

 University of Groningen

Architectural patterns for collaborative applications
Avgeriou, Paris; Tandler, Peter

Published in:
International Journal of Computer Applications in Technology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Avgeriou, P., & Tandler, P. (2006). Architectural patterns for collaborative applications. International Journal
of Computer Applications in Technology, 25(2-3), 86-101.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-01-2023

https://research.rug.nl/en/publications/da3b87e7-0a44-4c57-8d51-b77cdeef2820

 Int. J. Computer Applications in Technology, Vol. 25, Nos. 2/3, 2006

Copyright © 2006 Inderscience Enterprises Ltd.

86

Architectural patterns for collaborative
applications

Paris Avgeriou* and Peter Tandler
Fraunhofer Integrated Publication and
Information Systems Institute (IPSI),
Dolivostrasse 15, Darmstadt D-64293, Germany
Fax: +49-6151-869-963
E-mail: paris.avgeriou@ipsi.fraunhofer.de
E-mail: peter.tandler@ipsi.fraunhofer.de
*Corresponding author

Abstract: There is currently little reuse of either design or code in the development of
collaborative applications. Though there are some application frameworks for this domain,
they tend to be rather inflexible in the functionality they offer. This paper seeks to provide
design reuse in the form of architectural patterns that focus on low-level horizontal issues:
distribution, message exchange, functional decomposition, sharing data, concurrency and
synchronisation. We base these patterns on a number of well-established patterns in the
domain of distributed applications, concentrating on the specific issues that are encountered in
the domain of collaborative applications. We also outline the relation between these low-level
architectural patterns and the high-level functionality that collaborative applications offer.
By codifying this knowledge and experience in the form of patterns, we hope for a wider
support of low-level architectural design to the community of collaborative applications and
thus a further advance of the field.

Keywords: pattern language; architectural patterns; software architecture; collaborative
applications; CSCW; CSCL; distributed applications.

Reference to this paper should be made as follows: Avgeriou, P. and Tandler, P. (2006)
‘Architectural patterns for collaborative applications’, Int. J. Computer Applications in
Technology, Vol. 25, Nos. 2/3, pp.86–101.

Biographical notes: Paris Avgeriou is a Senior Researcher at Fraunhofer IPSI under
the Fellowship Programme of ERCIM. He received a Diploma (MSc) in Electrical and
Computer Engineering (1999), as well as a PhD in Software Engineering (2003) from the
National Technical University of Athens (NTUA), Greece. He has worked as a Senior
Researcher at the Software Engineering Competence Center, University of Luxembourg
(2004), as a Visiting Lecturer at the Department of Computer Science, University of
Cyprus (2003) and as a research and teaching assistant at NTUA (1999–2002). He has
participated in a number of EU research projects, has an extensive publication list and co-
organises international workshops. He is a member of ERCIM, Hillside Europe and a
founding member of the World-Wide Institute of Software Architects. His research interests
concern the area of software engineering and particularly software architecture, patterns,
evolution, business modelling and web engineering. His research is mainly applied in the
domains of e-learning and CSCW.

Peter Tandler is a Senior Researcher at Fraunhofer IPSI, where he directs the
Computer-Supported Cooperative Work (CSCW) research group of IPSI’s Cooperative
Environments and E-Learning research division. His research interests include CSCW,
integration of virtual and physical environments, new forms of human–computer and
team–computer interaction for roomware components (i.e. interactive chairs, tables and walls
with integrated information technology), but also software architectures and frameworks,
object and component technology and design of programming languages. He serves as
programme committee member and reviewer for international conferences, workshops and
journals in the areas of software architectures for ubiquitous computing environments,
collaboration in ubiquitous computing environments and human–computer interaction.
He received a Diploma (MSc) in Computer Science with Education and Psychology as
additional subjects, and a PhD from the Technische Universität Darmstadt, Germany for his
work on application models and software infrastructures for roomware environments.

 Architectural patterns for collaborative applications 87

1 Introduction

The field of collaborative applications is gaining
prominence, as virtual organisations and virtual groups are
growing and becoming the status quo of contemporary
working and learning. Shared applications and desktops,
synchronous and asynchronous text and multimedia
communication, multi-user networked games,
collaborative authoring and development environments are
some of the potential future best-sellers in the domain.

Despite the increasing demand for collaborative
applications and their already widespread use,
development teams still do not receive much assistance
in building applications in this domain (Schuckmann et al.,
1999). In mature domains, such assistance is provided
in the form of frameworks, patterns, reference
architectures, modelling languages, reference models,
CASE tools, etc. Of all these development aids, the only
one that has advanced remarkably in the domain of
collaborative applications is application frameworks.
There are several frameworks in the market that offer
reuse of design and code, for example Agilo (Guicking,
2005), Clock (Graham et al., 1996; Urnes and Graham,
1999), COAST (Schuckmann et al., 1996), Dream-Objects
(Lukosch, 2003), DreamTeam (Roth, 2000a), GroupKit
(Roseman and Greenberg, 1996), Rendezvous (Hill et al.,
1994), Suite (Dewan and Choudhary, 1995) and TCD
(Anderson et al., 2000). But the shortcoming of these
frameworks is that they are characterised by limited
scalability, extensibility and customisability.

There have also been some attempts to define patterns
in the domain (Lukosch and Schümmer, 2004; Schümmer,
2003). This paper contributes to the effort of codifying the
design experience of collaborative applications in the form
of patterns. The level of abstraction that we are focusing
on is low-level architectural patterns that address
horizontal concerns in collaborative applications and
satisfy basic functional and quality requirements.
Specifically, these architectural patterns deal with six
fundamental aspects of distributed applications:
distribution, message exchange, functional decomposition,
sharing data, concurrency and synchronisation.

It is emphasised that we regard collaborative
applications as a special category of distributed
applications that facilitate the collaboration between
groups of people who share a common task. Consequently,
we consider only distributed collaborative applications,
and not centralised collaborative applications (e.g. Single
Display Groupware, Stewart et al., 1999). Therefore, we
reuse a number of the existing architectural patterns for
distributed applications from the current literature (such as
in Buschmann et al., 1996; Gamma et al., 1995; Schmidt
et al., 2000), and especially build on a pattern language for
distributed computing (Buschmann and Henney, 2002)
that attempted to unify several of the former. We select
and choose these patterns on the basis of the idiosyncrasy
of collaborative applications and the domain-specific
horizontal requirements.

We also note that, in the software architecture
discipline, the architecture of a system is comprised of
components, connectors, their configurations and

constraints on all of them (Bass et al., 1999; Clements
et al., 2002; Shaw and Garlan, 1996). Therefore, the
architectural patterns that are described in this paper deal
with these concepts in order to provide problem–solution
pairs in a given context. Furthermore, the notion
of component is perceived in the broad sense of the term,
as a unit of run-time interaction (Shaw and Garlan, 1996),
and not in the narrow sense of industrial standards, for
example, Java Beans (Sun Microsystems, Inc., 2005).

The contribution of this paper is twofold. Firstly, we
outline the ‘big picture’ of architectural design in
collaborative applications in the form of a set of patterns.
These are both high-level domain-specific patterns and
low-level application-general patterns. Secondly, we
specify six of the low-level patterns that tackle
coarse-grained problems in the realm of application
distribution. Development teams can navigate through the
pattern language and use these patterns to design the
software architecture (Avgeriou et al., 2004; Buschmann
et al., 1996; Shaw and Garlan, 1996) of collaborative
applications, in the sense that patterns generate
architectures (Beck and Johnson, 1994). We provide
experience and knowledge in this field, in digestible and
inter-related chunks, and therefore help software
architects, especially those who are inexperienced.

The structure of the rest of this paper is as follows:
Section 2 presents the pattern language; Section 3
elaborates on six architectural patterns and Section 4
wraps up with conclusions derived from this work.

2 The pattern language

Figure 1 depicts a map of the pattern language as well as
the main relationships between the proposed patterns.
The arrows of the relationships denote the direction of the
relationships, according to their labels. This pattern
language attempts to tackle the complex problem of
designing the software architecture of collaborative
applications, focusing on the lower application-general
layers. The intended audience for the language is software
architects who are designing collaborative applications.
This pattern language does not imply a waterfall-like
up-front architecture design approach, but rather supports
iterative and incremental approaches, where the patterns
are applied iteratively in cycles, each time refining and
fine-tuning.

There are two groups of patterns in this pattern
language. The first group, which is comprised of the
patterns at the top of Figure 1 with the striped background,
are high-level architectural patterns that focus on the
domain-specific functionality of collaborative applications.
The remainder constitute the second group of patterns,
which are low-level architectural patterns that deal with
the distributed nature of collaborative applications.

