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LVQ acrosome integrity assessment of boar sperm cells

Nicolai Petkov1, Enrique Alegre2, Michael Biehl1, Lidia Sánchez2
1 Institute of Mathematics and Computing Science, Universityof Groningen, The Netherlands
2 Department of Electrical and Electronics Engineering, University of Léon, Spain

We consider images of boar spermatozoa obtained with an optical phase-contrast microscope. Our goal is to
automatically classify single sperm cells as acrosome-intact (class 1) or acrosome-reacted (class 2). Such classi-
fication is important for the estimation of the fertilization potential of a sperm sample for artificial insemination.
We segment the sperm heads and compute a feature vector for each head. As a feature vector we use the gradient
magnitude along the contour of the sperm head. We apply learning vector quantization (LVQ) to the feature
vectors obtained for 152 heads that were visually inspectedand classified by a veterinary expert. A simple LVQ
system with only three prototypes (two for class 1 and one forclass 2) allows us to classify cells with equal
training and test errors of 0.165. This is considered to be sufficient for semen quality control in an artificial
insemination center.

1 INTRODUCTION

Image processing techniques have been applied to
assess the quality of semen samples for therapeutic
and fertilization purposes (Verstegen, Iguer-Ouada,
and Onclin 2002; Linneberg, Salamon, Svarer, and
Hansen 1994). Techniques that had been originally
developed for human semen samples have meanwhile
been adapted to other species. Most works on boar se-
men evaluation focus on measuring concentration and
motility of spermatozoa or on detecting sperm head
shape abnormalities, such as double heads, macro
heads etc. Image processing techniques are deployed
to automate such analysis in Computer Aided Sperm
Analysis (CASA) systems (Suzuki, Shibahara, Tsun-
oda, Hirano, Taneichi, Obara, Takamizawa, and Sato
2002). The use of sperm motility (Quintero, Rigaub,
and Rodŕıguez 2004) presents several disadvantages,
such as sensitivity to temperature changes and unclear
relation to fertility. In the case of sperm morphol-
ogy, assessment is based on the state of the sperm
cell structure: head, middle piece and tail, on com-
puting morphometric measures to detect head shape
abnormalities (Rijsselaere, Soom, Hoflack, Maes, and
de Kruif 2004; Beletti, Costa, and Viana 2005; Os-
termeier, Sargeant, Yandell, and Parrish 2001) and
on detecting droplets in tails. Analysis of intracel-
lular density distribution has been used in (Sánchez,
Petkov, and Alegre 2005b; Sánchez, Petkov, and Ale-
gre 2005a; Biehl, Pasma, Pijl, Sanchez, and Petkov
2006).

Veterinary experts believe that sperm fertility is re-
lated to the state of the acrosome, a cap-like structure
that develops over the anterior half of the spermato-
zoon’s head. It has its own membrane and contains en-
zymes. As the sperm approaches the oocyte, an acro-
some reaction takes place during which the anterior
head plasma membrane of the sperm fuses with the
outer membrane of the acrosome, exposing the con-
tents of the acrosome. The released enzymes are re-
quired for the penetration of sperm through a layer
of follicular (cumulus) cells that encase the oocyte.
The acrosome reaction also renders the sperm capable
of penetrating through the zona pellucida (an extra-
cellular coat surrounding the oocyte) and fusing with
the egg. For these reasons, veterinary experts believe
that a semen sample with a high fraction of acrosome-
reacted sperm has low fertilizing capacity and cannot
be used for artificial insemination.

The traditional techniques to assess acrosome in-
tegrity, such as visual inspection by veterinary experts
or staining, are time consuming and have relatively
high costs. Despite the broadly recognized impor-
tance of acrosome integrity evaluation in semen qual-
ity assessment, we are not aware of any image pro-
cessing work on this topic. In this work we propose a
new method to assess acrosome integrity based on the
automatic analysis of grey level images acquired with
a phase contrast microscope. Our approach is based
on the observation that there are some characteristic
differences in the gradient magnitude profiles along
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Figure 1: Boar semen sample images acquired using
a phase-contrast microscope.

the contours of acrosome-intact vs. acrosome-reacted
sperm heads. We extract a feature vector from the grey
level image of a cell head and use this vector to clas-
sify the cell as acrosome-intact or acrosome-reacted
by comparing it with prototype feature vectors. We
determine these prototype vectors by applying Learn-
ing Vector Quantization (LVQ) to a training set of fea-
ture vectors obtained from the images of sperm heads
that were marked by a veterinary expert by means
of visual inspection as acrosome-intact or acrosome-
reacted.

