutions (according
to the evaluation results). The decisions may entail making one or more trade-
offs and is accompanied by the appropriate rationale. Architects, designers, and
architecture reviewers are typical stakeholders of this activity.

(4) Evaluate architecture & modify the architecture description. Once a solution
is chosen, it is integrated in the architecture and the whole architecture is
evaluated. Based on the evaluation results, the architecture description has to
be modified to reflect the new status. Architects, designers, and architecture
reviewers are typical stakeholders.

The collaboration activities in architecting takes place in two dimensions: hori-
zontally and vertically. Horizontal collaboration occurs between sequential software
development activities, which can be in the macro- or micro-level of the software
development phases, e.g., from RE to architecting (the macro-level), or within archi-
tecting (the micro-level) from architectural analysis to architectural synthesis. In
horizontal collaboration, the output, of one activity becomes the input for the subse-
quent activity, e.g., the output of the RE activity (i.e., a requirements specification),
acts as the input of the architecting activity. On the other hand, vertical collabora-
tion happens when different people work on the same software development activity,
e.g., several designers make a class diagram using a UML tool collaboratively in the
design activity [32]. In this chapter, we cover the RE and architecting activities in
both collaboration dimensions. The next section elaborates on the tool suite that sup-
ports the different parts of this process, and emphasizes on the various collaboration
aspects.

The proposed process is meant to be generic enough so that it can be customized
and adapted into specific architecting processes used in organizations. As an

17 Collaborative Software Architecting Through Knowledge Sharing 349

example, we describe how it can be mapped to the generalized model of archi-
tecting proposed in [17]: architectural analysis maps to the scoping of the problem
space (activity 1); architectural synthesis maps to proposing solutions (activity 2);
architectural evaluation maps to evaluating alternative solutions and selecting the
optimal one (activity 3), as well as evaluating the architecture with the integrated
design decisions (activity 4). The advantage of this general applicability is that it
does not conflict with established architecting processes in the organizations. The
disadvantage is that it does not contain enough details to be applied on its own; it
has to be refined before it can be applied in practice.

17.4 The Knowledge Architect Tool Suite

To support the collaborative architecting process described in the previous section,
we implemented the Knowledge Architect (KA): a tool suite! for creating, using,
translating, sharing, and managing AK. The process itself is described in a generic
way and does not delve into details about the various aspects of collaboration, as it
is meant to be as broadly applicable as possible. On the contrary, the KA tool suite
entails specialized support for integrating the various process activities and support-
ing collaboration between the stakeholders. In specific, the tool suite implements
the following features to serve the collaboration purposes:

e A central knowledge hub. In a large project, multiple stakeholders are involved
in the different process activities and typically manage and maintain their part of
the relevant AK. The knowledge hub is critical for gathering all the AK in one
resource, and providing an interface to all involved stakeholders to manage and
evolve it;

e Traceability management. In a collaborative architecting process, AK entities
are produced by various stakeholders. Traceability needs to be established
between these collaboratively produced artifacts (e.g., a requirement leads to
a design decision and when one changes the other needs to be updated). This
is of paramount importance during the architecture iterations, but also for the
architecture evolution;

o Knowledge translation among different stakeholders. Typically stakeholders
come from different backgrounds and have their own perspectives on archi-
tecture, usually limited to individual AK entities (see Fig. 17.2). Effective
knowledge translation (dashed arrows in Fig. 17.2) enables various stakeholders
to understand each other and speak through a “common language”. Furthermore,
knowledge translation provides the ability to present the “big picture”, and
especially the complex relationships between different parts of the knowledge;

e Automated checking. Different stakeholders working at varied activities and at
different times may touch upon the same or related AK entities. Automated

1 Part of the tool suite can be downloaded from http://search.cs.rug.nl/griffin

350 P. Liang et al.

Stakeholder A .

Relevant AK Stakeholder C

Stakeholder B

Legenrd 0o _____ -
% AK | —= VTansiated | ———+
entity F(elationship| AK entity _! Translation Stakeholder’s
_____ perspective

Stakeholder

Fig. 17.2 AK sharing from the perspectives of different stakeholders

checking may help to identify the conflicts, inconsistencies, and incompleteness
in the collaboratively produced AK entities. Especially, when the amount of
knowledge increases, this type of automated support is the only way to effectively
manage it.

Currently, the tool suite consists of 6 tools, which are presented in Fig. 17.3:
Knowledge Repository, Document Knowledge Client, Excel Plug\-in, Python Plug-
in, Knowledge Explorer, and Knowledge Translator. The figure illustrates how these
tools are mapped onto the architecting process and its associated activities (see
Fig. 17.1).

A brief outline of each tool is provided here. A more elaborate description is
presented in the next subsections, while the exact details can be found in [28]. In
short, these tools are the followings:

e Knowledge Repository is at the heart of the tool suite: a central location, which
provides various interfaces for other tools to store and retrieve AK.

e Document Knowledge Client is a Word plug-in that supports capturing (anno-
tating) and using (storing and retrieving from the Knowledge Repository) AK
within architecture and requirement documents inside Microsoft Word.

e Analysis Model Knowledge Clients support capturing (annotating) and using
(storing and retrieving from the Knowledge Repository) AK of quantitative
analysis models. This type of analysis concerns the investigation of alternative
architectural solutions by delivering (scenario-based) quantifications of one or
more quality attributes of these solutions. Specifically, two knowledge clients are
developed (Excel and Python Plug-in):

e FExcel Plug-in supports capturing and using AK of quantitative analysis models
inside Microsoft Excel [20].

