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Input-Output Decoupling with Stability for 
Hamiltonian Systems* 

H. J. C. Huijbertst and A. J. van der Schaftt  

Abstract. The input-output decoupling problem with stability for Hamiltonian 
systems is treated using decoupling feedbacks, all of which make the system 
maximally unobservable. Using the fact that the dynamics of the maximal unobser- 
vable subsystem are again Hamiltonian, an easily checked condition for input- 
output decoupling with (critical) stability is deduced. 

Key wards. Decoupled systems, Critical stability, Unobservable dynamics, Con- 
strained Hamiltonian systems�9 

I .  I n t r o d u c t i o n  

While the solution of the input-output  decoupling problem for nonlinear control 
systems is well established (see [I-I and I-NS] for references), relatively little attention 
has been paid in the literature to the problem of finding a decoupling feedback which 
also achieves internal stability of the closed-loop nonlinear system (see, however, 
[IG], received during preparation of this paper). 

It is well known that the nonlinear (scalar) input-(scalar) output decoupling 
problem is solvable if and only if the decoupling matrix, a nonlinear generalization 
of  the Falb-Wolovich matrix from linear theory, has full rank everywhere�9 Further- 
more, with the aid of this decoupling matrix a large class of decoupling feedbacks, 
which all have the property that they decouple the system into m linear input-  
output systems (with m being the number of inputs and outputs), together with an 
unobservable nonlinear system (which actually is the maximal subsystem that can 
be made unobservable; see [I] for references), can be constructed. 

�9 J 

In this paper we tackle the problem of input-output  decoupling with stability for 
Hamiltonian systems, using the same easily computable class of decoupling feed- 
backs as indicated above. In [$2-1 and [$3] it was shown that the remaining 
unobservable nonlinear system in this case is a Hamiltonian subsystem of the 
original system; in fact, its dynamics are governed by a Hamiltonian function/~, 
which is simply obtained by restricting the original Hamiltonian function H (energy) 
to a symplectic submanifold which forms the state space for this unobservable non- 
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linear system. It follows that these unobservable dynamics are at most critically, but 
never asymptotically, stable. The main result of this paper states that if the Hamil- 
tonian H has an isolated (local) minimum at the equilibrium point--a condition 
which can be easily verified, and which forms a sufficient (and in many cases 
generically also a necessary) condition for stability of the unobservable dynamics-- 
then by making the linear decoupled input-output systems separately asymptoti- 
cally stable by static feedback the whole closed-loop system becomes locally stable. 
This is proved by an application of center manifold theory, as introduced in 
nonlinear control theory in [AI (see also [M2]). 

As an important preliminary result we derive a property of the canonical form 
for general (not necessarily Hamiltonian) input-output decoupled systems, which 
is of independent interest: the coordinates for the maximal unorservable system can 
be chosen in such a way that this subsystem is not directly influenced by the inputs 
if and only if the distribution of input vector fields is involutive. 

In this paper asymptotic stability of the input-output decoupled Hamiltonian 
system is only achieved if the maximal unobservable system is zero-dimensional. 
However, it is easy to give examples of Hamiltonian systems with nontrivial maxi- 
mal unobservable dynamics which can be made asymptotically stable and input- 
output decoupled at the same time. This is because we have restricted attention to 
a large, but proper subset of all decoupling feedbacks. In I-HG-I the set of all 
decoupling feedbacks was characterized (generalizing the linear results of [G'I), 
while in [IG] (see also INS'I) the dynamics that are left invariant by all decoupling 
feedbacks are determined. These dynamics are contained in the maximal unobserv- 
able dynamics. This notion of fixed dynamics deserves a closer study in the Hamil- 
tonian case, and is expected to lead to an extension of the results obtained in this 
paper. This remains for further research. 

After having submitted the first version of this paper we received a preprint of 
[BII'I, dealing with stabilizability ol general (non-Hamiltonian) systems, where 
methods related to the ones used in this paper are employed. For results on the 
general feedback stabilization problem we refer to IB] and the references therein 
and to IBB, BI2-1, and [T]. 

