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PICK MATRIX CONDITIONS FOR SIGN-DEFINITE SOLUTIONS
OF THE ALGEBRAIC RICCATI EQUATION∗

H. L. TRENTELMAN† AND P. RAPISARDA‡

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 969–991

Abstract. We study the existence of positive and negative semidefinite solutions of algebraic
Riccati equations (ARE) corresponding to linear quadratic problems with an indefinite cost func-
tional. The formulation of reasonable necessary and sufficient conditions for the existence of such
solutions is a long-standing open problem. A central role is played by certain two-variable polynomial
matrices associated with the ARE. Our main result characterizes all unmixed solutions of the ARE
in terms of the Pick matrices associated with these two-variable polynomial matrices. As a corollary
of this result, we find that the signatures of the extremal solutions of the ARE are determined by
the signatures of particular Pick matrices.

Key words. algebraic Riccati equation, existence of semidefinite solutions, two-variable poly-
nomial matrices, Pick matrices, dissipative systems
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1. Introduction and problem statement. Let A ∈ R
n×n and B ∈ R

n×m be
such that (A,B) is a controllable pair. Let Q ∈ R

n×n be symmetric and let R ∈ R
m×m

be nonsingular and symmetric. Finally, let S ∈ R
m×n. The quadratic equation

ATK +KA+Q− (KB + ST )R−1(BTK + S) = 0(1)

in the unknown n × n matrix K is called the (continuous-time) algebraic Riccati
equation (the ARE). Since its introduction in control theory at the beginning of the
sixties, the ARE has been studied extensively because of its prominent role in linear
quadratic optimal control and filtering, H∞-optimal control, differential games, and
stochastic filtering and control. We refer to the papers collected in [2] for a discussion
of the ARE and its applications and for an overview of the existing literature.

In this paper, we restrict ourselves to the case in which R is positive definite.
However, the weighting matrix

M :=

(
Q ST

S R

)

is allowed to be indefinite. Our aim is to address a long-standing open problem
concerning the ARE, namely, the problem of formulating reasonable necessary and
sufficient conditions for the existence of at least one real positive semidefinite solution
or of at least one real negative semidefinite solution. We want to stress that the main
difficulty is the indefiniteness of M . For the case in which M is positive semidefinite,
the problem is already well understood. For this case, necessary and sufficient condi-
tions for the existence of at least one real positive semidefinite solution were obtained
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in [5] and [6]. Basically, these necessary and sufficient conditions can be formulated as
follows: factor M = (C D)T (C D). Then the ARE (1) has at least one real positive
semidefinite solution if and only if the system (A,B,C,D) is output stabilizable (see
also [17], [23], or [24]).

For indefinite weighting matricesM , the problem was listed in [13] among a series
of open problems in the field of systems and control. Partial results for this problem
were obtained in [19, 20, 1, 7, 8]. For an overview and a discussion of these results, as
well as their relation to the classical problem of the existence of nonnegative storage
functions for dissipative systems, we refer to [13].

In the present paper we will present a solution to this open problem, under the
assumption that the pair (A,B) is controllable. It will be proven that the signs of the
smallest and largest real symmetric solution, respectively, depend on the signs of cer-
tain constant n×n matrices (so called Pick matrices, associated with the ARE), which
are easily constructed from the parameters appearing in the ARE. A necessary and
sufficient condition for the existence of a real symmetric positive semidefinite solution
of the ARE (1) will turn out to be that (i) it has at least one real symmetric solu-
tion, and (ii) a suitable Pick matrix is negative semidefinite. Likewise, the existence
of at least one negative semidefinite solution is determined by the positive semidef-
initeness of a suitable Pick matrix. In the process of establishing these conditions
we obtain a number of intermediate results, among which are a new characterization
of all unmixed real symmetric solutions of the ARE, and a new characterization of
the supremal and infimal real symmetric solutions, all in terms of the Pick matrices
associated with the ARE.

A few words on notation are required at this point. In this paper we adopt the
usual symbols R and C in order to denote the real and complex numbers, respectively.
The open and closed right half-planes of C are denoted, respectively, by C

0
+ and C+.

Given λ ∈ C, its complex conjugate is denoted by λ̄. The space of n-dimensional
real, respectively complex, vectors is denoted by R

n, respectively C
n, and the space

of m× n real, respectively complex, matrices, by R
m×n, respectively C

m×n.

The symbol R
•×n denotes the space of real matrices with n columns, and R

m×•

denotes the space of real matrices with m rows. Given two column vectors x and y,
we denote with col(x, y) the vector obtained by stacking x over y. If A ∈ R

m×n,
then AT ∈ R

n×m denotes its transpose, and if A ∈ C
m×n, then A∗ ∈ C

n×m denotes
its conjugate transpose ĀT . If A ∈ C

n×n is Hermitian, i.e., A∗ = A, then we define
the signature of A as the triple sign(A) = (n−, n0, n+), where n− is the number of
negative eigenvalues of A, n0 the algebraic multiplicity of 0 as an eigenvalue of A, and
n+ the number of positive eigenvalues of A.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted
by R[ξ]; analogously, the ring of two-variable polynomials with real coefficients in the
indeterminates ζ and η is denoted by R[ζ, η]. The space of all n × m polynomial
matrices in the indeterminate ξ is denoted by R

n×m[ξ], and that consisting of all
n ×m polynomial matrices in the indeterminates ζ and η by R

n×m[ζ, η]. The space
of polynomial matrices with real coefficients in the indeterminate ξ with n columns
is denoted by R

•×n[ξ], and R
m×•[ξ] is the space of polynomial matrices with m rows.

Given a matrix R ∈ R
n×m[ξ], we define R∼(ξ) := RT (−ξ) ∈ R

m×n[ξ]. If F ∈ R
m×n[ξ],

then F can be written as F (ξ) = F0 + F1ξ + · · · + FLξ
L, where Fj ∈ R

m×n for

j = 0, 1, . . . , L. We call the m × (L + 1)n matrix F̃ :=
(
F0 F1 . . . FL

)
the

coefficient matrix of F . It is easy to see that
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F (ξ) = F̃




In
Inξ
...

Inξ
L


 .

For a given finite-dimensional Euclidean space X, we denote by C∞(R, X) the set
of all infinitely differentiable functions from R to X, and by D(R, X) the subset of
C∞(R, X) consisting of those functions having compact support. Finally, if K is a
symmetric n× n matrix, the quadratic form on R

n defined by x �→ xTKx is denoted
by | x |2K .

2. Linear differential systems and quadratic differential forms. In this
section we give a brief review of the notion of linear differential systems. The reader is
referred to the textbook [9] or to [21] for a thorough exposition. A linear differential
system is a linear subspace B of C∞(R,Rq) of all solutions w of a given system of linear,
constant coefficient, higher order differential equations. Such a system of differential
equations can always be represented as a single equation

R

(
d

dt

)
w = 0,(2)

where R ∈ R
•×q[ξ] is a real polynomial matrix with q columns. The linear space B is

called the behavior of the linear differential system, and (2) is called a kernel repre-
sentation of B. The variable w is called the manifest variable of B. An alternative way
to represent the behavior of a linear differential system is as an image representation.
If M ∈ R

q×d[ξ] and B = {w ∈ C∞(R,Rq) | ∃ l ∈ C∞(R,Rd) such that w = M( d
dt )l},

then we call

w =M

(
d

dt

)
l(3)

an image representation of B. Not all behaviors admit an image representation; in-
deed, a behavior can be represented in image form if and only if every one of its
kernel representations is associated with a polynomial matrix R ∈ R

•×q[ξ] such that
rank(R(λ)) is constant for all λ ∈ C, or equivalently, such that B is controllable. The
image representation (3) of B is called observable if (M( d

dt )l = 0) =⇒ (l = 0). It can
be shown that this is the case if and only if the matrix M(λ) has full column rank for
all λ ∈ C.

