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Abstract: There is currently little reuse of either design or code in the development of 
collaborative applications. Though there are some application frameworks for this domain, 
they tend to be rather inflexible in the functionality they offer. This paper seeks to provide 
design reuse in the form of architectural patterns that focus on low-level horizontal issues: 
distribution, message exchange, functional decomposition, sharing data, concurrency and 
synchronisation. We base these patterns on a number of well-established patterns in the 
domain of distributed applications, concentrating on the specific issues that are encountered in 
the domain of collaborative applications. We also outline the relation between these low-level 
architectural patterns and the high-level functionality that collaborative applications offer.  
By codifying this knowledge and experience in the form of patterns, we hope for a wider 
support of low-level architectural design to the community of collaborative applications and 
thus a further advance of the field. 

Keywords: pattern language; architectural patterns; software architecture; collaborative 
applications; CSCW; CSCL; distributed applications. 

Reference to this paper should be made as follows: Avgeriou, P. and Tandler, P. (2006) 
‘Architectural patterns for collaborative applications’, Int. J. Computer Applications in 
Technology, Vol. 25, Nos. 2/3, pp.86–101. 

Biographical notes: Paris Avgeriou is a Senior Researcher at Fraunhofer IPSI under  
the Fellowship Programme of ERCIM. He received a Diploma (MSc) in Electrical and 
Computer Engineering (1999), as well as a PhD in Software Engineering (2003) from the 
National Technical University of Athens (NTUA), Greece. He has worked as a Senior 
Researcher at the Software Engineering Competence Center, University of Luxembourg 
(2004), as a Visiting Lecturer at the Department of Computer Science, University of  
Cyprus (2003) and as a research and teaching assistant at NTUA (1999–2002). He has 
participated in a number of EU research projects, has an extensive publication list and co-
organises international workshops. He is a member of ERCIM, Hillside Europe and a 
founding member of the World-Wide Institute of Software Architects. His research interests 
concern the area of software engineering and particularly software architecture, patterns, 
evolution, business modelling and web engineering. His research is mainly applied in the 
domains of e-learning and CSCW. 

Peter Tandler is a Senior Researcher at Fraunhofer IPSI, where he directs the  
Computer-Supported Cooperative Work (CSCW) research group of IPSI’s Cooperative 
Environments and E-Learning research division. His research interests include CSCW, 
integration of virtual and physical environments, new forms of human–computer and  
team–computer interaction for roomware components (i.e. interactive chairs, tables and walls 
with integrated information technology), but also software architectures and frameworks, 
object and component technology and design of programming languages. He serves as 
programme committee member and reviewer for international conferences, workshops and 
journals in the areas of software architectures for ubiquitous computing environments, 
collaboration in ubiquitous computing environments and human–computer interaction.  
He received a Diploma (MSc) in Computer Science with Education and Psychology as 
additional subjects, and a PhD from the Technische Universität Darmstadt, Germany for his 
work on application models and software infrastructures for roomware environments. 

 



 Architectural patterns for collaborative applications 87  

1 Introduction 

The field of collaborative applications is gaining 
prominence, as virtual organisations and virtual groups are 
growing and becoming the status quo of contemporary 
working and learning. Shared applications and desktops, 
synchronous and asynchronous text and multimedia 
communication, multi-user networked games, 
collaborative authoring and development environments are 
some of the potential future best-sellers in the domain.  

Despite the increasing demand for collaborative 
applications and their already widespread use, 
development teams still do not receive much assistance  
in building applications in this domain (Schuckmann et al., 
1999). In mature domains, such assistance is provided  
in the form of frameworks, patterns, reference 
architectures, modelling languages, reference models, 
CASE tools, etc. Of all these development aids, the only 
one that has advanced remarkably in the domain of 
collaborative applications is application frameworks. 
There are several frameworks in the market that offer 
reuse of design and code, for example Agilo (Guicking, 
2005), Clock (Graham et al., 1996; Urnes and Graham, 
1999), COAST (Schuckmann et al., 1996), Dream-Objects 
(Lukosch, 2003), DreamTeam (Roth, 2000a), GroupKit 
(Roseman and Greenberg, 1996), Rendezvous (Hill et al., 
1994), Suite (Dewan and Choudhary, 1995) and TCD 
(Anderson et al., 2000). But the shortcoming of these 
frameworks is that they are characterised by limited 
scalability, extensibility and customisability. 

There have also been some attempts to define patterns 
in the domain (Lukosch and Schümmer, 2004; Schümmer, 
2003). This paper contributes to the effort of codifying the 
design experience of collaborative applications in the form 
of patterns. The level of abstraction that we are focusing 
on is low-level architectural patterns that address 
horizontal concerns in collaborative applications and 
satisfy basic functional and quality requirements. 
Specifically, these architectural patterns deal with six 
fundamental aspects of distributed applications: 
distribution, message exchange, functional decomposition, 
sharing data, concurrency and synchronisation.  

It is emphasised that we regard collaborative 
applications as a special category of distributed 
applications that facilitate the collaboration between 
groups of people who share a common task. Consequently, 
we consider only distributed collaborative applications, 
and not centralised collaborative applications (e.g. Single 
Display Groupware, Stewart et al., 1999). Therefore, we 
reuse a number of the existing architectural patterns for 
distributed applications from the current literature (such as 
in Buschmann et al., 1996; Gamma et al., 1995; Schmidt  
et al., 2000), and especially build on a pattern language for 
distributed computing (Buschmann and Henney, 2002) 
that attempted to unify several of the former. We select 
and choose these patterns on the basis of the idiosyncrasy 
of collaborative applications and the domain-specific 
horizontal requirements. 

We also note that, in the software architecture 
discipline, the architecture of a system is comprised of 
components, connectors, their configurations and 

constraints on all of them (Bass et al., 1999; Clements  
et al., 2002; Shaw and Garlan, 1996). Therefore, the 
architectural patterns that are described in this paper deal 
with these concepts in order to provide problem–solution 
pairs in a given context. Furthermore, the notion  
of component is perceived in the broad sense of the term, 
as a unit of run-time interaction (Shaw and Garlan, 1996), 
and not in the narrow sense of industrial standards, for 
example, Java Beans (Sun Microsystems, Inc., 2005).  

The contribution of this paper is twofold. Firstly, we 
outline the ‘big picture’ of architectural design in 
collaborative applications in the form of a set of patterns. 
These are both high-level domain-specific patterns and 
low-level application-general patterns. Secondly, we 
specify six of the low-level patterns that tackle  
coarse-grained problems in the realm of application 
distribution. Development teams can navigate through the 
pattern language and use these patterns to design the 
software architecture (Avgeriou et al., 2004; Buschmann  
et al., 1996; Shaw and Garlan, 1996) of collaborative 
applications, in the sense that patterns generate 
architectures (Beck and Johnson, 1994). We provide 
experience and knowledge in this field, in digestible and 
inter-related chunks, and therefore help software 
architects, especially those who are inexperienced. 

The structure of the rest of this paper is as follows: 
Section 2 presents the pattern language; Section 3 
elaborates on six architectural patterns and Section 4 
wraps up with conclusions derived from this work. 

2 The pattern language 

Figure 1 depicts a map of the pattern language as well as 
the main relationships between the proposed patterns.  
The arrows of the relationships denote the direction of the 
relationships, according to their labels. This pattern 
language attempts to tackle the complex problem of 
designing the software architecture of collaborative 
applications, focusing on the lower application-general 
layers. The intended audience for the language is software 
architects who are designing collaborative applications. 
This pattern language does not imply a waterfall-like  
up-front architecture design approach, but rather supports 
iterative and incremental approaches, where the patterns 
are applied iteratively in cycles, each time refining and 
fine-tuning. 

There are two groups of patterns in this pattern 
language. The first group, which is comprised of the 
patterns at the top of Figure 1 with the striped background, 
are high-level architectural patterns that focus on the 
domain-specific functionality of collaborative applications. 
The remainder constitute the second group of patterns, 
which are low-level architectural patterns that deal with 
the distributed nature of collaborative applications.  