2. Hamiltonian Systems 

We briefly review the definition of a Hamiltonian system, see, e.g., IS1] and [CS]. 
Let M be a 2n-dimensional connected manifold with symplectic form to. By Dar- 
boux's theorem there exist local coordinates (q, p) = (ql,-.., qn, Pl . . . . .  p,) such that 
to = ~7=xdp~ ^ dq~. Such coordinates are called canonical. Given a function 
F: M ~ R we define the Hamiltonian vector field XF on M by to(XF, ") = -dF.  
In canonical coordinates [AM] 

Given another function G: M ~ R we define the Poisson brack,et {F, G} = XF(G) = 
to(Xr, )to). In canonical coordinates 

(OF OG OF tgG) (2.2) 
 aq, aq,  " { F , G )  = 

t=l  
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A (coordinate) transformation q~: M ~ M is canonical if ~o preserves the Poisson 
bracket, i.e., 

{,F o ~0, G o q~} = {F, G} o q~ for all F, G. (2.3) 

An (affine) Hamiltonian system on M with internal energy H is now defined as 

Yr = Xn(x)  - ~ ujXc,(X), Yi = Cj(x), (2.4) 
j f f i l  

with x the local (possibly canonical) coordinates, u = (ux . . . . .  u,,) the inputs, y = 
(y~, . . . ,  y,,) the outputs, and C = (Cx . . . . .  C,,) the output mapping. This constitutes 
a direct generalization of the classical Euler-Lagrange equations with external 
forces u i 

d_(aL  aL = f . , ,  i =  1 . . . . .  m. 

dt \O(liJ Oqi ~ O, i = m + 1 , . . . ,  n, 
(2.5) 

y i = q j ,  j =  l , . . . , m ,  

or in Hamiltonian form (with p~= aL/O(fi the momenta and H ( q , p ) =  
~=1 (I~(OL/NI~) - L(q, (1) the internal energy) 

OH 
(li = Op i i =  1, n, 

OH 
~ i =  - - - - +  ui, i = l , . . . , m ,  

Oq~ (2.6) 

OH 
151 = Oqi i = m + 1, n, 

y i = q j ,  j = l , . . . , m .  

In fact, if we take Cj(q, p) = qj in (2.4) we obtain (2.6), and conversely if we allow for 
canonical coordinate transformations in (2.6), then (2.6) takes the form (2.4). 

A particular subclass of Hamiltonian systems often encountered in applications, 
e.g., involving mechanical systems, is given below: 

Definition 2.1. Let M be of the form T*Q with Q the configuration manifold 
with coordinates (ql . . . . .  q,). Let H ( q , p ) =  K ( q , p ) +  V(q), where K ( q , p ) =  
1 n - ~ . j = l g ~  alad the matrix (g~J(q)) is positive definite, and let C1, . . . ,  
C,,: Q ~ R. Then the Hamiltonian system (2.4) is called simple. The term K(q, p) 
is called the kinetic eneroy and the term V(q) is called the potential energy of 
the system. 

3. The Canonical Form for Decoupled Systems 

We consider a general nonlinear system on a smooth manifold M, given in local 
coordinates by 

= f ( x ) +  ~ uigi(x), 
i=1 (3.1) 

yj = hi(x), j = 1 . . . . .  m, 
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where f ,  Ox . . . . .  9,, are smooth vector fields on M and h: . . . . .  h,. are smooth 
real-valued functions on M. 

For (3.1) we define characteristic numbers Px . . . . .  p,. by 

p~(x) = min (for some j ~ m: LejL~hi(x ) :~ 0). (3.2) 
k e n  

(Here and in the following m denotes the set {1 . . . . .  m} for m ~ N.) Assume that p~(x) 
does not depend on x, i.e., p~(x)= p~ and p~ < ~ (i ~ m). Then we define the 
decoupling matrix A(x) for (3.1) as the matrix with elements 

aq(x) = Lg L~'h,(x) (i, j em) .  (3.3) 

It is well known (see [I]) that the input-output  decoupling problem is solvable 
for all x e M if and only if the decoupling matrix A(x) has ful| rank for all x ~ M. 
Moreover, if A(x) has full rank for all x e M, the functions h~(x) . . . . .  LPt'h~(x) . . . . .  
hm(x) . . . . .  L~'hm(x) are independent for all x e M. Hence, under this assumption we 
can choose coordinates (~, . . . . .  ~,,+1) for M in the following way: 