We proceed to review the notion of state maps introduced in [12]. We will consider
only the case of image representations in this paper. Let (3) be an image represen-
tation of the behavior B. A polynomial matrix X ∈ R

n×d[ξ] is said to induce a state
map for B (or, simply, for M) if the latent variable x := X( d

dt )l satisfies the axiom of
state. This means that if we define the full behavior as

Bfull =

{
(w, x) ∈ C∞(R,Rq × R

n) | there exists

l ∈ C∞(R,Rd) such that w =M

(
d

dt

)
l, x = X

(
d

dt

)
l

}
,

then (w1, x1), (w2, x2) ∈ Bfull and x1(0) = x2(0) imply that (w1, x1) ∧ (w2, x2), the
concatenation of (w1, x1) and (w2, x2) at t = 0, belongs to the closure in the topology
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of L1
loc of Bfull (see [12]). Now assume that the image representation (3) is observable.

Then a state map for the system can be computed as follows. If necessary, permute
the components of w so that

M =

(
U
Y

)
(4)

with U ∈ R
d×d[ξ], det(U) �= 0, and Y U−1 is a proper rational matrix (it can be shown

that such a permutation always exists). Now consider the set

{r ∈ R
1×d[ξ] | rU−1 is strictly proper}.(5)

It is not difficult to show that this set is a vector space over R. It has been proved in
[12] that X is a state map for (3) if and only if its rows (interpreted as elements of the
vector space R

1×d[ξ] over R) span the vector space (5), and is a minimal state map
(i.e., inducing a state variable of minimal possible dimension) if and only if its rows
form a basis for (5). If this holds true, the number of rows of X is called the McMillan
degree of M , denoted n(M), or, referring to the behavior being represented in image
form, the McMillan degree of B, denoted n(B). It can be shown (see Proposition 3.5.5
of [12]) that n(M) = deg(det(U)).

In many modeling and control problems it is necessary to study certain function-
als of the system variables and their derivatives. In the context of linear systems
these functionals are often taken to be quadratic. An efficient representation for such
quadratic functionals by means of two-variable polynomial matrices has been proposed
in [18]. In this section we review the definitions and results of such a two-variable
polynomial framework, which are used in the rest of the paper.

Let Φ ∈ R
q1×q2 [ζ, η]; then Φ can be written in the form

Φ(ζ, η) =
N∑

h,k=0

Φh,kζ
hηk,

where Φh,k ∈ R
q1×q2 and N is an integer. The two-variable polynomial matrix Φ

induces a bilinear functional acting on infinitely differentiable trajectories as follows:

LΦ : C
∞(R,Rq1)× C∞(R,Rq2) −→ C∞(R,R),

LΦ(w1, w2) =

N∑
h,k=0

(
dhw1

dth

)T

Φh,k
dkw2

dtk
.

If Φ is a symmetric two-variable polynomial matrix, i.e., if q1 = q2 and Φh,k = ΦT
k,h

for all h, k, then it induces also a quadratic functional QΦ : C
∞(R,Rq) −→ C∞(R,R)

defined byQΦ(w) := LΦ(w,w). We will callQΦ the quadratic differential form (QDF)
associated with Φ. We denote the set of all symmetric q × q two-variable polynomial
matrices by R

q×q
s [ζ, η]. The QDF QΦ is called nonnegative, denoted QΦ ≥ 0, if

QΦ(w) ≥ 0 for all w ∈ C∞(R,Rq).
With every Φ ∈ R

q×q
s [ζ, η] we associate its coefficient matrix, which is defined as

the infinite symmetric matrix with a finite number of nonzero elements, given by

Φ̃ :=




Φ0,0 Φ0,1 . . . Φ0,N . . .
Φ1,0 Φ1,1 . . . Φ1,N . . .
...

...
...

...
...

ΦN,0 ΦN,1 . . . ΦN,N . . .
...

...
...

...
...



.
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Clearly, QΦ ≥ 0 if and only if Φ̃ ≥ 0.
The association of two-variable polynomial matrices with QDFs allows us to de-

velop a calculus that has applications in stability theory, optimal control, and H∞-
control (see [18], [16] and [22]). We restrict our attention to a couple of concepts that
are used extensively in this paper. One of them is the map ∂ : Rq×q

s [ζ, η] −→ R
q×q[ξ],

defined by

∂Φ(ξ) := Φ(−ξ, ξ).
Observe that for every Φ ∈ R

q×q
s [ζ, η], ∂Φ is para-Hermitian, i.e., ∂Φ = (∂Φ)∼.

Another feature of the calculus of QDFs that is used in this paper is the derivative
of a QDF. Given a QDF QΦ we define its derivative as the QDF d

dtQΦ defined by

( d
dtQΦ)(w) :=

d
dt (QΦ(w)). QΦ is called the derivative of QΨ if d

dtQΨ = QΦ. In terms
of the two-variable polynomial matrices associated with the QDFs, this relationship
is expressed equivalently as (ζ + η)Ψ(ζ, η) = Φ(ζ, η).

In this paper, we also use integrals of QDFs. In order to make sure that the
integrals exist, we assume that the trajectories on which the QDF acts are of compact
support, that is, they belong to D(R,Rq). Given a QDF QΦ, we define its integral as
the functional ∫

QΦ : D(R,R
q) −→ R,∫

QΦ(w) =

∫ +∞

−∞
QΦ(w)dt.

Questions such as when the integral of a QDF is a positive semidefinite operator arise
naturally in the study of dissipativity. We call a QDF QΦ average nonnegative if∫
QΦ ≥ 0, i.e.,

∫∞
−∞QΦ(w)dt ≥ 0 for all w ∈ D(R,Rq). A QDF can be tested for

average nonnegativity by analyzing the behavior of the para-Hermitian matrix ∂Φ on
the imaginary axis. Indeed, it is proven in [18] that∫

QΦ ≥ 0⇐⇒ ∂Φ(iω) ≥ 0 ∀ ω ∈ R.(6)

3. Storage functions and polynomial spectral factorization. In the con-
text of dissipative systems, a QDF measures the power going into a system: its
integral over the real line then measures the net flow of energy going into the system.
The concept of storage function emerges in the framework of QDFs as follows. Let
Φ ∈ R

q×q
s [ζ, η]; the QDF QΨ is said to be a storage function for QΦ (or Ψ is a storage

function for Φ) if the following dissipation inequality holds:

d

dt
QΨ ≤ QΦ.

Storage functions are related to dissipation functions, which we now define. A QDF
Q∆ is a dissipation function for QΦ (or ∆ is a dissipation function for Φ) if Q∆ ≥ 0
and

∫
QΦ =

∫
Q∆. There is a close relationship between storage functions, average

nonnegativity, and dissipation functions.
Proposition 1. Let Φ ∈ R

q×q
s [ζ, η]. The following conditions are equivalent:

1.
∫
QΦ ≥ 0;

2. Φ admits a storage function;
3. Φ admits a dissipation function.
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Moreover, there exists a one-to-one relation between storage functions Ψ and dissipa-
tion functions ∆ for Φ, defined by

d

dt
QΨ = QΦ −Q∆

or, equivalently,

(ζ + η)Ψ(ζ, η) = Φ(ζ, η)−∆(ζ, η).(7)

Since storage functions measure the energy stored inside a system, it is to be
expected that they are related to the memory, to the state, of the system. This
intuition has been formalized in [15] in more general terms than those needed in the
rest of this paper. For our purposes, the following result from [15] will do.

Proposition 2. Let B be represented by w = M( d
dt )l, and let X ∈ R

n×d[ξ]
induce a state map for B. Let P be a symmetric q × q matrix, and define the two-
variable polynomial matrix Φ(ζ, η) = MT (ζ)PM(η). Let QΨ be a storage function
for QΦ. Then QΨ is a quadratic function of the state, i.e., there exists a symmetric
n × n matrix K such that QΨ(l) = | X( d

dt )l |2K for all l ∈ C∞(R,Rd); equivalently,
Ψ(ζ, η) = XT (ζ)KX(η).

Given an average nonnegative QDF, in general there exist an infinite number
of storage functions. It turns out that they all lie between two extremal storage
functions.

Proposition 3. Let
∫
QΦ ≥ 0. Then there exist storage functions Ψ− and Ψ+

such that any other storage function Ψ for Φ satisfies

QΨ− ≤ QΨ ≤ QΨ+ .

In the following we call QΨ− the smallest and QΨ+ the largest storage function
of QΦ.