17 Collaborative Software Architecting Through Knowledge Sharing 351

Horizontal collaboration
N

Feedback loop

N
I . Evaluate a{rghilecrure &
Heqylrements Scope problem Propgse | Evaluate solutions & | modify the architecture
eng,,,ii,,,,g space SO/L‘IH‘OHS Choa‘s‘e one description
0 Document 1 Document 2 Document 3 Document 4 Document
:ﬂ Knowledge Knowledge Knowledge)| Knowledge)| Knowledge
Client | Client__| Client | | Client | | Client
| Excel Plug-in ‘ | Excel Plug-in ‘ * " Excel Plug-in
Vertical
collaboration | | |
: Python I l \ Python :
Plug-in Y Plug-in
1 1

I

I

I

I

I

] 1

‘ i Knowledge Explorer ‘

|
T
|
|
T
I

(Evolution, find & search, traceability)
1 1 1
Knowledge Repository

Knowledge Translator ‘

Legend e ¢ architecting Tool AK flow
activities

Fig. 17.3 Mapping the KA tool suit onto the requirements engineering and architecting activities

e Python Plug-in supports capturing AK from quantitative analysis models
described in Python.

e Knowledge Explorer analyzes the relationships between AK entities. It provides
various visualizations to inspect AK entities and their relationships.

e Knowledge Translator (semi-)automatically translates the formal AK based on
one AK domain model into the AK based on another, so that various stakehold-
ers can understand each other when they use different AK domain models to
document AK.

We have mentioned before that the KA tool suite was built in the context of
the Griffin project” for use within our industrial partner: Astron. Therefore certain
tools of the suite are aimed at integrating with the tools already used at Astron.
In particular this covers Microsoft Word for architecture documentation, Microsoft
Excel and Python for architecture analysis models. This is only one way to support
the architecting activities (see Fig. 17.3); various other tools could be potentially
built on the same underlying ideas of annotating AK on documentation and analysis
models.

In this section, we first introduce these tools, including the motivations of (why)
and functions provided by (what) these tools. In the next section, we present the RE
and architecting activities in a collaboration perspective by using these tools in a
concrete running example.

2 GRIFFIN: a GRId For inFormatIoN about architectural knowledge, http://griffin.cs.vu.nl/

352 P. Liang et al.
17.4.1 Knowledge Repository

The Knowledge Repository, as depicted in Fig. 17.4, is a central location for stor-
ing and retrieving AK across a wide range of architecting activities. The tool makes
heavy use of technologies developed for the semantic web. For example, the open
source RDF store Sesame? is used for storing and querying AK, while OWL (Web
Ontology Language) is used for modeling AK domain models. The Knowledge
Repository API provides the interfaces to communicate with all the Knowledge
Clients (Document Knowledge Client, Excel and Python Plug-ins) to store the anno-
tated AK into the repository. The Query Engine is used to query the AK entities and
their relationships in the repository, and visualize them in the Knowledge Explorer.
The Knowledge Translator performs the automatic translation. All the surrounding
tools are described in the remaining part of this section.

Document
Knowledge Excel Plug-in
Client
(Sesame OWL/RDF Store)
Knowledge | Python
Explorer l Query Engine Repository API Plug-in
Domain OWLim Engine
Protégé Model 9 Knowledge
Translator
Knowledge Repository
Legend

() — L1

Tool Component Data flow File

Fig. 17.4 The Knowledge Repository with other tools in the KA tool suite

17.4.2 Document Knowledge Client

The Document Knowledge Client is a plug-in to capture and use explicit AK
inside Microsoft Word 2003. Various AK domain models can be deployed in the
Knowledge Repository for different users (stakeholders), who annotate the AK
using the AK domain models they can understand. Hence, the tool can be reused
with other AK domain models. The tool offers three basic functions:

AK capturing: Knowledge can be captured in a Word document by selecting
a piece of text and right clicking and choosing the appropriate option from the
pop-up menu. When adding a new AK entity, a menu appears which allows the

3 http://www.openrdf.org/

17 Collaborative Software Architecting Through Knowledge Sharing 353

user to provide additional information about the entity, e.g., Name, Type, Status and
Connections.

AK traceability: The relationships among AK entities comprise critical trace-
ability information in collaborative architecting. For example, to find out “who
(stakeholders) are concerned with a design decision”. The AK traceability can be
easily created or removed by pop-up menus in the Document Knowledge Client.

Design maturity assessment: One of the advantages of formalized (annotated)
AK is automatic reasoning support based on the underlying formal models. The
Document Knowledge Client supports the architect in assessing the completeness
of the architecture description. Based on the AK domain model, the tool performs
model checks using conformity rules to identify incomplete parts.

17.4.3 Excel Plug-In

The Excel Plug-in implements a domain model for quantitative architecture analysis
models in Microsoft Excel. The tool supports analysts in making the AK produced
during architecture analysis explicit. The aim is to facilitate the sharing of AK to
other analysts and the analysis results in a transparent manner to other stakeholders.
The tool offers the following three basic functions:

AK capturing: The major part of the AK of an architectural analysis model in
Excel is found in the cells. Often labels surrounding the cell denote the semantic
meaning of a cell. The tool allows analysts to make special annotations to cells. For
reviewing purposes, the tool also tracks the review state of each cell and allows for
comments.

AK traceability: An important feature of the tool is that it is capable of auto-
matically inferring the dependencies among the cells (AK entities). Hence, the
traceability relationships between AK entities are automatically captured.

AK visualization: To facilitate manual verification, the tool offers a visualiza-
tion of the AK dependency graph, which corresponds to the cells in the Excel
worksheets.

17.4.4 Python Plug-In

Similar to the Excel Plug-in, the Python Plug-in provides functionality to codify
the AK of analysis models. In this case, the analysis models are expressed using
the Python programming language. Both the Excel and the Python Plug-in assume
quite similar domain models. Hence, the concepts and functionality discussed in the
previous section also apply here.

