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ABSTRACT : The aim of this paper is to provide an intrinsic Hamiltonian jormulation of the 
equations of motion ofnetwork models of non-resistive physical systems. A recently developed 
extension of the classical Hamiltonian equations of motion considers systems with state space 
given by Poisson manifolds endowed with degenerate Poisson structures, examples of which 
naturally appear in the reduction of’ systems with symmetry. The link with network 
representations of non-resistive physical systems is established using the generalized bond 
graph formalism which has the essential feature of symmetrizing all the energetic network 

elements into a single class and introducing a coupling unit gyrator. The relation between the 
Hamiltonian formalism and network dynamics is then investtgated throqh the representation 
of the invariants of the system, either captured in the degeneracy of the Poisson structure or 
in the topological constraints at the ports of the gyrative type network structure. This provides 
a Hamiltonian formulation of dimension equal to the order of the physical system, in particular, 
for odd dimensional systems. A striking example is the direct Hamiltonian formulation of 
electrical LC networks. 

I. Introduction 

The modern mathematical theory of analytical mechanics evolved from the 
Newtonian and variational formulations to a differential-geometric frame where 
the Hamiltonian formalism is recognized as the fundamental axiom (14). Under- 
lying the dynamic systems of analytical mechanics is a certain geometric structure, 
called symplectic or Poisson structure of full-rank (5). Using this structure one 
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gains crucial qualitative information, in particular on stability (2,4). Apart from 
applications in mechanics, as in celestial mechanics (2) or mechanisms (6), this 
geometric approach found applications in electrical engineering, for instance in 
electrical circuit theory (7) as well as in control theory (8-10). 

Arising from a different tradition based on network representations, a unified 
formalization of physical systems emerged (11-13) covering domains as different 
as chemical reactions (14,15), thermodynamics (13) and mechanisms (1618). It 
displays an additional network structure on the fundamental physical concepts of 
energy and conservation principles (13,19-22) where the constitutive assumptions 
on the elements are based on a classification of physical variables and energies 
derived in accordance with the fundaments of thermodynamics (2325). 

This paper is intended to enlighten some aspects of physical systems theory in 
the double context of analytical mechanics and network theory. The relation 
between these two formalisms will be investigated through the different ways in 
which the dynamical invariants of physical systems are expressed. The authors 
regard this paper as the continuation of previous works on the structure of the 
dynamics of network representations of electrical circuits (7,26), of chemical re- 
actions (14,15), general non-dissipative systems (27) and control systems (8,9). 

In Section II, the differential-geometric definition of Hamiltonian systems is 
recalled in terms of a Poisson structure defined on the state-space manifold (5). 
The main departure from a classical presentation is to allow for general Poisson 
structures, including degenerate ones (28-32). The degeneracy of the Poisson struc- 
ture is discussed with regard to invariance : a set of smooth real-valued functions 
(different from the energy function) is left invariant by any Hamiltonian dynamics 
defined with regard to the Poisson structure. Thus these invariants are fully captured 
in the geometric structure of the state manifold. It is recalled that in contrast, for 
standard Hamiltonian systems defined w.r.t. non-degenerate Poisson structures 
(i.e. symplectic structures), the invariance properties are expressed as symmetries 
of the Hamiltonian function. Finally, the Hamiltonian system defined on a state 
manifold with degenerate Poisson structure will be regarded as the result of an 
intermediate step of a reduction procedure from an embedding standard 
Hamiltonian system with symmetries to a reduced standard Hamiltonian system. 

Section III recalls the physical concepts underlying the modelling of physical 
systems in network terms using the bond graph notation (11,12). More precisely 
the generalized bond graph formalism (13) is used : its main feature is to symmetrize 
all energetic elements to one class and to introduce a unit gyrator called “sym- 
plectic” gyrator (25). which enables the relation with the Hamiltonian formalism. 
Indeed the main objects of the Hamiltonian formalism (Hamiltonian function. 
Poisson structure) will be related to a class of constitutive relations of some network 
elements. Also the dynamic equations associated with a network model will be 
shown to be Hamiltonian by allowing for degenerate Poisson structures on the 
state-space manifold (this solves the problem of odd dimensional systems discussed 
in (27,33,34)). The last part is devoted to the bond graph realization of the reduced 
and embedding standard Hamiltonian systems in order to compare the different 
representations of physical invariants in network as well as in differential geometric 
terms. 
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II. Poisson Structures, Symmetries and Reduction 

The Hamiltonian formulation of analytical mechanics puts the dynamical equa- 
tions of motion of conservative mechanical systems into the following form (known 
as Hamiltonian equations) : 

dH 
4, = & (41,. . >qn,p,, . ,P,) 

I 
dH 

i= I,...,n, (1) 

P! = - j$q, ,...1 qn,p, ,...,p,,) 

where q,, i = 1,. . . , n, are the generalized configuration variables, p,, i = 1,. . . , n, 
are the generalized momentum variables and H(q,p) is the Hamiltonian function 
which usually can be equated with the total energy of the system. The Hamiltonian 
equations of motion can be derived from and are equivalent to the Euler-Lagrange 
equations of motion (derived from a variational point of view, i.e. Hamilton’s 
principle which in turn rests upon d’Alembert’s principle of virtual work) in case 
the Hessian matrix of H(q,p) with respect to p is invertible (the so-called hyper- 
regular case which is mostly satisfied). The generalized momentum variables pZ can 
be defined through the generalized velocities in the Lagrangian function ; however 
the real power of the Hamiltonian formalism (which is at the heart of theoretical 
physics) lies in treating the variables q and p at the same level. 

An important mathematical achievement of the last century has been the coor- 
dinute ,free definition of the Hamiltonian equations (1) in terms of symplectic 

manifolds (34,35) ; for a complete modern account of this topic see (I, 2). Here 

ql,.‘.,q,,~Pl,..., p,,) are seen as speciul local coordinates for a manifold A4 (the 
phase space) which is endowed with a particular geometric structure called “sym- 
plectic structure” (defined by a non-degenerate closed two-form o on M). In fact, 
these coordinates are adapted to w in the sense that CO takes a particularly simple 
form in these coordinates : it can be equated with the constant bilinear form defined 
by the matrix : 

G-9 

The special coordinates (q,, , y,,, p,, .p,) are called “canonical coordi- 
nates”. Subsequently it was realized that an equivalent geometric definition of the 
Hamiltonian equations can be given in terms of a non-degenerate Poisson structure 

(which mathematically is dual to a symplectic structure (5)). The expression in local 
coordinates of such a non-degenerate Poisson structure is nothing other than 
the classical Poisson bracket. The geometric coordinate-free formulation of the 
Hamiltonian equations (1) is now performed by identifying a phase space M 
endowed with a symplectic form (1) (or equivalently with a non-degenerate Poisson 
structure), together with a Hamiltonian function H: M + R. The triplet (M, CO, H) 
determines the dynamics (1) uniquely by the fact that the symplectic structure 
defines a mapping from functions on M, in particular from H, to vector fields on 
M. 
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Recently it was recognized that an important generalization of the standard 
Hamiltonian equations (1) can be obtained by not being restricted to a non- 
degenerate Poisson structure, but instead to allow for general ones. General Poisson 
structures have been already introduced by Lie (28) mainly for studying systems 
of partial differential equations of first order, e.g. Hamilton-Jacobi equations (see 
also (29)) but were rediscovered only recently (3&32). The relevance of such 
general Poisson structures has already become evident in the study of reduced- 
order systems arising from systems having symmetries, such as the Euler equations 
for the motion of the rigid body or more complex systems with symmetries (537). 
The basic connection of the Euler equations with the canonical Poisson structure 
on the dual of the space of 3 x 3 skew-symmetric matrices (see Examples 3 and 7) 
was identified in (38). Also, for infinite dimensional systems the Poisson structure 
point of view has proven to be very valuable, see e.g. (35). 

A main purpose of this paper is to show that Poisson structures appear naturally 
in the dynamic equations associated with a network representation of physical 
systems (here restricted to systems without dissipative phenomena). 

2.1. Poisson structures and Humiltonian systems 
We will now briefly recapitulate the basic mathematical ingredients of general 

Poisson structures and the resulting generalized Hamiltonian equations of motion 
as alluded to in the introduction to this section. Because of space limitations we 
can only sketch the outline of the theory. For a more elaborate treatment we refer 
the reader to (5,30,35), where detailed proofs can also be found. 

We start with the definition of general Poisson structures, which constitutes the 
basis of the definition of generalized Hamiltonian systems. 

Let M be a smooth (i.e. Cm) manifold and let Cm(M) denote the smooth real 
functions on M. A Poisson structure on M is a bilinear map from C-(M) x Cm(M) 
into C”(M), called the Poisson bracket and denoted as : 

(F,G)H{F,G}ECI‘(M), F,GEC~(M), 

which satisfies for every F, G, HE C”(M) the following properties : 

skew-symmetry : 

{F,G} = -{G,FS, (3) 

Jacobi identity : 

Leibniz rule : 

IF,{G,H}}+{G,{H,Ff}+{H,CF,G}} =O, (4) 

{F,G-H} = {F,G}-HfG-{F,Hj. (3 

M together with the Poisson structure is called a Poisson manifold. 

Now let A4 be a Poisson manifold with Poisson bracket { , }. Then for any 
HE C”(M) and arbitrary x E M, we can define the mapping : 

926 
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X,(x) : C”(M) -+ R 

as 

x,(x)(F) = {F, H}(x), FE C” (MI. (6) 

It follows from the bilinearity of the Poisson bracket and (5) that X,(x) E T,M for 
every XEM (where T,M denotes the tangent space to M at the point XE M). 

Consequently X, defines a smooth vector field on M, called the Hamiltonian vector 
fieldcorresponding to the Hamiltonian function H (and with respect to the Poisson 
bracket { , }). Thus (6) can be seen as the (Lie) derivative of the function F along 
the vector field X,. 

Note that this definition implies that the Hamiltonian His necessarily a conserved 
quantity for the Hamiltonian vector field X,. Indeed by using skew-symmetry (3) 
we have by (6) : 

X,,(x)(H) = {H,Hj(x) = 0. 