In many cases it is of interest to compute explicitly a storage function for a given
QDF. We review here a procedure to compute the extremal storage functions QΨ−
and QΨ+ introduced in Proposition 3. For this we need to introduce the notion
of polynomial spectral factorization of a para-Hermitian polynomial matrix. Let P
be a para-Hermitian polynomial matrix. A factorization P = F∼F , with F a real
polynomial matrix, is called a polynomial spectral factorization of P , and F is called
a spectral factor of P . The factorization is called Hurwitz if F is square and the roots
of det(F ) lie in C−. It is called semi-Hurwitz if the roots of det(F ) lie in C

0
−. The

factorization is called (semi-)anti-Hurwitz if F is square and the roots of det(F ) lie
in C+ (respectively, in C

0
+). It is well known (see, for example, [10]) that P has a

semi-Hurwitz and a (semi-)anti-Hurwitz spectral factorization if and only if P (iω) ≥ 0
for all ω ∈ R, and a Hurwitz and an anti-Hurwitz spectral factorization if and only
if P (iω) > 0 for all ω ∈ R. The following result shows how to use semi-Hurwitz and
semi-anti-Hurwitz polynomial spectral factorizations of ∂Φ to compute the extremal
storage functions of Φ.

Proposition 4. Let Φ(ζ, η) ∈ R
•×•
s [ζ, η]. Assume det(∂Φ) �= 0 and ∂Φ(iω) ≥ 0

for all ω ∈ R. Then the smallest and the largest storage functions Ψ− and Ψ+ of Φ
can be constructed as follows. Let H and A be semi-Hurwitz, respectively semi-anti-
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Hurwitz, polynomial spectral factors of ∂Φ. Then

Ψ+(ζ, η) =
Φ(ζ, η)−AT (ζ)A(η)

ζ + η
,

Ψ−(ζ, η) =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.

It also turns out that if P is para-Hermitian, and if P (iω) > 0 for all ω ∈ R, then
for every factorization of the scalar polynomial det(P ) as det(P ) = f∼f , where f and
f∼ have no common roots, there exists a polynomial spectral factorization of P as
P = F∼F , with det(F ) = f . This result is taken from [3].

Proposition 5. Let P ∈ R
m×m[ξ] be para-Hermitian. Assume that P (iω) > 0

for all ω ∈ R. Then for every factorization det(P ) = f∼f , with f ∈ R[ξ] such that f
and f∼ are coprime, there exists F ∈ R

m×m[ξ] such that P = F∼F and det(F ) = f .

4. Pick matrices. In this section we discuss Pick matrices associated with aver-
age nonnegative quadratic differential forms. In the following, let Φ(ζ, η) ∈ R

q×q[ζ, η].
Assume that ∂Φ(iω) > 0 for all ω ∈ R. Since ∂Φ is para-Hermitian, the degree of the
polynomial det(∂Φ) is even, say 2n. Also, det(∂Φ(iω)) > 0 for all ω ∈ R, so det(Φ)
can be factored as f∼f with f ∈ R[ξ] such that f and f∼ are coprime. Of course,
for a given Φ there are many f ’s that satisfy these properties. With any such f , we
associate a Pick matrix, denoted by Tf .

Pick matrices are most easily introduced in the special case in which the singu-
larities of ∂Φ are semisimple, i.e., every singularity λ of ∂Φ has the property that its
algebraic multiplicity (its multiplicity as a root of det(∂Φ)) is equal to its geometric
multiplicity (i.e., q− rank(∂Φ(λ)), the rank deficiency at λ). For the moment, assume
this to be the case.

Let f ∈ R[ξ] be such that det(∂Φ) = f∼f and (f, f∼) coprime. Let λ1, λ2, . . . , λn
be the roots of f . We use the convention that if the algebraic multiplicity of λi is
mi, then it appears in this list mi times, and we have ordered the roots in such a
way that λ1, λ2, . . . , λm1 are equal, that λm1+1, λm1+2, . . . , λm1+m2 are equal, etc.
Clearly, the other singularities of ∂Φ are then −λ1,−λ2, . . . ,−λn, the roots of f

∼.
Now for i = 1, 2, . . . , n, let vi ∈ C

q be such that

∂Φ(λi)vi = 0,

and such that v1, v2, . . . , vn are linearly independent. The Pick matrix associated
with f is now defined as the matrix

Tf :=




v∗
1Φ(λ̄1,λ1)v1

λ̄1+λ1

v∗
1Φ(λ̄1,λ2)v2

λ̄1+λ2
· · · v∗

1Φ(λ̄1,λk)vn

λ̄1+λn

v∗
2Φ(λ̄2,λ1)v1

λ̄2+λ1

v∗
2Φ(λ̄2,λ2)v2

λ̄2+λ2
· · · v∗

2Φ(λ̄2,λk)vn

λ̄2+λn

...
...

. . .
...

v∗
nΦ(λ̄n,λ1)v1

λ̄n+λ1

v∗
nΦ(λ̄n,λ2)v2

λ̄n+λ2
· · · v∗

nΦ(λ̄n,λn)vn

λ̄n+λn



.(8)

Note that Tf = T ∗
f ∈ C

n×n, where 2n is the degree of det(∂Φ). Note that the n func-

tions eλ1tv1, e
λ2tv2, . . . , e

λntvn span an n-dimensional subspace of the 2n-dimensional
complex linear space of solutions of the system of differential equations

(∂Φ)

(
d

dt

)
w = 0.(9)
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In the general case in which the singularities of ∂Φ are not all semisimple, the def-
inition of Tf is also straightforward but notationally more involved. We will introduce
the Pick matrix in the general case now.

The definition is most easily understood against the background of computing
solutions to the system of differential equations (9). In general, a basis for the linear
space of solutions of (9) is obtained by analyzing the structure of the singularities of
the polynomial matrix ∂Φ. Again let det(∂Φ) = f∼f be a given factorization, with
deg(f) = n. Let λ1, λ2, . . . , λk be the roots of f . Again, this list of roots does not
necessarily consist of distinct complex numbers. In fact, we use the convention that if
a given root λi has geometric multiplicity ni, then we include it ni times in our list of
roots. Hence, λ1, λ2, . . . , λn1 are equal, λn1+1, λn1+2, . . . , λn1+n2

are equal, etc. It is
well known that there exist integers d1, d2, . . . , dk ≥ 1 such that d1+ d2+ · · ·+ dn1

=
m1, the algebraic multiplicity of λ1, dn1+1+ dn1+2+ · · ·+ dn1+n2 = m2, the algebraic
multiplicity of λn1+1, etc. The sum

∑
imi of the algebraic multiplicities is equal to

n, the degree of f .

The n-dimensional subspace of solutions of (9) with exponents in {λ1, λ2, . . . , λk}
is then computed as follows. Let ∂Φ(i) be the ith derivative of ∂Φ. For each i =
1, 2, . . . , k there exist di complex vectors ai,0, ai,1, . . . , ai,di−1 ∈ C

q such that




( 00 ) ∂Φ
(0)(λi) ( 10 ) ∂Φ

(1)(λi) · · · · · · (
di−1

0

)
∂Φ(di−1)(λi)

0 ( 11 ) ∂Φ
(0)(λi) · · · · · · (

di−1
1

)
∂Φ(di−2)(λi)

0 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0
(
di−1
di−1

)
∂Φ(0)(λi)







ai,0
ai,1
...
...

ai,di−1



= 0

(10)

and such that the n vectors ai,j are linearly independent. Using these vectors we form
the matrices Vi ∈ C

diq×di defined by

Vi :=




( 00 ) ai,0 ( 11 ) ai,1 · · · (
di−2
di−2

)
ai,di−2

(
di−1
di−1

)
ai,di−1

( 10 ) ai,1 ( 21 ) ai,2 · · · (
di−1
di−2

)
ai,di−1 0

...
... 0 0(

di−2
0

)
ai,di−2

(
di−1
1

)
ai,di−1

...
...(

di−1
0

)
ai,di−1 0 · · · 0 0



.

(11)

For i = 1, 2, . . . , k, define the matrix function Wi : R → R
q×di by

Wi(t) := eλit
(
Iq×q tIq×q · · · tdi−1Iq×q

)
Vi,

and the matrix function W : R → R
q×n by

W (t) :=
(
W1(t) W2(t) · · · Wk(t)

)
.

Then the columns of W form a basis for the n-dimensional subspace of solutions of
(9) with exponents in {λ1, λ2, . . . , λk}.