17.4.5 Knowledge Explorer

Typically, the size of an AK repository will be considerable containing thousands
of AK entities. Finding the right AK entity, or even worse a number of related AK

354 P. Liang et al.

o 40P Pils
Pr il ATenataa
Pr Diecision_Topic
{AR sy bevter action Concern
prouctsosptch Quick_Decision pectn
[k Dachitem o Frog 185 Quick Decision 184 User -
e o] for User of Specification of 2
|camtigen stion and Cort| _ o Anmaa T
(sl of Schosuler | Aaton |
P e ID: 185 o
:""”’“"“::' Name: Quick Decision for User Specification of Observation ::: | 1
T— NodeName: hitp:/Mmww.archium.net/AstronGriffin# Marcet
proaxtenocessiy || OUICK_DECISION_OF_USER_SPECIFICATION_OF_OBSERVATION_185 plerco =
Notes: gt
C o stiom of Instra_| —_—L
:\:f;ﬁtmrmfu:) [] 5 w1
Sysom ol contrg Context:
oo - Observation specifications are entered in an observation type specific user Deoction
Joviif oo interface. The user (scientist) enters observation specifications in terms f:;'
vttty of suppert | of the required end product; these are further processed into settings for il
e the relevant components in the observation. The generation of those settings (S M-
[—— is based on intelligent code in observation tree templates.
(Sequencing of sub-obrs.
[t Processing

T [J []

Fig. 17.5 The screenshot of the Knowledge Explorer

entities, from such a big collection is not trivial. Hence, there is a need for a tool
to assist in exploring an AK repository. The Knowledge Explorer can support users
in visualizing AK entities and their relationships. Figure 17.5 presents a screenshot
of the tool. It provides search functionality on the left hand side. The resulting AK
entities of this search action are shown in the list on the left hand side. The results
can be filtered using the drop down box on the left, thereby reducing the size of the
found results. The filtering is based on the type of the AK. The available options are
taken from the used AK domain model. Double clicking on one of the search items
results in illustrating a number of related AK entities in columns.

17.4.6 Knowledge Translator

The purpose of the Knowledge Translator is to translate the AK in various AK
domain models from one to the other and vice versa. This allows various users
to understand the AK codified in different AK domain models. This is critical for
stakeholders from different backgrounds to understand each other in a collabora-
tive architecting process. For example, a requirements engineer and an architect use
different AK domain models to produce and consume requirements (part of AK),
but need to have a common understanding. Currently, we employ the core model
proposed in [10] as a central model for the AK translation by an indirect translation
approach [27].

The AK translation can be done manually or automatically. Both ways have their
respective advantages and disadvantages on translation cost and quality, and stake-
holders can select an appropriate manner by trading off quality and cost in their own

17 Collaborative Software Architecting Through Knowledge Sharing 355

context. The initial cost-benefit analysis about the AK translation cost and quality
has been investigated in [27].

17.5 Collaboration Within the Process with KA

In this section, we present the collaboration within the proposed architecting pro-
cess, as it is supported by the KA tool suite. We discuss both horizontal and vertical
collaboration and demonstrate them through a running example. The context of
this running example originates from the architecting process used at our industrial
partner, Astron (see Section 17.3). In their projects, there is a large and complex
body of knowledge that needs to be shared frequently among the distributed stake-
holders. However, the different backgrounds and expertise of these stakeholders
restrains them from achieving a common understanding and thus hinders the inte-
gration of collaborative architecting activities. We have worked closely with Astron
for the software architecture of two projects that concern the next generation of
radio telescopes. The stakeholders involved with the architecting process in these
projects include end-users (scientists), requirements engineers, architects, analysts,
designers and architecture reviewers.

17.5.1 Requirements Engineering

17.5.1.1 Horizontal Collaboration

In a traditional software development scenario, a requirements engineer produces
the software requirements specification in a document, e.g., in a Word file. The
requirements engineer subsequently delivers the requirements documentation to
the architect for the architecture design. Within this process, the requirements
engineer, architect, and other related stakeholders will closely interact with each
other. This close interaction is needed to ensure common document understand-
ing [6], conciliate requirements [31], and improve the architecture design, etc.
In a distributed development environment or in a long-term development project,
this intensive interaction between the requirements engineer and the architect is
quite challenging. The geographical distance between the two actors hinders effec-
tive interaction, while staff reassignment in a long-term project would result in
knowledge vaporization [19]. In such cases, the Knowledge Repository acts as the
project requirements knowledge center: the repository provides valuable require-
ments information according to established AK domain models?, and it helps the
architect to understand the requirements correctly and unambiguously.

4 If there is no explicit specification, we assume that the AK domain model employed in various
requirements engineering and architecting activities for producing and consuming AK is the same
one, so that all stakeholders can communicate the AK in a common language.

356 P. Liang et al.

Running example: a requirements engineer> specifies the requirements (including
architectural significant requirements, concerns and risks, etc.,) in the require-
ments document through discussion with customers. Afterwards, the requirements
engineer uses the Document Knowledge Client to annotate the knowledge about
requirements in this document, e.g., “The user (scientist) uses these interfaces to
propose and specify observations.” (an AK entity of concept Requirements), and
“This flexibility is of great importance especially for the high performance applica-
tions.” (an AK entity of concept Concerns). In the end, all the annotated AK entities
are stored into the Knowledge Repository. The architect retrieves the requirements
information from the Knowledge Repository, and scopes the problem (architectural
analysis) by choosing only the architecturally-significant ones (e.g., scoping the
decision topics from the requirements). The architect subsequently stores the newly
produced AK entities into the Knowledge Repository for further collaboration.

The whole collaboration process is illustrated in Fig. 17.6. The numbers in this
figure represent the actions sequence. The KA tool suite offers features to support
these collaboration activities. For example, the design maturity assessment function
based on formal AK can help the architect to find out whether all the requirements
have been considered or not. Another example is that the traceability of formal AK
can help the architect to trace from the design space (e.g., a design decision) back
to the original cause in the problem space (e.g., a requirement).