Furthermore, we note that since 

(7) 

{F> G) = x,(F)(x) = dF(x)(&(x)), 

{F, G} = -(G, F}(x) = -X,(G)(x) = -dG(x)(X,(x)) (8) 

the value of the Poisson bracket {F, G} in any point x E M only depends on the 
differentials of F and G in that same point. Therefore the mapping HE C”(M) to 
X,(x) E T,M for any x E M, as defined by (6) can be also seen as a mapping from 
dH(x) E T,*M (the cotangent space to M at XEM) to X,(x) E T,M. Hence the 
Poisson structure defines for any x E M a (linear) mapping from CM to ll”,M. 

A more concrete representation of this mapping is obtained by taking local 
coordinates x,, . . . ,x, for M (defined on a neighborhood of some point x,, E M). 
Since the Poisson bracket {F, G}(x) only depends on the differentials of F and G 
in x, we obtain the following coordinate expression for the Poisson bracket : 

for some functions Jk,~ C”(M), k, I = 1,. . . , m, which in fact are determined by : 

%,(_x) = {x~,x,}(x), k,l= l,..., m. (10) 

(Here xk,xj are seen as coordinate functions on M, i.e. as elements of C”(M).) 
From (3) we obtain 

Jk,(_x) = - JIk(x), k, I = 1,. . . . , m (11) 

while (4) yields 

J,,$(x)+J,~(x)~(x)+J,~~ (x) = 0, i,j,k = I,..., m. (12) 
I 1 I 

Conversely, if the smooth functions JII, k, I = 1, . . , m, defined locally on M, satisfy 
(11) and (12) then one can define locally the Poisson bracket { , } as in (9) and it 
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may be verified that the Poisson bracket verifies (3) (4) (5). In conclusion, locally 
the Poisson bracket is uniquely determined by its structure mrtris : 

J(x) = (Jd.~)h.,= I. _,,il (13) 

with JA, satisfying (I I), (12). Furthermore it follows from (6), that the Hamiltonian 
vector field X, expressed in local coordinates x,, . ._Y,,, as the vector (X:,, . . ,X;‘;)’ 
is given as : 

. 

. 

1 /q;(s) 

J(s) . . . 

I . (y (x) 
111 

(14) 

and thus the dynamical equations of motion determined by XH read in local 
coordinates as : 

= J(s) 

The above also implies that the map : 

J(x) : TfMw T, M 

(15) 

(16) 

can be seen as the local matrix representation of a bundle map from the cotangent 
bundle T*M to the tangent bundle TM. 

Let us remark at this point that for the definition of XH(x)~ T,M in (6) or the 
coordinate representation J(x) : T,*M t-+ T,M in (I 3), we did not yet use the Jacobi 
identity (4) or equivalently (I 2) ; i.e. we could have defined everything without this 
assumption on the bracket ( , ). The Jacobi identity does however play a crucial 
role in the following property of any Hamiltonian vector field X,,. Let F, GE CL (M), 
then by (6) the Jacobi identity (4) and (3) : 

X,({F,G})= (H,{F,G)) = { N,F),G +{F,{H,G}) (17) 

and thus : 

x,,({C G)) = Ix,(F), G) + {F,XdG)). (18) 

Property (18) means that X, leaz~~s the Poisson bracket itmwiant. Indeed, if WC 
denote by XL the time t integral of X,, (i.e. Xj,(x,) is the solution at time t of 
.e = X,(.\-) with -u(O) = .Y”) then (18) is equivalent to : 
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{FOX;,GOX;}(~) = {F,G)(x) VF,G~EC~((M), Vt 3 0. (19) 

Conversely, given a bracket { , }, satisfying (3) and (5) one can define for each real 
valued function H on R, a vector field _I’, as in (6). Then the bracket satisfies the 
Jacobi identity (4) (and thus is Poisson bracket) if and only if for each H the 
Hamiltonian vector field X, leaves the bracket { , > invariant (i.e. satisfies (18) 

(19)). 
The rank of the Poisson bracket { , } in any point XEM, is defined as the rank 

of the structure matrix J(x) in this point. (This can be shown to be independent of 
the choice of the local coordinates.) By (11) necessarily the rank at any point is 
even. A Poisson manifold A4 having the property that the rank of the Poisson 
bracket is equal everywhere to the dimension of A4 is called a sympfectic manifold. 
(Thus necessarily the dimension of a symplectic manifold is even.) On the other 
hand a general Poisson manifold M can be seen as a union of symplectic manifolds 
which fit together in a smooth way in the following sense: through each point of M 
there passes a unique submanifold with the property that the rank of the Poisson 
bracket in every point of this submanifold is equal to the dimension of the sub- 
manifold (5,30). In fact (see (5)) this submanifold is the maximal integral manifold 
(through x0) of the distribution : 

span {X,-(x)IFEC?(M)}, x~A4. (20) 

Example 1. (Standard Hamiltonian equations.) Let A4 = R2” with natural coor- 
dinates (x,, . , xzn) = (q ,, , qn,p ,, . . ,p,) and define the standard Poisson 
bracket : 

(21) 

Notice that 

J(x) = x E R2”, 

and thus the rank equals 2n everywhere. For any Hamiltonian HEC” (Rzn), the 
Hamiltonian vector field X, is given by the familiar equations of motion (c$ (15)) : 

4, = ““(4>P)> d! = - “‘1(4,P), 
8P; aqi 

i= l,...,n (22) 

called the standard Hamiltonian equations. M = R*” with bracket (21) is a sym- 
plectic manifold and q = (q,, . . , qn) andp = (p,, . . ,P,~) are called the generalized 
configuration coordinates, respectively generalized momenta. Using the (inverse) 
Legendre transform : 

Vol. 329. No. 5. pp. 923-966, 1992 
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with p determined by 4 = c?H/t?p one may arrive at the equivalent Euler-Lagrange 
equations. 

Exumple 2. Consider a simple linear electrical circuit consisting of two 
inductances L,, L2 and one capacitor C (see Fig. I). 

The total energy stored in the three elements is given as 

(23) 

where 4,, 42 denote the fluxes of inductances L, and L?, respectively, and Q is the 
charge of the capacitor C. Using the constitutive relations of L,, L2 and C together 
with Kirchhoff’s laws, we obtain the equation of motion : 

(24) 

which can be rewritten as : 

This defines a Hamiltonian vector field on M = R7 corresponding to the 
Hamiltonian H(Q, 4 ,, c$J and the Poisson bracket on IR’ given in natural coor- 
dinates for Iw’ by the constant structure matrix : 

(26) 

Notice that J is independent from the parameters L ,, Lz and C, and in fact is solely 

B 

il 

930 

FIG. I. An electrical circuit 
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determined by the topological structure of the network. In particular, (25) remains 
valid if the elements are nonlinear and thus define a non-quadratic Hamiltonian 
H(Q,@,,c$~). Clearly the rank of J is everywhere equal to 2, and M = R’ is the 
union of all the two-dimensional symplectic manifolds : 

{(Q>41~&)14, +4z = kJ> (27) 

with k denoting a constant. 

Example 3. (The rigid body.) Consider [w’ with natural coordinates denoted as 
(p,,p,,p2). It can be verified that the matrix : 

J(p) = [_(lp,?; -{ -;:j, P = (P,,?P!?P;)‘ER3 (28) 

satisfies (11) and (12) and thus is the structure matrix of a Poisson structure on M. 
Consider furthermore the Hamiltonian function : 

Then by (14) and (15) we obtain the following equations of motion : 

(29) 

which are the well-known Euler equutions for the motion of a rigid body spinning 
around its centre of mass (pI,pv,pc are the body angular momenta, see (35)). Note 
that rank J(p) = 2 at every point (p.,,p,.,p,) # (O,O,O), and that M = R3 can be 
seen as the union of the symplectic submanifolds of the form : 

{(P,.,P,.,P,)~P,+P,‘+P_’ = kJ (31) 

with K being a constant 

The Poisson bracket introduced in Example 3 is an example of a much more 
general construction. Indeed, let V be a matrix Lie algebra, i.e. a linear space of 
n x n matrices which is closed under the matrix commutator 

[A, B] = AB- BA. (32) 

Then the dual space V* has a natural Poisson structure, called Lie-Poisson struc- 
ture. Indeed, let F and G be real functions on V*. Then the differentials dF(x), 
dG(x), XE V* (i.e. the row vectors of partial derivatives) are elements of (V*)*, 
and thus can be identified with elements in V. Using this identification, one defines 

(6 G}(x) = <-u, [dF(x), Wx)l), XE V*, (33) 

where ( , ) denotes the pairing between V and V* and [ , ] is the matrix commutator 
(32). It can be verified that { ,} satisfies (3), (4) and (5) and thus defines a Poisson 
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bracket on I’*. In more concrete terms, let z’,, . . , c, be a basis of V. Then C’,E V 
can be identified with an element in (I’*)*, i.e. with a linear coordinate function 
,yion V*,i= l,..., m.Nowdefine 

Jli(X) = {.X,,.Y,} = [I’,, [‘,I, XE v*, (34) 

then J(x) = [J,iWlz.,= I.. .m is the structure matrix of the Poisson bracket defined in 
(33) and satisfies (11) and (12). 

Example 3 fits into this theory as follows: the matrix Lie group underlying to 
rigid body motion is SO(3), the space of 3 x 3 orthonormal matrices with matrix 
algebra SO(~), the space of skew-symmetric 3 x 3 matrices. Thus let us consider 
V = SO(~), with the standard basis : 

and commutation relations : 

[t.,.Z’J = 1’3, [@2,2’3] = I’,, [L’j,U,] = 2’2. (36) 

Using (34) one sees that the Lie-Poisson bracket on V* = SO*(~) is given by the 
structure matrix : 

(37) 

and thus by identifying M in Example 3 with SO*(~), i.e. identifying (p,,p, ,p_)‘with 
(s ,, x2, xJ, one recovers the structure matrix (28). 