We now introduce the Pick matrix Tf associated with Φ and the factorization



PICK MATRICES AND THE ALGEBRAIC RICCATI EQUATION 977

det(∂Φ) = f∼f . For i, j = 1, 2, . . . , k, define the nonsingular dj × dj matrix Λi,j by

Λi,j =




1 0 0 · · · · · · 0
−1

λ̄i+λj
1 0 · · · · · · 0

2!

(λ̄i+λj)2
−2!

λ̄i+λj
1 0 · · · 0

−3!

(λ̄i+λj)3
3!

(̄λi+λj)2
−3!

λ̄i+λj
1

. . . 0

...
...

. . .
. . .

. . . 0
(−1)dj−1(dj−1)!

(λ̄i+λj)
dj−1 · · · · · · (dj−1)!

(λ̄i+λj)2
−(dj−1)!

λ̄i+λj
1



.(12)

Also, for i, j = 1, 2, . . . , k we define Θi,j ∈ C
diq×djq by

Θi,j :=




Φ(λ̄i, λj)
∂Φ
∂η (λ̄i, λj) · · · ∂dj−1Φ

∂ηdj−1 (λ̄i, λj)

∂Φ
∂ζ (λ̄i, λj)

∂2Φ
∂ζ∂η (λ̄i, λj) · · · ∂djΦ

∂ζ∂ηdj−1 (λ̄i, λj)

...
...

. . .
...

∂di−1Φ
∂ζdi−1 (λ̄i, λj)

∂diΦ
∂ζdi−1∂η

(λ̄i, λj) · · · ∂di+dj−2Φ

∂ζdi−1∂ηdj−1 (λ̄i, λj)


 .(13)

Here, ∂i+jΦ
∂ζi∂ηj (ζ, η) denotes the (i, j)th partial derivative with respect to ζ and η of

Φ(ζ, η). We define the shift operator σ : C
diq×djq → C

diq×djq acting on matrices M
that are partitioned into q × q blocks as follows: if

M =




M1,1 M1,2 · · · M1,dj

M2,1 M2,2 · · · M2,dj

...
...

. . .
...

Mdi,1 Mdi,2 · · · Mdi,dj
,


 ,

then

σ(M) :=



0 0 · · · 0
0 M1,1 · · · M1,dj−1

...
...

. . .
...

0 Mdi−1,1 · · · Mdi−1,dj−1


 .

In terms of Θi,j and the shift-operator σ, for i, j = 1, 2, . . . , k, we define the matrices
Σi,j ∈ C

diq×djq by

Σi,j :=
1

λ̄i + λj
Θi,j +

1

(λ̄i + λj)2
σ(Θi,j) +

1

(λ̄i + λj)3
σ2(Θi,j) + · · ·

+
1

(λ̄i + λj)max(di,dj)−1
σmax(di,dj)−1(Θi,j).(14)

Here, for a given M , σ2(M) is defined as σ(σ(M)), etc. The Pick matrix associated
with Φ and the factorization det(∂Φ) = f∼f is now defined as the matrix Tf ∈ C

n×n,
Tf = (Ti,j)i,j=1,2,... ,k, where the (i, j)th block is the complex di × dj matrix given by

Ti,j := Λ
∗
j,iV

∗
i Σi,jVjΛi,j .(15)

Note that Tf is a Hermitian matrix.
For related material on Pick matrices, their application in interpolation problems,

and connections with systems and control, see [4], [25].
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5. The Riccati equation, linear matrix inequalities, and storage func-
tions. In this section we study the connection between the existence of real symmetric
solutions of the ARE and average nonnegativity of a given QDF associated with the
ARE.

We associate with the ARE (1) the system with manifest variable w = col(x, u)
represented by d

dtx = Ax+Bu, or equivalently

(
d
dtIn −A −B )( x

u

)
= 0.(16)

Equation (16) constitutes a kernel representation of the behavior

B = {col(x, u) ∈ C∞(R,Rn)× C∞(R,Rm) | (16) is satisfied}.(17)

A standing assumption in the remainder of this paper is that the pair (A,B) is
controllable. Under this assumption, B can be represented in image form. One such
representation can be computed as follows. LetX ∈ R

n×m[ξ] and U ∈ R
m×m[ξ] induce

a right coprime factorization of the rational matrix (ξIn−A)−1B, i.e., (ξIn−A)−1B =
X(ξ)U(ξ)−1 and

rank

(
X(λ)
U(λ)

)
= m

for all λ ∈ C. Then B is represented in observable image form as

(
x
u

)
=

(
X( d

dt )

U( d
dt )

)
l.(18)

Observe that any such X yields a minimal state map X( d
dt ) for B.

Given the matrices Q = QT ∈ R
n×n, R = RT ∈ R

m×m, and S ∈ R
m×n, and the

polynomial matricesX and U , we define the symmetricm×m two-variable polynomial
matrix Φ by

Φ(ζ, η) =
(
X(ζ)T U(ζ)T

)( Q ST

S R

)(
X(η)
U(η)

)
.(19)

Note that if l and col(x, u) are related by (18), then the QDF QΦ associated with Φ
satisfies

QΦ(l) =
(
xT uT

)( Q ST

S R

)(
x
u

)
.

Of course, (ξIn − A)−1B admits many right coprime factorizations. If X1U
−1
1 =

X2U
−1
2 are two right coprime factorizations, then they are related by a unimodular

transformation: there exists a unimodular V such that X2 = X1V and U2 = U1V .
Hence the associated two-variable polynomial matrices are related by Φ1(ζ, η) =
V T (ζ)Φ2(ζ, η)V (η).

Example 6. In the Riccati equation (1), let A = ( 0 0
0 1 ) , B = ( 1 0

0 1 ) , Q = ( 1 a
a 3 ) , R =

( 1 0
0 1 ), and S = (

0 0
0 0 ). Here a is a parameter taking values in R. Clearly, (ξI−A)−1B =

X(ξ)U(ξ)−1, withX(ξ) = ( 1 0
0 1 ), and U(ξ) =

( ξ 0
0 ξ−1

)
. The corresponding two-variable

polynomial matrix is Φ(ζ, η) =
( 1+ζη a

a 3+(ζ−1)(η−1)

)
.
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The next result connects the average nonnegativity of the QDF associated with
(19) with the existence of real symmetric solutions to the linear matrix inequality
associated with the ARE (1) and with the existence of storage functions for QΦ.

Theorem 7. Let Φ(ζ, η) be defined by (19), where X and U are such that
X(ξ)U(ξ)−1 is a right coprime factorization of (ξIn − A)−1B. Then the following
statements are equivalent:

1.
∫
QΦ ≥ 0;

2. there exists K = KT ∈ R
n×n such that | X( d

dt )l |2K is a storage function for
QΦ;

3. there exists K = KT ∈ R
n×n such that the (n + m) × (n + m) symmetric

matrix

L(K) :=

(
Q−ATK −KA −KB + ST

−BTK + S R

)

satisfies L(K) ≥ 0.
In fact, for every K = KT ∈ R

n×n there holds

d

dt

∣∣∣∣X
(
d

dt

)
l

∣∣∣∣
2

K

= QΦ(l)−
∣∣∣∣∣
(

X( d
dt )l

U( d
dt )l

)∣∣∣∣∣
2

L(K)

(20)

for all l ∈ C∞(R,Rm); equivalently,

(ζ + η)XT (ζ)KX(η) = Φ(ζ, η)− ( X(ζ)T U(ζ)T
)
L(K)

(
X(η)
U(η)

)
.

Consequently, for K = KT ∈ R
n×n the following statements are equivalent:

(i) L(K) ≥ 0;
(ii) | X( d

dt )l |2K is a storage function for QΦ;
(iii) ∣∣∣∣∣

(
X( d

dt )l

U( d
dt )l

)∣∣∣∣∣
2

L(K)

is a dissipation function for QΦ.
Proof. We prove the equivalence of (i),(ii), and (iii). The first part of the theorem

follows easily from this and from Proposition 1. We need the following lemma.
Lemma 8. Let X ∈ R

n×m[ξ] and U ∈ R
m×m[ξ] be such that X(ξ)U(ξ)−1 is a

right coprime factorization of (ξI −A)−1B. Then the mapping

C∞(R,Rm)→ R
n × R

m,

l �→
(
(X( d

dt )l)(0)

(U( d
dt )l)(0)

)

is surjective.
Proof of Lemma 8. Let (x0, u0) ∈ R

n × R
m. Let ũ ∈ C∞(R,Rm) be such that

ũ(0) = u0. Consider the differential equation ẋ = Ax + Bũ, x(0) = x0, and let
x̃ ∈ C∞(R,Rn) be its solution. Evidently,

col(x̃, ũ) ∈ im
(

X( d
dt )

U( d
dt )

)
,
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so there exists l ∈ C∞(R,Rm) such that

(
x̃
ũ

)
=

(
X( d

dt )

U( d
dt )

)
l.