17.5.1.2 Vertical Collaboration

The typical scenario in RE is that all the system stakeholders can propose their
individual requirements, concerns, and risks from different perspective and at dif-
ferent levels (business goals, product features, user requirements, etc.). Inevitably,
there are always conflicts (e.g., conflict business goals, concerns) and mismatch

use Document use
Knowledge
Client
1 Knowledge 4
Requirements annotate store Repository retrieve annotate Architecture
document (Requirements (produce AK) (consume AK) (Scope problem document
engineering) space)
Requirements 5 Architect
Engineer store

(produce AK)

Legend - s
‘ Documenﬁ ‘ Tool ‘ action

Fig. 17.6 AK sharing process between requirements engineer and architect

5 The collaboration between other stakeholders is also critical, e. g., between the telescope user and
requirements engineer, but we focus on the requirements engineer and architect in the scope of this
chapter.

17 Collaborative Software Architecting Through Knowledge Sharing 357

(e.g., no user requirements relating to a product feature) in the candidate require-
ments. The collaboration among all the requirements stakeholders is needed to form
a clear and unambiguous requirements specification using negotiation and reach-
ing compromises. Another situation is that different requirements engineers work
on the requirements specification for different part of the system at same time. In
this case, they also have to understand the requirements, which have been elicited
and documented by other requirements engineers for consistency. Hence, collabo-
ration among these requirements engineers is a necessity to achieve a coherent and
consistent requirements specification.

Running example: Customer A specifies the requirement “The flow of informa-
tion, either control or monitoring metrics, is in the vertical direction.”, and then
the requirements engineer uses the Document Knowledge Client to annotate this
requirement and store this AK entity into the Knowledge Repository. Customer B
uses the Document Knowledge Client to retrieve the latest requirements from the
Knowledge Repository. After this, Customer B finds out that the requirement “The
flow of information in the vertical direction” is not desirable. The customer wants
“The flow of information is in the horizontal direction”. In this situation, Customer B
adds his/her requirement, annotates, and stores this requirement as a conflict require-
ment with the requirement proposed by Customer A. Eventually, the requirements
engineers will try to negotiate and resolve the conflict with all the other requirements
stakeholders (e.g., through voting) or just inquire the high level project decision
maker to choose one.

17.5.2 Scope Problem Space

17.5.2.1 Horizontal Collaboration

“Scope problem space” is the first activity in the architecting process, aimed at
refining the problem space by selecting the architecture significant problem ele-
ments. The results of this activity are a set of architectural significant requirements,
e.g., problem, cause, and decision topics, which are further used in the follow-
ing activity to produce alternative architectural solutions. The architect uses the
Document Knowledge Client to annotate these architectural significant require-
ments, which he/she has identified, using the AK domain model, and stores them
into the Knowledge Repository. After this, the analyst can retrieve this AK from the
Knowledge Repository, understand it based on the AK domain model, and propose
alternative architectural solutions.

Running example: An architect analyzes an architectural significant requirement,
e.g., “In this (data) view on the system software, we focus on the control over the
data processing pipelines.”, and gets a decision topic, e.g., “the control method over
the data processing pipelines”, which has to be addressed by a design decision.
After that, the architect annotates and stores this decision topic into the Knowledge
Repository. The decision topics can be retrieved by the analyst from the Knowledge
Repository for further collaboration, e.g., in the proposing solutions activity.

358 P. Liang et al.
17.5.3 Propose Solutions

17.5.3.1 Horizontal Collaboration

Once the scoping of the problem space is complete and a clearer picture of the prob-
lem at hand is created, the architect has to define one or more alternative solutions to
(partially) address the problem. These alternatives need to be shared in some shape
or form, e.g., using a textual description, figures, presentation, or a conversation, in
order to be evaluated. For important decisions, the alternatives are shared with the
stakeholders: (1) to validate whether the alternative is indeed addressing the prob-
lem (2) to create understanding and support among the stakeholders for the choice
made in the next step.

Furthermore, thinking up alternative solutions often leads to new insights in the
problem space. For example, it is not uncommon to find requirements unclear on
key aspects or find out that a particular concern is being overlooked. Hence, close
collaboration with a requirements engineer (and perhaps other stakeholders as well)
is needed to sort out these aspects.

Running example: Following the running example from the previous activity, the
analyst retrieves this decision topic from the Knowledge Repository, and proposes
several alternative architectural solutions, e.g., “use real-time control method”, “use
batch control” and ““use real-time or batch control depending on the data character-
istics”. After this, the analyst annotates these alternative architectural solutions in
the architecture document and stores these newly produced AK entities into the
Knowledge Repository. The architecture reviewer retrieves the corresponding con-
cerns, decision topic, and its alternative architectural solutions from the Knowledge
Repository. Based on this AK, the reviewer evaluates the alternative architectural
solutions against related user concerns. It is noted that there is a bidirectional
traceability relationship created automatically between a decision topic and an alter-
native architectural solution, as dictated by the relationships in the AK domain
model. With the bidirectional traceability relationship, when the architect changes
(removes, modifies) the decision topic, then the analyst will be notified to reconsider
the alternative architectural solutions which have been proposed.

17.5.3.2 Vertical Collaboration

For two reasons the proposed alternatives need to be shared among architects as
well. Firstly, sharing alternatives among each other inspires architects to consider
new solution directions. Often this takes the form of creatively combining existing
alternatives into a new one. Secondly, this sharing prevents architects from redoing
work already done by their peers. For analysts, sharing the alternatives is important
as well. The analysis of different experts has to be reconciled to evaluate a sin-
gle alternative. However, this requires a shared understanding among the analysts
what this alternative exactly entails. Consequently, the knowledge of what these
alternatives are should be shared.

Running example: The analysts use the Knowledge Explorer to find out what
kind of assumptions their fellow analysts have made in their analysis about the

17 Collaborative Software Architecting Through Knowledge Sharing 359

alternatives. Based on this knowledge, they can update their own analysis models.
Software architects can share a software architecture document to facilitate vertical
collaboration. Using the Document Knowledge Client, an architect can trace from a
Decision Topic to the proposed alternatives and read their description.