2 Vectorization

2.1 Pre-processing and segmentation

Boar sample images were captured by means of a dig-
ital camera Nikon Coolpix 5000 mounted on an op-
tical phase-contrast microscope Nikon Eclipse. The
magnification used was×100 and the dimensions of
each sample image were2560 × 1920 pixels. A boar
semen sample image contains a number of sperma-
tozoa which can vary widely from one sample to the
next and also present different orientations (Fig. 1).

Sperm head images were obtained manually by
cropping from a boar semen sample image. These
images were visually inspected by a veterinary ex-
pert and the spermatozoa were classified as acrosome-
intact or acrosome-reacted. For each obtained image
(Fig. 2a), we segment the sperm head by convert-
ing the image to a binary image using Otsu’s method
(Otsu 1979) and applying several morphological op-
erations (dilations and erosions), Fig. 2b. We use the
contour of the sperm head binary mask in the fol-
lowing. We also localize the point where the middle
piece, from which the tail develops, connects to the
head. This point is used as a reference point in the
following.

2.2 Scale-dependent gradient computation and vec-
torization

Let f(x, y) andgσ(x, y) be a grey level distribution in
an input image and a two-dimensional (2D) Gaussian
function with standard deviationσ, respectively. The
x- andy-components of the scale-dependent gradient
of f(x, y) are defined as convolutions off(x, y) with

thex- andy-derivatives ofgσ(x, y), respectively:

∇σ,xf = f ∗
∂gσ

∂x
, ∇σ,yf(x, y) = f ∗

∂gσ

∂y
. (1)

This approach to gradient computation (Schwartz
1950) has been shown to reduce noise and discreti-
sation effects (Canny 1986; Tagare and de Figueiredo
1990; Grigorescu, Petkov, and Westenberg 2004). In
the following we use the magnitudeMσ(x, y) of the
scale-dependent gradient:

Mσ(x, y) =
√

(∇σ,xf(x, y))2 + (∇σ,yf(x, y))2
. (2)

Fig. 3 shows intracellular density distribution
images typical for acrosome-intact and acrosome-
reacted boar spermatozoa, respectively, and Fig. 4
shows the corresponding gradient magnitude images.

Next we determine the gradient magnitude along
the cell head boundary as a 1D function of the bound-
ary curve length from the reference point to a given
contour point in a clock-wise direction. For a given
contour point we take the local maximum of the gra-
dient in a5 × 5 neighborhood of that point. The re-
sulting discrete function is a vector that we re-size
by interpolation to a uniform length of 40 elements.
We also normalize this vector by dividing it by its
largest element, Fig. 5. The vectors obtained for dif-
ferent sperm heads are used for LVQ.

3 Analysis by Learning Vector Quantization
3.1 LVQ training
In the following we apply LVQ for the distance-based
classification of the data. LVQ has been used in a va-
riety of problems due to its flexibility and conceptual
clarity (Kohonen 1995; Neural Networks Research
Centre 2002).

We apply a heuristic training algorithm, so-called
LVQ1 (Kohonen 1995), in order to determine typ-
ical representatives of each class from a (sub-) set
of labeled training dataID = {ξµ, S

µ
T}

P

µ=1 Here, the
ξµ ∈ IRN (N = 40) are the vectors of gradient mag-
nitudes along the contour as described in the pre-
vious section. The corresponding class membership
provided by the veterinary experts is denoted as

S
µ
T =

{

+1 if ξµ was labeled asacrosome-intact (class 1)

−1 if ξµ was labeled asacrosome-reacted (class 2)
(3)

Fig. 5 displays three example profiles from each of
the two classes.