The patterns of the first group are outside the  
scope of this paper and will be sketched only briefly, as 
follows: 

• The COLLABORATIVE PROCESS (also known  
as SESSION MANAGEMENT or WORKFLOW 
MANAGEMENT) is the implementation of the 
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domain-specific functionality of a collaborative 
application. It represents the model of a collaborative 
process, such as instant messaging or application 
sharing, as well as the execution of this process  
during collaborative scenarios. It organises the 
structure of the collaborative groups, in terms of 
actors who play specific roles, in order to carry out 
specific collaboration scenarios and achieve  
particular goals. It provides USER AND ACTIVITY 
AWARENESS to the users according to the 
collaboration scenarios at hand. It uses 
COMMUNICATION AND COLLABORATION TOOLS 
to facilitate the synergy between the users. It 
appropriately manages the FLOOR CONTROL, to 
coordinate the interaction of users, as well as the 
COUPLING CONTROL, to control the degree of 
interaction data-sharing. A suitable DISTRIBUTION 
MODEL3.1 can ensure that the low-level details of 
distribution and communication are separate from  
the actual FUNCTIONAL DECOMPOSITION  
MODEL3.3 of the functionality specified in the 
COLLABORATIVE PROCESS. 

• USER AND ACTIVITY AWARENESS helps users to 
coordinate their work by informing them about the 
activities of other users (Gutwin et al., 1996). This 
awareness can be performed either synchronously or 
asynchronously, depending on whether activities of 
other users take place the same time or have  
happened in the recent HISTORY. An appropriate 
CONCURRENCY MODEL3.5 assists in coordinating 
concurrent threads or processes that are controlled by 
the different users. 

• The HISTORY, also known as ELEPHANT’S BRAIN 
(Schümmer, 2003), of the users’ activities is 
thoroughly maintained, and is comprised of all the 
relationships between the users and the tools or 
artefacts that they are currently using. It is used for 
synchronising the activities of the users that  
take place either at the same time or at different  
times. Such HISTORY information is stored using  
the SHARING MODEL3.4 and accessed through a 
SYNCHRONISATION MODEL3.6. 

• COMMUNICATION AND COLLABORATION TOOLS 
are well-established instruments in virtual 
organisations, for example, e-mail, chat, instant 
messaging, annotations, audio–video conferencing, 
discussion forums, application sharing, document 
sharing, etc. It is noted that these tools should be able 
to support synchronous or/and asynchronous 
collaboration (Edwards and Mynatt, 1997), depending 
on the application requirements. These tools rely on 
the low-level MESSAGE EXCHANGE MODEL3.2 and 
SHARING MODEL3.4, while their interactivity and 
layering is tackled by the FUNCTIONAL 
DECOMPOSITION MODEL3.3. 

• FLOOR CONTROL deals with which user is  
allowed or should do something at what times, 
according to the COLLABORATIVE PROCESS.  
A very restricted form of floor control is turn-taking, 

when only one user at a time can, for example,  
modify data, while others have to wait. The other 
extreme is to allow full control for each user, that is, 
all users can simultaneously modify the shared  
data (see SHARING MODEL3.4). Depending on the 
application, different floor control strategies are 
appropriate. While turn-taking has been found in 
many cases to be too restrictive and to reduce 
efficiency, full control is more challenging with 
respect to the SYNCHRONISATION MODEL3.6, as 
conflicts have to be avoided (if possible) or detected 
and resolved. Additionally, full control requires  
more USER AND ACTIVITY AWARENESS features  
in the user interface to aid coordination  
(Gutwin et al., 1996). 

• COUPLING CONTROL regulates the coupling mode, 
that is, how tightly and to what extent users 
collaborate (Dewan and Choudhary, 1995). Users  
can thus collaborate in different modes, ranging from  
very loose coupling (e.g. single-user applications) to 
extremely tight coupling (Berlage and Genau, 1993; 
Haake and Wilson, 1992). The degree of coupling 
may be customisable according to the 
COLLABORATIVE PROCESS that is being enforced 
during a user’s session. Technically, COUPLING 
CONTROL defines how tightly collaborative tools 
couple the application functionality among users and 
which part of the editing state needs to be designed  
as the shared activity model (see SHARING MODEL3.5 
and Schuckmann et al., 1999). For example, when 
working loosely coupled, navigation within a 
document is independent for different users, and no 
USER AND ACTIVITY AWARENESS needs to be 
provided. When working tightly coupled, users  
could, for example, couple navigation and require 
awareness of other users’ activities that need to be 
coordinated. Whereas COUPLING CONTROL and 
FLOOR CONTROL are in general orthogonal to each 
other, tight collaboration can often be more  
effectively supported when FLOOR CONTROL is not 
very restricting. 

The patterns in the second group constitute the focus of 
this paper: low-level architectural issues. These patterns 
can be further decomposed into two subcategories: those 
in white background in Figure 1 are fine-grained patterns 
that solve specialised architectural design problems;  
the ones in grey background are coarse-grained patterns 
that use the former in order to solve more general 
problems. 

The coarse-grained patterns comprise the contribution 
of this paper as they tackle six major architectural  
design problems in the field of collaborative applications, 
helping groupware architects in designing the software 
architecture. These patterns will be elaborated in the 
remainder of this section, while their thumbnails follow: 

• The DISTRIBUTION MODEL3.1 takes care of the  
basic form of distribution in the collaborative 
application, in order to decouple distribution  
issues from the application functionality. 



 Architectural patterns for collaborative applications 89  

Figure 1 Map of the pattern language and main relationships between the patterns 

 

 
• The MESSAGE EXCHANGE MODEL3.2 (also known 

as DATA TRANSFER) specifies the low-level 
communication mechanism between components in 
the context of a DISTRIBUTION MODEL3.1, especially 
offering location transparency. 

• The FUNCTIONAL DECOMPOSITION MODEL3.3 
mandates the basic architectural design of the 
application functionality itself, emphasising  
a layered structure and the high degree of  
interactivity that characterises collaborative 
applications. 

• The SHARING MODEL3.4 specifies the data that  
is common to the various distributed components  
of a collaborative application and needs to be 
communicated to them. 

• The CONCURRENCY MODEL3.5 deals with  
the design of multiple processes and threads  
that execute concurrently in a collaborative 
application. 

• The SYNCHRONISATION MODEL3.6, stems from  
the need to coordinate the concurrent access of 
multiple components to the shared data,  
as described by the CONCURRENCY MODEL3.5. 

The formation of these architectural patterns has been 
based on the categorisation in (Buschmann and Henney, 
2002), where distributed applications are supported by 
patterns in five discrete areas: distribution infrastructure, 
application infrastructure, synchronisation, event handling 
and concurrency. We have considered that event-handling 
patterns should not receive particular focus in the domain 
of collaborative applications, but can be used within the 
scope of the CONCURRENCY MODEL3.5. We have also 
added one more category of patterns that focus on the  
low-level architecturally significant issue of the SHARING 
MODEL3.4. Naturally, other patterns and pattern languages 
can also be employed when the requirements of the 
collaborative applications demand specific solutions  
to corresponding problems.  

As aforementioned, the coarse-grained patterns use  
the fine-grained patterns in the sense that the former  
solve coarse-grained problems by decomposing the 
solution into fine-grained solutions, resolved by the latter. 
Most of the fine-grained patterns have been documented 
elsewhere as object-oriented design patterns or 
architectural patterns (Buschmann et al., 1996; Gamma et 
al., 1995; Schmidt et al., 2000). Five of them constitute 
future work and are described by the following 
thumbnails: 
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• TYPE OF SHARED DATA3.4 defines the  
characteristics of the distributed components’ data 
(e.g. documents, user models, user activities, etc.) 
with respect to sharing. 