2.2. S~~mmetries uncl Humiltoniun reduction 

We start with the following basic theorem on general Poisson brackets (essen- 
tially due to Lie (28)) which generalizes the definition of canonical coordinates 
(q ,, . . , q,,,p ,, . . ,p,) for symplectic manifolds to general Poisson manifolds. 

Theorem I 
Let A4 be an m-dimensional Poisson manifold. Suppose the Poisson bracket has 

constant rank 2n in a neighborhood of a point x,) E M. Then locally around x,, we 
canfindcoordinates(q,p,r)=(q, ,..., q,,,p, ,..., p,,.r ,,..., r,)forMofdimension 
(2~ + I) satisfying : 

(%,P,) = 4,, (4,3Y,) = {Pl,P,) = 0, i,j = 1 >..., n 

f (q,, rl,} = (p, , r,, I_ = {r,~ , r, I - ’ -0. i= l,...,n, i’,,j’= l...., 1 (38) 

or equivalently, the m x m structure matrix J(q,p, r) is given as : 
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(39) 

The coordinates (q,p, r) satisfying (38) are called (generalized) canonical coor- 
dinates. 

Remark 1. If M is a symplectic manifold then I= 0, m = 2n and r is void, thus 
leading to the structure matrix : 

(40) 

Hence Theorem I implies in particular that on every symplectic manifold we can 

take local coordinates q,, . . , qn,p,, . . . ,pn in which the Poisson bracket takes the 

form of the standurd Poisson bracket, see Example 1. 

Let M be an m-dimensional Poisson manifold with Poisson bracket of constant 
rank 2n in a neighborhood of a point SUE M. Then in view of (14) and (15) in 
the local canonical coordinates of Theorem I any Hamiltonian vector field X,, 
H: M H Iw, takes the form 

fj, = $(q,p,r), li, = - i:(q,p,r). i; = 0, i= l,..., n, ,j= I,..., I, 
I / 

(41) 

which generalizes the standard Hamiltonian equations (1). 

Example 4. Let M be a symplectic manifold with Hamiltonian vector field X,,, 
HE C”(M). Then by Remark 1 and (41) one can find local canonical coordinates 

ql,...,q,,pl,.“> pn such that the equations of motion corresponding to X, are 
locally given by the standard Hamiltonian equations (22). 

For any Poisson manifold we define the distinguished or Casimir functions as those 
smooth functions F: MH IL!, such that : 

(F,G} = 0, VGEP(M) (42) 

or equivalently, since {F, G} = -X,;(G) (see (6)): A’,.. = 0. Hence the Casimir 
functions correspond to the kernel of the map : Ft+ X,.. from C”(M) modulo 178 to 
the vector fields on M given by (6). In local terms F is a Casimir function if 
dF(x)E kerJ(x), i.e. if dF(x) is in the kernel of the map J(x): T,fMt+ T,M foi 
every x. Under the assumptions of Theorem I, the Casimir functions are locally 
given by the coordinate functions r,, . . . , r, together with all functions on Mdepend- 
ing only on r,, , r,. 

Theorem I has some interesting consequences concerning the local embedding 
of a Poisson manifold into a higher-dimensional symplectic manifold, as well as 
the local reduction of a Poisson manifold to a lower-dimensional symplectic, 
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manifold. First, for any two Poisson manifolds M, and Mz, one defines a smooth 
map : C#I : M, H M2 to be a Poisson (or canonical) mapping if: 

{P~,Gc 4;, = {F,G}~‘J~,~F,GEC’(M~) (43) 

where(,)ra , >> denote the Poisson brackets on M, and M?, respectively. Now 
consider the local coordinates (q,p, Y) of Theorem 1. Then the map rr : R’“+‘H R2” 
given by : 

(q,,...,q,,p,,...,p,,,r,,...,r,);t(q,,...,q,,p,,...,p,,) (44) 

is a Poisson mupping from the Euclidean space RZn+’ with Poisson bracket given 
by (39) to the lower dimensional space R2” endowed with the standard Poisson 
bracket (40). On the other hand, consider the extended space R”‘+” with natural 

coordinates (q,, . . . , qn,pI,. . . ,pn,sI,. . . .s,, Y,, . . . , r,) and standard Poisson 
bracket given by (38) together with the additional relations : 

(s,,r,> = 6 ,, , i’..j’ = 1, . . , I 

(ql,“,,}={pi,s,,}=O, i=l,..., n, i’,j’= l,..., 1. 

Then the map 7c : Rz”+2’t+ tR’“+’ given by : 

(45) 

is also a Poisson mapping. Hence in view of Theorem I, we have the following 
picture in a neighborhood of any point x0 in the (2n+I)-dimensional Poisson 
manifold M where the Poisson bracket has constant rank 2n : 

u” c [W2n+2/c u c [w2n+/;, u’ c RZ”, 
(47) 

where U, U“, U’ are open parts of R2”+‘, R2”+“, R2”, respectively. Hence the 
coordinate neighborhood U can be reduced (via 7~) to a symplectic space (i’ and 
can be embedded (via FL) into a symplectic space U’. (Furthermore it can be shown 
that II and rc are unique in the sense that if (47) holds for difSerent Poisson mappings 
n’ and II’ then there exist Poisson mappings $ : RZn++ RZn, ‘P : R2”+2’~ lR2”+2’ of 
maximal rank such that Y rc’ = n, ‘P 1 TI’ = FI (see (30).) 

The above discussion on local normal forms of Poisson structures with constant 
rank has the following implications for the structure of any Hamiltonian vector 
field on the Poisson manifold M in the neighborhood of a point x0 E M where the 
Poisson bracket has constant rank. Let H: MH R be a Hamiltonian function, then 
locally about x0 the Hamiltonian vector field X, is given in the local coordinates 
(q,p, r) of Theorem I by (41) i.e. 

G,=e(q,p,r), p,= _dH 
dPi aq,(q~p~rh i,=O, i=l,..., n, j= l,..., 1. 

(48) 
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Following (47) these equations can be restricted for every constant (r!, . . , r,) to 
the standard Hamiltonian equations on R2” (c$ (1) or (22)) 

(49) 

where W: iR2n~ R is given by W(q,p) = H(q,p, r), and can be embedded into the 
standard Hamiltonian equations on IL!‘“+“: 

i= 1,. ..,n, j= l,..., 1. (50) 

Note that in (50) the Hamiltonian H seen as a function on iR*‘+ 2’ does not depend 
on s, while in (49) the Hamiltonian I-p(q,p) = H(q,p, r) is seen as a function on 
D%‘” parametrized by Y. 

The transition from the standard Hamiltonian equations (SO) on IL!“+” into the 
standard Hamiltonian equations on (49) on R2n, via the non-standard Hamiltonian 
equations (48) can be interpreted as a canonical reduction of order caused by 
symmetry of the HamiItonian function, which is a vast subject in analytical mech- 
anics (see e.g. (2,39-41)). Indeed the crucial point is that Hin (50) does not depend 
on the canonical coordinates s,, _ . . ,s,, or equivalently that H is invariant under 
the infinitesimal canonical mappings a/&,, . . , a/&,. It is well known in the theory 
of Hamiltonian systems with symmetry (see (35)), that this implies that RZ’+2’may 
be projected to IR ‘“+‘with Poisson structure given by (38), and that the Hamiltonian 

dynamics (50) project to (48). Furthermore the Casimir functions r I, . . . , rl for (48) 
are conserved quantities and thus (48) can be restricted (for any constant r,, . . . , vi) 
to (49). Thus alternatively the Poisson manifold M, locally given as iR2nC’ with 
Poisson structure (38) and the Hamiltonian dynamics (41) defined on it, may be 
considered as an intermediate step of the canonical reduction of order of the 
standard Hamiltonian equations (50) to the standard HamiItonian equations (49). 

Example 5. Consider the electrical circuit of Example 2, with Poisson structure 
determined by (26). Canonical coordinates are given by 

4=e7 P=:(42-#1), r=4,-42 (51) 

and the total energy (23) expressed in these coordinates is 

H(q,p, r) = g + (52) 

resulting in the dynamical equations (cz (52)) : 

r -- P ;+P Q 
g=iz(q,p,r)= -Q+-z-, p= -g(q,p,r)= .-?+ r: = 0. (53) 

L 
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The last equation reflects the fact that r = d,, +c$? (the total flux) is a Casimir 
function, and thus a conserved quantity. 

Esarrzplc 6. Consider the mass-spring system described in Fig. 2 which constitutes 
the mechanical analog of the electrical circuit described in Example 2. Its total 
energy is given by 

(54) 

with p,, p1 denoting the momenta of mass IJI, and w?, respectively, and s,’ the 
distance between them and k denoting the spring constant. The Poisson structure 
is again given by (23). resulting in the equations of motion (compare with (22)) : 

(55) 

Canonical coordinates are given, analogously to (5 I), as 

(/ = .X,2, I’ = i(p2-PI), I’= PI +t1)2. (56) 

where the Casimir function r = p, +p2 is the total momentum of the mechanical 
system. The system can be embedded into standard Hamiltonian equations on R“ 
(r:fI (50) for n = 2) by adding a variable s satisfying (c$ (45)) : 

(s,rj = I, ;q,.Y) = {p,s) = 0. (57) 

The resulting standard equations are 

I I I 

iiH 
li=-kg,S=~clr(‘I,P,“)=- + 

2+p 
i=O 

ng I m2 ’ 

which is isomorphic, using the canonical mapping implicitly defined by (56) and 
s = J(.u, +X2), X,2 = x,--x,, to 

FIG. 2. A one-dimensional mechanical system. 
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Pi 
I, =-) 

P2 

mI 
it,=--, 

m2 
Li, = W-x,), b2 = -k(x2-x,), (59) 

which are the standard Hamiltonian equations of motion for the mechanical 
system, where x, and x2 denote the configuration coordinates of masses m, and 
m,, respectively, in an inertial frame. 

Example 7. Consider the Euler equations for the motion of a rigid body as dealt 
with in Example 3, withp,,p,,pz the body angular momentum variables. Canonical 
coordinates (outside the origin) are, for instance, (see e.g. (35)) : 

q =p_, p = arctan&, 
PX 

r = p2 +p: +pl. 