The patterns of the first group are outside the
scope of this paper and will be sketched only briefly, as
follows:

• The COLLABORATIVE PROCESS (also known
as SESSION MANAGEMENT or WORKFLOW
MANAGEMENT) is the implementation of the

88 P. Avgeriou and P. Tandler

domain-specific functionality of a collaborative
application. It represents the model of a collaborative
process, such as instant messaging or application
sharing, as well as the execution of this process
during collaborative scenarios. It organises the
structure of the collaborative groups, in terms of
actors who play specific roles, in order to carry out
specific collaboration scenarios and achieve
particular goals. It provides USER AND ACTIVITY
AWARENESS to the users according to the
collaboration scenarios at hand. It uses
COMMUNICATION AND COLLABORATION TOOLS
to facilitate the synergy between the users. It
appropriately manages the FLOOR CONTROL, to
coordinate the interaction of users, as well as the
COUPLING CONTROL, to control the degree of
interaction data-sharing. A suitable DISTRIBUTION
MODEL3.1 can ensure that the low-level details of
distribution and communication are separate from
the actual FUNCTIONAL DECOMPOSITION
MODEL3.3 of the functionality specified in the
COLLABORATIVE PROCESS.

• USER AND ACTIVITY AWARENESS helps users to
coordinate their work by informing them about the
activities of other users (Gutwin et al., 1996). This
awareness can be performed either synchronously or
asynchronously, depending on whether activities of
other users take place the same time or have
happened in the recent HISTORY. An appropriate
CONCURRENCY MODEL3.5 assists in coordinating
concurrent threads or processes that are controlled by
the different users.

• The HISTORY, also known as ELEPHANT’S BRAIN
(Schümmer, 2003), of the users’ activities is
thoroughly maintained, and is comprised of all the
relationships between the users and the tools or
artefacts that they are currently using. It is used for
synchronising the activities of the users that
take place either at the same time or at different
times. Such HISTORY information is stored using
the SHARING MODEL3.4 and accessed through a
SYNCHRONISATION MODEL3.6.

• COMMUNICATION AND COLLABORATION TOOLS
are well-established instruments in virtual
organisations, for example, e-mail, chat, instant
messaging, annotations, audio–video conferencing,
discussion forums, application sharing, document
sharing, etc. It is noted that these tools should be able
to support synchronous or/and asynchronous
collaboration (Edwards and Mynatt, 1997), depending
on the application requirements. These tools rely on
the low-level MESSAGE EXCHANGE MODEL3.2 and
SHARING MODEL3.4, while their interactivity and
layering is tackled by the FUNCTIONAL
DECOMPOSITION MODEL3.3.

• FLOOR CONTROL deals with which user is
allowed or should do something at what times,
according to the COLLABORATIVE PROCESS.
A very restricted form of floor control is turn-taking,

when only one user at a time can, for example,
modify data, while others have to wait. The other
extreme is to allow full control for each user, that is,
all users can simultaneously modify the shared
data (see SHARING MODEL3.4). Depending on the
application, different floor control strategies are
appropriate. While turn-taking has been found in
many cases to be too restrictive and to reduce
efficiency, full control is more challenging with
respect to the SYNCHRONISATION MODEL3.6, as
conflicts have to be avoided (if possible) or detected
and resolved. Additionally, full control requires
more USER AND ACTIVITY AWARENESS features
in the user interface to aid coordination
(Gutwin et al., 1996).

• COUPLING CONTROL regulates the coupling mode,
that is, how tightly and to what extent users
collaborate (Dewan and Choudhary, 1995). Users
can thus collaborate in different modes, ranging from
very loose coupling (e.g. single-user applications) to
extremely tight coupling (Berlage and Genau, 1993;
Haake and Wilson, 1992). The degree of coupling
may be customisable according to the
COLLABORATIVE PROCESS that is being enforced
during a user’s session. Technically, COUPLING
CONTROL defines how tightly collaborative tools
couple the application functionality among users and
which part of the editing state needs to be designed
as the shared activity model (see SHARING MODEL3.5
and Schuckmann et al., 1999). For example, when
working loosely coupled, navigation within a
document is independent for different users, and no
USER AND ACTIVITY AWARENESS needs to be
provided. When working tightly coupled, users
could, for example, couple navigation and require
awareness of other users’ activities that need to be
coordinated. Whereas COUPLING CONTROL and
FLOOR CONTROL are in general orthogonal to each
other, tight collaboration can often be more
effectively supported when FLOOR CONTROL is not
very restricting.

The patterns in the second group constitute the focus of
this paper: low-level architectural issues. These patterns
can be further decomposed into two subcategories: those
in white background in Figure 1 are fine-grained patterns
that solve specialised architectural design problems;
the ones in grey background are coarse-grained patterns
that use the former in order to solve more general
problems.

The coarse-grained patterns comprise the contribution
of this paper as they tackle six major architectural
design problems in the field of collaborative applications,
helping groupware architects in designing the software
architecture. These patterns will be elaborated in the
remainder of this section, while their thumbnails follow:

• The DISTRIBUTION MODEL3.1 takes care of the
basic form of distribution in the collaborative
application, in order to decouple distribution
issues from the application functionality.

 Architectural patterns for collaborative applications 89

Figure 1 Map of the pattern language and main relationships between the patterns

• The MESSAGE EXCHANGE MODEL3.2 (also known

as DATA TRANSFER) specifies the low-level
communication mechanism between components in
the context of a DISTRIBUTION MODEL3.1, especially
offering location transparency.

• The FUNCTIONAL DECOMPOSITION MODEL3.3
mandates the basic architectural design of the
application functionality itself, emphasising
a layered structure and the high degree of
interactivity that characterises collaborative
applications.

• The SHARING MODEL3.4 specifies the data that
is common to the various distributed components
of a collaborative application and needs to be
communicated to them.

• The CONCURRENCY MODEL3.5 deals with
the design of multiple processes and threads
that execute concurrently in a collaborative
application.

• The SYNCHRONISATION MODEL3.6, stems from
the need to coordinate the concurrent access of
multiple components to the shared data,
as described by the CONCURRENCY MODEL3.5.

The formation of these architectural patterns has been
based on the categorisation in (Buschmann and Henney,
2002), where distributed applications are supported by
patterns in five discrete areas: distribution infrastructure,
application infrastructure, synchronisation, event handling
and concurrency. We have considered that event-handling
patterns should not receive particular focus in the domain
of collaborative applications, but can be used within the
scope of the CONCURRENCY MODEL3.5. We have also
added one more category of patterns that focus on the
low-level architecturally significant issue of the SHARING
MODEL3.4. Naturally, other patterns and pattern languages
can also be employed when the requirements of the
collaborative applications demand specific solutions
to corresponding problems.

As aforementioned, the coarse-grained patterns use
the fine-grained patterns in the sense that the former
solve coarse-grained problems by decomposing the
solution into fine-grained solutions, resolved by the latter.
Most of the fine-grained patterns have been documented
elsewhere as object-oriented design patterns or
architectural patterns (Buschmann et al., 1996; Gamma et
al., 1995; Schmidt et al., 2000). Five of them constitute
future work and are described by the following
thumbnails:

90 P. Avgeriou and P. Tandler

• TYPE OF SHARED DATA3.4 defines the
characteristics of the distributed components’ data
(e.g. documents, user models, user activities, etc.)
with respect to sharing.

• The SHARING INTERFACE3.4 deals with the
interface and the abstractions that developers use
for the actual implementation of the shared data.
It separates the definition of the data from the
techniques used to implement sharing.

• DISTRIBUTION SCHEME3.4 denotes the way
that data are scattered among the distributed
components.

• PERSISTENCY3.4 deals with whether and how
the shared data needs to be stored for future
retrieval.

• TIME-DEPENDENCY3.4 handles the duration of
PERSISTENCY3.4 according to the role that shared
data plays in the collaborative application.

The next section presents the six coarse-grained
architectural patterns in an analytical pattern format.

3 The patterns

Throughout the description of the patterns, in the example
section, we demonstrate small parts of a case study that
concerns an invented collaborative text editor named
CoText, which can be used by multiple distributed1 users
to edit a document simultaneously. Few architectural
designs of this case study will be given in the UML 2.0
notation, accompanied by explanatory text. We assume a
few basic requirements in order to keep the example
simple and comprehensible and, at the same time, provide
insightful demonstrations of the various architectural
patterns. We consider that the text editor handles simple
ASCII text and the users can:

• create and delete documents

• create and delete, join and leave collaborative
editing sessions

• insert, delete and format characters simultaneously

• change the position of their personal cursor and
change their personal selection

• scroll their text view in order to make different
parts of the document visible, independently of
other users and

• get awareness of other users’ actions (a remote
view of cursor positions, selections and scroll
positions is assumed here for simplicity).

3.1 Distribution model

Context: You just took up the task of designing the
architecture of a collaborative application. There are
many facets in this task and you are trying to decide
where to start.

Problem: Distribution and application functionality are
two inter-dependent facets of collaborative applications

that need to be addressed by architects. These two
facets depend on each other and need to be efficiently
integrated, in order to achieve a good trade-off of qualities
for both facets. However, trying to tackle them
simultaneously is overly intricate and problematic.