• The SHARING INTERFACE3.4 deals with the  
interface and the abstractions that developers use  
for the actual implementation of the shared data.  
It separates the definition of the data from the 
techniques used to implement sharing. 

• DISTRIBUTION SCHEME3.4 denotes the way  
that data are scattered among the distributed 
components. 

• PERSISTENCY3.4 deals with whether and how  
the shared data needs to be stored for future  
retrieval. 

• TIME-DEPENDENCY3.4 handles the duration of 
PERSISTENCY3.4 according to the role that shared  
data plays in the collaborative application. 

The next section presents the six coarse-grained 
architectural patterns in an analytical pattern format. 

3 The patterns 

Throughout the description of the patterns, in the example 
section, we demonstrate small parts of a case study that 
concerns an invented collaborative text editor named 
CoText, which can be used by multiple distributed1 users 
to edit a document simultaneously. Few architectural 
designs of this case study will be given in the UML 2.0 
notation, accompanied by explanatory text. We assume a 
few basic requirements in order to keep the example 
simple and comprehensible and, at the same time, provide 
insightful demonstrations of the various architectural 
patterns. We consider that the text editor handles simple 
ASCII text and the users can: 

• create and delete documents 

• create and delete, join and leave collaborative  
editing sessions 

• insert, delete and format characters simultaneously 

• change the position of their personal cursor and 
change their personal selection 

• scroll their text view in order to make different  
parts of the document visible, independently of  
other users and 

• get awareness of other users’ actions (a remote  
view of cursor positions, selections and scroll 
positions is assumed here for simplicity). 

3.1 Distribution model 

Context: You just took up the task of designing the 
architecture of a collaborative application. There are  
many facets in this task and you are trying to decide  
where to start. 

Problem: Distribution and application functionality are 
two inter-dependent facets of collaborative applications 

that need to be addressed by architects. These two 
facets depend on each other and need to be efficiently 
integrated, in order to achieve a good trade-off of qualities 
for both facets. However, trying to tackle them 
simultaneously is overly intricate and problematic. 

Forces: 

• Collaborative applications are distributed software 
systems in their core, so that they facilitate  
multiple users to collaborate synchronously or 
asynchronously. 

• The design of distributed applications is a tedious  
task because it requires the resolution of many  
issues that do not exist in centralised systems,  
such as communication problems (e.g. latency,  
failure, etc.), scalability and reliability. 

• Designing the application functionality of a 
collaborative application is complex enough  
by itself, striving to satisfy the requirements of 
supporting groups of collaborating people,  
as well as other quality requirements.  

• Designing the application functionality separately 
from distribution issues is problematic because  
they depend closely on each other. 

• Designing the application functionality together  
with distribution issues can become a daunting  
task, because there are too many issues of different 
nature that need to be taken under account altogether. 

Solution: Decouple any distribution issues from the 
application functionality. The first task in designing the 
architecture of the collaborative application should be to 
design the DISTRIBUTION MODEL3.1, which mandates 
how components are distributed over a network, 
independently of their application functionality. This 
model addresses the quality requirements of the 
application at the distribution level, such as scalability and 
robustness. 

At first, the only concern that should be addressed is the 
way the components of the application will be distributed. 
Domain-specific functionality of collaborative applications 
should not be discussed yet; instead, this functionality 
should be orthogonal to the DISTRIBUTION MODEL3.1, 
and designed afterwards in the form of a FUNCTIONAL 
DECOMPOSITION MODEL3.3 that can rely on the former. 

The fundamental architectural patterns for application 
distribution are the well-established CLIENT-SERVER 
(Shaw and Clements, 1997) and PEER-TO-PEER 
(Clements et al., 2002) patterns. The former denotes an 
asymmetrical style of communication, while the latter 
considers a symmetrical relationship between components 
of equal functionality. These patterns are not always 
discrete, for example, a peer component can play the role 
of both a client and a server, according to the specific 
functionality it entails at a given moment. 

Furthermore, in order to decouple distribution issues 
from domain-specific functionality of collaborative 
applications, a BROKER (Buschmann et al., 1996) can be 
used. It manages the communication of components in a 
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distributed application through a federation of BROKERS 
that forward requests and transmit back the results 
transparently, thus hiding the distribution. The BROKER 
maintains a Server Registry, so that components can 
dynamically register their services and clients can 
transparently look them up and subsequently invoke them. 
Such services in a collaborative application can range from 
generic distribution functionality to domain-specific 
groupware functionality, such as chatting, application 
sharing, etc. 

In order to decouple the clients and the servers from 
the BROKER components in both the client and the server 
side, a PROXY (Gamma et al., 1995) can be used to 
mediate between the two parties. A PROXY provides 
location-independent access to services provided by other 
components through a transparent access mechanism.  
In this case, a PROXY on the client side can offer the 
interface of the server component, so that a client 
component communicates with a remote server component 
as if it was local, and moreover is not concerned with 
communicating with the client-side BROKER. Similarly, a 
PROXY on the server side will receive a request and call 
the appropriate service on behalf of the client. In both 
cases, PROXIES use their own mechanisms for 
communicating with the BROKERS, hiding them from  
the clients and server components. Furthermore, PROXIES 
can provide independency from the implementation 
language of the servers, in order to also include legacy 
code and ensure the heterogeneity of the distributed 
application. Finally, the PROXIES are an ideal place to 
marshal and un-marshal the client requests and the server 
responses. The process of marshalling takes care of 
transforming a message into machine-independent format, 
suitable for transmission through a network. 

The BROKER needs to deal with low-level 
communication issues, such as the kind of Inter-Process 
Communication (IPC) or Remote Procedure Call (RPC) 
used or the deployment configuration of the components in 
the network. This can be further encapsulated into the 
MESSAGE EXCHANGE MODEL3.2 that provides such 
services to application components. Therefore, the 
MESSAGE EXCHANGE MODEL3.2 encapsulates the part of 
the BROKER functionality that tackles connection 
management and location transparency of the distributed 
components. 

The DISTRIBUTION MODEL3.1 addresses the quality 
requirements at the distribution level. At a later stage of 
the architectural design, further quality requirements at the 
domain-specific application functionality level will need to 
be addressed that contradict the former. A QUALITY 
TRADEOFF ANALYSIS (Avgeriou et al., 2004) must be 
performed in order to compromise the qualities according 
to the STAKEHOLDERS AND THEIR CONCERNS 
(Avgeriou et al., 2004). 

Example: In our sample collaborative text editor, the 
CLIENT-SERVER architectural pattern was deemed more 
appropriate, where the Server persistently stores the shared 
documents and mediates communication among  
the Clients for concurrent editing. A PEER-TO-PEER 
scheme could also be possible but it would inflict far more 
complex synchronisation issues. In both client and  

server sides, except for the CoText Client Component  
and CoText Server Component that perform the  
domain-specific functionality of the collaborative editor, 
there are BROKERS to handle the communication, and 
PROXIES to provide location transparency to clients. 

The servers register themselves to the server-side 
BROKERS, while the clients look up the servers through 
the client-side BROKERS, and as a result they fetch the 
corresponding client-side PROXIES. The clients can 
proceed and make requests through the client-side PROXY, 
by using the interface of the corresponding server 
component, as if the servers were local. The client-side 
PROXIES forward such request to the client BROKERS, 
which then undertake all the details of the MESSAGE 
EXCHANGE MODEL3.2, in order to get the request to  
the BROKER on the server side. The latter similarly 
forwards the requests to the actual server components 
through the mediation of the server-side PROXIES. Though 
the BROKER pattern can potentially let clients and servers 
communicate directly after the link is established, in the 
CoText application, this link is always indirect through the 
BROKERS, in order to take advantage of the MESSAGE 
EXCHANGE MODEL3.2 facilities of low-level 
communication details and handling of network problems. 

It is obvious that the domain-specific functionality in 
terms of the client requests and the server responses are 
not tackled here, but will be discussed in the 
FUNCTIONAL DECOMPOSITION MODEL3.3. 