~ = = �9 ( i  e m ) ,  

z , L L ~ , h , ( x ) J  
(3.4) 

2m+1,  1 

~m+l= " where d = n -  (p f+  1). 
i=1 

L Zra+l,d l 

A large class of decoupling feedbacks ui = oq(x) + ~']'=1 flij(x)vj (with the matrix 
([3o(x))i.j~ m invertible for all x E M and vl . . . .  , Vm the new inputs) is given by the 
solutions of (see [I]) 

Ai(x)a(x) + bi(x) yi(x) [ "~ (i ~ m), (3.5) 
A~(x) f l (x)  = ,~i(x)J 

where Ai(x) is the ith row of the decoupling matrix A(x), bi(x)= L~'+lhi(x), 
yi(x) is a function whose differential belongs to span{dL~i;  0 < k < pi}, and di~(x) 
is a row vector with ith element a function whose differential belongs to 
span{dL~hi; 0 < k < p~} and other elements equal zero. 

In particular we can take ~,~(x) to be a linear function of ~,  say y~(x) = ~'.~'--o e0z~j, 
and the nonzero element of di~(x) to be constant, say ~.(x) = a~ e R. The class of 
decoupling feedbacks of this type is denoted by '.'~. In the coordinates (3.4) t h e  
decoupled system has the following structure after application of a decoupling 
feedback from the class ~ (see [I]): 

~i = Ai~i + Btvi (i e m), (3.6) 

jffil 

where A~ is the constant (Pi + 1, Pi + 1) matrix 

O0 0 1 "'" + 

�9 ... . , 

0 ~'il ...... 8ipi_{ 
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B~ is the constant  (p~ + 1) vector  

Iil aiJ 

and f ,  ~j ( j  ~ m) depend upon  the choice of  the coordinates  ~,.+x. 
We  see f rom (3.4) that  the outputs  do not  depend on ~.,+~. No te  that ,  in fact, ~m+: 

are coordina tes  for the maximal  controlled invar iant  dis t r ibut ion [ I ]  contained in 
("]~"=1 K e r  dhi, which we call D* in the following. 

It  is na tura l  to quest ion whether  the coordinates  ~,.+~ for D* can be chosen in 
such a way that  the dynamics  of  ~.+x are not  directly influenced by  the inputs, i.e., 
~(~1 . . . . .  ~m+l) = 0 ( j  e m) in (3.6). (For  m = 1 this quest ion was answered affirma- 
tively in [M1].)  Because/~(x) is assumed to have full r ank  this is the case if and only 
if ~.,+1 can be chosen in such a way that  in the original system (before feedback) the 
dynamics  of  ~.+1 = (z,.+1,1 . . . . .  z.,+1,4) are not  influenced by the old inputs, i.e., 

Lg~z,.+l,k = 0 for all j ~ m, k ~ d, (3.7) 

or, equivalently,  Z,.+a,k ~ G L, for all k e d, where G is the dis t r ibut ion spanned by 
the input  vector  fields 9~ . . . . .  Or. and G "L is the annihi la t ing codis t r ibut ion of G. 
(F rom (3.3) and the assumpt ion  rank A = m it immedia te ly  follows that  the dimen- 
sion of G is constant ,  m.) Since ~.,+~ has to be such that  (Ca . . . .  , ~r.+:) form a 
coord ina te  system, the following condit ions on r also have to be satisfied: 

dZm+x,k r F := span{dL~h~; 0 < k < p,, i ~ m) (k ~ d), (3.8) 

dim span {dz,.+~, ~ . . . . .  dz.,+~,a } = d. (3.9) 

Before giving the final result, we first prove  two technical lemmas.  

L e m m a  3.1. l f  A(x)  has rank m for  all x ~ M,  then G c~ F "L = {0}. 