Forces:

• Collaborative applications are distributed software
systems in their core, so that they facilitate
multiple users to collaborate synchronously or
asynchronously.

• The design of distributed applications is a tedious
task because it requires the resolution of many
issues that do not exist in centralised systems,
such as communication problems (e.g. latency,
failure, etc.), scalability and reliability.

• Designing the application functionality of a
collaborative application is complex enough
by itself, striving to satisfy the requirements of
supporting groups of collaborating people,
as well as other quality requirements.

• Designing the application functionality separately
from distribution issues is problematic because
they depend closely on each other.

• Designing the application functionality together
with distribution issues can become a daunting
task, because there are too many issues of different
nature that need to be taken under account altogether.

Solution: Decouple any distribution issues from the
application functionality. The first task in designing the
architecture of the collaborative application should be to
design the DISTRIBUTION MODEL3.1, which mandates
how components are distributed over a network,
independently of their application functionality. This
model addresses the quality requirements of the
application at the distribution level, such as scalability and
robustness.

At first, the only concern that should be addressed is the
way the components of the application will be distributed.
Domain-specific functionality of collaborative applications
should not be discussed yet; instead, this functionality
should be orthogonal to the DISTRIBUTION MODEL3.1,
and designed afterwards in the form of a FUNCTIONAL
DECOMPOSITION MODEL3.3 that can rely on the former.

The fundamental architectural patterns for application
distribution are the well-established CLIENT-SERVER
(Shaw and Clements, 1997) and PEER-TO-PEER
(Clements et al., 2002) patterns. The former denotes an
asymmetrical style of communication, while the latter
considers a symmetrical relationship between components
of equal functionality. These patterns are not always
discrete, for example, a peer component can play the role
of both a client and a server, according to the specific
functionality it entails at a given moment.

Furthermore, in order to decouple distribution issues
from domain-specific functionality of collaborative
applications, a BROKER (Buschmann et al., 1996) can be
used. It manages the communication of components in a

 Architectural patterns for collaborative applications 91

distributed application through a federation of BROKERS
that forward requests and transmit back the results
transparently, thus hiding the distribution. The BROKER
maintains a Server Registry, so that components can
dynamically register their services and clients can
transparently look them up and subsequently invoke them.
Such services in a collaborative application can range from
generic distribution functionality to domain-specific
groupware functionality, such as chatting, application
sharing, etc.

In order to decouple the clients and the servers from
the BROKER components in both the client and the server
side, a PROXY (Gamma et al., 1995) can be used to
mediate between the two parties. A PROXY provides
location-independent access to services provided by other
components through a transparent access mechanism.
In this case, a PROXY on the client side can offer the
interface of the server component, so that a client
component communicates with a remote server component
as if it was local, and moreover is not concerned with
communicating with the client-side BROKER. Similarly, a
PROXY on the server side will receive a request and call
the appropriate service on behalf of the client. In both
cases, PROXIES use their own mechanisms for
communicating with the BROKERS, hiding them from
the clients and server components. Furthermore, PROXIES
can provide independency from the implementation
language of the servers, in order to also include legacy
code and ensure the heterogeneity of the distributed
application. Finally, the PROXIES are an ideal place to
marshal and un-marshal the client requests and the server
responses. The process of marshalling takes care of
transforming a message into machine-independent format,
suitable for transmission through a network.

The BROKER needs to deal with low-level
communication issues, such as the kind of Inter-Process
Communication (IPC) or Remote Procedure Call (RPC)
used or the deployment configuration of the components in
the network. This can be further encapsulated into the
MESSAGE EXCHANGE MODEL3.2 that provides such
services to application components. Therefore, the
MESSAGE EXCHANGE MODEL3.2 encapsulates the part of
the BROKER functionality that tackles connection
management and location transparency of the distributed
components.

The DISTRIBUTION MODEL3.1 addresses the quality
requirements at the distribution level. At a later stage of
the architectural design, further quality requirements at the
domain-specific application functionality level will need to
be addressed that contradict the former. A QUALITY
TRADEOFF ANALYSIS (Avgeriou et al., 2004) must be
performed in order to compromise the qualities according
to the STAKEHOLDERS AND THEIR CONCERNS
(Avgeriou et al., 2004).

Example: In our sample collaborative text editor, the
CLIENT-SERVER architectural pattern was deemed more
appropriate, where the Server persistently stores the shared
documents and mediates communication among
the Clients for concurrent editing. A PEER-TO-PEER
scheme could also be possible but it would inflict far more
complex synchronisation issues. In both client and

server sides, except for the CoText Client Component
and CoText Server Component that perform the
domain-specific functionality of the collaborative editor,
there are BROKERS to handle the communication, and
PROXIES to provide location transparency to clients.

The servers register themselves to the server-side
BROKERS, while the clients look up the servers through
the client-side BROKERS, and as a result they fetch the
corresponding client-side PROXIES. The clients can
proceed and make requests through the client-side PROXY,
by using the interface of the corresponding server
component, as if the servers were local. The client-side
PROXIES forward such request to the client BROKERS,
which then undertake all the details of the MESSAGE
EXCHANGE MODEL3.2, in order to get the request to
the BROKER on the server side. The latter similarly
forwards the requests to the actual server components
through the mediation of the server-side PROXIES. Though
the BROKER pattern can potentially let clients and servers
communicate directly after the link is established, in the
CoText application, this link is always indirect through the
BROKERS, in order to take advantage of the MESSAGE
EXCHANGE MODEL3.2 facilities of low-level
communication details and handling of network problems.

It is obvious that the domain-specific functionality in
terms of the client requests and the server responses are
not tackled here, but will be discussed in the
FUNCTIONAL DECOMPOSITION MODEL3.3.

Benefits: The application of the pattern entails the
following positive and negative consequences:

• The architectural design of the collaborative
application commences from the right point: their
distributed nature.

• All issues of distribution are decoupled from the
application functionality.

• All issues of communication are based on the
MESSAGE EXCHANGE MODEL3.2.

• The collaborative application is scalable and offers
location transparency of components.

Liabilities:

• There are certain issues of the distribution
infrastructure that are not dealt with by merely
enforcing the BROKER pattern. For example, the
reliability and fault tolerance of the network are
completely ignored at this point; this has to be
handled by the MESSAGE EXCHANGE MODEL3.2.

• The DISTRIBUTION MODEL3.1 enforces a
communication overhead to the collaborative
application.

Known Uses:

COAST (Schuckmann et al., 1996) is a framework for
synchronous groupware. It uses the CLIENT-SERVER
pattern: all application-specific functionality is located in
the clients, while the server (called ‘mediator’ in COAST)
takes care of coordinating replication and synchronisation.
It uses the BROKER pattern to encapsulate communication
and PROXIES to access server functionality.

92 P. Avgeriou and P. Tandler

Rendezvous (Hill et al., 1994) uses the CLIENT-
SERVER pattern as well. All model objects (called
‘abstractions’) are located on the central server and
accessed via ‘links’ by ‘views’ local to each client.

DreamTeam (Roth, 2000ab) is built as a PEER-TO-
PEER framework in order to improve communication
efficiency and avoid the server as bottleneck. A
‘connection manager’ represents a BROKER responsible
for communication among collaborating peers.

Suite (Dewan and Choudhary, 1995) is another
example of a groupware framework that supports a PEER-
TO-PEER distribution model.

Wikis and BSCW are both based on the CLIENT-
SERVER pattern, while being web applications they use
the standard internet infrastructure as networks of
BROKERS and PROXIES.

Microsoft Netmeeting combines a PEER-TO-PEER
structure for communication between nodes on intranets or
the internet, as well as a CLIENT-SERVER mode that
mainly implements a naming service in order for peers to
locate each other.

3.2 Message exchange model

a.k.a. DATA TRANSFER, COMMUNICATION
INFRASTRUCTURE
Context: You have designed the DISTRIBUTION
MODEL3.1 of the collaborative application, which
necessitates communication between distributed
components.

Problem: The implementation of communication
increases the complexity of distributed components if
the low-level details of data exchange have to be
considered by all parts of the application that deal with
remote components. Also, enclosing the communication
details in the distributed components makes them
inflexible to future evolution as it violates the
‘separation of concerns’ principle.

Forces:

• In a collaborative application, the actual
communication and collaboration is realised
through data being transmitted between the various
distributed components through a network.

• Distributed components can send and receive
data by implementing IPC mechanisms, or even the
more structured RPC mechanisms. Unfortunately,
this substantially increases their complexity.
To make matters worse, the components depend
highly on the details of the specific IPC or RPC
mechanism used and thus need to change when
these mechanisms evolve over time.

• The topology of distributed components that
follows the DISTRIBUTION MODEL3.1 is
hard-coded in the implementation of the
communication mechanism. In other words,
components depend on location-specific details
of other components and need to update
whenever the distributed topology changes.