Benefits: The application of the pattern entails the 
following positive and negative consequences: 

• The architectural design of the collaborative 
application commences from the right point: their 
distributed nature. 

• All issues of distribution are decoupled from the 
application functionality. 

• All issues of communication are based on the 
MESSAGE EXCHANGE MODEL3.2. 

• The collaborative application is scalable and offers 
location transparency of components.  

Liabilities: 

• There are certain issues of the distribution 
infrastructure that are not dealt with by merely 
enforcing the BROKER pattern. For example, the 
reliability and fault tolerance of the network are 
completely ignored at this point; this has to be 
handled by the MESSAGE EXCHANGE MODEL3.2. 

• The DISTRIBUTION MODEL3.1 enforces a 
communication overhead to the collaborative 
application. 

Known Uses: 

COAST (Schuckmann et al., 1996) is a framework for 
synchronous groupware. It uses the CLIENT-SERVER 
pattern: all application-specific functionality is located in 
the clients, while the server (called ‘mediator’ in COAST) 
takes care of coordinating replication and synchronisation. 
It uses the BROKER pattern to encapsulate communication 
and PROXIES to access server functionality. 
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Rendezvous (Hill et al., 1994) uses the CLIENT-
SERVER pattern as well. All model objects (called 
‘abstractions’) are located on the central server and 
accessed via ‘links’ by ‘views’ local to each client. 

DreamTeam (Roth, 2000ab) is built as a PEER-TO-
PEER framework in order to improve communication 
efficiency and avoid the server as bottleneck. A 
‘connection manager’ represents a BROKER responsible 
for communication among collaborating peers. 

Suite (Dewan and Choudhary, 1995) is another 
example of a groupware framework that supports a PEER-
TO-PEER distribution model. 

Wikis and BSCW are both based on the CLIENT-
SERVER pattern, while being web applications they use 
the standard internet infrastructure as networks of 
BROKERS and PROXIES. 

Microsoft Netmeeting combines a PEER-TO-PEER 
structure for communication between nodes on intranets or 
the internet, as well as a CLIENT-SERVER mode that 
mainly implements a naming service in order for peers to 
locate each other. 

3.2 Message exchange model 

a.k.a. DATA TRANSFER, COMMUNICATION 
INFRASTRUCTURE 
Context: You have designed the DISTRIBUTION 
MODEL3.1 of the collaborative application, which 
necessitates communication between distributed 
components.  

Problem: The implementation of communication 
increases the complexity of distributed components if 
the low-level details of data exchange have to be 
considered by all parts of the application that deal with 
remote components. Also, enclosing the communication 
details in the distributed components makes them 
inflexible to future evolution as it violates the 
‘separation of concerns’ principle. 

Forces: 

• In a collaborative application, the actual 
communication and collaboration is realised  
through data being transmitted between the various 
distributed components through a network. 

• Distributed components can send and receive  
data by implementing IPC mechanisms, or even the 
more structured RPC mechanisms. Unfortunately,  
this substantially increases their complexity.  
To make matters worse, the components depend 
highly on the details of the specific IPC or RPC 
mechanism used and thus need to change when  
these mechanisms evolve over time. 

• The topology of distributed components that  
follows the DISTRIBUTION MODEL3.1 is  
hard-coded in the implementation of the 
communication mechanism. In other words, 
components depend on location-specific details  
of other components and need to update  
whenever the distributed topology changes. 

Solution: Encapsulate all the details of communication 
into a separate MESSAGE EXCHANGE MODEL3.2 that 
operates at the lowest level of abstraction. This model 
should take care of sending and receiving data in the form 
of messages between clients or servers or between peer 
components according to the DISTRIBUTION MODEL3.1. 
The distributed components use this MESSAGE 
EXCHANGE MODEL3.2 seamlessly and transparently 
without being aware of its internal details. 

In order to design the MESSAGE EXCHANGE MODEL3.2 
the CLIENT-DISPATCHER-SERVER (Buschmann et al., 
1996) pattern can be used. The Dispatcher undertakes the 
exchange of messages between clients and servers, or 
between peer components that act as both clients and 
servers. The Dispatcher provides location transparency and 
conceals the communication connections between the 
distributed components. All low-level communication 
details, and especially IPC mechanisms (e.g. shared 
memory, pipes and sockets) or RPC are hidden to the 
services that use this MESSAGE EXCHANGE MODEL3.2. 
Furthermore, network problems, such as latency and 
failure of network nodes, are also taken care of, by this 
mechanism transparently. Finally, the naming service 
provided by the Dispatcher allows server components to 
register themselves and client components to look up the 
former, thus offering location transparency. Consequently, 
the Dispatcher receives a request from a client, finds the 
appropriate server component and establishes a 
communication link between them for transparent 
exchange of messages. In other words the Dispatcher 
implements the basic functionality of the broker, as 
prescribed in the DISTRIBUTION MODEL3.1, because it 
implements the naming service, manages communication 
details and offers IPC. 

It is noted that the MESSAGE EXCHANGE MODEL3.2 

as a coarse-grained pattern is in fact a variation of the fine-
grained pattern, CLIENT-DISPATCHER-SERVER, for 
collaborative applications. The added value of this variant 
is its description in the context of collaborative 
applications, as well as its relationships with the other 
patterns in this pattern language. 

This pattern can be implemented by appropriate 
middleware technologies that are based on international 
standards, such as CORBA (Object Management Group, 
2004), J2EE (Sun Microsystems, Inc., 2005) and .NET 
(Microsoft Corporation, 2005). These technologies offer 
location-independence of components, flexible component 
deployment, integration of heterogeneous components and 
especially legacy code. 

Because the Dispatcher is a single point of connection 
management between multiple components it needs to be 
able to concurrently serve more than one component.  
It therefore needs to be designed according to an 
appropriate CONCURRENCY MODEL3.5. 

Example: In our example text editor, the MESSAGE 
EXCHANGE MODEL3.2 is implemented through a 
Dispatcher. As already illustrated in Figure 2, the 
BROKER is implemented as a Dispatcher that takes care of 
registering server components, providing a naming service 
for them to be located by clients and establishing 
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communication between clients and servers through 
sockets. Because the application is simple and lightweight, 
we preferred not to use a heavy implementation of a 
BROKER, such as CORBA or J2EE, but to implement it 
from scratch. However, if features such as scalability or 
reliability are an issue, using a messaging framework 
would be a better choice. 

Benefits: The application of the pattern entails the 
following positive and negative consequences: 

• Low-level communication details of the  
MESSAGE EXCHANGE MODEL3.2 are  
encapsulated in a separate layer. Any changes  
to the communication mechanisms do not affect  
the application components. 

• Location transparency between the application 
components is achieved. The network topology  
can change without affecting the application 
functionality. 

• Potential problems in the network can be 
independently dealt with, thus ameliorating fault 
tolerance. 

Liabilities: 

• An overhead is introduced due to the indirection layer 
of the dispatchers. 

• The Dispatcher’s quality of service might degrade  
if it attempts to sequentially serve multiple 
components. It needs to be designed according  
to a CONCURRENCY MODEL3.5. 

Known Uses: Most groupware systems and frameworks 
have a component responsible for message exchange. 

COAST (Schuckmann et al., 1996) has a connection 
and communication layer that is responsible for sending 
and receiving messages between client and server. 

DreamTeam (Roth, 2000a) has a message-based 
communication kernel and connection manager that 
handles event distribution. 

GroupKit (Roseman and Greenberg, 1996) offers 
support for transparent RPC and shared events. 

Agilo (Guicking, 2005) implements the CLIENT-
DISPATCHER-SERVER pattern, providing location-
transparent message exchange. 