Notice that r is the total angular momentum, which indeed is a conserved quantity. 
The embedding standard Hamiltonian system (50) in this case does not seem to 
have an easy physical interpretation, and will not be specified. (Notice that in (39), 
example 3.2) it is briefly indicated how alternatively a 4-dimensional embedding 
Hamiltonian system may be obtained by using the fact that SO*(~) is isomorphic 
to the complex matrix Lie algebra su(2), which acts symplectically on the symplectic 
space @ *.) 

Of course the rank of the Lie-Poisson structure is zero at the origin. Thus a truly 
globally defined embedding Hamiltonian system has to be 6-dimensional and, in 
fact, may be obtained in the following way (see (2) for details). The configuration 
space for the dynamics of a rigid body around its centre of mass is SO(3), the 
matrix group of 3 x 3 orthogonal matrices. Hence the phase space of the standard 
Hamiltonian equations for the rigid body equals T*SO(3). Now T*SO(3) can be 
identified with SO(3) x SO*(~) in the following way (see e.g. (2)). Define for any 
gE SO(3) the left translation L, : SO(3) H SO(3) as : 

L,qh = gh, h E SO(3). (61) 

Denoting the 3 x 3 identity matrix Z3 E SO(3) by e, we obtain the diffeomorphism : 

L,* : Z-,*SO(3) H T,*So(3) = : So*(3) (62) 

and the resulting diffeomorphism A: T,*SO(3) F+ SO(3) x SO*(~) defined as 

A@, lx) = (g, L,*a), gE SO(3), a E T,*SO(3). (63) 

Identifying in this way T*S0(3) with SO(3) x SO*(~) we see that the Hamiltonian 
function H: SO(3) x SO*(~)++ R, being the kinetic energy, only depends on the 
natural coordinates pX, pY, p_ for SO*(~), and in fact is given as in Example 3. Hence 
the embedding standard Hamiltonian equations are in local coordinates of the 
form (50) and thus project to the Euler equations (30) on the Poisson manifold 
SO(3) x so*(3)/So(3) = So*(3). 

Given the standard Hamiltonian equations (50) where H does not depend on 
the canonical variables s = (s,, . , s,), there exists also an alternative reduction 
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procedure which leads eventually to the same reduced standard Hamiltonian system 
(49) but not via the non-standard Hamiltonian equations (48). Instead, one uses 
the fact that r = (r,, . , r,) are ~orlspn~edquantities for (50) from which it follows 
that (50) can be restricted for every constant vector r to dynamics R*“+‘, and 
subsequently may be projected to the same standard Hamiltonian dynamics (48). 
Pictorially both reduction schemes can be summarized by the commutative 
Diag. 1. 

In the present context of network representation of physical systems, however, 
the left-hand side reduction procedure appears to be the most natural one. Since this 
reduction procedure starts with the invariance (or symmetry) of the Hamiltonian 
(internal energy), the conserved quantities become fully captured in the Poisson 
structure, i.e. the ycorn~tr~~ underlying the general Hamiltonian equations (48). 
Indeed the conserved quantities are determined by the Casimir functions for this 
Poisson structure, irxl~qendec~tl~ from the Hamiltonian of (48). 

Remark 2. Let us mention that we have restricted ourselves to a purely loc.ul 
description of the reduction procedure from equations (50) to (49), via (48). For a 
global and coordinate free treatment, we refer to e.g. (35). see also (2). Ofparticular 
interest is the case of general Hamiltonian dynamics (48) defined on a Poisson 
manifold which is the dual of some Lie algebra V (endowed with the LieePoisson 
bracket. c;f: the discussion after example 3) such as SO*(~). Then an embedding 
standard Hamiltonian system is to be found by looking for a symplectic action of 
the corresponding (simply connected covering) Lie group on some symplectic 
manifold M (see (30,41)). In this case the momentum map M -+ V* (see (2)) provides 
the projection map from (50) to (48), and the embedding standard Hamiltonian 
system is living on this manifold M. 

Remark 3. In (41) it is shown how the dynamics of incompressible fluids, 
described as general Hamiltonian equations of motion on the dual of the Lie 
algebra corresponding to the group of volume-preserving diffeomorphisms, can be 
embedded into a standard Hamiltonian system with canonical coordinates given 
by the classical Clebsch variables. 

proJectIon X 
H( q. y. I; s ) 

restriction 

R (21+/J L/ of eq. (50) \ 

R (al+!) 
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III. Bond Graph Models and their Dynamics 

3.1. Physical systems in terms of bondgraphs 

The modern graphical description of physical systems emerged from the descrip- 
tion of electrical circuits. Kirchhoff introduced, from the inspection of its material 
organization, the first graphical type abstraction into constitutive relations associ- 
ated with electrical elements (R, L, C) and the topology defining the circuit (Kirch- 
hoff’s current and voltage laws). Although mechanical systems provided the 
framework for a general analytical formalism of physical systems models, leading 
to analytical mechanics, it was also soon recognized that circuit theory is not 
restricted to electrical circuits. Indeed Maxwell already stated Newton’s second 
law in a circuit-theoretical way, in the form of a balance equation. 

The network formalism as a unifying conceptual framework for physical systems 
was developed mainly in engineering (for historical developments see (21)) where 
it revealed an extraordinary efficiency not only for the design of electrical circuits, 
but also for industrial devices pertaining to different physical domains. For the 
latter systems a particular graphical notation, called bond graphs, was developed 
originally by Paynter (11). Its network structure called “junction structure”displays 
the invariants of the physical system according to Tellegen’s and Kirchhoff’s 
theorems on networks, but corresponds to an additional abstraction level. Indeed 
it represents abstract energy flows between elements and no more material inter- 
connections. In the same way, the bond graph formalism is based on a classification 
of physical variables, rooted in thermodynamics (2325). This led to the generalized 
bond graph formalism (13) based on an abstraction of the elements of a network 
(their phenomenological properties) and the systematic use of a unit gyrator (the 
gyrator element was invented by Tellegen). This element, called “symplectic gyra- 
tor” (25) will be a fundamental link relating analytical mechanics with the network 
formalism. 

3.1 .l. Energy and the capacitor element. The elemental components of a bond 
graph model are elemental systems endowed with energy, called (multiport) energy 
storage elements and denoted by C (11, chap. 4; 13, chap. 5; 25). 

Such an elemental system concentrates some physical properties inside abstract 
boundaries defining it with respect to its environment. Its internal state is defined 
by a vector x in [w” of energy variables and a real-valued smooth energy function 
H(x) describing its static characteristics. The existence of an energy-function cor- 
responds physically to the first law of thermodynamics. Then the variation of the 
energy and the energy variables are related by Gibbs fundamental equation : 

dH = ,$, g dx, . (64) 

The interactions with the environment through the boundaries of the elemental 
system are defined by the time-variation of the energy at the ports of the elemental 
systems. The time-variation of the energy may be expressed by two vectors of so- 
called conjugated power variables called “effort” e and “flow” f: 

Vol. 329, No 5, pp 923-966, 1992 
Prmed m Great Britain 939 



B. M. Maschke et al. 

f= i = (i,, . . ,a,)‘, e=dH=(g,...,iE). (65) 

The variation of the energy function is then the inner product of these two vectors : 

dH n 
dt = i;,el*.f;. (66) 

It may be noticed that as a consequence of the existence of an energy function, the 
effort as a function of the energy variables verifies the Maxwell reciprocity relations : 

de, de. 

a41 
1 i,jEl,...,?I 

a4i ’ (67) 

(and by Poincare’s lemma the converse also holds). 
In summary the energy storage elements C are represented in bond graph terms 

as in Fig. 3. 

E.xample 8. (Point-mass.) A point-mass may be represented as a l-port energy 
storage element (in the kinetic domain) with the translational momentum p as 
energy variable and the kinetic energy Hki”(p) = p2/2m as energy function, where 
m denotes the mass. The power variables at its port are the forces acting on the 
mass (i.e. the rate of change of the momentum) as flow variable and the translational 
velocity of the point-mass as effort variable. 

E,xample 9. (Electrical capacitor.) An electrical capacitor may also be represented 
as a l-port energy storage element with the electrical charge q as energy variable 
and the electrical energy as energy function (in the linear case: q2/2C, where C 
denotes the linear capacitance). The flow variable is the current through the capaci- 
tor (i.e. the rate of change of the charge) and the effort variable is the voltage at 
its port. 

Example 10. (Simple thermodynamical system.) A simple thermodynamical 
system is characterized by an internal energy function U(S, V,N) (13, chap. 5). 
Such a system may be represented as a 3-port energy storage element with the 
number of moles N, the volume I/ and the entropy S as energy variables and the 

C3H 
e = k&+l..,t 

H(x):a: t_1L ’ 
f=i 

FIG. 3. An energy storage element 
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FIG. 4. A simple thermodynamical system. 

internal energy as energy function (see Fig. 4). The conjugated effort variables are 
the material potential ,U = aU/aN, the pressure P = -(~3UjdV’) and the absolute 
temperature T = aUji3,S (where p is depending on P and T due to the first-order 
homogeneous nature of the energy U(S, V, N) (13, chap. 5)). Such a 3-port energy 
storage element can be used, for instance, to model an open container with piston 

and containing a gas. 

3.1.2. Dynamical interactions unci the sJ?mplectic gyrator. In the previous section 
we have defined elemental systems endowed with energy, but which cannot undergo 
any dynamic evolution per se. Any dynamics arises from the interaction between 
elemental systems. These interactions are described as relations between the effort 
and flow variables, called phenomenological laws like Newton’s or Ohm’s laws. In 
bond graph terms these interactions are described by elements whose constitutive 
relation represents a phenomenological or constitutive law and are power continu- 
ous, i.e. the total power flow at their ports is equal to zero (as any energy storage, 
i.e. any energy function, should be associated with an energy storage element C). 
There are two types of such elements. 