Solution: Encapsulate all the details of communication
into a separate MESSAGE EXCHANGE MODEL3.2 that
operates at the lowest level of abstraction. This model
should take care of sending and receiving data in the form
of messages between clients or servers or between peer
components according to the DISTRIBUTION MODEL3.1.
The distributed components use this MESSAGE
EXCHANGE MODEL3.2 seamlessly and transparently
without being aware of its internal details.

In order to design the MESSAGE EXCHANGE MODEL3.2
the CLIENT-DISPATCHER-SERVER (Buschmann et al.,
1996) pattern can be used. The Dispatcher undertakes the
exchange of messages between clients and servers, or
between peer components that act as both clients and
servers. The Dispatcher provides location transparency and
conceals the communication connections between the
distributed components. All low-level communication
details, and especially IPC mechanisms (e.g. shared
memory, pipes and sockets) or RPC are hidden to the
services that use this MESSAGE EXCHANGE MODEL3.2.
Furthermore, network problems, such as latency and
failure of network nodes, are also taken care of, by this
mechanism transparently. Finally, the naming service
provided by the Dispatcher allows server components to
register themselves and client components to look up the
former, thus offering location transparency. Consequently,
the Dispatcher receives a request from a client, finds the
appropriate server component and establishes a
communication link between them for transparent
exchange of messages. In other words the Dispatcher
implements the basic functionality of the broker, as
prescribed in the DISTRIBUTION MODEL3.1, because it
implements the naming service, manages communication
details and offers IPC.

It is noted that the MESSAGE EXCHANGE MODEL3.2

as a coarse-grained pattern is in fact a variation of the fine-
grained pattern, CLIENT-DISPATCHER-SERVER, for
collaborative applications. The added value of this variant
is its description in the context of collaborative
applications, as well as its relationships with the other
patterns in this pattern language.

This pattern can be implemented by appropriate
middleware technologies that are based on international
standards, such as CORBA (Object Management Group,
2004), J2EE (Sun Microsystems, Inc., 2005) and .NET
(Microsoft Corporation, 2005). These technologies offer
location-independence of components, flexible component
deployment, integration of heterogeneous components and
especially legacy code.

Because the Dispatcher is a single point of connection
management between multiple components it needs to be
able to concurrently serve more than one component.
It therefore needs to be designed according to an
appropriate CONCURRENCY MODEL3.5.

Example: In our example text editor, the MESSAGE
EXCHANGE MODEL3.2 is implemented through a
Dispatcher. As already illustrated in Figure 2, the
BROKER is implemented as a Dispatcher that takes care of
registering server components, providing a naming service
for them to be located by clients and establishing

 Architectural patterns for collaborative applications 93

communication between clients and servers through
sockets. Because the application is simple and lightweight,
we preferred not to use a heavy implementation of a
BROKER, such as CORBA or J2EE, but to implement it
from scratch. However, if features such as scalability or
reliability are an issue, using a messaging framework
would be a better choice.

Benefits: The application of the pattern entails the
following positive and negative consequences:

• Low-level communication details of the
MESSAGE EXCHANGE MODEL3.2 are
encapsulated in a separate layer. Any changes
to the communication mechanisms do not affect
the application components.

• Location transparency between the application
components is achieved. The network topology
can change without affecting the application
functionality.

• Potential problems in the network can be
independently dealt with, thus ameliorating fault
tolerance.

Liabilities:

• An overhead is introduced due to the indirection layer
of the dispatchers.

• The Dispatcher’s quality of service might degrade
if it attempts to sequentially serve multiple
components. It needs to be designed according
to a CONCURRENCY MODEL3.5.

Known Uses: Most groupware systems and frameworks
have a component responsible for message exchange.

COAST (Schuckmann et al., 1996) has a connection
and communication layer that is responsible for sending
and receiving messages between client and server.

DreamTeam (Roth, 2000a) has a message-based
communication kernel and connection manager that
handles event distribution.

GroupKit (Roseman and Greenberg, 1996) offers
support for transparent RPC and shared events.

Agilo (Guicking, 2005) implements the CLIENT-
DISPATCHER-SERVER pattern, providing location-
transparent message exchange.

3.3 Functional decomposition model

a.k.a. DOMAIN-SPECIFIC MODEL
Context: You have designed the DISTRIBUTION
MODEL3.1, which took care of the distribution issues, for
example, decomposing the application to clients and
servers or peers and PROXIES. You can continue to design
the domain-specific issues of each of the distributed parts,
for example, the client or the peer, focusing on their
application functionality.

In software architecture terms, the domain-specific
application functionality is designed as clearly separated
components, which are the run-time units of computation
or storage, and connectors, which are the units of
interaction.

Problem: In every application domain there are
certain fundamental features that shape the domain-
specific model of applications. The identification of
these crucial features in collaborative applications, as
in any immature application domain, is an error-prone
task, especially for inexperienced architects.

Forces:

• The application functionality of a software system
is based on a few domain-specific features, which
play a pivotal role. The selection of these features
depends on the requirements of the particular
application.

Figure 2 Application of the DISTRIBUTION MODEL and the MESSAGE EXCHANGE MODEL patterns for the collaborative text editor

94 P. Avgeriou and P. Tandler

• The features that shape the architecture of an
application concern mainly the following: how flow
of data and control runs through the application; how
processing of data takes place; how the components
cooperate with each other; how the application
interacts with the users or other systems and how the
system evolves in the context of changing
environment and requirements.

• Selecting the appropriate features in architectural
design entails a vast impact on how the system will
satisfy its functional and quality requirements.

Solution: Design the FUNCTIONAL DECOMPOSITION
MODEL3.3 of the application, which organises its
structure into clearly separated components and
connectors, with respect to the two crucial features that
characterise the domain of collaborative systems from
an architectural viewpoint: Firstly, the functionality of
collaborative applications is highly structured, therefore
the components can be grouped and use the services of
other components that belong to other groups; secondly,
collaborative applications are highly interactive systems
that offer an extensive user interface that manipulates the
shared data.

The first feature is addressed by the LAYERS pattern
(Buschmann et al., 1996), which enforces an organisation
of the system components into different levels of
abstractions so that components in higher LAYERS
reuse the services of lower LAYER components. The
components in each LAYER are thus decoupled from
the rest because a LAYER communicates with the lowest
LAYERS through the EXPLICIT INTERFACE (Buschmann
and Henney, 2003) of the latter. The EXPLICIT
INTERFACE ensures that each LAYER has a discrete,
unchanged interface, while the implementation of the
functionality in each LAYER is hidden and may potentially
change without consequences. The top LAYER should
implement the user interface of the collaborative
applications, while the bottom LAYER should be
concerned with the MESSAGE EXCHANGE MODEL3.2
(Dewan, 1999; Patterson, 1995).

The second feature is tackled by the MODEL-VIEW-
CONTROLLER (MVC) pattern (Buschmann et al., 1996;
Krasner and Pope, 1988), which decouples the user
interface (both views and controllers of the views) of
collaborative applications from their application logic and
the stored data. Therefore, any modifications to the user
interface will not affect the application logic or the data.
On the other hand, changes to the data can be propagated
to the user interfaces of the distributed applications.
A propagation mechanism, such as PUBLISHER–
SUBSCRIBER (Buschmann et al., 1996), is required, where
a Publisher keeps a registry of Subscribers and notifies
them when it changes state, so that they can retrieve the
updated state. Furthermore, some of the data that belong to
the Model (in terms of MVC) need to be shared by the
distributed components. These data are therefore a subset
of the Model’s data and cover different aspects of
collaborative applications, as explained in the SHARING
MODEL3.4: documents that users work with, user models
and activity models. The Model can be designed according
to the EXPLICIT INTERFACE pattern, to achieve its

decoupling from views and controllers. As in collaborative
applications client components implement the Views and
Controllers that concurrently access a shared Model, an
appropriate SYNCHRONISATION MODEL3.6 needs to be
established.

Furthermore, if a collaborative application is separated
into several functional units, each having its own
User Interface (e.g. a collaborative software development
platform), the PRESENTATION-ABSTRACTION-
CONTROL (PAC) pattern (Buschmann and Henney, 2002;
Calvary et al., 1997) will be the best choice. Because the
PAC pattern embodies MVC in every agent, the principles
of applying MVC hold for PAC as well.