3.3 Functional decomposition model 

a.k.a. DOMAIN-SPECIFIC MODEL 
Context: You have designed the DISTRIBUTION 
MODEL3.1, which took care of the distribution issues, for 
example, decomposing the application to clients and 
servers or peers and PROXIES. You can continue to design 
the domain-specific issues of each of the distributed parts, 
for example, the client or the peer, focusing on their 
application functionality. 

In software architecture terms, the domain-specific 
application functionality is designed as clearly separated 
components, which are the run-time units of computation 
or storage, and connectors, which are the units of 
interaction. 

Problem: In every application domain there are  
certain fundamental features that shape the domain-
specific model of applications. The identification of 
these crucial features in collaborative applications, as 
in any immature application domain, is an error-prone 
task, especially for inexperienced architects. 

Forces: 

• The application functionality of a software system  
is based on a few domain-specific features, which 
play a pivotal role. The selection of these features 
depends on the requirements of the particular 
application. 

Figure 2 Application of the DISTRIBUTION MODEL and the MESSAGE EXCHANGE MODEL patterns for the collaborative text editor 
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• The features that shape the architecture of an 
application concern mainly the following: how flow  
of data and control runs through the application; how 
processing of data takes place; how the components 
cooperate with each other; how the application 
interacts with the users or other systems and how the 
system evolves in the context of changing 
environment and requirements. 

• Selecting the appropriate features in architectural 
design entails a vast impact on how the system will 
satisfy its functional and quality requirements. 

Solution: Design the FUNCTIONAL DECOMPOSITION 
MODEL3.3 of the application, which organises its 
structure into clearly separated components and 
connectors, with respect to the two crucial features that 
characterise the domain of collaborative systems from 
an architectural viewpoint: Firstly, the functionality of 
collaborative applications is highly structured, therefore 
the components can be grouped and use the services of 
other components that belong to other groups; secondly, 
collaborative applications are highly interactive systems 
that offer an extensive user interface that manipulates the 
shared data.  

The first feature is addressed by the LAYERS pattern 
(Buschmann et al., 1996), which enforces an organisation 
of the system components into different levels of 
abstractions so that components in higher LAYERS  
reuse the services of lower LAYER components. The 
components in each LAYER are thus decoupled from  
the rest because a LAYER communicates with the lowest 
LAYERS through the EXPLICIT INTERFACE (Buschmann 
and Henney, 2003) of the latter. The EXPLICIT 
INTERFACE ensures that each LAYER has a discrete, 
unchanged interface, while the implementation of the 
functionality in each LAYER is hidden and may potentially 
change without consequences. The top LAYER should 
implement the user interface of the collaborative 
applications, while the bottom LAYER should be 
concerned with the MESSAGE EXCHANGE MODEL3.2 
(Dewan, 1999; Patterson, 1995). 

The second feature is tackled by the MODEL-VIEW-
CONTROLLER (MVC) pattern (Buschmann et al., 1996; 
Krasner and Pope, 1988), which decouples the user 
interface (both views and controllers of the views) of 
collaborative applications from their application logic and 
the stored data. Therefore, any modifications to the user 
interface will not affect the application logic or the data. 
On the other hand, changes to the data can be propagated 
to the user interfaces of the distributed applications.  
A propagation mechanism, such as PUBLISHER–
SUBSCRIBER (Buschmann et al., 1996), is required, where 
a Publisher keeps a registry of Subscribers and notifies 
them when it changes state, so that they can retrieve the 
updated state. Furthermore, some of the data that belong to 
the Model (in terms of MVC) need to be shared by the 
distributed components. These data are therefore a subset 
of the Model’s data and cover different aspects of 
collaborative applications, as explained in the SHARING 
MODEL3.4: documents that users work with, user models 
and activity models. The Model can be designed according 
to the EXPLICIT INTERFACE pattern, to achieve its 

decoupling from views and controllers. As in collaborative 
applications client components implement the Views and 
Controllers that concurrently access a shared Model, an 
appropriate SYNCHRONISATION MODEL3.6 needs to be 
established.  

Furthermore, if a collaborative application is separated 
into several functional units, each having its own  
User Interface (e.g. a collaborative software development 
platform), the PRESENTATION-ABSTRACTION-
CONTROL (PAC) pattern (Buschmann and Henney, 2002; 
Calvary et al., 1997) will be the best choice. Because the 
PAC pattern embodies MVC in every agent, the principles 
of applying MVC hold for PAC as well. 

Example: In our running example of a collaborative text 
editor, we need to design the FUNCTIONAL 
DECOMPOSITION MODEL3.3 of all the components that 
originate from the DISTRIBUTION MODEL3.1. Owing to 
space limitations we will demonstrate here only the 
FUNCTIONAL DECOMPOSITION MODEL3.3 of the CoText 
Client Component and the CoText Server Component. The 
CoText Client Component, as illustrated in Figure 3, 
implements both the MVC and the LAYERS patterns. The 
MVC pattern deals with the shared document and manages 
to decouple the User Interface from the data and the 
application logic that modifies it. The Editor GUI 
Component encapsulates both the View and the Controller 
because for a text editor it makes sense to keep them 
connected rather than discrete, as View and Controller 
require lots of information exchange. The Shared 
Document Object, on the other hand, contains the data of 
the Model, while the Document Model implements the 
application logic that modifies the data. The entire CoText 
Client Component is organised in four different LAYERS: 
the User Interface, which apparently contains the Editor 
GUI; the Application Logic, which contains the 
aforementioned Document Model, the Document Updater, 
which manages the synchronisation of the document 
modifications with the other users and the ServerComm, 
which looks up the server and retrieves its interface; the 
Data Store, which contains the shared document itself; and 
the Communicator, which handles the interaction with 
both the Client BROKER and the Client PROXY. 

Figure 3 Application of the FUNCTIONAL DECOMPOSITION 

MODEL pattern for the CoText Client Component 
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The CoText Server Component, as illustrated in Figure 4, 
implements the LAYERS pattern and not the MVC because 
the server does not include a user interface. In particular, 
the three different LAYERS of the server component are: 
the Application Logic, which contains the Central 
Document Model shared by all the clients, the Document 
Sync, which synchronises the clients and the 
BrokerComm, which registers the server with the 
BROKER; the Data Store, which contains the shared 
document itself and the Communicator, which handles the 
interaction with both the Server BROKER and the Server 
PROXY. 

As illustrated in both the CoText Client and Server 
Components, as well as the PROXIES and the BROKERS 
(see Figure 2), each and every one of these components 
communicates through EXPLICIT INTERFACES.  
In particular, the Server Component offers the  
IServ interface, which is also provided to the Client 
component by the client-side PROXY. The server-side 
PROXY offers the IProxy interface to the server broker, 
while the BROKERS on both server and client side offer 
the IBroker interface. 

Figure 4 Application of the FUNCTIONAL DECOMPOSITION 
MODEL pattern for the CoText Server Component 

 

Benefits: The application of the pattern entails the 
following positive and negative consequences: 

• The collaborative application is organised into layers 
of abstraction that communicate through EXPLICIT 
INTERFACES. 

• The SHARING MODEL3.4 and the application  
logic that modifies it are decoupled from the User 
Interface. 

• If the user interface is bound to the SHARING 
MODEL3.4 via PUBLISHER–SUBSCRIBER, the  
user interface remains independent of the location  
and identity of the components that modify the  
shared data. 

• Separation of concerns is achieved among several 
domain-specific semantic concepts, if the PAC  
pattern is applied. 

Liabilities: 

• The application of the three patterns, LAYERS, MVC 
and PAC introduce indirections that may potentially 
jeopardise the performance of collaborative 
applications. 

• LAYERS, MVC and PAC satisfy only some of the 
requirements of collaborative applications. The 
development team needs to find more architectural 
patterns in the pattern catalogues in order to cover all 
the requirements and design the full software 
architecture. 

Known Uses: 

DreamObjects (Lukosch, 2003) separates the application, 
service, data and communication LAYERS. 