Consequently,

(
x0
u0

)
=

(
x̃(0)
ũ(0)

)
=

(
(X( d

dt )l)(0)

(U( d
dt )l)(0)

)
.

This concludes the proof of the lemma.
We resume the proof of Theorem 7. Let K = KT ∈ R

n×n. We first prove that,
for all l, (20) holds; equivalently,

(ζ + η)X(ζ)TKX(η) = Φ(ζ, η)− ( X(ζ)T U(ζ)T
)
L(K)

(
X(η)
U(η)

)
.(21)

Indeed, from the fact that X(ξ)U(ξ)−1 = (ξI − A)−1B it follows that ξX(ξ) =
AX(ξ) +BU(ξ). Consequently,

(ζ + η)X(ζ)TKX(η) = X(ζ)TATKX(η) + U(ζ)TBTKX(η)

+ X(ζ)TKAX(η) +X(ζ)TKBU(η),

which can be rewritten as

(
X(ζ)T U(ζ)T

)( ATK +KA KB
BTK 0

)(
X(η)
U(η)

)
.

With Φ(ζ, η) defined by (19), equation (21) then follows immediately. Since, by
Lemma 8, the map

l �→
(
(X( d

dt )l)(0)

(U( d
dt )l)(0)

)

is surjective, we have∣∣∣∣∣
(

X( d
dt )l

U( d
dt )l

)∣∣∣∣∣
2

L(K)

≥ 0 ∀ l ∈ C∞(R,Rm)

if and only if L(K) ≥ 0. Thus the equivalence of (i), (ii), and (iii) follows immediately
from (20).

The equivalence of statements 1. and 2. follows from Propositions 1 and 2. The
equivalence of 2. and 3. is an immediate consequence of the equivalence of (i) and
(ii).

If we assume that the matrix R is positive definite, the result of Theorem 7 can
be sharpened, and a connection can be established between the QDF Φ(ζ, η) defined
in (19) and the ARE (1).

Theorem 9. Let Φ(ζ, η) be defined by (19), where X and U are such that
X(ξ)U(ξ)−1 is a right coprime factorization of (ξIn −A)−1B. Assume R > 0. Then
the following statements are equivalent:
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1.
∫
QΦ ≥ 0;

2. There exists a real symmetric solution to the ARE.
In fact, for every K = KT ∈ R

n×n the following conditions are equivalent:
(i) −K satisfies the ARE;
(ii) | X( d

dt )l |2K is a storage function for QΦ with associated dissipation function

∆(ζ, η) =
(
X(ζ)T U(ζ)T

)
L(K)

(
X(η)
U(η)

)
= F (ζ)TF (η),

where

F (ξ) := R− 1
2 (−BTK + S)X(ξ) +R

1
2U(ξ);

(iii) | X( d
dt )l |2K is a storage function for QΦ, and the rank of the coefficient

matrix of the QDF QΦ(l)− d
dt | X( d

dt )l |2K is equal to m.
Proof. We begin by proving the implication 1. ⇒ 2. From condition 1. and the

equivalence in (6), we obtain ∂Φ(iω) ≥ 0 for all ω ∈ R. Since det(∂Φ) �= 0, there exists
a semi-Hurwitz factorization ∂Φ = H∼H, with det(H) �= 0. According to Proposition
4, this yields the smallest storage function as induced by the two-variable polynomial
matrix

Ψ−(ζ, η) =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.

By Proposition 2, there exists K = KT ∈ R
n×n such that Ψ−(ζ, η) = XT (ζ)KX(η).

We claim that −K satisfies the ARE. Indeed, as in the proof of Theorem 7, we have

HT (ζ)H(η) =
(
X(ζ)T U(ζ)T

)
L(K)

(
X(η)
U(η)

)
.(22)

Since det(H) �= 0, the coefficient matrix H̃ of H has full row rankm. Since by Lemma
8 the mapping l �→ col((X( d

dt )l)(0), (U(
d
dt )l)(0)) is surjective, the coefficient matrix

of col(X(η), U(η)) has full row rank. Consequently, L(K) has rank m. Since R > 0,
rank(L(K)) = m if and only if the Schur complement of R in L(K) is zero, that is, if
and only if

Q−ATK −KA− (−KB + ST )R−1(−BTK + S) = 0,

in other words, if and only if −K satisfies the ARE. This concludes the proof of the
implication 1. ⇒ 2. The implication 2. ⇒ 1. follows from the implication (i) ⇒ (ii)
below.

Next, we prove the equivalence of (i), (ii), and (iii) of Theorem 9.
(i) ⇒ (ii). Assume −K satisfies the ARE. Then it is easily seen that

L(K) =
(
R−1/2(−BTK + S) R1/2

)T (
R−1/2(−BTK + S) R1/2

) ≥ 0.

From Theorem 7 it then follows that | X( d
dt )l |2K is a storage function for QΦ, with

associated dissipation function FT (ζ)F (η), where F (ξ) = R−1/2(−BTK + S)X(ξ) +
R1/2U(ξ).

(ii) ⇒ (iii). According to (ii), rank(L(K)) = m. The coefficient matrix of the
QDF QΦ(l)− d

dt | X( d
dt )l |2K is equal to

(
X̃

Ũ

)T

L(K)

(
X̃

Ũ

)
,
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with col(X̃, Ũ) the coefficient matrix of col(X,U). By Lemma 8 this coefficient matrix
has full row rank. This proves the implication.

(iii) ⇒ (i). Assume L(K) has rank m. Since rank(R) = m, this implies that
the Schur complement of R is equal to zero, equivalently that −K satisfies the
ARE.

Example 6, continued. For the Riccati equation of Example 6 we have ∂Φ(ξ) =( 1−ξ2 a

a 4−ξ2

)
, so ∂Φ(iω) =

(
1+ω2 a

a 4+ω2

)
. By (6), the Riccati equation has a real

symmetric solution if and only if ∂Φ(iω) ≥ 0 for all ω ∈ R. This holds if and only if
−2 ≤ a ≤ 2.

Connections between the ARE and the linear matrix inequality in statement 3.
of Theorem 7 are well-known. See, for example, Chap. 8 of [2], where solutions K of
the linear matrix inequality such that rank(L(K)) = m are called rank minimizing.
In a behavioral framework, connections between such concepts and storage functions
were established in [14]; see also Chapter 5 of [11].

6. Pick matrices and the algebraic Riccati equation. In this section we
derive the main result of this paper, a characterization of all unmixed real symmetric
solutions of the ARE in terms of the Pick matrices associated with the two-variable
polynomial matrix (19). As a corollary of this result, we obtain necessary and suffi-
cient conditions for the existence of sign-definite solutions of the ARE. These condi-
tions are in terms of the Pick matrices associated with the Hurwitz and anti-Hurwitz
factorizations of det(∂Φ).

In this section, let X(ξ)U(ξ)−1 be an arbitrary right coprime factorization of
(ξIn − A)−1B, and let the two-variable polynomial matrix Φ associated with the
ARE be given by (19). From the fact that ∂Φ is para-Hermitian, we know that
det(∂Φ) has even degree. In fact, the degree of det(∂Φ) is twice the dimension of the
underlying state space system (17).

Lemma 10. Let Φ(ζ, η) be defined as in (19), and assume R > 0. Then the degree
of det(∂Φ) is 2n.