Example: In our running example of a collaborative text
editor, we need to design the FUNCTIONAL
DECOMPOSITION MODEL3.3 of all the components that
originate from the DISTRIBUTION MODEL3.1. Owing to
space limitations we will demonstrate here only the
FUNCTIONAL DECOMPOSITION MODEL3.3 of the CoText
Client Component and the CoText Server Component. The
CoText Client Component, as illustrated in Figure 3,
implements both the MVC and the LAYERS patterns. The
MVC pattern deals with the shared document and manages
to decouple the User Interface from the data and the
application logic that modifies it. The Editor GUI
Component encapsulates both the View and the Controller
because for a text editor it makes sense to keep them
connected rather than discrete, as View and Controller
require lots of information exchange. The Shared
Document Object, on the other hand, contains the data of
the Model, while the Document Model implements the
application logic that modifies the data. The entire CoText
Client Component is organised in four different LAYERS:
the User Interface, which apparently contains the Editor
GUI; the Application Logic, which contains the
aforementioned Document Model, the Document Updater,
which manages the synchronisation of the document
modifications with the other users and the ServerComm,
which looks up the server and retrieves its interface; the
Data Store, which contains the shared document itself; and
the Communicator, which handles the interaction with
both the Client BROKER and the Client PROXY.

Figure 3 Application of the FUNCTIONAL DECOMPOSITION

MODEL pattern for the CoText Client Component

 Architectural patterns for collaborative applications 95

The CoText Server Component, as illustrated in Figure 4,
implements the LAYERS pattern and not the MVC because
the server does not include a user interface. In particular,
the three different LAYERS of the server component are:
the Application Logic, which contains the Central
Document Model shared by all the clients, the Document
Sync, which synchronises the clients and the
BrokerComm, which registers the server with the
BROKER; the Data Store, which contains the shared
document itself and the Communicator, which handles the
interaction with both the Server BROKER and the Server
PROXY.

As illustrated in both the CoText Client and Server
Components, as well as the PROXIES and the BROKERS
(see Figure 2), each and every one of these components
communicates through EXPLICIT INTERFACES.
In particular, the Server Component offers the
IServ interface, which is also provided to the Client
component by the client-side PROXY. The server-side
PROXY offers the IProxy interface to the server broker,
while the BROKERS on both server and client side offer
the IBroker interface.

Figure 4 Application of the FUNCTIONAL DECOMPOSITION
MODEL pattern for the CoText Server Component

Benefits: The application of the pattern entails the
following positive and negative consequences:

• The collaborative application is organised into layers
of abstraction that communicate through EXPLICIT
INTERFACES.

• The SHARING MODEL3.4 and the application
logic that modifies it are decoupled from the User
Interface.

• If the user interface is bound to the SHARING
MODEL3.4 via PUBLISHER–SUBSCRIBER, the
user interface remains independent of the location
and identity of the components that modify the
shared data.

• Separation of concerns is achieved among several
domain-specific semantic concepts, if the PAC
pattern is applied.

Liabilities:

• The application of the three patterns, LAYERS, MVC
and PAC introduce indirections that may potentially
jeopardise the performance of collaborative
applications.

• LAYERS, MVC and PAC satisfy only some of the
requirements of collaborative applications. The
development team needs to find more architectural
patterns in the pattern catalogues in order to cover all
the requirements and design the full software
architecture.

Known Uses:

DreamObjects (Lukosch, 2003) separates the application,
service, data and communication LAYERS.

Beach (Tandler, 2004) also defines four LAYERS,
namely the task, generic, model and core LAYERS. In
addition, it separates data, application logic, environment,
user interface and interaction issues in different
components. MVC is used to structure the interaction
components.

COAST (Schuckmann et al., 1996, 1999) separates
views, application model and domain model, extending
MVC. The framework defines LAYERS for transaction
handling, shared data and connection and communication.

The Clock (Graham et al., 1996; Urnes and Graham,
1999) architecture separates the application functionality
from the DISTRIBUTION MODEL3.1. It uses a layered
MVC as architectural style.

BSCW follows the MVC pattern to decouple the
application functionality (called kernel) and the user
interfaces, also providing an interface to create or modify
user interfaces.

Additionally, there are some general domain-specific
decomposition models for groupware applications.
Dewan’s generic architecture (Dewan, 1999) for
groupware and Patterson groupware taxonomy
(Patterson, 1995) and the C2 architecture (Taylor et al.,
1996) highlight that groupware applications should be
structured in LAYERS.

3.4 Sharing model

a.k.a. SHARED DATA
Context: You have designed the FUNCTIONAL
DECOMPOSITION MODEL3.3, which includes components
that conform to the MVC (Buschmann et al., 1996;
Krasner and Pope, 1988). You carry on refining the Model
of those components that are shared between the users.

Problem: Managing the data that is shared between the
distributed components is a complex task. What exactly
qualifies as shared data and how it should be managed,
needs to be precisely specified. Unnecessary sharing of too
much information may also decrease performance.

Forces:

• A collaborative application bases its functionality
on data that is shared among the users of the
application.

96 P. Avgeriou and P. Tandler

• It is not always clear what qualifies as shared data
and what should better be kept within individual
components.

• Choosing the right resources for sharing is essential
for designing collaborative applications, as it may
burden performance. Especially, responsiveness of
the user interface needs to be ensured for interactive
applications.

• The type of shared data and how exactly the data
should be managed by the application is another
key design issue.

• Some shared data need to persist over time, while
others have a limited lifetime.

Solution: Design the SHARING MODEL3.4 by
identifying all data that is common to the distributed
components of the collaborative application and
analysing the TYPE OF SHARED DATA3.4. Depending
on the application requirements choose an appropriate
SHARING INTERFACE3.4 that allows decoupling the
SHARING MODEL3.4 from the DISTRIBUTION SCHEME3.4
as well as mechanisms for PERSISTENCY3.4 and TIME-
DEPENDENCY3.4.

When specifying the SHARING MODEL3.4, start with
the TYPE OF SHARED DATA3.4 that determines ‘what’
needs to be shared and may vary according to the
application requirements (Rubart and Dawabi, 2004). As a
good starting point one can look at the components
identified in the FUNCTIONAL DECOMPOSITION
MODEL3.3. Nearly all collaborative applications rely on
shared documents that users work with, for instance the
drawings on a shared whiteboard, the messages exchanged
in a chat application or program source code that is
collaboratively edited by two developers. Furthermore,
user models (e.g. during a session, the COLLABORATIVE
PROCESS2 defines which users work together in which
manner) as well as activity models (all the actions that
users perform), can be shared when USER AND ACTIVITY
AWARENESS2 must be provided. Normally, also the
HISTORY2 is shared in collaborative applications in order
to provide common context information to all cooperating
users.

The SHARING INTERFACE3.4 defines the mechanism
and abstractions to be used to share data. Depending on the
sharing technology, this interface can vary: Some
groupware frameworks require shared data to inherit from
some Shared Object base class; other systems define a
protocol and interface that shared data need to conform to,
in order to get shared, while still others merely define a
component responsible for transmitting information
between nodes that all shared data have to use. So, in
addition to the ‘what’ specified by the TYPE OF SHARED
DATA3.4, the SHARING INTERFACE defines ‘how’ the
data are shared from the developers’ point of view. This is
influenced by the choice of the appropriate
DISTRIBUTION SCHEME3.4 (or DISTRIBUTION
ARCHITECTURE, Phillips, 1999): shared data can be
distributed in one of the following schemes: central,
asymmetric, semi-replicated and replicated (Lukosch,
2002; Phillips, 1999). By introducing a SHARING
INTERFACE3.4 in between the SHARING MODEL3.4 and

DISTRIBUTION SCHEME3.4, the distribution scheme is
decoupled from the data itself, allowing a flexible
adaptation of distribution schemes (Graham et al., 1996).
Compared with the DISTRIBUTION MODEL3.1, which
describes how the components are distributed, the
DISTRIBUTION SCHEME3.4 is concerned about the
distribution of the shared data.

The PERSISTENCY3.4 of shared data are also a key
issue: some data need to be stored and retrieved later,
whereas others may be discarded. Furthermore, data can
be characterised by TIME-DEPENDENCY3.4, if they persist
for only a limited period of time, before they become
obsolete and are no longer stored.

Shared data need to be protected from concurrent
access, according to their individual properties. Some data
will be modified simultaneously with a high (or low)
chance of possible conflicts. Other data are always
modified by a single user having write access, whereas
others get notified of changes without being able to change
the data themselves. For some data it is crucial that all
collaborating users get a synchronised representation as
quickly as possible; for other data it might be acceptable
that the representation can temporarily differ for users, as
long as consistency is ensured at some point in time. These
characteristics strongly influence which CONCURRENCY
MODEL3.5 and which SYNCHRONISATION MODEL3.6 are
appropriate for which data, which SHARING
INTERFACE3.4 should be chosen and which data needs
to be kept persistent for how long.

Using the MVC pattern (Buschmann et al., 1996;
Krasner and Pope, 1988) for DISTRIBUTION MODEL3.1
components, as a rule of thumb the Model part of MVC
triplets needs often to be shared data (Graham et al., 1996;
Hill et al., 1994; Schuckmann et al., 1999). Changes to the
Model are propagated to the Views and the Controllers
through notification mechanisms, such as a PUBLISHER–
SUBSCRIBER (Buschmann et al., 1996).