Beach (Tandler, 2004) also defines four LAYERS, 
namely the task, generic, model and core LAYERS. In 
addition, it separates data, application logic, environment, 
user interface and interaction issues in different 
components. MVC is used to structure the interaction 
components. 

COAST (Schuckmann et al., 1996, 1999) separates 
views, application model and domain model, extending 
MVC. The framework defines LAYERS for transaction 
handling, shared data and connection and communication. 

The Clock (Graham et al., 1996; Urnes and Graham, 
1999) architecture separates the application functionality 
from the DISTRIBUTION MODEL3.1. It uses a layered 
MVC as architectural style. 

BSCW follows the MVC pattern to decouple the 
application functionality (called kernel) and the user 
interfaces, also providing an interface to create or modify 
user interfaces. 

Additionally, there are some general domain-specific 
decomposition models for groupware applications. 
Dewan’s generic architecture (Dewan, 1999) for 
groupware and Patterson groupware taxonomy 
(Patterson, 1995) and the C2 architecture (Taylor et al., 
1996) highlight that groupware applications should be 
structured in LAYERS. 

3.4 Sharing model 

a.k.a. SHARED DATA 
Context: You have designed the FUNCTIONAL 
DECOMPOSITION MODEL3.3, which includes components 
that conform to the MVC (Buschmann et al., 1996; 
Krasner and Pope, 1988). You carry on refining the Model 
of those components that are shared between the users. 

Problem: Managing the data that is shared between the 
distributed components is a complex task. What exactly 
qualifies as shared data and how it should be managed, 
needs to be precisely specified. Unnecessary sharing of too 
much information may also decrease performance. 

Forces: 

• A collaborative application bases its functionality  
on data that is shared among the users of the 
application. 
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• It is not always clear what qualifies as shared data  
and what should better be kept within individual 
components.  

• Choosing the right resources for sharing is essential 
for designing collaborative applications, as it may 
burden performance. Especially, responsiveness of  
the user interface needs to be ensured for interactive 
applications. 

• The type of shared data and how exactly the data 
should be managed by the application is another  
key design issue. 

• Some shared data need to persist over time, while 
others have a limited lifetime. 

Solution: Design the SHARING MODEL3.4 by 
identifying all data that is common to the distributed 
components of the collaborative application and 
analysing the TYPE OF SHARED DATA3.4. Depending 
on the application requirements choose an appropriate 
SHARING INTERFACE3.4 that allows decoupling the 
SHARING MODEL3.4 from the DISTRIBUTION SCHEME3.4 
as well as mechanisms for PERSISTENCY3.4 and TIME-
DEPENDENCY3.4. 

When specifying the SHARING MODEL3.4, start with 
the TYPE OF SHARED DATA3.4 that determines ‘what’ 
needs to be shared and may vary according to the 
application requirements (Rubart and Dawabi, 2004). As a 
good starting point one can look at the components 
identified in the FUNCTIONAL DECOMPOSITION 
MODEL3.3. Nearly all collaborative applications rely on 
shared documents that users work with, for instance the 
drawings on a shared whiteboard, the messages exchanged 
in a chat application or program source code that is 
collaboratively edited by two developers. Furthermore, 
user models (e.g. during a session, the COLLABORATIVE 
PROCESS2 defines which users work together in which 
manner) as well as activity models (all the actions that 
users perform), can be shared when USER AND ACTIVITY 
AWARENESS2 must be provided. Normally, also the 
HISTORY2 is shared in collaborative applications in order 
to provide common context information to all cooperating 
users. 

The SHARING INTERFACE3.4 defines the mechanism 
and abstractions to be used to share data. Depending on the 
sharing technology, this interface can vary: Some 
groupware frameworks require shared data to inherit from 
some Shared Object base class; other systems define a 
protocol and interface that shared data need to conform to, 
in order to get shared, while still others merely define a 
component responsible for transmitting information 
between nodes that all shared data have to use. So, in 
addition to the ‘what’ specified by the TYPE OF SHARED 
DATA3.4, the SHARING INTERFACE defines ‘how’ the 
data are shared from the developers’ point of view. This is 
influenced by the choice of the appropriate 
DISTRIBUTION SCHEME3.4 (or DISTRIBUTION 
ARCHITECTURE, Phillips, 1999): shared data can be 
distributed in one of the following schemes: central, 
asymmetric, semi-replicated and replicated (Lukosch, 
2002; Phillips, 1999). By introducing a SHARING 
INTERFACE3.4 in between the SHARING MODEL3.4 and 

DISTRIBUTION SCHEME3.4, the distribution scheme is 
decoupled from the data itself, allowing a flexible 
adaptation of distribution schemes (Graham et al., 1996). 
Compared with the DISTRIBUTION MODEL3.1, which 
describes how the components are distributed, the 
DISTRIBUTION SCHEME3.4 is concerned about the 
distribution of the shared data. 

The PERSISTENCY3.4 of shared data are also a key 
issue: some data need to be stored and retrieved later, 
whereas others may be discarded. Furthermore, data can 
be characterised by TIME-DEPENDENCY3.4, if they persist 
for only a limited period of time, before they become 
obsolete and are no longer stored. 

Shared data need to be protected from concurrent 
access, according to their individual properties. Some data 
will be modified simultaneously with a high (or low) 
chance of possible conflicts. Other data are always 
modified by a single user having write access, whereas 
others get notified of changes without being able to change 
the data themselves. For some data it is crucial that all 
collaborating users get a synchronised representation as 
quickly as possible; for other data it might be acceptable 
that the representation can temporarily differ for users, as 
long as consistency is ensured at some point in time. These 
characteristics strongly influence which CONCURRENCY 
MODEL3.5 and which SYNCHRONISATION MODEL3.6 are 
appropriate for which data, which SHARING 
INTERFACE3.4 should be chosen and which data needs  
to be kept persistent for how long. 

Using the MVC pattern (Buschmann et al., 1996; 
Krasner and Pope, 1988) for DISTRIBUTION MODEL3.1 
components, as a rule of thumb the Model part of MVC 
triplets needs often to be shared data (Graham et al., 1996; 
Hill et al., 1994; Schuckmann et al., 1999). Changes to the 
Model are propagated to the Views and the Controllers 
through notification mechanisms, such as a PUBLISHER–
SUBSCRIBER (Buschmann et al., 1996).  

Example: In the collaborative text editor case study, there 
are three TYPES OF SHARED DATA3.4 (Figure 5): the 
shared document, the session information (i.e. the user 
model, which represents which users have joined the 
session and their location) and the editing state (i.e. the 
activity model, which represents each user’s cursor 
position, selection and scrollbar position in this example). 

Figure 5 Application of the SHARING MODEL pattern for the 
collaborative text editor 
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As far as the SHARING INTERFACE3.4, all shared objects 
inherit from an abstract class that declares shared status. 
Furthermore, the DISTRIBUTION SCHEME3.4 of the editor 
is fully replicated: the document is small enough that full 
replication is not too costly, and replication improves the 
responsiveness of the user interface, which is crucial for 
interactive applications. 

The PERSISTENCY3.4 of the editor application is as 
follows: the document will remain persistent until 
explicitly deleted, the session information is persistent 
only during that session and the editing state remains 
persistent until the corresponding user leaves the session. 

On the issue of synchronisation, the document may 
have simultaneous modifications with low chance of 
conflicts, and timely synchronisation is desirable to 
support tight collaboration. On the other hand, session and 
awareness information is always changed by a single user 
only, so no conflicts are possible there. 

Benefits: The application of the pattern entails the 
following positive and negative consequences: 

• The understanding of the nature of shared data  
allows defining the requirements for sharing 
technology, synchronisation, distribution,  
persistency and time-dependency. 

• The SHARING INTERFACE3.4 decouples the  
shared data from the sharing technology and the 
DISTRIBUTION SCHEME3.4. 

• The application components that are designed 
according to the MVC architectural pattern  
have a clearly defined Model, which contains 
documents, user models and activities. 