Proof.  Assume ~t19 a + " -  + ~mgm ~ F'L for some funct ions cq . . . . .  ~m. Then, for 
i E m ,  

(dL~.'h~, eta91 + "'" + ~,,,9,,,) = ~ ~gLgsL~'hi = O. 
j=l 

Hence ~"=~ ~jA ~ = 0, where A i is the j t h  co lumn of A. By nonsingular i ty  of  A this 
implies ct x = -.. = ct., = 0. �9 

L e m m a  3.2. I f  A(x)  has rank m for  all x ~ M ,  then 

G "L n F = span{dL~hi; 0 < k < Pl - 1, i ~ m}. 

Proof.  F r o m  the fact that  Lg~L~rh~ = 0 for all j ~ m, 0 < k < Pi - 1, it follows 
that  span{dL~hl; 0 <_ k <_ p~ - 1, i ~ m} c G • n F. Moreove r ,  f rom the definition of 
the characterist ic  numbers  it follows tha t  (dL~r'hi, 9~) = LgjL~r'hi v~ 0 for at least 
one j ~ m, so dL~r'h~ r G-L. Hence G • n V = span{dL~rh,; 0 < k <_ p~ - 1, i ~ m}, as 
claimed. �9 
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Now we come to the final result (see also [MBE]).  

Theorem 3.1. Assume that rank A(x )  = m f o r  all x �9 M.  Then  there are smooth  

func t ions  Zl, . . .  , Zd: M --* R, with d = n - ~r/'= 1 (pi + 1), that  satisfy (3.7)-(3.9) i f  and 
only i f  G is involutive. 

Proof. (Necessity) Assume that z~ . . . . .  Zd satisfying (3.7)-(3.9) exist. From Lemma 
3.1 we have G c ~ F  -L = {0} or, equivalently, G • + F = T * M .  So d i m ( G •  
n - d i m ( F ) = d .  From this fact and (3.7)-(3.9) it follows that G •  

span{dzl . . . .  , dZd}. Moreover, by Lemma 3.2 G • = span{(dL~-hi; 0 < k < Pi - 1, 
i e m), dzl  . . . . .  dZd}. Hence G x is spanned by exact one-forms and this implies 
that G is involutive. 

(Sufficiency) Involutivity of G implies that G • can be spanned by n-m exact 
one-forms. The functions that define the exact one-forms spanning G •  satisfy 
(3.7)-(3.9). So there are functions z 1 . . . . .  z d satisfying (3.7)-(3.9). �9 

Remarks .  (1) For  linear systems, G is always involutive, so in this case we can 
always choose coordinates ~,~+1 for D* (which in this case is a linear subspace) such 
that the dynamics of~m+l are not directly influenced by the inputs. (This also follows 
from the Morse canonical form.) 

(2) We see that if G is involutive, then the decoupled system has the structure 
shown in Fig. 1 in coordinates ~1 . . . . .  ~,~+1 as above. 

U 1 

[ 

I 

. . . . . . . . . . .  

Yl 

Y2 
) 

Ym 

) 

Fig. 1. Structure ofdecoupled system when G is involutive. 
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Hamiltonian Systems 
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Let us now consider a Hamiltonian system on a symplectic manifold (M, eg) (see 
Section 2). 

Yc = X n ( x ) -  ~. ujXc~(X), 

jffil (4.1) 
Y1 = Ci(x), j e m, 

where H, C1 . . . . .  C ,  e C~(M). We assume throughout that the input-output  decou- 
piing problem for (4.1) is solvable, i.e., that the decoupling matrix A (x) associated 
with (4.1) (see Section 3) is nonsingular everywhere. Notice that by the definition of 
the Poisson bracket (2.2) the (i, j) th element of A(x) can be rewritten as (see [$2] 
and [$3]) 

a,j(x) = LxgL~:~ C,(x) = { C i, ad~/Ci} (x), 

where we define inductively ad~ = Ci, adkCi = {H, adk-iC/}, k > 1, and where p~ 
is the smallest integer such that there exists j ~ m for which {Cj, adf/C~} (x) :~ 0. It 
follows that in order to obtain the decoupling matrix A(x) we do not have to 
compute X n and Xc~, j e m, explicitly; knowledge of the energy H and the obser- 
vation functions Cj, j e m, suffices. 

We also assume throughout that the distribution G = span{Xc,, . . . .  Xcm } is 
involutive. For Hamiltonian systems this assumption is not very restrictive, as is 
seen from the following lemma: 

Lemma 4.1. Consider the Hamihonian system (4.1). Then G is involutive if pi > 0 
(i e m). 