Proof. Observe that ∂Φ = X∼QX + X∼STU + U∼SX + U∼RU. Multiplying
this equality on the right by U−1 and on the left by (U∼)−1 yields (U∼)−1∂ΦU−1 =
(U∼)−1X∼QXU−1 + (U∼)−1X∼ST +SXU−1+R. Now observe that X(ξ)U−1(ξ) =
(ξIn − A)−1B is a matrix of strictly proper rational functions. It follows that
(U∼)−1∂ΦU−1 is a matrix of proper rational functions and consequently
deg(det(∂Φ)) ≤ deg(det(U))+deg(det(U∼)) = 2n.We now show that deg(det(∂Φ)) =
2n. Indeed, since lim|λ|−→∞(U∼(λ))−1∂Φ(λ)U(λ) = R > 0, it follows that (U∼)−1∂ΦU
has an inverse whose entries are also proper rational functions. Consequently
deg(det(∂Φ)) = 2n.

Assume now that
∫
QΦ ≥ 0, equivalently ∂Φ(iω) ≥ 0, for all ω ∈ R (see (6)).

According to Theorem 9 this is equivalent to the existence of a real symmetric solution
of the ARE. Observe that every polynomial spectral factorization of ∂Φ as ∂Φ = F∼F
with F ∈ R

m×m[ξ] yields a factorization of det(∂Φ) as det(∂Φ) = f∼f , with f =
det(F ) and deg(f) = n. Let F be the set of all polynomials of degree n, with positive
highest degree coefficient, that can occur as the determinant of a polynomial spectral
factor of ∂Φ:

F := {f ∈ R[ξ] | f(ξ) = f0 + f1ξ + · · ·+ fnξ
n, fn > 0,

and there exists F ∈ R
m×m[ξ] such that ∂Φ = F∼F and det(F ) = f}.(23)
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Also, let S be the set of all real symmetric solutions of the ARE:
S := {K ∈ R

n×n | K = KT and K satisfies the ARE}.
For any K ∈ S, denote AK := A−BR−1(BTK+S) and let χAK

be the characteristic
polynomial of AK . Our basic result states that there is a one-to-one correspondence
between F and S.

Theorem 11. S �= ∅ if and only if ∂Φ(iω) ≥ 0 for all ω ∈ R. In that case there
exists a bijection between F and S. Such bijection Ric : F → S is defined as follows.
For any f ∈ F , let F ∈ R

m×m[ξ] be such that f = det(F ) and ∂Φ = F∼F . Then
define Ric(f) = K, where K = KT ∈ R

n×n is the unique solution of

Φ(ζ, η)− FT (ζ)F (η)

ζ + η
= XT (ζ)(−K)X(η).(24)

For any K ∈ S we have ∂Φ = (FK)
∼FK , where

FK(ξ) := R−1/2(BTK + S)X(ξ) +R1/2U(ξ).

Furthermore, for any K ∈ S we have det(FK) =
√
det(R) χAK

, whence det(∂Φ) =
det(R) (χAK

)∼χAK
and

K = Ric(
√
det(R) χAK

).

Proof. We begin by showing that the map Ric : F → S is well defined. Let f1 and
f2 be two elements of F , and let F1, F2 ∈ R

m×m[ξ] be such that ∂Φ = F∼
1 F1 = F∼

2 F2
and det(Fi) = fi, i = 1, 2. It is well known (see, for example, Theorem 5.3 of [10])
that there exists an orthogonal m×m matrix L such that F2 = LF1. Now let K1 and
K2 be n× n symmetric matrices such that

Φ(ζ, η)− FT
i (ζ)Fi(η)

ζ + η
= XT (ζ)(−Ki)X(η),

i = 1, 2. (Such matrices exist because of Theorem 2.) Then necessarily

XT (ζ)(−K1)X(η) = XT (ζ)(−K2)X(η).

It follows from the fact that X( d
dt ) is a minimal state map that the map l →

(X( d
dt )l)(0) is surjective. Hence for all x0 ∈ R

n there holds xT0 (−K1)x0 = xT0 (−K2)x0,
which implies K1 = K2. This shows that Ric is well defined.

We proceed to show that Ric is bijective. We first prove that it is injective.
Assume that Ric(f1) = K1 = Ric(f2) = K2. Let F1 and F2 be m × m polynomial
matrices such that ∂Φ = F∼

1 F1 = F∼
2 F2 and det(Fi) = fi, i = 1, 2. From the fact

that K1 = K2 and from (24) it follows that FT
1 (ζ)F1(η) = FT

2 (ζ)F2(η). This implies
that

det(F1(ζ)) det(F1(η)) = det(F2(ζ)) det(F2(η)),

so that f1(ζ)f1(η) = f2(ζ)f2(η). Given that the highest degree coefficient of f1 and
f2 is positive (see (23)), we conclude that f1 = f2. This concludes the proof of the
injectivity of Ric. In order to prove that Ric is surjective, let K = KT be a solution
to the ARE. According to Theorem 9 there holds

(ζ + η)XT (ζ)(−K)X(η) = Φ(ζ, η)− FK(ζ)
TFK(η),
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where FK ∈ R
m×m[ξ] is defined by

FK(ξ) = R− 1
2 (BTK + S)X(ξ) +R

1
2U(ξ).

Note that ∂Φ = (FK)
∼FK . Define now f := det(FK). Then K = Ric(f). This also

proves the second statement of the theorem.
Next we prove that for all K ∈ S we have det(FK) = det(R1/2)χAK

. Consider
the (n+m)× (n+m) polynomial matrix

P (ξ) :=

(
ξI −A B

−R−1/2(BTK + S) R1/2

)
.

Computing the determinant of P yields

det(P (ξ)) = det(ξI −A) det(R1/2 +R−1/2(BTK + S)(ξI −A)−1B)

= det(R1/2) det(ξI −A+BR−1(BTK + S)).

Using the fact that X(ξ)U(ξ)−1 is a right coprime factorization of (ξI − A)−1B and
that (A,B) is a controllable pair, we have det(U(ξ)) = det(ξI − A), so we obtain
det(R1/2)χAK

= det(FK). The remaining statements of the theorem follow immedi-
ately from this.

In the above, we have assumed that ∂Φ(iω) ≥ 0 for all ω ∈ R. In the case that,
in addition, ∂Φ is nonsingular along the imaginary axis, equivalently ∂Φ(iω) > 0
for all ω ∈ R, the one-to-one correspondence between polynomials and the set of
real symmetric solutions of the ARE can be made even more explicit. This will be
explained next.

Define Fcop as the set of all real polynomials f such that the determinant of ∂Φ
admits a factorization f∼f such that f and f∼ are coprime:

Fcop = {f ∈ R[ξ] | f(ξ) = f0 + f1ξ + · · ·+ fnξ
n, fn > 0, (f, f∼) coprime

and det(∂Φ) = f∼f}.

It is easily seen that if ∂Φ(iω) ≥ 0 for all ω ∈ R, then Fcop �= ∅ if and only if
∂Φ(iω) > 0 for all ω ∈ R. Hence it follows from Proposition 5 that Fcop ⊂ F . In the
remainder of this section we assume that ∂Φ(iω) > 0 for all ω ∈ R.

Note that if f ∈ Fcop and K = Ric(f), then, according to Theorem 11, f =√
det(R)χAK

, so χAK
and (χAK

)∼ are coprime; equivalently, σ(AK) ∩ σ(−AK) = ∅.
If a solution K of the ARE satisfies this property, we call it unmixed. The set of
all unmixed solutions of the ARE is denoted by Sunm. It follows immediately from
Theorem 11 that Ric defines a bijection between Fcop and Sunm.

We now explain the connection between the bijection Ric and the Pick matrices
Tf associated with Φ. Recall that the bijection Ric between Fcop and Sunm is defined
as follows. For a given f ∈ Fcop, let F ∈ R

m×m[ξ] be such that ∂Φ = F∼F and
det(F ) = f , and take K = Ric(f) to be the unique solution of (24). For the sake of
exposition, assume for the moment that the singularities of ∂Φ are semisimple. We
show how to compute, for f ∈ Fcop, the corresponding unmixed solution K = Ric(f),
using the Pick matrix Tf .

Let λ1, λ2, . . . , λn be the roots of f , with the convention that if a root has algebraic
multiplicity mi, then it appears in this list mi times, and λ1, λ2, . . . , λm1 are equal,
λm1+1, λm1+2, . . . , λm1+m2

are equal, etc. Let vi ∈ C
m be such that ∂Φ(λi)vi =
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0 and v1, v2, . . . , vn are linearly independent. Evaluating (24) at (ζ, η) = (λ̄i, λj),
premultiplying the result by v∗i and postmultiplying it by vj , we get

v∗iΦ(λ̄i, λj)vj
λ̄i + λj

− v∗i F
T (λ̄i)F (λj)vj
λ̄i + λj

= −v∗iXT (λ̄i)KX(λj)vj .