Liabilities: 

• There is always a possibility that some important  
data have not been included in our SHARING 
MODEL3.4. 

• The problem of change propagation from the model  
to the Views and Controllers needs to be tackled. 

Known Uses: All groupware systems are fundamentally 
dependent on one form or another of shared data. 

COAST (Schuckmann et al., 1996), Rendezvous  
(Hill et al., 1994), Clock (Graham et al., 1996; Urnes and 
Graham, 1999), PAC* (Calvary et al., 1997), Suite 
(Dewan and Choudhary, 1995) and later versions of 
GroupKit (Roseman and Greenberg, 1996) provide 
support for sharing the Model (in terms of MVC). 

More recent systems, such as DreamObjects 
(Lukosch, 2003) or Dragonfly (Anderson et al., 2000) 
define a SHARING INTERFACE in order to provide 
flexibility in adapting the DISTRIBUTION SCHEME. Wikis 
do not prescribe a specific SHARING INTERFACE but they 
almost always have a centralised DISTRIBUTION 
SCHEME. Furthermore, all the shared data of Wikis are 
persistent and do not depend on time. CVS provides a 
semi-replicated DISTRIBUTION SCHEME and, of course, 
unlimited persistence of files and metadata. BSCW offers 
a SHARING INTERFACE that allows for the persistent 
storage of new objects without modifying the existing 
storage mechanisms. 

To realise PERSISTENCY of SHARED DATA, 
DreamTeam (Roth, 2000a) has a ‘Persistence Kernel’ and 
‘Archive Manager’. Using the COAST framework 
(Schuckmann et al., 1996), all shared objects are 
persistent. The TIME-DEPENDENCY of shared objects can 
be controlled by the application by ‘naming’ objects: while 
shared objects are garbage collected when no longer 
referenced, named objects remain persistent as long as 
they have a name assigned. 

3.5 Concurrency model 

Context: You have designed the FUNCTIONAL 
DECOMPOSITION MODEL3.3 of the collaborative 
application and you have identified several distributed 
components that run concurrently. Also, the Dispatcher of 
the CLIENT-DISPATCHER-SERVER (Buschmann et al., 
1996) setting must be concurrent to facilitate the 
communication between multiple clients and servers. 

Problem: The complexity of collaborative applications 
makes it hard to deal with concurrency issues: the 
satisfaction of non-functional (quality) requirements and 
especially performance, the combination of synchronous 
and asynchronous components, heterogeneous networking, 
etc. 

Forces: 

• In a collaborative application several client 
components may concurrently require access to the 
same service. Furthermore, multiple threads on the 
server side may be concurrently serving the client 
components. 

• The non-functional requirements (also known as 
quality requirements), especially performance, 
robustness and scalability, need to be maintained in 
conditions of concurrency.  

• A collaborative application usually combines 
synchronous and asynchronous components that 
potentially depend on each other. 

• The messages that are exchanged through distributed 
components usually represent events, in essence,  
even if the MESSAGE EXCHANGE MODEL3.2 hides  
the details of event handling from developers of 
application level components. Handling of events  
in a concurrent environment poses another layer, 
which needs to be tackled in the design of 
collaborative applications. 

• The components that need to be executed  
concurrently may run on heterogeneous hardware 
nodes or be implemented with diverse software 
technologies. 

• Concurrent access to components or shared data  
may cause conflicts and inconsistencies, thus  
raising issues of synchronisation. 

Solution: Design the CONCURRENCY MODEL3.5 of the 
collaborative application in order to ensure that the 
quality requirements of the collaborative application 
are satisfied, focusing especially on its performance. 
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This model should specify how the application 
components may run as concurrent processes and/or 
threads through the appropriate process and thread 
management mechanisms.  

In collaborative applications, there are usually both 
synchronous and asynchronous components in the 
FUNCTIONAL DECOMPOSITION MODEL3.3. For example, 
in an instant messaging application, file transfer is 
performed synchronously whereas messages are 
asynchronously sent and received between users. The 
interweaving and cooperation between synchronous and 
asynchronous components can be successfully achieved 
through the HALF-SYNC/HALF-ASYNC pattern (Schmidt 
et al., 2000), which decouples the two different kinds of 
component. Thus, asynchronous services are not slowed 
down by synchronous ones, and the latter do not deal with 
the complexity of the former. 

In the CLIENT-DISPATCHER-SERVER setting, 
multiple threads are used in the Dispatcher to process the 
incoming events. These threads can be organised 
according to the LEADER/FOLLOWERS (Schmidt et al., 
2000) pattern, in order to ensure the efficiency of the 
application. It shifts the paradigm from one thread per 
event, to multiple threads that handle a shared set of source 
events. As far as the event handling per se, it can be 
managed according  
to the REACTOR and PROACTOR patterns (Schmidt  
et al., 2000), in both HALF-SYNC/HALF-ASYNC and 
LEADER/FOLLOWERS. These patterns hide the 
complexity of event demultiplexing and dispatching to 
clients, while especially taking care of handling multiple 
simultaneous or asynchronous events. Depending on 
whether we need simplicity of implementing the event-
driven mechanism or high performance, we should choose 
the REACTOR or the PROACTOR, respectively. Finally, 
for peer-to-peer systems, the ACCEPTOR-CONNECTOR 
(Schmidt et al., 2000) can help to establish connections 
between peers independently of their domain-specific 
functionality. 

When there is concurrent access to individual shared 
components by multiple clients, these components can be 
implemented as ACTIVE OBJECTS or MONITOR OBJECTS 
(Schmidt et al., 2000), either running within their own 
threads of control or being shared between multiple  
client threads, respectively. Client components are not able 
to tell the difference between shared components.  
In the case of a MONITOR OBJECT, the different instances 
of a shared component need to synchronise themselves 
with the help of a SYNCHRONISATION MODEL3.6, to 
ensure consistency when accessed concurrently. 

Example: In our running example of a collaborative text 
editor, an important issue of concurrency arises when the 
server needs to respond to multiple client requests in order 
to modify the shared document. We use two patterns  
in the design of the CoText Server Component to  
tackle this issue: firstly, in order not to block the clients 
waiting for a request to modify the shared document,  
we apply the ACTIVE OBJECT pattern; secondly, in order 
to improve the efficiency of the server we apply the 
LEADER/FOLLOWERS pattern. 

Both of the applied patterns are indicated in Figure 4, 
which illustrates the FUNCTIONAL DECOMPOSITION 
MODEL3.3 of the CoText server component. As the 
ACTIVE OBJECT pattern mandates, the Communicator 
component, which accepts the client requests, is separate 
from the Document Sync component, which processes the 
requests. Also, according to the LEADER/FOLLOWERS 
pattern, the Communicator component is comprised of 
multiple threads that take turns in order to accept the client 
requests and dispatch them to the Document Sync 
component. 

Benefits: The application of the pattern entails the 
following positive and negative consequences: 

• Concurrency issues of the collaborative  
application are resolved. 

• Asynchronous and synchronous components  
cooperate with each other, without the former 
degrading their performance, or the latter  
becoming more complex. 

• Performance and robustness of multi-thread 
applications are ensured, even in cases of a 
heterogeneous network. 

• Event handling in concurrency settings is  
inherently designed. 

Liabilities: 

• The access to shared objects and resources  
needs to be synchronised through a specialised 
SYNCHRONISATION MODEL3.6. 

• The combination of the various patterns for 
concurrency and event-handling entail an  
inherent complexity in the implementation 
of the collaborative application. 

Known Uses: 

DreamTeam (Roth, 2000a) uses the HALF-SYNC/HALF-
ASYNC pattern by providing a ‘connection manager’ 
responsible for synchronous communication and a 
‘transfer manager’ that takes care of large asynchronous 
transfer of data. 

COAST’s server (Schuckmann et al., 1996) uses an 
ACTIVE OBJECT to process messages received from 
clients. 