17.5.4 Evaluate Solutions and Choose One

17.5.4.1 Horizontal Collaboration

The horizontal collaboration in this activity takes place between the software archi-
tect/analyst and other stakeholders. It involves sharing four different types of AK.
The first type is the evaluation criteria that should be used to judge the various
alternative solutions. An important criterion is the extension to which a proposed
alternative solution addresses the defined decision topic. In addition, the captured
concerns during RE provides good candidates for evaluation criteria. Additional hor-
izontal collaboration with the requirements engineers is needed when the evaluation
criteria are not clear.

The second type is the relative importance of the aforementioned criteria.
Typically, there are differences among how the stakeholders perceive the impor-
tance of the criteria. Hence, the architect has to reach an acceptable compromise, and
through horizontal collaboration, communicate this compromise to the stakeholders.

The third type is the perceived pros and cons of each alternative, i.e., the ranking
of each proposed alternative solution on the defined criteria. Often conflicts arise
among stakeholders due to differences in the perception of these pros and cons and
their associated likelihood and strength. Since this knowledge forms the basis of
the rationale of the choice, it is of paramount concern to reach consensus among
the stakeholders about these properties. One of the goals of analysts is providing
detailed information about these properties in an objective manner to facilitate this
ranking.

The fourth type is the choice made among the alternatives. The associated ratio-
nale is based on the three earlier introduced elements. In practice, only this last
element is typically communicated. In this situation, the rationale and the three other
elements are only shared when asked for.

Running example: In the previous step, three alternative architectural solutions
were proposed and documented in a document: “use real-time control method”,
“use batch control” and “use real-time or batch control depending on the data char-
acteristics”. In this step, the architect writes down the choice made (e.g., for the
use real-time control method) and provides a small explanation for this choice, e.g.,
reducing costs by not requiring additional storage. Selecting this piece of text and
pressing the add AK entity (KE) button of the Document Knowledge Client adds the
text as a Decision to the Knowledge Repository. To provide traceability, the archi-
tect relates the newly created Decision KE to the chosen Alternative. Indirectly, this
also relates the Decision to the other considered alternatives through their common
Decision Topic.

360 P. Liang et al.

To provide rationale, the tool suite provides two options. The first one is found in
the Document Knowledge Client and allows the architect to relate an analysis result
from one of the Analysis Model Clients (Excel and Python Plug-ins) as either a Pro
or Con to an Alternative. For example, the predicted cost of the real-time alternative.
The second option is to use the Knowledge Explorer to find suitable concerns (e.g.,
cost) that could be an evaluation criterion.

17.5.4.2 Vertical Collaboration

Among analysts the vertical collaboration for this activity mostly consists of uni-
fying the analysis results of different experts in one consistent picture. In this way,
evaluating the alternatives becomes relatively easy. Vertical collaboration among
architects is about the knowledge sharing covering the aforementioned four AK
types, since it is this knowledge that makes up the reasoning behind the architecture.

Running example: To present an objective basis for decision making analysts
make a four column table in the architecture document with the first column being
the criteria used and the other three columns representing the three alternatives con-
sidered. The rows present for each criterion the analysis result for each alternative.
Using the Document Knowledge Client, the analyst creates the traceability between
the document and his/her quantitative analysis from Python or Excel. By sharing
this document with other analysts, each adding their own row, a complete unified
picture for the evaluation is created. Architects use a similar approach.

17.5.5 Evaluate Architecture and Modify the Architecture
Description

This evaluation activity is similar to the previous evaluation activity, but has a larger
scope. The previous activity focuses on the evaluation of alternative architecture
solutions while this activity evaluates the entire architecture with the incorporated
new design decision (chosen solution). Consequently, the collaborations through
AK sharing of these two evaluation activities are quite similar. Hence, we do not
repeat them again. We focus on the activity “modify the architecture description”.

17.5.5.1 Horizontal Collaboration

Collaboration in this activity happens between sequential activities, i.e., horizontal
collaboration from architecture description to detailed design. In this collabora-
tion, the Knowledge Repository can also act as the hub in which the architects and
designers share the architecture description information.

Running example: An architect makes a design decision “use real time control
during data taking and processing”, annotates, and stores this AK entity into the
Knowledge Repository. A designer retrieves the latest design decisions from the
Knowledge Repository and makes a detailed design which is based on this design
decision.

17 Collaborative Software Architecting Through Knowledge Sharing 361

17.5.5.2 Vertical Collaboration

Based on the evaluation results, an architect modifies the design and documents the
outcome of design, using natural language or special notations (e.g., Architectural
Description Language or UML) in a document. The architecture description can be
completed by a single architect in a small project, but for a large project, several
architects will be working together for the various parts of the system. The collabo-
ration among them is essential to produce an integrated and consistent architecture
document in the end. The Knowledge Repository acts as the hub in which all the
architects share the architecture description information with each other.

Running example: One of the user concerns about the system is stated as
“Performance issue is in a higher priority than cost in this system”. Architect A
makes a design decision to address this concern as “use real time control during data
taking and processing”, and annotates and stores this AK entity into the Knowledge
Repository. Architect B makes another design decision to address the same concern
as “limit the data payload during data taking and processing”, annotates, and stores
this AK entity into the Knowledge Repository as well. Architect C retrieves the lat-
est design decisions from the Knowledge Repository and uses the design maturity
assessment function provided by Document Knowledge Client to verify the architec-
ture design. The design maturity assessment function detects that these two design
decisions address the same concern and are actually in conflict with each other.
Therefore, Architect C tries to negotiate with Architects A and B to come up with
a single design decision, e.g., “use real time control during data taking and pro-
cessing”. Other defects or weak points can also be detected by the design maturity
assessment, such as incompleteness. Architect C annotates the new design decision
and stores (updates) the Knowledge Repository for further collaboration with other
architects.

17.5.6 Feedback Loop

Feedback can be provided from any architecting activity to the RE activity, as for
example new user concerns, solutions and design decisions pose new requirements.
Architecting is a highly iterative process. In each iteration, the requirements are
revisited until all the architectural significant requirements are satisfied and all risks
are mitigated. The Knowledge Repository is the central storage of AK produced in
all activities, and supports feeding this knowledge back to the RE activity.