Proof. Assume that Pi > 0 (i e m). Then, for all i, j e m, [Xc,, Xcj  ] = X{c,.cj } = 
X o = 0 e G. Hence G is involutive. �9 

Remark. For simple Hamiltonian systems all characteristic numbers equal one, 
and hence for simtJle Hamiltonian systems G is always involutive. 

From Section 3 we now know that we can apply a decoupling feedback from 
the class ~ to (4.1), so that the decoupled system consists of m linear single- 
input single-output systems Zi (i ~ m) together with a nonlinear system ,~, whose 
dynamics are not directly influenced by the inputs. Furthermore, we know from 
[$2] and [$3] that in the Hamiltonian case the state space of this nonlinear system 
Z, denoted by N* (in fact, N* is the maximal controlled invariant submanifold 
contained in N7'=1 Ker dCi), is a symplectic submanifold of M. Hence coordi- 
nates (~i(i e m), ~,/~) of M can be chosen, with ~i as in Section 3 and with 
(~, p) partial canonical coordinates, in which the decoupled system has the 
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form 
T'i: ~i = Ai~i + Biv~ (i ~ m), 

t~= --~-- (q, i5, ~, (i ~ m)), 

s (4.2) 

----~- q p, ~,(iem)), 

yj = [1 0 "'" O]~j ( j  e m), 

with A i and Bi as in Section 3. 
Since the linear subsystems Z~ are controllable, they can be made asymptotically 

stable by applying a suitable feedback v~ = F ~  (i.e., the system can be decoupled by 
means of a feedback from the class ~ such that the linear subsystems of the 
decoupled system are asymptotically stable; see Section 3). If N* = {0}, Z, is empty 
and we arrive at an asymptotically stable system by applying this feedback. (For 
simple Hamiltonian systems, N* = {0} if and only if the number of inputs is equal 
to the number of configuration coordinates.) The question arises under which 
conditions this feedback stabilizes the total system (4.3) if N* # {0}. For this 
purpose we consider the system we obtain from Y, by putting ~ = 0 (i ~ m): 

where/t(q,/~) = H(q, p, 0). 

- ( r  P), 

(4.3) 

Assume that (~, p) = (0, 0) is an equilibrium point of the system (4.3) or, equi- 
valently, that (~,/~, ~) = (0, 0, 0) is an equilibrium point of (4.2). 

Proposition 4.1. Consider the system (4.2). Then: 

(i) The equilibrium point (~, p, r = (0, 0, 0) cannot be made asymptotically stable 
by applying feedback of the form v i = Fill. 

(ii) The equilibrium point (?1, P, ~) = (0, O, O) can be made stable by a feedback of the 
form v i = Fi~i if and only if (gl, P) = (0, O) is a stable equilibrium point of  (4.3). 

In the proof of Proposition (4.1) we use the following result from center manifold 
theory (see IC]). 

Proposition 4.2. Consider the system 

{~-= Ax  + f (x , z ) ,  (4.4) 
= B z  + O(x, z), 

where x ~ R ~', z ~ R", and A and B are constant matrices such th*at all the eioenvalues 
of  A have negative real parts while all the eigenvalues of  B have zero real parts. The 
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functions f and g are C 2 with f(O, O) = Df(O, O) = 0 and g(O, O) = Do(O, O) = 0 (here 
Df  is the Jacobian matrix off) .  Then: 

(i) There exists cacenter manifold for (4.4), 

x = h(z), Ixl < 5, where h is C 2. 

The flow on the center manifold is governed by the n-dimensional system 

il = Bq + 9(h(~l), rl). (4.5) 

(ii) Assume that the equilibrium point of (4.5) is stable (asymptotically stable) 
(unstable). Then the equilibrium point of(4.4) is stable (asymptotically stable) 
(unstable). 

Proof of Proposition 4.1. (i) The dynamics of (4.3) are governed by a Hamiltonian 
vector field and hence, by Liouville's theorem (see [AM]), (~,/5) = (0, 0) can only be 
a stable equilibrium point of (4.3) and not an asymptotically stable one. Hence 
(tl,/~, 4) = (0, 0, 0) cannot be made asymptotically stable. 