3.6 Synchronisation model 

a.k.a. Concurrency Control 
Context: You have designed the CONCURRENCY 
MODEL3.5 of the collaborative application, which has 
entailed concurrent access to the shared data. 

Problem: The unrestricted concurrent access to the 
shared data may lead to corruption or inconsistent 
representation of the data. The protection of this data 
through a conflict handling or prevention mechanism is 
imperative but not easy, especially as it should not 
introduce unsolicited overhead. 
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Forces: 

• A collaborative application bases its functionality  
on a set of persistent data that is shared among  
all the users of the application. 

• When a CONCURRENCY MODEL3.5 is enforced,  
there may be cases where more than one user 
concurrently attempts to modify shared data. In  
such cases, the shared data must be protected to  
avoid corruption. Conflicts must be detected and 
resolved to ensure consistency and integrity of  
shared data. 

• There are low-level locking mechanisms that  
can be applied, but more sophisticated strategies  
must be devised. 

• Locking mechanisms may cause performance 
overhead. 

Solution: Design the SYNCHRONISATION MODEL3.6 of 
the collaborative application in order to regulate 
concurrent access to shared data and safeguard this 
data from corruption. Introduce the appropriate locking 
and conflict resolution mechanisms to ensure consistency 
of the data but also make sure that the robustness and 
performance of the application are not compromised. 

There are several ways to ensure the consistency of 
data. A common approach is to lock data that will be 
changed by an atomic operation (e.g. DON’T TRUST 
YOUR FRIENDS (Lukosch and Schümmer, 2004)). 
Another possibility is to allow conflicts to occur, but 
detect and handle them afterwards (BELIEVE IN YOUR 
GROUP and DETECT A CONFLICTING CHANGE 
(Lukosch and Schümmer, 2004)). While locking can slow 
down applications if the same data is modified frequently 
by different clients, conflict handling is possible only if 
conflicts can be gracefully resolved or operations can be 
rolled back. Orthogonally to the synchronisation 
mechanism, transactions can be used to implement atomic 
operations.  

Common locking mechanisms are mutexes and 
semaphores. The SCOPED LOCKING (Schmidt et al., 
2000) provides a simple but effective way to automatically 
acquire and release locks within a scoped area of code, 
independently of the return path. The efficiency and 
consistency of the locking mechanisms can be 
implemented through DOUBLE-CHECKED LOCKING 
OPTIMISATION (Schmidt et al., 2000), which prevents 
protected areas of code from being unnecessarily accessed 
and avoids race conditions. Furthermore, THREAD-SAFE 
INTERFACE (Schmidt et al., 2000) minimises the overhead 
caused by locking and prevents the application from  
self-deadlocks. Finally, THREAD-SPECIFIC STORAGE 
(Schmidt et al., 2000) suggests an alternative locking 
mechanism, by providing access to shared data that is local 
to a thread, through a unique access point. If the optimal 
locking mechanism can change, STRATEGISED LOCKING 
(Schmidt et al., 2000) can dynamically bind any 
synchronisation mechanism (e.g. mutexes and 
semaphores) to a component, thus providing flexibility, 
customisability and reusability. 

It is a trade-off for architects to decide whether the 
overall cost for pessimistic execution of all operations or 
the cost to handle conflicts of optimistic operations is 
higher. Optimistic transactions can ensure consistency 
while increasing the responsiveness of the user interface 
(Schuckmann et al., 1996). This is critical for interactive 
applications and can be used when conflicts are unlikely or 
harmless. Sometimes it is also possible to adjust shared 
data structures to use data types that minimise or avoid 
conflicts, such as LOVELY BAGS (Lukosch and 
Schümmer, 2004). If, for instance, a chat application uses 
a shared array to store all messages, it has a high chance of 
conflicts; if modelled as a set and a timestamp is assigned 
to each message, inserting messages can be done without 
risking conflicts, while still being able to compute an 
unambiguous order of messages. 

Example: In our sample collaborative text editor, the issue 
of synchronisation arises in the case of the shared 
document, where there is chance of conflicts when users 
edit the same part of the document. For some operations, 
conflicts can be easily handled: if a character is inserted 
after another character that has concurrently been deleted, 
the operation can be adjusted to insert the character after 
the predecessor of the deleted character. For other 
operations no conflict resolution is possible, but the effect 
of cancelling the operation is harmless: if a character is 
formatted that has been deleted concurrently, the operation 
can simply be ignored, as it has become obsolete. 
Therefore, we can use an optimistic synchronisation 
mechanism for the shared document. To implement 
optimistic operations, the client’s Document Updater 
components have to remember all locally executed 
operations until they receive the acknowledge from the 
server’s Document Sync component (see Figures 3 and 4). 

For the user and activity models, synchronisation is quite 
straightforward: these models have discrete parts that are 
modified by only a single user at any given time, thus 
conflicts cannot occur. It must only be ensured that all 
clients are informed about updates to the shared data 
(UPDATE YOUR FRIENDS and MEDIATED UPDATES 
(Lukosch and Schümmer, 2004)). 

Benefits: The application of the pattern entails the 
following positive and negative consequences: 

• Advanced locking mechanisms are designed that 
ensure shared data are always consistent when 
accessed concurrently. 

• The performance of the system is not compromised  
by the locking mechanisms, and phenomena  
such as starvation, deadlocks, race conditions,  
etc. are avoided to the best possible extent. 

Liabilities: 

• When using locks as synchronisation mechanisms 
there is the danger of causing deadlocks. 

• Potential misuse of synchronisation strategies  
can lead to excessive overhead. 

Known Uses: While some groupware frameworks provide 
support for synchronisation, others leave it up to 
application developers to ensure consistency. 
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COAST (Schuckmann et al., 1996) supports both 
optimistic and pessimistic transactions. When optimistic 
transactions are used, the server takes care of detecting and 
resolving conflicts. For pessimistic transactions, different 
locking strategies can be used. 

Clock (Urnes and Graham, 1999) provides two 
predefined concurrency control schemes, pessimistic 
locking and optimistic conflict detection with transparent 
rollback. 

In Dragonfly/TCD (Anderson et al., 2000) each 
component has a facet called ‘sequencer’ and ‘concurrency 
controller’ that handles synchronisation of the 
component’s view and model. 

Wikis usually allow conflicts to happen and of course 
detect conflicting changes, but they also cater for locking 
individual web pages. 

CVS is a typical example of pessimistic transactions, 
which enforces various locking mechanisms but also offers 
conflict prevention with unreserved checkout. Similarly, 
BSCW allows version management through locking but 
may also allow for conflicts to take place. 

4 Conclusions 

The domain of collaborative application is beginning to 
mature and, naturally, attempts to reuse design and code 
are emerging. This paper presents such an approach for 
reusing design in the form of architectural patterns, 
focused on low-level issues of application distribution. 
These patterns are intended for software architects who 
design collaborative applications, and heavily rely on 
related patterns from the distributed computing domain. 
The architects of a collaborative application are meant to 
use some of the patterns presented in this paper by 
customising them to their specific requirements and 
discard the rest. The benefits of applying the patterns can 
be summarised as follows: 

• Patterns are indeed quite flexible and can be 
customised and applied in the vast majority of 
collaborative applications. This is due to the  
nature of patterns: they are generic enough,  
‘timeless’ in nature, so that they provide wide 
coverage in architectural design issues, but on the 
other hand, they are flexible enough to be 
parameterised and solve individual problems. 

• The whole pattern language serves as a  
roadmap that architects can follow in order to  
solve a number of architectural design problems.  
Each problem can be resolved through the  
pattern, while its interdependencies with other 
problems and their solutions are explicitly  
portrayed. 

• The low-level fine-grained patterns serve as the 
documentation of the major architectural design 
decisions that the development team took. These 
decisions play a pivotal role in communicating the 
architecture during the application development  
and, even more so, during evolution. 

In the future, we intend to explore the space of high-level 
architectural patterns that concern domain-specific 
functionality as identified in Figure 1. 
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