Running example: An example of collaboration that concerns providing feedback
to RE is the following: the architect makes a design decision “use SAS (a soft-
ware package for data visualization) for data observation”, annotates, and stores this
design decision into the Knowledge Repository. A requirements engineer retrieves
this design decision from the Knowledge Repository and finds that this design deci-
sion results in a new requirement “the data observation should be visualized in
GUTI”. The requirements engineer annotates and stores this newly-produced require-
ment into the Knowledge Repository. In this way, (other) requirements engineers

362 P. Liang et al.

can retrieve the updated requirements from the Knowledge Repository and validate
the consistency between the new requirement and the existing ones.

17.5.7 Architectural Knowledge Translation

AK translation is a common function in all activities (both RE and architecting),
since the involved stakeholders typically use different AK domain models to pro-
duce and consume the AK. It is comparable to human language translation, were
people from different countries speaking different languages try to communicate. A
translator is needed for effective communication between them, as he or she trans-
lates from one language to another and vice versa. The quality of the translation
depends on the quality of the translator, i.e., how correctly the translator can translate
knowledge. In AK translation, various translation methods can be employed with
their specific advantages and disadvantages depending on the translation context
(number of involved AK domain models and AK entities, etc.,) [26, 27].

Running example: A requirements engineer working at branch A of Astron uses
the AREL AK domain model [35] to annotate knowledge about requirements e.g.,
“The user (scientist) uses these interfaces to propose and specify observations” (an
AK entity of AREL concept Functional requirement), and “The new user (scientist)
shall know how to use these interfaces to propose and specify observations in 2 h”
(an AK entity of AREL concept Non-functional requirement). These two AK enti-
ties are subsequently stored into the Knowledge Repository. An architect working
at branch B of Astron uses the LOFAR AK domain model [18] to consume and pro-
duce AK. In particular, the architect uses the concept Requirement from the LOFAR
AK domain model to retrieve all the requirements information from the Knowledge
Repository which has been produced by the requirements engineer of branch A. Due
to the different requirement concepts being used by the AK producer (requirements
engineer at branch A) and consumer (architect at branch B), knowledge translation
is needed. The Knowledge Translator uses the defined AK concept mapping rela-
tionship to translate AK entities. For example, the AREL AK concept Functional
requirement and Non-functional requirement are both the subClassOf the LOFAR
AK concept Requirement. Using this relationship, the Knowledge Translator trans-
lates the two AK entities annotated in the AREL domain model into the AK entities
in the LOFAR domain model and stores translated AK entities into the Knowledge
Repository. After this translation, the architect at branch B can retrieve all the
requirements information from the Knowledge Repository.

17.6 Related Work

Computer Supported Cooperative Work (CSCW) in software engineering com-
prises all software engineering methods, norms, and tools that support teamwork
flexibly and effectively [7]. CSCW concentrates on improving the efficiency of

17 Collaborative Software Architecting Through Knowledge Sharing 363

groupware [25] for software development. It focuses on the vertical collaboration
in the software development lifecycle, e.g., the collaboration among requirements
engineers or among designers. One such example is ProjectIT-Studio, an integrated
environment that supports collaborative RE by combining wikis with CASE tools
for requirements specification and validation [14]. This tool can assist non-technical
stakeholders during the requirements specification and help requirements engineers
for a seamless integration with dedicated RE CASE tools. ProjectIT-Studio fosters
the stakeholders’ involvement in collaborative RE from a socio-technical perspec-
tive. Another example is the UML profile UML-G for cooperative UML modeling
in the design activity [32]. It supports software modeling by explicitly representing
shared data, roles and actors in cooperative sessions. UML-G stresses the sharing of
design outcomes (i.e., models), but does not pay attention to the rationale underneath
the design.

A CSCW approach for architecting was proposed in [15] addressing the collabo-
rative architecture modeling of complex component-based systems. A collaborative
modeling tool was provided for the architecture design team in which several archi-
tects design architecture cooperatively. Multiple architects are able to concurrently
access and manipulate the software architecture information stored in a server
machine. The shared software architecture information in this tool is mostly the
design artifacts (e.g., components, data flows, external entities, etc.). There is no
support to store information about design decisions and rationale.

Similarly, Maheshwari and Teoh implemented a web-based tool for collabora-
tive software architecture evaluation, supporting the Architecture Tradeoff Analysis
Method (ATAM) [29]. They argue that the ATAM method has its limitations in
an increasingly globalized software industry in which the distribution of develop-
ment teams is extensive. Their web-based tool provides a mental mapping from
the physical world to the internet world. For example, their tool set provides com-
munication tools, such as chatting, brainstorming, voting tool, etc. The tool set
also provides some assistant tools for ATAM, such as Utility Tree Viewer/Editor,
Features Evaluator, etc.). Most of the knowledge exchanged by their tool set is per-
sonalized knowledge, which is often difficult to understand by users who come from
different backgrounds.

Farenhorst et al. use wikis to support collaboration, communication, and con-
sensus decision making in the architecting process of distributed development by
sharing AK [13]. They suggested that, for successful AK sharing, it is necessary to
tailor the types and content of AK for sharing according to the concrete architecting
process [12]. Their work focuses on personalized (e.g., by using yellow pages) and
documented AK and not on formal AK.

PAKME (Process-centric Architectural Knowledge Management Environment)
is a web-based tool aimed at providing knowledge management support for the
architecting process [1]. PAKME focuses on various collaborative features (e.g.,
collaborative decision making) for distributed stakeholders involved in the archi-
tecting process by managing codified AK (pattern, decision etc.,) and personalized
AK (contact management, online collaboration, etc.). Other related work on AK
sharing and reusing can be found in the SHARK workshop series [3, 4, 24].