(ii) (Necessity) By the proof of (i) we see that (~, p, ~) = (0, 0, 0) can at most be 
made a stable equilibrium point of (4.2) and that a necessary condition for stability 
is that (~, ,5) = (0, 0) is a stable equilibrium point of (4.3). 

(Sufficiency) Assume that (~, p) = (0, 0) is a stable equilibrium point of(4.3). Now 
apply a stabilizing feedback to the linear part of (4.2). After this, feedback (4.2) is of 
the form (after simplification of the notation) 

~=A~, 

t~ = ~---%(q, p, ~), (4.6) 

OH 
p = ---~-q (q, P, ~), 

where A is an asymptotically stable matrix. 
Taking Taylor series around (q, p, ~) = (0, O, O) yields a system of the form 

= A~, (4.7) 

, P p 

where g(O, O, O) = Dg(O, 0, 0) = 0. Moreover, the matrix K has all its eigenvalues on 
the imaginary axis: K is the state matrix of a linear Hamiltonian system (in fact, it 
is the state matrix of the linearization of (4.3)), and it is well known (see JAM]) that 
if a Hamiltonian matrix has an eigenvalue 2 e 12, then it also has an eigenvalue - 2. 
Hence, existence of an eigenvalue of K in the open left half plane would contradict 
the stability of (4.3). 

Since A and K have no common eigenvalues, we can block-diagonalize the linear 
part of (4.7) by a transformation of the l-coordinates, thus arriving at a system of 
the form (4.4). In this case the center manifold is given by ~ = 0 and hence the flow 
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on the center manifold is governed by the system 

Not ing  that  (4.8) is equivalent to (4.3), we conclude, from the stability of  the 
equilibrium point  (~,/~) = (0, 0) of(4.3) and Proposi t ion  4.2, that  (~,/~, ~) = (0, 0, 0) 
can be made a stable equil ibrium point  of (4.2). �9 

Using Proposi t ion 4.1 we can give the following sufficient condi t ion for stabiliz- 
abilty of  (4.2): 

Theorem 4.1. Consider system (4.2). Let the function H (~, ~) be defined by H (~I, ~) := 
H(O, ~, 0). Then (8, P, ~) = (0, O, O) can be made a stable (not asymptotically stable) 
equilibrium point o f ( 4 . 2 ) / f / t  has an isolated local minimum (~, ~) = (0, 0). 

Proof. It is s traightforward to check tha t /~  = 0. Hence, if /~ has an isolated local 
minimum at (~,/~) = (0, 0), then / t  is a Lyapunov  function, which implies that  
(~,/~) = (0, 0) is a stable equil ibrium point  of(4.3). Hence,  by Propos i t ion  4.1, (~, i5, ~) 
can be made  a stable equil ibrium point  of (4.2). �9 

For  the stability of a Hamil tonian  system it is not  necessary that  the Hamil ton-  
ian has an isolated local minimum at the stable equil ibrium point  (see [AM]) ,  so 
the converse of Theorem 4.1 is not  true in general. However ,  for simple Hamil ton-  
ian systems (see Definit ion 2.1) we can make a s ta tement  about  the converse of  
Theorem 4.1. 

Consider  a simple Hamil tonian  system with m imputs  (see Definition 2.1). 
As remarked before, it follows from rank A = m that  the distr ibution G = 
span(Xc, ,  . . . .  Xcm ) has constant  dimension m. Therefore  the codis t r ibut ion 
span{dC~ . . . . .  dCm) also has constant  dimension m, and hence we can find canon-  
ical coordinates  (q, p) such that  C~(q) = qi, i ~ m. 