The resistive irreversible transducer relates some physical domain with the ther- 
mal domain and describes resistive laws (lS15). This element will not be considered 
in the present paper, as we have restricted ourselves to the so-called “conservative” 
systems without any resistive or, rather, irreversible phenomena. The other element 
relates two different physical domains : either the kinetic with the elastic (potential) 
domain, or the electrical with the magnetic domain. The kinetic and elastic domains 
include the special forms which are present in hydraulics or acoustics. This second 
element is called “symplectic gyrator” (25). It is a 2n-port element whose consti- 
tutive relation is, if,f and e denote the (2n-dimensional) flow and effort vectors at 
its ports and PymP the symplectic matrix of order 2n : 

where I, is the identity matrix of order n. 

Example 11. (Mass-spring system.) Consider the mass-spring system and its 
bond graph representation depicted in Fig. 5. With the spring a one-port energy 
storage element is associated : it defines the elastic potential energy of the system 
as a function H,,(q) of the displacement q (the energy variable of the elastic domain). 
For a linear element the energy function is : 
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(b) 

FIG. 5. Mass-spring interaction and bond graph model. 

H,,(q) = 4kq2, (69) 

with k the stiffness of the spring. The point mass is represented by an energy storage 
element with the momentum p of the mass as energy variable and the kinetic energy 
Hkln@), which is in the linear case : 

Hkm(P) = ; ; (70) 

with nz the mass of the point mass. The complete bond graph model is obtained 
by relating the two energy storage elements via so-called bonds through a symplectic 
gyrator. The bonds may be considered as identities on the power variables, i.e. 
efforts and flow variables of the related ports of the elements. (The next section 
will give the proper definition of the bonds). The symplectic gyrator represents the 
following two relations. First the attachment of the end of the spring to the mass 
in globally Eulerian but locally Lagrangian coordinates with respect to an inertial 
frame (13, chap. 6) : 

(71) 

The variable ekln is the effort in the kinetic domain, i.e. the velocity of the mass I’,,,~,~ 
and ,fC, is the flow of the electric-potential domain. The second relation represents 
Newton’s second law in an inertial reference frame : 

g = .fkin = -e,, = -F,, . (72) 

The variable e,, is the effort in the elastic potential domain, i.e. the force induced 
by the spring, and ,fkin is the flow of the kinetic domain, i.e. the time variation of 
the momentum of the mass. 
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Example 12. (Inductor and capacitance circuit.) Consider the electrical circuit 
of Fig. 6 and its bond graph model. The electrical domain is represented by an 
energy storage element C with energy variable Q (the electrical charge of the 
capacitor) and the energy function H,,(Q) which is, for instance, with the assump- 
tion of the linearity of the constitutive relation : 

H el (Q) = ’ c 
2c 

(73) 

with C the capacitance. 
The magnetic domain is represented by an energy storage element C, with the 

magnetic flux linkage 4 as energy variable and energy function H,,,,(4) which is, 
for instance, with the assumption of linearity of the constitutive relation : 

with L the inductance. 
The symplectic gyrator represents Maxwell’s second and fourth law coupling the 

electric and magnetic fields in the quasi-stationary approximation of electrical 
circuits (25) according to 

dQ 
~=LI =i=emg, ;; =J;n&, = -_u = -e,,. (75) 

The generalized bond graph formalism recalled here makes a gyrative coupling 
between different physical domains appear explicitly, which would not appear in 
the “conventional” bond graph approach (as well as in electrical networks). In the 

(4 

(b) 

FIG. 6. Inductor capacitance interaction and its bond graph model. 
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FIG. 7. Conventional model of the mass -spring interaction. 

conventional bond graph approach, for both examples. there would be two kinds 
of storage elements in interaction as represented in Fig. 7. The bond still represents a 
coupling through power exchange, but using an operational identification (through 
measurement) of across-variables (like velocities or potentials) and through-vari- 
ables (like forces or currents). The definition of effort and flow variables are in this 
sense less general than in the generalized bond graph formalism and are linked to 
the concrete network. The two kinds of storage elements I and C have a dual 
definition with respect to the power variables. In generalized bond graph terms the 
I element is the aggregation of a C clement with a symplectic gyrator: this aggre- 
gation is called “dualization” of the c’ element (13,25). Indeed the generalized 
bond graph formalism prefers to give an asymmetric definition to flows and efforts 
and introduces explicitly the gyrative couplings, based on the fact that in the 
thermal domain there is no “inertance” and that in the conventional approach 
some phenomena may be overlooked (25). 

3.1 .3. Ponw c~or~titi~rit~~ NS NII uhstrrrct m~twwli postulut~~. Complex autonomous 
physical systems may now be defined as a set of interacting elemental systems (i.e. 
energy storage elements denoted by C) exchanging energy in such a way that it is 
conserved over the whole system. The postulate of power continuity sets forth that 
one may define the conservation of energy in the form of an abstract topology of 
power flows between elemental systems (11,22). This topology of power flows is 
called “junction structure”. Consequently the edges of this network transport 
power flows and are called “power bonds” or simply “bonds”. In order to represent 
the interaction between subsystems. for instance elemental systems. they satisfy the 
“power postulate” : there exist two dual variables, called power variables, such 
that their pairing is equal to the power flow. The two variables are called a flow .f 
(usually a vector in W) and effort CJ (usually also identified with a vector in KY 
although it is a dual quantity to the flow ,/). In summary a power bond is associated 
with three variables (flow ,f; effort P and instantaneous power P) which verify : 

(r,.f’) = P. (76) 

In Fig. 8, the half arrow on the power bond indicates the positive orientation for 
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-+h+ 
e2 f2 en_ A h-1 . . 

FIG. 9. A O-junction. 

the power P and the flow variable f. The nodes of the junction structure are 
necessarily power continuous elements and will be presented in the next paragraph. 

3.1.4. Invariants displayed by generalized junction structures. The elements of a 
generalized junction structure extend the representation of invariants of the physical 
system from the energy (represented as energy storage elements) to structural 
invariants induced by structural constraints (the topology of an electrical circuit 
or kinematic constraints) or by interdomain couplings. Thereby the generalization 
from quasi-statics to dynamics may be realized. 

Two basic elements are the simple junctions, denoted by 0 and 1. Using scattering 
variables it can be proven that they are the only possible realization of port 
symmetric, power continuous elements (11,42). They represent invariants on the 
dual power variables efforts and flows (11, chap. 6; 22). A O-junction corresponds 
to “effort potentiality”, i.e. defines a common effort variable to all bonds connected 
to it (see Fig. 9). The symmetry of the junction and its power continuity imply the 
following constitutive relations : 

e, = ... = e,, i E, - J; = 0, (77) 

where ci are equal to plus or minus one depending on the orientation of the power 
bonds (half arrows in Fig. 9). 

A 1 -junction represents “flow continuity”, i.e. common flow variables to all 
bonds connected to it (see Fig. 10). It has the following constitutive relations 
(dual to that of a O-junction) : 

f, = ... =fn, i$,h*ei=O, (78) 

where gi are the sign functions depending on the orientation of the power bonds. 
Simple junction structures are networks of power bonds and junctions which 

FIG. 10. A l-junction. 
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describe sign-weighted invariants (i.e. constraints on the power variables). Such 
local invariants may arise directly from the material organization of the system, 
abstracted as a directed graph, for instance in the case of electrical circuits or one- 
dimensional mechanical systems. In the case of electrical circuits the invariants 
generated by the directed graph are called Kirchhoff’s voltage and current laws. 
For such invariants, arising from graphical interconnection constraints, several 
systematic procedures exist of the realization of the equivalent simple junction 
structures (4246). 

E.awnpl~~ 13. (Simple junction structure of an electrical circuit.) Let us consider 
the electrical circuit of Example 2 (see Fig. I). The underlying directed graph 
(with the elements associated with the branches indicated in brackets) and the 
corresponding simple junction structure are represented in Fig. I 1. The constitutive 
relations of the two simple junction structures represent, in the case of electrical 
circuits. Kirchhoff’s current and voltage laws with the dual definition of currents 
as either flow or effort variables. 

B 

1 2 a A 

(4 

(b) 

r i3 VBA 

T& 1+ 

vBA 

Cc) 

FIG. I I. Directed graph underlying an electrical circuit and the two dual junction structures. 
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FIG. 12. A causally augmented bond. 

Hence a simple junction structure is constructed out of junctions representing 
local invariants (in the sense that they are represented by distinguished nodes of 
a bond graph), but it defines itself global invariants on the efforts and flows at 
its ports (40, 41, 43). They are graphically displayed as a causal augmentation 
of the bonds at the ports of the junction structure : a causal stroke is added at one 
end of the bond (see Fig. 12). A causal stroke directed towards (or outwards, 
respectively) a simple junction structure indicates an independent effort variable 
and dependent flow variable (or independent flow and dependent effort, respec- 
tively). The consistency of the invariants at the ports and at a junction in a simple 
junction structure is ensured by causality restrictions at the junction (see Fig. 13) 

and for particular bond loop structures by some global causality restrictions (i.e. 
restrictions on some part of the simple junction structure (40,41)). For simple 
junction structures representing electrical circuits, the causal augmentation at the 
ports corresponds to the choice of a spanning tree or cotree of the underlying 
directed graph (41, 43,44). 

Example 14. (Causal restriction in an electrical circuit.) Consider the electrical 
circuit of Example 2 and its directed graph in Fig. 11. Then a consistent causal 
augmentation and choice of the spanning tree (here a single branch) is shown in 
Fig. 14. 

One may note that simple junction structures allow one to represent very general 
power continuity relations arising from topological constraints in different kinds 
of physical domains. For instance, the complex topological constraints of planar 

-+lo+ 
LL e2 f2 en_ 

h-1 n 

. . 

+ 1 I+ 
e2 L-L fi en_l Ad ” . . 
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FK. 14. Choice of causality and associated spanning tree. 

and spatial mechanical linkages described in skeleton diagrams or interchange 
graphs may be represented in kinematic junction structures using generalized junc- 
tions (47,48). 