364 P. Liang et al.
17.7 Conclusions and Future Work

AK is widely accepted and recognized to be of paramount importance for the suc-
cess of software architecting. However, the collaboration among the stakeholders
involved in the architecting process is hindered by the lack of integration of archi-
tecting activities and the corresponding AK. This has severe implications for the
quality of both the architecting process and the product. This chapter presented a
collaborative architecting process and the accompanying tool suite that integrate the
architecting activities through AK sharing.

The process and the accompanying tool suite address the four goals of collabo-
ration in software architecting identified in Section 17.2.1:

(1) Using the central Knowledge Repository and Knowledge Client tools, an
integrated and consistent architecture document can be produced through
stakeholders collaboration;

(2) Using various AK domain models to capture (annotate) AK in the Knowledge
Clients, dependencies and especially traceability among architecture artifacts
can be effectively managed in the Knowledge Repository;

(3) Using the functions provided by the Knowledge Client tools (e.g., design matu-
rity assessment of the Document Knowledge Client), the architectural conflicts,
risks, inconsistency and incompleteness can be identified, recorded and resolved
based on the formal relationships defined in the AK domain model and semantic
web inference;

(4) Using the central Knowledge Repository, all the knowledge which is relevant to
the whole architecting process (AK) is recorded.

Although the proposed approach (process and tool suite) was derived from a
specific organization, it is generally applicable to other organizations: as explained
in Section 17.3, the proposed collaborative architecting process is orthogonal to
current architecting processes. Due to its generic nature, it has to be adapted
and customized into an existing architecting process before it is put into prac-
tice. For the accompanying tool suite, some general tools (Knowledge Repository,
Document Knowledge Client, Knowledge Explorer, and Knowledge Translator) can
be adjusted and employed to the architecting processes mentioned above since they
follow closely the proposed process. The Excel and Python Plug-ins have been
developed according to Astron’s needs, and can only be used if other organizations
have similar needs (quantitative analysis).

The KA tool suite has been used and (empirically) validated in two industrial case
studies at Astron for quantitative analysis of architecture design [20] and enrichment
of architecture documentation [18]. In [20] the tool suite was deemed effective for
facilitating AK sharing for verification and validation of quantitative architectural
solutions. In [18] we proved that the tool suite helps to partially address the short-
comings of current architecture documentation approaches of large and complex
systems.

In the future, the integrated collaborative architecting process with the tool suite
should be further validated in a larger industrial project with a cost-benefit analysis.

17 Collaborative Software Architecting Through Knowledge Sharing 365

The tool suite needs to be further improved with respect to its usability and scala-
bility. Finally, we plan to extend this suite with other tools for a wider application
of AK sharing (e.g., UML/ADL modelers, Email Plug-in, and other quantitative
analysis tools).

Acknowledgments This research has been partially sponsored by the Dutch Joint Academic
and Commercial Quality Research & Development (Jacquard) program on Software Engineering
Research via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN about architectural knowl-
edge. The authors would like to thank Astron for their support and access to the LOFAR software
architecture documents.

References

1. Ali-Babar M, Gorton I (2007) A tool for managing software architecture knowledge.
Proceedings of the 2nd Workshop on Sharing and Reusing architectural Knowledge —
Architecture, rationale, and Design Intent (SHARK/ADI 2007), 20-26 May, pp. 11-17.

2. Ali-Babar M, Gorton I, Kitchenham B (2006) A framework for supporting architecture
knowledge and rationale management. In: Dutoit AH et al. (Eds.) Rationale Management
in Software Engineering. Berlin: Springer-Verlag, pp. 237-254.

3. Avgeriou P, Lago P, Kruchten P (2008) Third International Workshop on Sharing and Reusing
Architectural Knowledge (SHARK 2008). ICSE Companion, pp. 1065-1066.

4. Avgeriou P, Kruchten P, Lago P, Grisham P, Perry D (2007) Architectural knowledge and
rationale: Issues, trends, challenges. ACM SIGSOFT Software Engineering Notes 32(4):
41-46.

5. Bass L, Clements P, Kazman R (2003) Software Architecture in Practice, 2nd edn. Boston,
MA: Addison-Wesley Professional.

6. Bhat JM, Gupta M, Murthy SN (2006) Overcoming requirements engineering challenges:
Lessons from offshore outsourcing. IEEE Software 23(5): 38—44.

7. Bischofberger WR, Kofler T, Mitzel KU, Schiffer B (2002) Computer supported coopera-
tive software engineering with beyond-sniff. Proceedings of the 7th Conference on Software
Engineering Environments (SEE 1995), 5-7 April, pp. 135-143.

8. Capilla R, Nava F, Carrillo C (2008) Effort estimation in capturing architectural knowl-
edge. Proceedings of the 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), 15-19 September, pp. 208-217.

9. Capilla R, Nava F, Pérez S, Duefias J (2006) A web-based tool for managing architectural
design decisions. ACM SIGSOFT Software Engineering Notes 31(5): 20-27.

10. de Boer RC, Farenhorst R, Lago P, van Vliet H, Clerc V, Jansen A (2007) Architectural knowl-
edge: Getting to the core. Proceedings of the 3rd International Conference on the Quality of
Software Architectures (QoSA 2007), 12—13 July, pp. 197-214.

11. Dingsgyr T, Conradi R (2002) A survey of case studies of the use of knowledge manage-
ment in software engineering. International Journal of Software Engineering and Knowledge
Engineering 12(4): 391-414.

12. Farenhorst R (2006) Tailoring knowledge sharing to the architecting process. ACM SIGSOFT
Software Engineering Notes 31(5): 15-19.

13. Farenhorst R, van Vliet H (2008) Experiences with a wiki to support architectural knowledge
sharing. Proceedings of the 3rd Workshop on Wikis for Software Engineering (Wikis4SE
2008), 8—10 September.

14. Ferreira D, da Silva AR (2008) Wiki supported collaborative requirements engineering.
Proceedings of the 3rd Workshop on Wikis for Software Engineering (Wikis4SE 2008), 8-10
September.