Because for a simple Hamil tonian  system p~ = 1, i Em,  we then have 
r = (ql, ttl . . . . .  qm, 4m). Moreover ,  we can take ~ = (q,,+l . . . . .  qn) T and /~ = 
(Pm+l . . . . .  pn) r. Denot ing  ~ = (ql . . . . .  qm) r and 

VG~(q) G12(q)] 
G-'(q) = kGr2,q) G22(q).J' 

where G1 a (q) is an m x m matrix (in fact, - GI 1 equals the decoupling matr ix  A) and 
G22(q) is an n - m x n - m matrix, we get 

H(q,/~, ~) = H(q,/~, q, q) = �89 + �89 + V(~, q), 

where G~(q) = G'(~(q) and G2(q)= Gzz(q)-  Gr12(q)GT~(q)G12(q). Hence,  wi thout  
having to calculate N* explicitly we obtain 

/~(q, p-) = H(~,/5, 0) = �89 ff + V(0, q)." (4.9) 

It is easy to check that  G2(q) is again positive definite for all q. 
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Proposition 4.3. Consider a H amiltonian function H belonging to a simple Hamilton- 
ian system (see Definition 2.1). Assume that the origin is an equilibrium point of 
Yc = Xn(x  ). Then for all potential energy functions V(q) in an open and dense.subset 
of Coo(Q) (with the 6~~ topology), if the origin is a stable equilibrium, H has 
an isolated minimum at the origin. 

Proof. Consider a Hamiltonian belonging to a simple Hamiltonian system: 
H(q, p )=  �89 + V(q), where G-l(q) is positive-definite for all q. Assume 
that the origin is an equilibrium point of ~ = Xn(x), i.e., dV(O) = 0. The Hessian 
H* of H in (q, p) = (0, 0) is 

H * =  where W =  0-~(0 ,0)  and P=G(O) .  

Furthermore, stability of (q, p ) =  (0, O) also means that (0, ~0)= (0, O) is a stable 
equilibrium point of the linearization of 2 = XH(X) (X = (q, p)T) around (q, p) = 
(0, 0). This linearized system is 

I ~ ]  = [ L  P I [ ~ I "  (4.10) 

Now, because of the fact that P is positive-definite, stability of (4.10) implies that, 
for V(q) in an open and dense subset of C~176 the matrix W is positive-definite. 
Hence, for all these V(q), H* is positive definite and therefore H has an isolated local 
minimum at (q, p) = (0, 0). �9 

Combining the results above gives our main theorem. 

Theorem 4.2. Consider the Hamiltonian system (4.1). Assume that the input-output 
decoupling problem is solvable and that the distribution spanned by the input vector 
fields is involutive. Let H be defined as the Hamiltonian H restricted to N*. Assume 
that the origin is an equilibrium of ~ = XH(Z ). Finally, let coordinates (?1, P, 4) for 
M be given as in Section 3. Then: 

(i) Application of a decoupling feedback from the class Za cannot result in an 
asymptotically stable equilibrium point (~, ~, ~) = (0, O, 0). 

(ii) There is a decoupling feedback from the class Ze which renders (Ft, P, 4) = 
(0, O, O) a stdble equilibrium point if and only if ~ = X-H(~) has a stable equi- 
librium at the origin. 

(iii) I f  H has an isolated minimum at the origin, then ~ = X~(s has a stable 
equilibrium at the origin. 

(iv) If, moreover, (4.1) is a simple Hamiltonian system, then, for all V(q) in an open 
and dense subset of Coo(Q), the existence of a decoupling feedback from the 
class A~' that stabilizes (t~,/~, x) = (0, 0, 0) implies that f I  has an isolated mini- 
mum at the origin. 

Remark. The theorem can be easily extended to the following generalized version 
of system equations (4.1). Assume that the input vector fields in (4.1) are not 
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necessarily given by Xq,  but instead take the more general form 

Xpjo,c, . . . . .  c . , )  (j em), 

where the mapping P = (Px, . . . ,  Pro): R" --* R" is assumed to be a diffeomorphism. 
(For example, this may happen in the case of robot manipulators. Generally, the 
input torques correspond to the joint coordinates, but the outputs may be given in 
task space coordinates. In the case of an equal number of inputs and outputs the 
joint coordinates are usually related to the task coordinates by a transformation 
which is invertible except for some singular points.) Then the characteristic numbers 
Pi are the same as if the input vector fields would equal Xcs, j ~ m. Moreover, the 
decoupling matrix in this generalized case is given as 

k 
/ a J,1 

{C,,ad~'Cm} "'" {C,.,ad~'C,,}i ~ OP, OP,, ] 
\a.i., "'" Oy,. I 

and hence, since P is a diffeomorphism, the decoupling matrix has full rank if and 
only if the decoupling matrix for the system with input vector fields Xcj has full rank. 
A decoupling feedback from the class Ar brings the system into the same form (4.2), 
and so Theorem 4.2 also applies to this more general case. 