An additional power continuous element, called “transformer” and denoted by 
TF, generalizes the sign-weighted relations expressed in simple junction structures 
to linear relations. A junction structure containing transformers is called weighted 
,junction structure. A multiport transformer imposes linear relations between the 
power variables (f2, eJ of port 1 with dimension n, and the power variables (fi, e,) 
of port 2 with dimension nz. Its constitutive relation is characterized by an (n, x IZJ 
matrix M with coefficients in some field defining a vector space on the power 
variables ; it is defined by Eq. (79) according to the representation in Fig. 15 : 

,f2 = M,f,, el = Mke>. (79) 

If the coefficients of the matrix M,Y are functions, the transformer is said to be 
“modulated” and is denoted by MTF. The coefficients of the transformer are, for 
instance, integers representing stoichiometric coefficients for chemical reactions’ 
models (14,15>, real numbers representing geometric parameters or real valued 
functions of some energy and configuration variables for multibody systems (18). 

+ (M)TF -+ 
fl f2 

FIG. IS. A multiport transformer. 
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FIG. 16. A multiport gyrator 

The causal constraints at the ports of a multiport transformer depend on the rank 
properties of M,. But for a single bond transformer, they are analogous to the 
constraints on a single bond which may be considered as a unit transformer. 
They provide constraints at the ports of a weighted junction structure which are 
analogous to the constraints on the ports of a simple junction structure. 

Finally, the complete network interconnecting capacitive elements, i.e. elemental 
systems of different physical domains, may contain additionally some gyrative 
element, denoted by GY and represented in Fig. 16. The complete network is 
called : generalized ,junction structure. The constitutive relation of a gyrator is 
defined by a skew symmetric matrix J, according to Eq. (SO) : 

,f‘ = J,e, (80) 

where the order of J., is equal to the dimension of the port of the multiport gyrator. 
Again the causal constraints at its ports depend on the rank properties of J, but 
they may be precised in the case of a two-port gyrator (necessarily of rank 2) : the 
two causality assignments are depicted in Fig. 17. The causal constraints at the 
port of a generalized junction structure reflect the invariant algebraic relations on 
the power variables at the ports in the same way as for weighted junction structures. 
Also, it has an additional interpretation if one connects the ports of a capacitor of 
appropriate dimension to its ports, thus obtaining a complete (autonomous) bond 
graph model. Then a causal restriction on the efforts at the ports implies the 
restriction of the state space to a proper subset of R”, where n is the number of 
energy variables. Indeed each causal constraint corresponds to some linear relation 
on the efforts 

and according to the definition of the effort variables at the ports of an energy 
storage element this relation also induces a constraint on the energy variables : 

-j(M)GY : & 

//(M)GY : Jx 
(b) 

FIG. 17. Causal constraints on a two-port gyrator. 
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(82) 

where H(.Y) denotes the energy function of the n-port energy storage element. 
In an analogous way, causal restrictions on the flows at the ports connecting the 

generalized junction structure and the energy storage elements induce a restriction 
on the time variation of the energy variables and hence on the dynamics of the 
system which will be addressed in the following section. 

E.xample 1.5. (Bond graph model of an electrical circuit.) Consider again the 
electrical circuit of Example 2 and represented in Fig. 1. A generalized bond graph 
model of this circuit is depicted in Fig. 18a. It contains three one-port energy 
storage elements : two of them represent the inductances L, and Lz, and the third 
one represents the capacitor C. The topology of the electrical circuit is realized by 
a simple junction structure constituted by a l-junction with the bonds connected 
according to Fig. I I. The symplectic gyrator indicates the coupling between the 
magnetic and electrical domains (as in Example 12). The simple junction structure 
together with the symplectic gyrator forms the generalized junction structure con- 
necting the three energy storage elements in the complete generalized bond graph 
model of the electrical circuit. The causally augmented bond graph depicted in Fig. 
ISa shows that it is possible to assign integral causality to all energy storage 
elements: the efforts at their ports are independent. As the energy variables are 
related one-to-one to the effort variables through the constitutive relation of the 
energy storage elements (here even linear relations), the dimension of the state- 
space is three. Considering now the flows at the ports of the generalized junction 
structure, the causally augmented bond graph of Fig. 18b shows the maximum 
number ofindependent flows : at most two causal strokes may be directed outwards. 
This corresponds to a constraint on the flows which is here quite simple: the 
common flow expressed by the l-junction induces the following relation on the 
generalized flows : 

4, = p, = -I’? = _6;?. (83) 

This relation indeed restricts the time variation of the energy variable to remain 
within a plane defined by Eq. (84) 

4,+42 = K, (84) 

where K is some real number. 

E.xamp/e 16. (Bond graph model of a one-dimensional mechanical system.) 
Consider now the one-dimensional mechanical system of Example 6 and rep- 
resented in Fig. 2. Its generalized bond graph model is analogous to Fig. 18 by 
substituting the momentap, andpz for the magnetic flux linkages, the displacement 
q, z of the spring for the electrical charge, the masses m, and tnn2 for the inductances 
and finally the compliance C for the capacitance. The simple junction structure 
represents the force balance (and dually the kinematic constraints) in the system. 
The symplectic gyrator indicates the coupling between the elastic and the kinetic 
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FIG. 18. Bond graph models of the dynamics of an electrical circuit. 

domains. The causal strokes in Fig. 18 indicate in the same way that the dimension 
of the state space is three, but that the time variation of the state variables is 
restricted to the force balance relation : 

4, = F, = -F> = -&, 

where F, and F2 denote the forces exerted on the masses. 

(85) 

Example 17. (Bond graph model of a rigid body in free motion.) The model of 
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FIG. 19. Bond graph mod& of rigid body dynamics. 

a rigid body in free motion is depicted in Fig. 19. The three one-port energy storage 
elements represent the three components of the rotational kinetic energy of the 
body along its principal axis with the projections p,, pv, p_ of the total angular 
momentum on the principal axes as energy variables. The generalized junction 
structure of Fig. 19 connected to the three capacitors provides the bond graph 
realization of Euler’s equations (30). It is different from the “Eulerian junction 
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structure” proposed by Karnopp (49) which is a nonlinear element in the velocities, 
whereas here it is modulated by the momenta. The causality assignment of Fig. 
19a shows that the three efforts at the ports of the generalized junction structure 
are independent and hence the state space has dimension three. Figure 19b gives 
at most two independent flows at the ports of the energy storage elements; thus 
the variations of the energy variables are constrained on the so-called “invariant 
plane” (2) defined by Eq. (86) : 

3.2. The dynamics of‘ the energy tiariables as a Hamiltonian system 
Here we are concerned with the analytical formulation of the dynamics associated 

with the energy variables of a complete bond graph model : an n-port energy storage 
element connected to a generalized junction structure. For the sake of simplicity 
the following assumption is made on the causality at the ports of the generalized 
junction structure: it admits flow causality at all its ports. According to the pre- 
ceding section, this means that the efforts at the ports are independent. Hence the 
generalized junction structure is equivalent at its ports to a modulated gyrator 
(with constitutive matrix equal to minus the junction structure matrix J, due to 
the power bond orientation according to Fig. 20a) with constitutive equation (80). 
Furthermore the assumption on the independency of the efforts at the ports of the 
generalized junction structure means that the energy variables of the connected 
energy storage element are independent, which implies that the state space is simply 
BY’. 

If the causal assumption is not satisfied, then the space of the energy variables 
(i.e. the state space) is restricted to a proper subset of R”, but the results presented 
in this section remain valid provided that one restrict the maps defined hereafter 
to this proper subset of R” induced by the causal constraints on the efforts at the 
ports of the generalized junction structure (27). 

Let us first interpret the constitutive relations of an energy storage element in 
differential geometric terms. The energy function H(x) of the energy storage element 
defines a smooth real-valued function on R”, the space of the energy variables X. 
Identifying the tangent bundles 71w” of R” with I&!” x [w” and the cotangent bundle 
T*R” with 58” x (0X”)*, the power variables at the ports of the energy storage element 
may be interpreted as follows. The flow variable f, describing the time variation _t 
of the energy variable is an element of the tangent space T,R” at the state x. The 
effort variable e is the differential dH(x) of the energy function H(x) at X, thus is 
a cotangent vector belonging to T\*R”. Then the constitutive relation of an energy 
storage element defined in Eq. (65) may be defined as the local definition of the 
application given in Diag. 2. 

In the same way the relations on the power variables at the ports of the gener- 
alized junction structure may be interpreted in differential geometric terms. Taking 
into account the assumption on the causality restriction at its ports, the generalized 
junction structure induces algebraic relations on the power variables at its ports 
equivalent to the constitutive relations of a gyrator which may be modulated (see 
Eq. 80). One may again identify the flow variables at its ports with an element of 
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P = dH. 