Note that, by coprimeness of f and f∼, λ̄i+λj �= 0 for all (i, j). Now make the crucial
observation that for all j

F (λj)vj = 0.

Indeed, by definition of vj we have F
T (−λj)F (λj)vj = 0. Since, however, FT (−λj)

is nonsingular (by coprimeness of f and f∼), the claim follows. Thus we immediately
obtain

v∗iΦ(λ̄i, λj)vj
λ̄i + λj

= −v∗iXT (λ̄i)KX(λj)vj ,

which is equivalent to

Tf = −(Sf )
∗KSf ,

where Sf is the zero state matrix associated with f , defined by

Sf :=
(
X(λ1)v1 . . . X(λn)vn

)
.

For a motivation of the terminology zero state matrix, we refer to the proof of Theorem
12 below. Note that Sf ∈ C

n×n. In Theorem 12 we will prove that for any f ∈ Fcop

the zero state matrix Sf is nonsingular. This immediately implies that the solution
K = Ric(f) is given by

K = Ric(f) = −(S∗
f )

−1Tf (Sf )
−1.(25)

The above argument can be generalized to the case in which not all singularities of
∂Φ are semisimple. In the general case, the zero state matrix Sf associated with the
polynomial factor f is defined in the following way. Let λ1, λ2, . . . , λk be the roots
of f . As in section 4, we use the convention that if a given root λi has geometric
multiplicity ni, then we include it ni times in our list of roots. For i = 1, 2, . . . , k,
let Vi ∈ C

dim×di be defined by (10) and (11) (with q = m). Furthermore, define the
n× di matrix Si by

Si :=
(
X(λi) X(1)(λi) . . . X(di−1)(λi)

)
Vi,

where X(j) denotes the jth derivative of X. The zero state matrix in the general case
is then defined by

Sf :=
(
S1 S2 . . . Sk

)
.(26)

Again, Sf ∈ C
n×n.

The following theorem is the main result of this paper. It yields the representation
(25) of the bijection Ric in the general, not necessarily semisimple, case.

Theorem 12. Assume ∂Φ(iω) ≥ 0 for all ω ∈ R. Then the following three
statements are equivalent:
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(i) ∂Φ(iω) > 0 for all ω ∈ R;
(ii) Fcop �= ∅;
(iii) Sunm �= ∅.

Assume that this holds. Then Ric : Fcop → Sunm is a bijection. For all f ∈ Fcop the
zero state matrix Sf defined by (26) is nonsingular. Furthermore, for any f ∈ Fcop,
the corresponding solution Ric(f) ∈ Sunm is given by

Ric(f) = −(S∗
f )

−1TfS
−1
f .(27)

Proof. The claim that conditions (i), (ii), and (iii) of Theorem 12 are equivalent,
and the claim that under this condition Ric defines a bijection between Fcop and
Sunm, follow from Theorem 11.

We prove that the zero state matrix (26) is nonsingular. Let F ∈ R
m×m[ξ]

be such that det(∂Φ) = f∼f and det(F ) = f . Let ξ = col(ξ1, ξ2, . . . , ξk), with
ξi = col(ξi,1, ξi,2, . . . , ξi,di) ∈ C

di , satisfy Sfξ = 0, equivalently,

k∑
i=1

(
X(λi) X(1)(λi) . . . X(di−1)(λi)

)
Viξi = 0.

We will show that ξi = 0 for i = 1, 2, . . . , k.
Recall that the system d

dtx = Ax+Bu has an observable image representation

(
x
u

)
=

(
X( d

dt )

U( d
dt )

)
l,(28)

and that X( d
dt ) is a minimal state map for this system. Consider the extended system

Bext, obtained by including f = F ( d
dt )l as a manifest variable, represented by the

image representation


 x

u
f


 =




X( d
dt )

U( d
dt )

F ( d
dt )


 l.

We claim that in the system Bext, col(x, u) is output and f is input, and that X(
d
dt )

is a minimal state map also for Bext.
To prove this, first note that

F∼F = X∼QX +X∼STU + U∼SX + U∼RU.

Multiplying this equality on the right by U−1 and on the left by (U∼)−1 yields

(U∼)−1F∼FU−1 = (U∼)−1X∼QXU−1 + (U∼)−1X∼ST + SXU−1 +R.

Since XU−1 is strictly proper and R > 0, this implies that FU−1 is a proper rational
matrix with nonsingular feedthrough term. This implies that also its inverse, UF−1,
is proper, and XF−1 = XU−1UF−1 is strictly proper. Since, therefore,(

X
U

)
F−1

is a proper rational matrix, in the system Bext, col(x, u) is output and f is input.
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Next we prove that X( d
dt ) is a minimal state map for Bext. To prove this,

we show that the rows of X form a basis for the real linear space S1 = {r ∈
R
1×m[ξ] | rF−1 is strictly proper}. Since X induces a minimal state map for our

original system (28), the rows of X form a basis for the real linear space S2 =
{r ∈ R

1×m[ξ] | rU−1 is strictly proper}. Since UF−1 and FU−1 are proper, rF−1 is
strictly proper if and only if rU−1 is strictly proper. Hence the two linear spaces S1
and S2 coincide, so the rows of X indeed form a basis for S1.

Define a particular latent variable trajectory for Bext by

l̃(t) =

k∑
i=1

eλit
(
Im×m tIm×m . . . tdi−1Im×m

)
Viξi.

Then we clearly have ∂Φ( d
dt )l̃ = 0. Using the fact that none of the λi’s is a singularity

of F∼, this implies that F ( d
dt )l̃ = 0. Our aim is to prove that l̃ = 0. Indeed, look at

the trajectory of the system Bext corresponding to the choice of latent variable l̃. The
input f = F ( d

dt )l̃ is equal to zero. Furthermore, a straightforward calculation shows
that the value of the corresponding state trajectory at time t = 0 equals(

X

(
d

dt

)
l̃

)
(0) =

k∑
i=1

(
X(λi) X(1)(λi) . . . X(di−1)(λi)

)
Viξi = 0.

Hence the output (x, u) = (X( d
dt )l̃, U(

d
dt )l̃ of Bext is zero. By observability of the

image representation (28), this implies l̃ = 0, as claimed.
Next, we prove that this implies ξi = 0 for all i. Indeed, since l̃ = 0 we have

l̃(0) =

k∑
i=1

(
Im×m 0 . . . 0

)
Viξi = 0.

Consequently, l̃(0) =
∑k

i=1

∑di−1
j=0 ai,jξi,j = 0. Since the vectors ai,j are linearly

independent, this yields ξi,j = 0 for all i = 1, 2, . . . , k and j = 1, 2, . . . , di. This
proves that the zero state matrix Sf is nonsingular.

To prove (27) we use that Kf = Ric(f) is uniquely defined by

Φ(ζ, η)− FT (ζ)F (η) = −(ζ + η)XT (ζ)KfX(η),(29)

with F ∈ R
m×m[ξ] such that ∂Φ = F∼F and det(F ) = f . The idea is to evaluate

(29) and its partial derivatives with respect to ζ and η at the points (λ̄i, λj). For all
indices (r, s) we have

∂r+sΦ

∂ηr∂ζs
(ζ, η)− F (s)T (ζ)F (r)(η)

= sX(s−1)T (ζ)KfX
(r)(η) + rX(s)T (ζ)KfX

(r−1)(η)

+(ζ + η)X(s)T (ζ)KfX
(r)(η).