Example 4.1. Consider a simple robot arm, consisting of two unit masses attached 
to massless links of length one, where the first link is flexible. In order to model this 
flexibility we divide the first link in two auxiliary links, one of length e and the other 
of length 1 - e, connected by a torsional spring with spring constant k (Fig. 2). We 
apply a torque u I on the auxiliary link, hence in the Hamiltonian formulation the 

I 

13/, / 

Fig. 2. Robot arm model. 
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first input vector field will be XD,, where Dl(q) = ql. On the second link we apply 
a torque uz. Because of the flexibility of the first link, we assume that the motor 
exerting this torque is situated in the base of the robot arm and that the torque is 
transfered by means of a chain belt. Since this introduces reaction forces (see [AS]), 
in the Hamilton formulation the second input vector field will be Xo2, where 
D2(q) = ql + q3- To guarantee positive definiteness of the kinetic energy matrix we 
have to introduce an auxiliary mass 6 (<< 1) located at the joint between the first and 
second auxiliary link. 

We are now interested in the stability properties of the (unstable) equilibrium 
point (ql, q2, q3)= (re/2, 0, 0) after we have applied a decoupling feedback from 
the class f t .  This means that we are interested in the outputs Cl(q) = ql - n/2, 
C2(q)  = q3 rather than Da and D2. However, there exists a diffeomorphism P: 
R 2 ~ R 2 such that P(Ca, C2) = (D~, D2). Hence, by the remark above, the char- 
acteristic numbers and the class ~ will be the same with both choices of outputs. 

Calculation (using a program such as REDUCE) yields 

N* = (q, p)lq~ = ~, q3 = O, 

( ( 3 - 2 e ) e c o s q 2 )  2 - e }  
Pl = ~ 5 - - g ~ ~  + 1 "P2, P 3 = 2 e 2 _ 6 e + 5  P2 , 

1 
/4(q2, P2) = 2(2ez + 6e + 5) p~ + 2e9 + (3 - 2e)9 cos q2 + �89 kq~ 

(where we have put 6 = 0). It is obvious that (q2, P2) = (0, 0) is an equilibrium point 
of ~ = X~(x). The Hessian of/4 in this equilibrium point is 

1 �9 

0 2e 2 + 6~ + 5" 

Hence/-1 has an isolated minimum at (q2, P2) = (0, 0) if k > (3 - 2e)g, i.e., if the 
flexibility is not too big. Thus (q2, P2) = (0, 0) is a stable equilibrium point of the 
dynamics governed by X~. (It is easy to check (e.g., by using Lyapunov's first 
method) that (q2, P2) = (0, 0) is an unstable equilibrium point if k _< (3 - 2e)9.) 
Summarizing, (q~,fl2, q3) = (7r/2, 0, 0) can be made a stable equilibrium point by  
application of a decoupling feedback from the class L a if and only if k > (3 - 2e)9. 

5 .  C o n c l u s i o n s  

We have derived a new "canonical form" for input-output  decoupled systems for 
which the distribution spanned by the input vector fields is involutive. We have 
shown that for Hamiltonian systems, by using a decoupling feedback from the easily 
computable class La, the stability properties of the resulting system can be investi- 
gated in an explicit and straightforward way. For simple Hamiltonian systems, 
which are most often encountered in practice, the procedure is very easy. In many 
nonlinear examples we have dealt with (e.g., robot systems) the stability properties 
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cannot be improved by looking for decoupling feedbacks outside class .Y. However, 
the study offixed dynamics and the computability ofa decoupling feedback outside 
class A v appears promising in the Hamiltonian case and remains for further research: 
Finally, we note that the stability notion dealt with here is fully local, although the 
decoupling property and the normal form (3.10) are global. In general, the problems 
concerning a more global version of stability in this context seem to be delicate, see 
[S4I; however, in the present case a Lyapunov approach based on the Hamiltonian 
H(q, p, ~) could be of help (see [T]). 
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