H(x):a m Qh+ [May: -J(x) 
f = ;, -1 

(4 

(c) 

FIG. 20. Bond graph interpretation of the Hamiltonian reduction procedure. 

the tangent space T,[W” at x and the effort variables as an element of the cotangent 
space 7’prWn at x. Then the causal relations at the ports of the generalized junction 
structure correspond to Diag. 3, where J, denotes the junction structure matrix. 
This diagram would correspond to the mapping from one-forms to Hamiltonian 
vector fields defined by a Poisson bracket if the junction structure matrix J, satisfies 
the constitutive assumptions of structure matrices of Poisson structures. These 

dH 
e: IS”- T*(R”) 

Id 
Id: T(R”) - T(R”) 

fx I- fx = ix 
DIAG. 2. 
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DIAG. 3. 

constitutive assumptions are given by Eqs (11) and (12) and will now be discussed 
with respect to the constitutive assumptions on junction structure matrices (or 
gyrators’ constitutive relations). Firstly in order to ensure the power continuity of 
the generalized junction structure, the matrix J, has to be skew-symmetric (i.e. 
antisymmetric) (13); this is exactly the condition (11). On the other hand, the 
Jacobi conditions (12) on a structure matrix (13) are usually not required for a 
(generalized) junction structure matrix or the constitutive matrix of a gyrator. For 
Hamiltonian systems, they play an essential role (see Section II) since they are 
necessary and sufficient conditions in order to ensure that an arbitrary choice of 
a Hamiltonian function induces a vector field which leaves the Poisson structure, i.e. 
the geometric structure, of the system invariant. Hence in an analogous way for 
networks they are necessary and sufficient conditions to ensure that one may choose 
arbitrary energy functions for the energy storage elements independently of the 
generalized junction structure. It is interesting to note moreover that as a conse- 
quence of the Jacobi conditions, the invariants on the flow variables at the ports 
of the generalized junction structure may be related one-to-one to invariants on 
the energy variables whatever the actual energy function is. Physically this may be 
explained by the very general derivation of power continuity from the conservation 
of physical quantities like the electrical charge or the kinetic momentum (11, chaps 
4 and 5). In terms of Hamiltonian systems, the Jacobi conditions allow to express 
the degeneracy of the Poisson structure (corresponding to invariants on the flow 
variables) as symmetries on the Hamiltonian function (defined on the state vari- 
ables) of some embedding standard Hamiltonian systems as recalled in Section II. 
Now we may consider again the complete bond graph model with causality assigned 
according to the assumptions on the generalized junction structure and represented 
on Fig. 20a. Assembling the diagrams representing the maps defined above, one 
obtains the map represented in Diag. 4. This map is the differential geometric 
interpretation of the usual construction of the dynamics of bond graph models 
using causal paths in a generalized junction structure. Moreover, if the junction 
structure matrix verifies the skew-symmetry and the Jacobi conditions (see Eq. 
(12)) then the dynamics corresponds to a Hamiltonian system with Hamiltonian 
function equal to the energy function H(x) on the Poisson manifold admitting the 
junction structure matrix as structure matrix of its Poisson structure. 

dH Jx 
R” __, T*(R”) __* 7-(&l”) 
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Exumple 18. (Dynamics of an electrical circuit.) Consider the circuit of Example 
2 and its bond graph representation in Fig. 18a. The array of three one-port energy 
storage elements may be interpreted as one three-port energy storage element with 
energy function : 

(87) 

with Q the charge of the capacitor and $,, 4z the magnetic flux linkages of the 
inductors. The energy function is the sum of the energy associated with each one- 
port energy storage element. The constitutive relation of the three-port capacitor 
is then linear and diagonal : 

The causal relations at the ports of the junction structure in Fig. 1Xa induces the 
following relation : 

The matrix defining the linear inputtoutput relation at the ports of the junction 
structure is the junction structure matrix. The relation (89) corresponds to the 
relations induced by the fundamental loop and cutset matrices associated with the 
tree in Fig. 14. Furthermore the junction structure matrix is skew-symmetric and 
linear (and thus it satisfies necessarily the Jacobi identities). Thus it defines a 
Poisson structure on R’. The combination of Eqs (87) (88) and (89) according to 
Diag. 4, defines the dynamics of the electrical circuit as Hamiltonian dynamics on 
R3 endowed with the Poisson structure defined by the junction structure matrix, 
with the sum of the electrical and magnetic energy functions as Hamiltonian 
function : 

(90) 

One recovers the dynamics presented in Example 2 ; however it was now deduced 
using the causal procedure on the causally augmented bond graph model (12,42). 

Exumple 19. (Dynamics of a mechanical system.) The one-dimensional mech- 
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anical system of Example 6 has a bond graph model analogous to Fig. 18a (see 
Example 16). Hence its dynamics may also be expressed as a Hamiltonian system. 
Its Hamiltonian function is the sum of the elastic potential energy of the spring 
and the kinetic energies of the two masses : 

This energy function implies the following constitutive relation at the ports of the 
three-port energy storage element : 

Fe, 
e= 2, 

ii 

= 
I 

2’2 

aH 

ax,> 

aH 

ap, 

aH 

JPPZ 

kx,z 
PI 

ml 

P2 

m2 

(92) 

, 

The generalized junction structure induces the following causal relations at the 
ports of the junction structure : 

.f=(jy) = (_r -i je. (93) 

Combining Eqs (92) and (93) one recovers the Hamiltonian dynamics : 

(3H 

aLJ I 

aH 

c app2 

(94) 

Example 20. (Rigid body dynamics.) Consider again the rigid body in free motion 
(Example 3) and its bond graph model in Fig. 19a. The array of the three one-port 
energy storage elements may be grouped into one three-port energy storage element. 
Its energy variable is simply the angular momentum p whose projections pv, p!, pz 
on the three principal axes of the rigid body are the energy variables of the one- 
port energy storage elements. The energy function is the rotational kinetic energy 
of the rigid body and is equal to the sum of its components on the three principal 
axes : 

H(p, , p,, ) p_ ) = fi + 4; + p’ 
2J,y 2J,. 2J,. 

The causal relations at the ports of the generalized junction structure are : 

(95) 
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(96) 

The junction structure matrix of the bond graph model in Fig. 19a corresponds 
exactly to the structure matrix of the Poisson structure of the Euler equations (see 
Example 3). 

The constitutive relations of the three-port energy storage element with energy 
function H(I-‘) give : 

r- - 
PY 

J, 
P, Ei, 

e=dH,= j- I ’ .f = p,, . 

ii 

(97) 

P.- dz 

-Jr, 

Combining Eqs (96) and (97) according to Diag. 4, i.e. following the causal strokes 
in the bond graph model, one recovers the Hamiltonian dynamics defined by the 
Euler equations : 

P\ 

7, 

P? 

J, 
P- 

Jz 

(98) 

3.3. Relation M’ith stand& Humiltoniun systems und their bond graph realization 
Now we shall discuss the relation of the dynamics of the energy variables of a 

bond graph model with associated reduced and embedding standard Hamiltonian 
systems. The discussion focuses on their bond graph realization, and special atten- 
tion will be paid to the choice of coordinates of each representation. 

First, the dynamics of the energy variables is discussed with respect to the reduced 
standard Hamiltonian system obtained through the reduction by the dynamical 
invariants. Its bond graph realization is based upon the analytical decomposition 
of the generalized junction structure (13) : it makes appear explicitly its structure 
and identifies the canonical variables in the decomposed bond graph. Secondly, 
the bond graph realization of an embedding standard Hamiltonian system will be 
obtained by the addition of some energy storage element with an energy function 
which is identically equal to zero. Again, the associated symplectic structure and 
canonical coordinates will be identified with some elements and flow variables of 
the bond graph realization. 
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3.3.1. The reducedstandard Hamiltonian system. Let us consider the Hamiltonian 
system describing the dynamics of the general bond graph model of Fig. 20a. In 
order to reduce this system through its invariants, let us first consider its expression 
in canonical coordinates following Section II. According to Theorem II, one knows 
that there exists (locally) a change of coordinates denoted by 4 which provides 
canonical coordinates : 

444 = (4>/A~), (99) 

where q and p are in R” and r is in [w’ if 2n is the rank of the Poisson structure and 
I is the dimension of its kernel. 

In these coordinates, the structure matrix J, of the Poisson structure takes the 
form : 

0 4 0 
J(q,p, r) = -I, 0 0 . 

i 1 (100) 
0 0 0 

Consequently the structure matrix is split into a symplectic matrix of rank 2n and 
a zero matrix corresponding to its kernel. 

Moreover the change of coordinates 4 locally induces the two following adjoint 
maps : the tangent map (& ‘)*_Y and the cotangent map (& ‘)z on the tangent and 
cotangent bundles of R2”+‘. In coordinates, (& ‘)*.Y may be represented by a matrix 
r, (the subscript indicates that this matrix in general is a function of x) ; while the 
adjoint map (de’): is represented by the transpose T_: of the real-valued matrix 
r,. The matrix TX defines the analytical decomposition of the generalized junction 
structure (13). The corresponding bond graph model is shown in Fig. 20b: the 
generalized junction structure is decomposed into a modulated multiport trans- 
former with constitutive matrix i”, relating the energy storage elements to a 2n- 

port (symplectic) gyrator with constitutive matrix zymp : 

(101) 

and a zero-flow source of dimension 1. 
This decomposition of the bond graph model was obtained in an analytical way 

and may or may not coincide with the junction structure obtained from physical 
considerations. It makes explicit the causal constraints on the flows at the ports of 
the generalized junction structure in the form of the zero-flow source of dimension 
1. According to the definition of the transformation matrix T,, the generalized 
flows at the ports of the zero-flow source are the time-variation of the redundant 
variables, which obviously obey the dynamic equation : 

J = 0. (102) 

In the same way the generalized flow variables at the ports of the 2n-port symplectic 
gyrator correspond to the time-variations 4 and b of the canonical coordinates of 
the reduced system. Thus they obey the constitutive relation : 
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aH - 
(I ii 4 = JSPV aq p n dH’ 

dP 

(103) 

Finally, one may observe that considering the energy flows, only the power bonds 
at the ports of the symplectic gyrator contribute to the variation of the energy in 
the energy storage elements. Indeed the power bonds with the flow variables being 
the variation r: of the redundant variables convey a power equal to zero. 

Example 21. Reconsider the electrical circuit of Fig. I and its bond graph model 

in Fig. ISa. The analytically decomposed generalized junction structure, defined 
by the change of variables (51) is shown in Fig. 18~. Compared to the physical 
junction structure in Fig. 18a, a zero-flow source was added and a junction structure 
relating it to the energy storage elements (they are denoted by the bold bonds in 
Fig. 18~). The flow variable at the port of the zero flow source is 

0 = r: = ;(c, fC2) = i(& +&). (104) 

The zero-flow source shows explicitly the conservation of the total magnetic flux. 
The flow variables at the ports of the symplectic gyrator are 

4 = i, = 0, p = $(z\~-z~,) = {(d;2+&,). (103 

The symplectic gyrator induces the dynamics of the reduced Hamiltonian system : 
here it is a.linear harmonic oscillator, This reduced Hamiltonian system at the 
ports of the symplectic gyrator is exactly the system obtained by Bernstein and 
Lieberman (7). The change of coordinates performed in this example is the 
alternative change of coordinates presented in (7) and leaving the capacitors’ 
charges invariant; they call the redundant variables r “latent” variables and the 
canonical coordinates of the reduced system “active variables”. Summarizing. the 
analytical decomposition of the generalized junction structure corresponds, for the 
electrical circuit, to the addition of a simple junction structure and a zero-flow 
source to the original physical junction structure. This additional junction structure 
is necessary in order to define a regular change of coordinates, but is redundant in 
the sense that its power bonds convey a power identically equal to zero. Moreover, 
the generalized bond graph formalism uses the symplectic gyrator as a physical 
coupling element of the network : at its ports one reads directly the reduced 
Hamiltonian dynamics. This explains why one may define a topological reduction 
procedure of the dynamics of electrical circuits as in (7). 