15. Guo J, Liao Y, Parviz B (2006) A collaboration-oriented software architecture modeling
system — JarchiDesigner. Proceedings of the 13th Annual IEEE International Symposium

366

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

P. Liang et al.

and Workshop on Engineering of Computer Based Systems (ECBS 2006), 27-30 March,
pp. 481-482.

Hansen MT, Nohria N, Tierney T (1999) What’s your strategy for managing knowledge?
Havard Business Review 77(2): 106-116.

. Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America P (2005) A general model of

software architecture design derived from five industrial approaches. Journal of Systems and
Software 80(1): 106-126.

Jansen A, Avgeriou P, van der Ven JS (2009) Enriching software architecture documentation.
Journal of Systems and Software 82(8): 1232-1248.

Jansen A, Bosch J (2005) Software architecture as a set of architectural design decisions.
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA
2005), 6-10 November, pp. 109-120.

Jansen A, de Vries T, Avgeriou P, van Veelen M (2008) Sharing the architectural knowledge
of quantitative analysis. Proceedings of the 4th International Conference on the Quality of
Software Architectures (QoSA 2008), 14—17 October, pp. 220-234.

Jansen A, van der Ven J, Avgeriou P (2007) Tool support for architectural decisions.
Proceedings of the 6th Working IEEE/IFIP Conference on Software Architecture (WICSA
2007), 6-9 January, pp. 44-53.

Kruchten P (2004) An ontology of architectural design decisions in software intensive sys-
tems. Proceedings of the 2nd Groningen Workshop on Software Variability Management
(SVM 2004), 2-3 December, pp. 54-61.

Kruchten P, Lago P, van Vliet H (2006) Building up and reasoning about architectural
knowledge. Proceedings of the 2nd International Conference on the Quality of Software
Architectures (QoSA 2006), 27-29 June, pp. 43-58.

Lago P, Avgeriou P (2006) First workshop on sharing and reusing architectural knowledge.
ACM SIGSOFT Software Engineering Notes 31(5): 32-36.

LiJ, Li T, Lin Z, Mathur AP, Kanoun K (2004) Computer supported co-operative work in soft-
ware engineering. Proceedings of the 28th International Computer Software and Applications
Conference (COMPSAC 2004), 27-30 September, pp. 328-328.

Liang P, Jansen A, Avgeriou P (2008) Selecting a high-quality central model for sharing
architectural knowledge. Proceedings of the 8th International Conference on Quality Software
(QSIC 2008), 12-13 August, pp. 357-365.

Liang P, Jansen A, Avgeriou P (2009) Sharing architecture knowledge through models:
Quality and cost. The Knowledge Engineering Review 24(3): 225-244.

Liang P, Jansen A, Avgeriou P (2009) Knowledge architect: A tool suite for managing
software architecture knowledge. Technical Report RUG-SEARCH-09-LO01, University of
Groningen, http://www.cs.rug.nl/~liangp/download/liang2009kat.pdf.

Maheshwari P, Teoh A (2005) Supporting ATAM with a collaborative web-based software
architecture evaluation tool. Science of Computer Programming 57(1): 109—-128.

Nonaka I, Takeuchi H (1995) The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. New York: Oxford University Press.

Nuseibeh B (2001) Weaving together requirements and architectures. IEEE Computer 34(3):
115-117.

Rubart J, Dawabi P (2004) Shared data modeling with UML-G. International Journal of
Computer Applications in Technology 19(3): 231-243.

Rus I, Lindvall M (2002) Knowledge management in software engineering. IEEE Software
19(3): 26-38.

Tang A, Ali-Babar M, Gorton I, Han J (2006) A survey of architecture design rationale.
Journal of Systems and Software 79(12): 1792-1804.

Tang A, Jin Y, Han J (2007) A rationale-based architecture model for design traceability and
reasoning. Journal of Systems and Software 80(6): 918-934.

Tyree J, Akerman A (2005) Architecture decisions: Demystifying architecture. IEEE Software
22(2): 19-27.

17

37.

38.

Collaborative Software Architecting Through Knowledge Sharing 367

van der Ven J, Jansen A, Avgeriou P, Hammer D (2006) Using architectural decisions. Short
Papers of the 2nd International Conference on the Quality of Software Architectures (QoSA
2006), 27-29 July.

Whitehead J (2007) Collaboration in software engineering: A roadmap. Proceedings of Future
of Software Engineering (FOSE 2007), 20-22 March, pp. 214-225.

	17 Collaborative Software Architecting Through Knowledge Sharing
	17.1 Introduction
	17.2 Theoretical Background
	17.2.1 Collaboration in Software Architecting
	17.2.2 Knowledge Management for Collaborative Architecting

	17.3 A Process for Collaborative Software Architecting
	17.4 The Knowledge Architect Tool Suite
	17.4.1 Knowledge Repository
	17.4.2 Document Knowledge Client
	17.4.3 Excel Plug-In
	17.4.4 Python Plug-In
	17.4.5 Knowledge Explorer
	17.4.6 Knowledge Translator

	17.5 Collaboration Within the Process with KA
	17.5.1 Requirements Engineering
	17.5.1.1 Horizontal Collaboration
	17.5.1.2 Vertical Collaboration

	17.5.2 Scope Problem Space
	17.5.2.1 Horizontal Collaboration

	17.5.3 Propose Solutions
	17.5.3.1 Horizontal Collaboration
	17.5.3.2 Vertical Collaboration

	17.5.4 Evaluate Solutions and Choose One
	17.5.4.1 Horizontal Collaboration
	17.5.4.2 Vertical Collaboration

	17.5.5 Evaluate Architecture and Modify the Architecture Description
	17.5.5.1 Horizontal Collaboration
	17.5.5.2 Vertical Collaboration

	17.5.6 Feedback Loop
	17.5.7 Architectural Knowledge Translation

	17.6 Related Work
	17.7 Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