Example: In the collaborative text editor case study, there
are three TYPES OF SHARED DATA3.4 (Figure 5): the
shared document, the session information (i.e. the user
model, which represents which users have joined the
session and their location) and the editing state (i.e. the
activity model, which represents each user’s cursor
position, selection and scrollbar position in this example).

Figure 5 Application of the SHARING MODEL pattern for the
collaborative text editor

 Architectural patterns for collaborative applications 97

As far as the SHARING INTERFACE3.4, all shared objects
inherit from an abstract class that declares shared status.
Furthermore, the DISTRIBUTION SCHEME3.4 of the editor
is fully replicated: the document is small enough that full
replication is not too costly, and replication improves the
responsiveness of the user interface, which is crucial for
interactive applications.

The PERSISTENCY3.4 of the editor application is as
follows: the document will remain persistent until
explicitly deleted, the session information is persistent
only during that session and the editing state remains
persistent until the corresponding user leaves the session.

On the issue of synchronisation, the document may
have simultaneous modifications with low chance of
conflicts, and timely synchronisation is desirable to
support tight collaboration. On the other hand, session and
awareness information is always changed by a single user
only, so no conflicts are possible there.

Benefits: The application of the pattern entails the
following positive and negative consequences:

• The understanding of the nature of shared data
allows defining the requirements for sharing
technology, synchronisation, distribution,
persistency and time-dependency.

• The SHARING INTERFACE3.4 decouples the
shared data from the sharing technology and the
DISTRIBUTION SCHEME3.4.

• The application components that are designed
according to the MVC architectural pattern
have a clearly defined Model, which contains
documents, user models and activities.

Liabilities:

• There is always a possibility that some important
data have not been included in our SHARING
MODEL3.4.

• The problem of change propagation from the model
to the Views and Controllers needs to be tackled.

Known Uses: All groupware systems are fundamentally
dependent on one form or another of shared data.

COAST (Schuckmann et al., 1996), Rendezvous
(Hill et al., 1994), Clock (Graham et al., 1996; Urnes and
Graham, 1999), PAC* (Calvary et al., 1997), Suite
(Dewan and Choudhary, 1995) and later versions of
GroupKit (Roseman and Greenberg, 1996) provide
support for sharing the Model (in terms of MVC).

More recent systems, such as DreamObjects
(Lukosch, 2003) or Dragonfly (Anderson et al., 2000)
define a SHARING INTERFACE in order to provide
flexibility in adapting the DISTRIBUTION SCHEME. Wikis
do not prescribe a specific SHARING INTERFACE but they
almost always have a centralised DISTRIBUTION
SCHEME. Furthermore, all the shared data of Wikis are
persistent and do not depend on time. CVS provides a
semi-replicated DISTRIBUTION SCHEME and, of course,
unlimited persistence of files and metadata. BSCW offers
a SHARING INTERFACE that allows for the persistent
storage of new objects without modifying the existing
storage mechanisms.

To realise PERSISTENCY of SHARED DATA,
DreamTeam (Roth, 2000a) has a ‘Persistence Kernel’ and
‘Archive Manager’. Using the COAST framework
(Schuckmann et al., 1996), all shared objects are
persistent. The TIME-DEPENDENCY of shared objects can
be controlled by the application by ‘naming’ objects: while
shared objects are garbage collected when no longer
referenced, named objects remain persistent as long as
they have a name assigned.

3.5 Concurrency model

Context: You have designed the FUNCTIONAL
DECOMPOSITION MODEL3.3 of the collaborative
application and you have identified several distributed
components that run concurrently. Also, the Dispatcher of
the CLIENT-DISPATCHER-SERVER (Buschmann et al.,
1996) setting must be concurrent to facilitate the
communication between multiple clients and servers.

Problem: The complexity of collaborative applications
makes it hard to deal with concurrency issues: the
satisfaction of non-functional (quality) requirements and
especially performance, the combination of synchronous
and asynchronous components, heterogeneous networking,
etc.

Forces:

• In a collaborative application several client
components may concurrently require access to the
same service. Furthermore, multiple threads on the
server side may be concurrently serving the client
components.

• The non-functional requirements (also known as
quality requirements), especially performance,
robustness and scalability, need to be maintained in
conditions of concurrency.

• A collaborative application usually combines
synchronous and asynchronous components that
potentially depend on each other.

• The messages that are exchanged through distributed
components usually represent events, in essence,
even if the MESSAGE EXCHANGE MODEL3.2 hides
the details of event handling from developers of
application level components. Handling of events
in a concurrent environment poses another layer,
which needs to be tackled in the design of
collaborative applications.

• The components that need to be executed
concurrently may run on heterogeneous hardware
nodes or be implemented with diverse software
technologies.

• Concurrent access to components or shared data
may cause conflicts and inconsistencies, thus
raising issues of synchronisation.

Solution: Design the CONCURRENCY MODEL3.5 of the
collaborative application in order to ensure that the
quality requirements of the collaborative application
are satisfied, focusing especially on its performance.

98 P. Avgeriou and P. Tandler

This model should specify how the application
components may run as concurrent processes and/or
threads through the appropriate process and thread
management mechanisms.

In collaborative applications, there are usually both
synchronous and asynchronous components in the
FUNCTIONAL DECOMPOSITION MODEL3.3. For example,
in an instant messaging application, file transfer is
performed synchronously whereas messages are
asynchronously sent and received between users. The
interweaving and cooperation between synchronous and
asynchronous components can be successfully achieved
through the HALF-SYNC/HALF-ASYNC pattern (Schmidt
et al., 2000), which decouples the two different kinds of
component. Thus, asynchronous services are not slowed
down by synchronous ones, and the latter do not deal with
the complexity of the former.

In the CLIENT-DISPATCHER-SERVER setting,
multiple threads are used in the Dispatcher to process the
incoming events. These threads can be organised
according to the LEADER/FOLLOWERS (Schmidt et al.,
2000) pattern, in order to ensure the efficiency of the
application. It shifts the paradigm from one thread per
event, to multiple threads that handle a shared set of source
events. As far as the event handling per se, it can be
managed according
to the REACTOR and PROACTOR patterns (Schmidt
et al., 2000), in both HALF-SYNC/HALF-ASYNC and
LEADER/FOLLOWERS. These patterns hide the
complexity of event demultiplexing and dispatching to
clients, while especially taking care of handling multiple
simultaneous or asynchronous events. Depending on
whether we need simplicity of implementing the event-
driven mechanism or high performance, we should choose
the REACTOR or the PROACTOR, respectively. Finally,
for peer-to-peer systems, the ACCEPTOR-CONNECTOR
(Schmidt et al., 2000) can help to establish connections
between peers independently of their domain-specific
functionality.

When there is concurrent access to individual shared
components by multiple clients, these components can be
implemented as ACTIVE OBJECTS or MONITOR OBJECTS
(Schmidt et al., 2000), either running within their own
threads of control or being shared between multiple
client threads, respectively. Client components are not able
to tell the difference between shared components.
In the case of a MONITOR OBJECT, the different instances
of a shared component need to synchronise themselves
with the help of a SYNCHRONISATION MODEL3.6, to
ensure consistency when accessed concurrently.

Example: In our running example of a collaborative text
editor, an important issue of concurrency arises when the
server needs to respond to multiple client requests in order
to modify the shared document. We use two patterns
in the design of the CoText Server Component to
tackle this issue: firstly, in order not to block the clients
waiting for a request to modify the shared document,
we apply the ACTIVE OBJECT pattern; secondly, in order
to improve the efficiency of the server we apply the
LEADER/FOLLOWERS pattern.

Both of the applied patterns are indicated in Figure 4,
which illustrates the FUNCTIONAL DECOMPOSITION
MODEL3.3 of the CoText server component. As the
ACTIVE OBJECT pattern mandates, the Communicator
component, which accepts the client requests, is separate
from the Document Sync component, which processes the
requests. Also, according to the LEADER/FOLLOWERS
pattern, the Communicator component is comprised of
multiple threads that take turns in order to accept the client
requests and dispatch them to the Document Sync
component.

Benefits: The application of the pattern entails the
following positive and negative consequences:

• Concurrency issues of the collaborative
application are resolved.

• Asynchronous and synchronous components
cooperate with each other, without the former
degrading their performance, or the latter
becoming more complex.

• Performance and robustness of multi-thread
applications are ensured, even in cases of a
heterogeneous network.

• Event handling in concurrency settings is
inherently designed.

Liabilities:

• The access to shared objects and resources
needs to be synchronised through a specialised
SYNCHRONISATION MODEL3.6.

• The combination of the various patterns for
concurrency and event-handling entail an
inherent complexity in the implementation
of the collaborative application.

Known Uses:

DreamTeam (Roth, 2000a) uses the HALF-SYNC/HALF-
ASYNC pattern by providing a ‘connection manager’
responsible for synchronous communication and a
‘transfer manager’ that takes care of large asynchronous
transfer of data.