Esumpk~ 22. Consider now the dynamics of the rigid body treated in Examples 
3 and 17 and its bond graph representation in Fig. 19a. The change of variables 
(60) would lead in the same way as for the electrical circuit, to the decomposition 
of the junction structure into a two-port symplectic gyrator and a zero-flow source. 
At the ports of the symplectic gyrator one recovers the reduced standard Ham- 
iltonian dynamics and the zero-flow source represents explicitly the constraint on 
the generalized flows : 



Hamiltonian Formulation of Network Dynamics 

(106) 
The junction structure matrix verifies the Jacobi conditions, hence the constraints 
on the flow variables imply the existence of some invariant on the energy variables 
which is here the conservation of the total momentum : 

where k is some constant. 

(107) 

In contrast to the electrical circuit models, the analytical decomposition destroys 
the original Eulerian junction structure realization. Furthermore, the analytical 
decomposition of the generalized junction structure implies the use of varying 
junction structures according to the singularity of the chosen coordinate trans- 
formation. For instance, the coordinate transformation defined in (60) gives the 
following singularity on the transformers moduli : 

p,‘+pf = 0. (108) 

Three different decomposed junction structures, obtained by circular permutation 
of pl, .LQ, pZ are necessary to cover the entire state space. This disadvantage of 
the analytical canonical decomposition of generalized junction structure may be 
avoided using a graphical transformation. This transformation is based on the 
“partial dualization” of the junction structure (50). It consists in making symplectic 
gyrators appear at some ports of the junction structure by dualization, i.e. exchang- 
ing the flows and effort variables at these ports, and minimizing the number of the 
gyrators remaining in the junction structure. In the case of the Eulerian junction 
structure (Fig. 19a), a partial dualization leads to the junction structure in Fig. 
19~. It is obtained by dualization of the port attached to the energy storage element 
representing the kinetic energy along the x-axis of the rigid body. Then the zero 
junction connected to this port and the gyrators attached to this junction are 
dualized into a l-junction and two transformers, leaving one gyrator in the junction 
structure. In general the minimal sets of gyrators remaining in the junction structure 
after partial dualization at its ports are called “essential” (SO). At the ports of the 
symplectic gyrator one may again read the reduced standard Hamiltonian dynam- 
ics. But the main advantage of the dualization procedure with respect to the 
analytical decomposition is that the reduced Hamiltonian system is explicit graphi- 
cally without generating any singularity on the remaining dualized junction 
structure. 

3.3.2. The embedding standard Hamiltonian system. Reconsider the general bond 
graph model in Fig. 20a and its dynamics described by (15). In the previous 
paragraph we have seen that the regular change of coordinates into canonical 
coordinates leads to the analytical decomposition of the junction structure into a 
symplectic gyrator (corresponding to the reduced dynamics) and makes appear a 
zero-flow source representing the singularity of the junction structure. However, 
according to Section II, one may further require the regularity of the geo- 
metric structure of the dynamical system considering the embedding standard 
Hamiltonian system (50). 
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Its bond graph realization arises from the decomposed junction structure in Fig. 
20b ; the embedding system is defined in canonical coordinates (q,p, r) associated 
with the Poisson structure. In order to regularize the geometric structure of the 
system, the additional coordinate s is introduced, conjugated to variable Y (see Eq. 
45). In bond graph terms, the generalized junction structure of the embedding 
system is realized by introducing a bond carrying the flow variable S and a sym- 
plectic gyrator of dimension 21 representing the conjugacy of S with i (see Fig. 
20~). Hence the augmented generalized junction structure is now regular. On the 
extended state space the Hamiltonian function of the embedding system (42) is : 

fi(q, p, s, VI = H(q, p, y) + O(s), 

where O(s) represents the function of s equal to zero. 

(10% 

Equation (109) simply expresses that the Hamiltonian function His independent 
of s, the vector of the conserved quantities of the embedding system. Thus the 
energy associated with s is equal to zero : this is represented by an energy storage 
element attached to the bond carrying S with an energy function equal to zero (see 
Fig. 20~). Now the dynamics of the canonical coordinates (q,p,s,r) reads at the 
ports of the two symplectic gyrators. At the ports of the symplectic gyrator of 
dimension 2n one reads the dynamics of the reduced Hamiltonian system con- 
sidering (109) : 

In the same way, at the ports of the symplectic gyrator of dimension 21, one reads 
the dynamics of the canonical variables s and Y. The time variation of the redundant 
variables Y, becomes : 

(111) 

The invariance of the vector of redundant variable r is no longer expressed by a 
zero-flow source (as in Fig. 20b) but by the degeneracy of an energy storage element 
(Fig. 20~) which has an energy function equal to zero and thus constrains the 
efforts at its ports to remain equal to zero. In network terms this means that this 
storage element is equivalent at its port to a zero-effort source ; combined with the 
symplectic gyrator this results again in an equivalent zero-flow source. The flow 
variables at the ports of the energy storage elements are not causally constrained 
by the extended generalized junction structure which is regular, but by the non- 
invertibility of the constitutive relation (65) of the energy storage with energy 
function equal to zero. The dynamics of the conserved quantities s is also read at 
the ports of the symplectic gyrator of dimension 21: 

(112) 
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Thereby the efforts aH(x)/&, conjugated to the zero-flow appearing with the ana- 
lytical decomposition of a generalized junction structure, may be interpreted as 
the time variation Sj of the conserved quantities of the embedding standard 
Hamiltonian system. 

Example 23. The bond graph representation of the embedding system associated 
with the electrical circuit in Fig. 18a is shown in Fig. 18d. It was deduced from the 
decomposed junction structure in Fig. 1%~ by replacing the flow source by a gyrator 
and an energy storage element with an energy function equal to zero. At the ports 
of the symplectic gyrator one reads : 

.$ = -(i, +i*), (21, +u,) = i = P,, = 0, (113) 

where e,s denotes the effort at the port of the degenerate energy storage element. 
Thus the degeneracy of the additional energy storage element ensures the con- 

straint on the voltages. The current type variable - (i, + iJ conjugated to the 
redundant variable may be interpreted as the time variation of the conserved 
quantity of the embedding standard Hamiltonian system. It may further be noticed 
that the embedding system does not have a realization in electrical circuit terms as 
the simple junction structure in Fig. 18c, d is not graphical (45). 

Example 24. Take again the one-dimensional mechanical system of Example 6, 
which has a bond graph representation analogous to the electrical circuit, and 
consider the bond graph representation of its embedding standard Hamiltonian 
system in Fig. 18b. Then at the ports of the additional symplectic gyrator, one 
reads again the dynamics of the redundant variable r = (p, +p3), i.e. the total 
momentum of the system and of its conjugated conserved quantity : 

s = -(c, +c2), (0, +J$) = i = L’, = 0. (114) 

The conserved quantity may be interpreted as the position (up to some multi- 
plicative constant) of the masses. 

IV. Conclusion 

The structural relations between network representations of systems not con- 
taining resistive (or irreversible) phenomena (such as LC electrical circuits or 
mechanical systems without friction) and the Hamiltonian formalism of analytical 
mechanics were investigated. 

To this aim, generalized Hamiltonian systems were considered, i.e. systems 
defined on degenerate Poisson manifolds which appear in the context of reduction 
of standard Hamiltonian systems with symmetry. This generalization allows in 
particular the handling of state spaces of odd dimension and the explication of the 
invariants of the system in terms of the geometric structure, i.e. the Poisson 
structure. One interesting consequence of the use of Poisson structures is that it 
implies the use of dual sets of variables. 

The bond graph notation was used for the network representation of systems 
and the generalized bond graph formalism allowed to make the relation between 
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the network and Hamiltonian formalisms. Indeed its main feature is to symmetrize 
all energetic network elements in a single energy storage element and accordingly to 
explicate the coupling between different physical domains by a unit gyrator element, 
thus endowing the network including the gyrators (and called generalized junction 
structure) with a gyrator-type constitutive relation at its ports. 

Then the relation between the network and the Hamiltonian formalism is made 
by matching the energy function associated with the energy storage elements of the 
network with the Hamiltonian function and the generalized junction structure 
relations at its ports with the local definition of a Poisson structure. It was proved 
that the dynamic equations associated with the energy variables (of the energy 
storage element) is Hamiltonian and that the topological (or graphical) con- 
struction of these dynamics matches exactly the analytical definition of Hamiltonian 
dynamics. 

The crucial point of the relation of the network and Hamiltonian formalisms is 
the representation of the dynamic invariants. Indeed the (general) Poisson structure 
explicates the invariants of the system as the elements of its kernel. These may be 
related with the algebraic and topologic constraints induced by the generalized 
network (the generalized junction structure) at its port variables. 

Furthermore, a network interpretation of the relation with the embedding and 
reduced standard Hamiltonian systems was given. The reduced Hamiltonian system 
was shown to correspond to the generalized flows at the ports of the symplectic 
gyrators, appearing as coupling elements between the different physical domains 
or by the analytical decomposition of the generalized junction structure. The 
embedding system was constructed using a degenerate energy storage element with 
energy function equal to zero and the symmetry variables of the embedding system 
as energy variable. 

In summary, the consideration of generalized Hamiltonian systems defined with 
respect to degenerate Poisson structure is essential for an intrinsic analytical rep- 
resentation of the main features of network representations: the duality of port 
variables and the invariants intrinsically given by the network topology. 
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