Using this, for i, j = 1, 2, . . . , k, we form the matrices Φi,j defined by (13). Next, with
Σi,j defined by (14) and Λi,j defined by (12), a straightforward calculation shows that

Λ∗
j,iV

∗
i Σi,jVjΛi,j

= −V ∗
i




XT (λ̄i)
X(1)T (λ̄i)

...
X(di−1)T (λ̄i)


Kf

(
X(λj) X(1)(λj) . . . X(dj−1)(λj)

)
Vj .(30)
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The crucial point here is that the terms involving F (r)T (λ̄i)F
(s)(λj) vanish, since for

i = 1, 2, . . . , k we have


( 00 ) ∂F
(0)(λi) ( 10 ) ∂F

(1)(λi) · · · · · · (
di−1

0

)
∂F (di−1)(λi)

0 ( 11 ) ∂F
(0)(λi) · · · · · · (

di−1
1

)
∂F (di−2)(λi)

0 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0
(
di−1
di−1

)
∂F (0)(λi)



Vi = 0.(31)

The latter follows from (10), combined with the fact that for i = 1, 2, . . . , k the
matrices FT (−λi) are nonsingular. Since (30) holds for all i, j = 1, 2, . . . , k, we
obtain Tf = S∗

fKfSf . This completes the proof.
This result yields a procedure for computing all unmixed solutions of the ARE

(1). We sum up the steps that are required here.
1. Compute a right coprime factorization X(ξ)U(ξ)−1 of (ξI −A)−1B.
2. Form the corresponding two-variable polynomial matrix Φ given by (19).
3. Check whether ∂Φ(iω) > 0 for all ω ∈ R.
4. Factor det(∂Φ) = f∼f with f and f∼ coprime.

The following then computes the unique solution K = KT of the ARE such that its
“closed loop characteristic polynomial” χAK

equals
√
det(R) f .

5. Compute the zero state matrix Sf .
6. Compute the Pick matrix Tf .
7. Solve the equation Tf = −S∗

fKSf .
8. Set K = Ric(f).
It is worthwhile to observe that similar results have been obtained in Chapter 5 of

[11] for QDFs not necessarily associated with a state space representation (16). Note
that the procedure circumvents the need to do a polynomial spectral factorization of
∂Φ.

We now go back to the problem of establishing necessary and sufficient conditions
for the existence of sign-definite solutions to the ARE. Our main result here is an
immediate consequence of Theorem 12 and is based on the result of Proposition 3,
namely, that the largest (smallest) storage function for Φ is associated with an anti-
Hurwitz (Hurwitz) factorization of ∂Φ. Let K− and K+ be the smallest, respectively
the largest, real symmetric solution of the ARE.

Corollary 13. Let Φ(ζ, η) be defined as in (19). Assume that ∂Φ(iω) > 0 for
all ω ∈ R. Factor det(∂Φ) = (fA)

∼fA = (fH)∼fH , where fA and fH have their roots
in the open right half plane and open left half plane, respectively. Then we have

K− = −(S∗
fA)

−1TfAS
−1
fA
,

K+ = −(S∗
fH )

−1TfHS
−1
fH
.

Consequently, sign(K−) = −sign(TfH ) and sign(K+) = −sign(TfA). In particular,
the ARE (1) has a negative semidefinite (negative definite) solution if and only if
the Pick matrix TfA is positive semidefinite (respectively, positive definite). It has a
positive semidefinite (positive definite) solution if and only if the Pick matrix TfH is
negative semidefinite (respectively, negative definite).

Example 6, continued. For the Riccati equation of Example 6 we have ∂Φ(ξ) =( 1−ξ2 a

a 4−ξ2

)
, and we have ∂Φ(iω) > 0 for all ω ∈ R if and only if −2 < a < 2. Assume
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this to be the case. We have det(∂Φ(ξ)) = (1−ξ2)(4−ξ2)−a2. Set k = 3+
√
9 + 4a2.

The singularities of ∂Φ are then equal to λ1 = −
√
1 + 1

2k, λ2 = −
√
4− 1

2k, −λ1,
and −λ2. Clearly, det(∂Φ) can be factored as f∼f with (f∼, f) coprime in four
different ways, and the Riccati equation has four real symmetric solutions, all of them
unmixed. Here we compute the largest real symmetric solution, i.e., the solution
K satisfying χAK

= fH , with fH(ξ) = (ξ +
√
1 + 1

2k)(ξ +
√
4− 1

2k). Note that
we are in the semisimple situation, i.e., the algebraic multiplicity of each singularity
equals its corresponding rank deficiency. Solving ∂Φ(λ1)v1 = 0 and ∂Φ(λ2)v2 = 0
yields v1 =

(
2a/k
1

)
and v2 =

(
1

−2a/k

)
. The zero state matrix SfH is hence given by

SfH =
( 2a/k 1

1 −2a/k

)
. Next we compute the Pick matrix corresponding to fH . Clearly,

TfH =


 v∗

1Φ(λ1,λ1)v1

2λ1

v∗
1Φ(λ1,λ2)v2

λ1+λ2

v∗
2Φ(λ2,λ1)v1

λ2+λ1

v∗
2Φ(λ2,λ2)v2

2λ2


 ,

which is equal to

TfH =




1
2λ1

( 4a
2

k2 (2 + k) + 2a2

k
+ k

2
+ 5− 2λ1)

1
λ1+λ2

( 2a
k
(1 + λ1λ2) + a − 4a3

k2 − 8a
k
+ 2a

k
(λ1 + λ2))

1
λ1+λ2

( 2a
k
(1 + λ1λ2) + a − 4a3

k2 − 8a
k
+ 2a

k
(λ1 + λ2))

1
2λ2

( 4a
2

k2 (8 + 2λ2)− 6a2

k
− k

2
+ 5)


.

(32)

This yields K+ = −(ST
fH
)−1TfHSfH as the solution corresponding to fH . Note that

this gives the largest real symmetric solution for each value of a between −2 and
2. For example, if a = 0, then k = 6, so λ1 = −2 and λ2 = −1. This yields
K+ = ( 0 1

1 0 ) (
3 0
0 1 ) (

0 1
1 0 ) = ( 1 0

0 3 ). Recall that Q = ( 1 a
a 3 ), so for a = 0 we have Q > 0.

In this particular case it follows immediately that the ARE has a positive semidefinite
solution (the corresponding linear quadratic problem is positive semidefinite). For
values of a satisfying−2 < a < −√

3 or
√
3 < a < 2, Q is indefinite, so for this case it is

a nontrivial matter to check whether the ARE has a positive (semi-) definite solution.
According to Corollary 13, for a given a ∈ (−2, 2) the ARE has a positive (semi-)
definite solution if and only if for that value of a the Pick matrix (32) is negative
(semi-) definite. As an example, take a = 1.8. In this case Q is indefinite. The
Pick matrix corresponding to this value of a is computed as TfH =

(−3.6835 0.3111
0.3111 −0.2637

)
.

The eigenvalues of TfH are computed as −3.7116 and −0.2356, so we conclude that
for a = 1.8 our ARE has a positive definite solution. For a = 1.98 we compute
TfH =

(−3.7839 0.4375
0.4375 0.0894

)
, which has eigenvalues −3.8327 and 0.1382. For this value of

a our ARE does not have a positive semidefinite solution.
In order to check whether for a given a the ARE of this example has at least one

negative (semi-) definite solution, one should compute the Pick matrix TfA associated

with the polynomial fA(ξ) = (ξ −
√
1 + 1

2k)(ξ −
√
4− 1

2k), and check whether it is
positive (semi-) definite.

7. Conclusions. In this paper we applied ideas from the calculus of two-variable
polynomial matrices to the problem of characterizing all umixed solutions of the al-
gebraic Riccati equation and formulating necessary and sufficient conditions for the
existence of (semi) definite solutions.

We started from the two-variable polynomial matrix corresponding to the un-
derlying quadratic functional, and associated with this a nonsingular one-variable
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polynomial matrix. Then we showed that there is a bijection between the set of all
scalar polynomial spectral factors of the determinant of this one-variable polynomial
matrix and the set of all unmixed solutions of the ARE. For every such scalar polyno-
mial spectral factor we defined a constant Hermitian matrix, called the Pick matrix,
and we expressed the unmixed solution corresponding to this polynomial spectral fac-
tor in terms of its Pick matrix. This enabled us to conclude that the signatures of the
extremal solutions of the ARE are determined by the Pick matrices corresponding to
these solutions.

In this paper, we have restricted ourselves to the case in which (A,B) is a con-
trollable pair, mainly in order to be able to use image representations. As a possible
direction for future research, we mention the extension of our results to the noncon-
trollable case. Another interesting problem would be to generalize our results to the
discrete-time algebraic Riccati equation.
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