COAST’s server (Schuckmann et al., 1996) uses an
ACTIVE OBJECT to process messages received from
clients.

3.6 Synchronisation model

a.k.a. Concurrency Control
Context: You have designed the CONCURRENCY
MODEL3.5 of the collaborative application, which has
entailed concurrent access to the shared data.

Problem: The unrestricted concurrent access to the
shared data may lead to corruption or inconsistent
representation of the data. The protection of this data
through a conflict handling or prevention mechanism is
imperative but not easy, especially as it should not
introduce unsolicited overhead.

 Architectural patterns for collaborative applications 99

Forces:

• A collaborative application bases its functionality
on a set of persistent data that is shared among
all the users of the application.

• When a CONCURRENCY MODEL3.5 is enforced,
there may be cases where more than one user
concurrently attempts to modify shared data. In
such cases, the shared data must be protected to
avoid corruption. Conflicts must be detected and
resolved to ensure consistency and integrity of
shared data.

• There are low-level locking mechanisms that
can be applied, but more sophisticated strategies
must be devised.

• Locking mechanisms may cause performance
overhead.

Solution: Design the SYNCHRONISATION MODEL3.6 of
the collaborative application in order to regulate
concurrent access to shared data and safeguard this
data from corruption. Introduce the appropriate locking
and conflict resolution mechanisms to ensure consistency
of the data but also make sure that the robustness and
performance of the application are not compromised.

There are several ways to ensure the consistency of
data. A common approach is to lock data that will be
changed by an atomic operation (e.g. DON’T TRUST
YOUR FRIENDS (Lukosch and Schümmer, 2004)).
Another possibility is to allow conflicts to occur, but
detect and handle them afterwards (BELIEVE IN YOUR
GROUP and DETECT A CONFLICTING CHANGE
(Lukosch and Schümmer, 2004)). While locking can slow
down applications if the same data is modified frequently
by different clients, conflict handling is possible only if
conflicts can be gracefully resolved or operations can be
rolled back. Orthogonally to the synchronisation
mechanism, transactions can be used to implement atomic
operations.

Common locking mechanisms are mutexes and
semaphores. The SCOPED LOCKING (Schmidt et al.,
2000) provides a simple but effective way to automatically
acquire and release locks within a scoped area of code,
independently of the return path. The efficiency and
consistency of the locking mechanisms can be
implemented through DOUBLE-CHECKED LOCKING
OPTIMISATION (Schmidt et al., 2000), which prevents
protected areas of code from being unnecessarily accessed
and avoids race conditions. Furthermore, THREAD-SAFE
INTERFACE (Schmidt et al., 2000) minimises the overhead
caused by locking and prevents the application from
self-deadlocks. Finally, THREAD-SPECIFIC STORAGE
(Schmidt et al., 2000) suggests an alternative locking
mechanism, by providing access to shared data that is local
to a thread, through a unique access point. If the optimal
locking mechanism can change, STRATEGISED LOCKING
(Schmidt et al., 2000) can dynamically bind any
synchronisation mechanism (e.g. mutexes and
semaphores) to a component, thus providing flexibility,
customisability and reusability.

It is a trade-off for architects to decide whether the
overall cost for pessimistic execution of all operations or
the cost to handle conflicts of optimistic operations is
higher. Optimistic transactions can ensure consistency
while increasing the responsiveness of the user interface
(Schuckmann et al., 1996). This is critical for interactive
applications and can be used when conflicts are unlikely or
harmless. Sometimes it is also possible to adjust shared
data structures to use data types that minimise or avoid
conflicts, such as LOVELY BAGS (Lukosch and
Schümmer, 2004). If, for instance, a chat application uses
a shared array to store all messages, it has a high chance of
conflicts; if modelled as a set and a timestamp is assigned
to each message, inserting messages can be done without
risking conflicts, while still being able to compute an
unambiguous order of messages.

Example: In our sample collaborative text editor, the issue
of synchronisation arises in the case of the shared
document, where there is chance of conflicts when users
edit the same part of the document. For some operations,
conflicts can be easily handled: if a character is inserted
after another character that has concurrently been deleted,
the operation can be adjusted to insert the character after
the predecessor of the deleted character. For other
operations no conflict resolution is possible, but the effect
of cancelling the operation is harmless: if a character is
formatted that has been deleted concurrently, the operation
can simply be ignored, as it has become obsolete.
Therefore, we can use an optimistic synchronisation
mechanism for the shared document. To implement
optimistic operations, the client’s Document Updater
components have to remember all locally executed
operations until they receive the acknowledge from the
server’s Document Sync component (see Figures 3 and 4).

For the user and activity models, synchronisation is quite
straightforward: these models have discrete parts that are
modified by only a single user at any given time, thus
conflicts cannot occur. It must only be ensured that all
clients are informed about updates to the shared data
(UPDATE YOUR FRIENDS and MEDIATED UPDATES
(Lukosch and Schümmer, 2004)).

Benefits: The application of the pattern entails the
following positive and negative consequences:

• Advanced locking mechanisms are designed that
ensure shared data are always consistent when
accessed concurrently.

• The performance of the system is not compromised
by the locking mechanisms, and phenomena
such as starvation, deadlocks, race conditions,
etc. are avoided to the best possible extent.

Liabilities:

• When using locks as synchronisation mechanisms
there is the danger of causing deadlocks.

• Potential misuse of synchronisation strategies
can lead to excessive overhead.

Known Uses: While some groupware frameworks provide
support for synchronisation, others leave it up to
application developers to ensure consistency.

100 P. Avgeriou and P. Tandler

COAST (Schuckmann et al., 1996) supports both
optimistic and pessimistic transactions. When optimistic
transactions are used, the server takes care of detecting and
resolving conflicts. For pessimistic transactions, different
locking strategies can be used.

Clock (Urnes and Graham, 1999) provides two
predefined concurrency control schemes, pessimistic
locking and optimistic conflict detection with transparent
rollback.

In Dragonfly/TCD (Anderson et al., 2000) each
component has a facet called ‘sequencer’ and ‘concurrency
controller’ that handles synchronisation of the
component’s view and model.

Wikis usually allow conflicts to happen and of course
detect conflicting changes, but they also cater for locking
individual web pages.

CVS is a typical example of pessimistic transactions,
which enforces various locking mechanisms but also offers
conflict prevention with unreserved checkout. Similarly,
BSCW allows version management through locking but
may also allow for conflicts to take place.

4 Conclusions

The domain of collaborative application is beginning to
mature and, naturally, attempts to reuse design and code
are emerging. This paper presents such an approach for
reusing design in the form of architectural patterns,
focused on low-level issues of application distribution.
These patterns are intended for software architects who
design collaborative applications, and heavily rely on
related patterns from the distributed computing domain.
The architects of a collaborative application are meant to
use some of the patterns presented in this paper by
customising them to their specific requirements and
discard the rest. The benefits of applying the patterns can
be summarised as follows:

• Patterns are indeed quite flexible and can be
customised and applied in the vast majority of
collaborative applications. This is due to the
nature of patterns: they are generic enough,
‘timeless’ in nature, so that they provide wide
coverage in architectural design issues, but on the
other hand, they are flexible enough to be
parameterised and solve individual problems.

• The whole pattern language serves as a
roadmap that architects can follow in order to
solve a number of architectural design problems.
Each problem can be resolved through the
pattern, while its interdependencies with other
problems and their solutions are explicitly
portrayed.

• The low-level fine-grained patterns serve as the
documentation of the major architectural design
decisions that the development team took. These
decisions play a pivotal role in communicating the
architecture during the application development
and, even more so, during evolution.

In the future, we intend to explore the space of high-level
architectural patterns that concern domain-specific
functionality as identified in Figure 1.

References
Anderson, G.E., Graham, T.N. and Wright, T.N. (2000)

‘Dragonfly: linking conceptual and implementation
architectures of multiuser interactive systems’, Proceedings
of the 22nd International Conference on Software
Engineering (ICSE'00), New York, NY: ACM Press,
pp.252–261.

Avgeriou, P., Guelfi, N. and Razavi, R. (2004) ‘Patterns for
documenting software architectures’, proceedings of the
Ninth European Pattern Languages of Programming
Conference (EuroPLOP 2004), UVK.

Bass, L., Clements, P. and Kazman, R. (1999) Software
Architecture in Practice, Addison Wesley.

Beck, K. and Johnson, R. (1994) ‘Patterns generate
architectures’, Proceedings of European Conference on
Object-Oriented Programming (ECOOP'94), Lecture Notes
in Computer Science, Vol. 821, Springer-Verlag,
pp.139–149, Available at: http://st-www.cs.uiuc.edu/users/
patterns/patterns.html and http://citeseer.nj.nec.com/
27318 .html.

Berlage, T. and Genau, A. (1993) ‘A framework for shared
applications with a replicated architecture’, Proceedings of
the Sixth Annual ACM Symposium on User Interface
Software and Technology (UIST'93), New York, NY: ACM
Press, pp.249–257.

Buschmann, F. and Henney, K. (2002) ‘A distributed computing
pattern language’, Proceedings of the Seventh European
Pattern Languages of Programming Conference (EuroPLoP
2002), UVK.

Buschmann, F. and Henney, K. (2003) ‘Explicit interface and
object manager’, Proceedings of the Eighth European
Pattern Languages of Programming Conference (EuroPLoP
2003),UVK.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and
Stal, M. (1996) Pattern-Oriented Software Architecture,
A System of Patterns, Vol. 1, John Wiley & Sons.

Calvary, G., Coutaz, J. and Nigay, L. (1997) ‘From single-user
architectural design to PAC*: a generic software
architecture model for CSCW’, Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI’97), New York, NY: ACM Press, pp.242–249.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R. and Stafford, J. (2002) Documenting
Software Architectures: Views and Beyond, Addison
Wesley.

Dewan, P. (1999) ‘Architectures for collaborative applications’,
M. Beaudouin-Lafon (Ed). Computer Supported
Co-operative Work, Trends in Software, Chapter 7,
New York, NY: John Wiley & Sons, pp.169–193.

Dewan, P. and Choudhary, R. (1995) ‘Coupling the user
interfaces of a multiuser program’, ACM Transactions on
Computer–Human Interaction, Vol. 2, No. 1, pp.1–39.

Edwards, W.K. and Mynatt, E.D. (1997) ‘Timewarp: techniques
for autonomous collaboration’, Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI’97), New York, NY: ACM Press, pp.218–225,
Available at: http://doi.acm.org/10.1145/258549.258710.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995)
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley.

 Architectural patterns for collaborative applications 101

Graham, T.N., Urnes, T. and Nejabi, R. (1996) ‘Efficient
distributed implementation of semi-replicated synchronous
groupware’, Proceedings of the Ninth Annual ACM
Symposium on User Interface Software and Technology
(UIST’96), New York, NY: ACM Press, pp.1–10.

Guicking, A., Tandler, P. and Avgeriou, P. (2005) ‘Agilo: a
highly flexible groupware framework’, Groupware: Design,
Implementation, and Use. Proceedings of the 11th
International Workshop on Groupware, CRIWG 2005, Porto
de Galinhas, Brazil, LNCS 3706, Berlin, Heidelberg:
Springer-Verlag, pp.49–56, Available at: http://www.ipsi.
fraunhofer.de/concert/projects/agilo.

Gutwin, C., Roseman, M. and Greenberg, S. (1996) ‘A usability
study of awareness widgets in a shared workspace
groupware system’, Proceedings of the ACM 1996
Conference on Computer Supported Cooperative Work
(CSCW’96), New York, NY: ACM Press, pp.258–267.

Haake, J.M. and Wilson, B. (1992) ‘Supporting collaborative
writing of hyperdocuments in SEPIA’, Proceedings of the
Conference on Computer-Supported Cooperative Work,
ACM Press, pp.138–146, Available at: http://doi.acm.org/
10.1145/143457.143472.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. and
Wilner, W. (1994) ‘The rendezvous architecture and
language for constructing multiuser applications’, ACM
Transactions on Computer–Human Interaction, Vol. 1,
No. 2, pp.81–125, Available at: http://doi.acm.org/10.1145/
180171.180172.

Krasner, G.E. and Pope, S.T. (1988) ‘A cookbook for using the
model-view-controller user interface paradigms in
smalltalk-80’, Journal of Object Oriented Programming,
Vol. 1, No. 3, pp.26–49.

Lukosch, S. (2002) ‘Adaptive and transparent data distribution
support for synchronous groupware’, Proceedings of
CRIWG’02, Heidelberg, New York: Springer, pp.255–274.

Lukosch, S. (2003) ‘Transparent and Flexible Data Sharing for
Synchronous Groupware’, Band 2 in Schriften zu
Kooperations- und Mediensystemen, Josef Eul Verlag
GmbH, Lohmar–Köln.

Lukosch, S. and Schümmer, T. (2004) ‘Patterns for managing
shared objects in groupware systems’, Proceedings of the
Ninth European Pattern Languages of Programming
Conference (EuroPLoP 2004), UVK.

Microsoft Corporation (2005) ‘.NET platform’, Available at:
http://www.microsoft.com/net.

Object Management Group (2004) Common Object
Request Broker Architecture (CORBA) Specification,
Available at: http://www.omg.org/technology/documents/
formal/corba_iiop.htm.

Patterson, J.F. (1995) ‘A taxonomy of architectures for
synchronous groupware applications, workshop on Software
architectures for cooperative systems CSCW’94’, ACM
SIGOIS Bulletin Special Issue Papers of the CSCW’94
Workshops, Vol. 15, No. 3.

Phillips, W.G. (1999) ‘Architectures for synchronous
groupware’, Technical Report 1999-425, Queen's
University, Kingston, Ontario K7L 3N6, Available at:
http://phillips.rmc.ca/greg/pub/.

Roseman, M. and Greenberg, S. (1996) ‘Building real time
groupware with GroupKit, a groupware toolkit’, ACM
Transactions on Computer–Human Interaction, Vol. 3,
No. 1, pp.66–106.

Roth, J. (2000a) ‘DreamTeam’: a platform for synchronous
collaborative applications’, AI and Society, Vol. 14, No. 1,
pp.98–119.

Roth, J. (2000b) ‘A taxonomy for synchronous groupware
architectures’, CSCW 2000 Workshop “Which
Architectureor What” Toward a Property-Based Selection
of Software Architectures for Cooperative Systems,
Available at: http://www.cs.queensu.ca/~cscw2000/
positionPapers.html.

Rubart, J. and Dawabi, P. (2004) ‘Shared data modeling with
UML-G’, International Journal of Computer Applications
in Technology, Vol. 19, Nos. 3/4, pp.231–243.

Schmidt, D.C., Stal, M., Rohnert, H. and Buschmann, F. (2000)
Pattern-Oriented Software Architecture, Patterns for
Concurrent and Distributed Objects, Vol. 2, John Wiley &
Sons.

Schuckmann, C., Kirchner, L., Schümmer, J. and Haake, J.M.
(1996) ‘Designing object-oriented synchronous groupware
with COAST’, Proceedings of the ACM 1996 Conference
on Computer Supported Cooperative Work (CSCW’96),
New York, NY: ACM Press, pp.30–38, Available at:
http://doi.acm.org/10.1145/240080.240186.

Schuckmann, C., Schümmer, J. and Seitz, P. (1999) ‘Modeling
collaboration using shared objects’, Proceedings of
International ACM SIGGROUP Conference on Supporting
Group Work (GROUP'99), New York, NY: ACM Press,
pp.189–198. Available at: http://www.opencoast.org.

Schümmer, T. (2003) ‘Gama – a pattern language for computer
supported dynamic collaboration’, in K. Henney and
D. Schütz (Eds). EuroPLoP 2003, Proceedings of the Eighth
European Conference on Pattern Languages of Programs,
UVK.

Shaw, M. and Clements, P. (1997) ‘A field guide to boxology:
preliminary classification of architectural styles for software
systems’, Proceedings of the 21st International Computer
Soft-Ware and Applications Conference (COMPSAC),
pp.6–13.

Shaw, M. and Garlan, D. (1996) Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall.

Stewart, J., Bederson, B.B. and Druin, A. (1999) ‘Single display
groupware: a model for co-present collaboration’,
Proceeding of the CHI 99 Conference on Human Factors in
Computing Systems (CHI’99), New York, NY: ACM Press,
pp.286–293. Available at: http://www.cs.umd.edu/hcil.

Sun Microsystems, Inc. (2005) ‘Java 2 Platform, Enterprise
Edition (J2EE)’, Available at: http://java.sun.com/j2ee.

Tandler, P. (2004) ‘The BEACH application model and software
framework for synchronous collaboration in ubiquitous
computing environments’, Journal of Systems and
Software, Special Issue: Ubiquitous Computing, Vol. 69,
No. 3, pp.267–296. Available at: http://ipsi.fraunhofer.de/
ambiente/publications/ and http://authors.elsevier.com/sd/
article/S0164121203000554.

Taylor, R.N., Medvidovic, N., et al. (1996) ‘A component- and
message-based architectural style for GUI software’, IEEE
Transactions on Software Engineering, Vol. 22, No. 6,
pp.390–406.

Urnes, T. and Graham, T.N. (1999) ‘Flexibly mapping
synchronous groupware architectures to distributed
implementations’, Proceedings of Design, Specification
and Verification of Interactive Systems (DSV-IS’99),
Heidelberg, New York: Springer, pp.133–147, Available at:
http://dundee.cs.queensu.ca/~graham/stl/pubs.

Note
1It is reminded that we do not address the specific issues of

Single Display Groupware (Stewart et al., 1999) here.