In the set of prototypes
{

w1,w2, . . . ,wM
}

a vec-

tor wj ∈ IRN is supposed to represent data with class
membershipSj ∈ {+1,−1}. These assignments, as
well as the number of prototypes are specified prior
to training and remain unchanged.
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(a) (b) (c)

Figure 2: (a) Grey level image of a sperm head and a part of the middle piece protruding from the head. (b)
Binary image of the sperm head obtained by thresholding and subsequent morphological processing. (c) Contour
of the binary head mask (white line) superimposed on the gradient magnitude image. The reference point at the
base of the middle piece is marked with a black circle.

Figure 3: Grey level images characteristic of acrosome-intact (upper row) and acrosome-reacted (lower row)
boar spermatozoa.

Figure 4: Gradient magnitude images characteristic of acrosome-intact (upper row) and acrosome-reacted (lower
row) boar spermatozoa. The parameterσ used to compute the scale-dependent gradient is set to 0.03 of the cell
head length.
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Figure 5: Example gradient magnitude profiles along the headboundaryξ ∈ IR40 from the class of acrosome-
intact (upper row) and acrosome-reacted (lower row) spermatozoa. The displayed profiles correspond to the
images shown in Figs. 3 and 4. These discrete 1D functions represent the vectors used for LVQ.

At each time stept of the iterative training pro-
cedure, one example{ξµ, S

µ
T} is selected randomly

from ID. We evaluate the distancesd(j,µ) of ξµ from
all current prototype vectorswj(t). Here, we restrict
ourselves to the standard (squared) Euclidean mea-
sure

d(j,µ) = (ξµ −wj)2 =
∑

i

(

ξ
µ
i −w

j
i (t)

)2
. (4)

Next we identify the minimal distanced(J,µ) among
all prototypes and the correspondingwinnner

wJ(t) with d(J,µ) = min
k

{d(k,µ)} . (5)

In LVQ1, only this winner is updated according to

wJ(t + 1) = wJ(t) + η(t)
[

S
µ
T SJ

] (

ξµ −wJ(t)
)

.

(6)
Hence, the update is towards or away from the actual
input ξµ, if the class labels of winner and example
agree or disagree, respectively.

In the following studies, prototype vectors are ini-
tialized close to the mean of vectorsξµ in the cor-
responding class. In order to avoid exactly coincid-
ingwj(0), small random displacements from the class
conditional means are performed.

The learning rateη(t) controls the step width of the
iteration. It gradually decreases in the course of learn-
ing following a schedule of the form

η(t) = ηo /(1 + a t) with a such thatη(tf) = ηf .
(7)

Results presented in the next section were obtained
with a schedule that decreases the learning rate from
ηo = 0.1 to ηf = 0.0001 in 1000 sweeps through the
training set, i.e.tf = 1000P .

After training, the system parameterizes a distance-
based classification scheme: any dataξ is assigned to
the classSJ which is represented by the closest pro-
totype.

3.2 Cross–validation

To obtain estimates of the performance after training
we employ eight-fold cross-validation: We split the
set of 152 available training data (105 from class 1
and 47 from class 2) randomly into disjoint subsets
IDi, i = 1,2 . . .8, of equal size. For a given number
of prototypes, each of eight identically designed LVQ
systems,n = 1,2 . . .8, is trained from the set∪i6=nIDi

containingP = 133 examples. Then,IDn serves as a
test set to evaluate the performance on novel data.

In the following,ǫtrain denotes the fraction of mis-
classified example data, obtained after training and
on average over the eight systems. The test error
ǫtest quantifies the averaged performance with respect
to the test set. Analogously we evaluate the class-
specific test errorsǫ(1)

test andǫ
(2)
test as well as the training

errorsǫ
(1)
train andǫ

(2)
train with respect to only class 1 or

class 2 data, respectively.
Although the training setsIDi overlap, the corre-

sponding standard deviations provide a rough mea-
sure of the expected variation of the classifier with
different realizations of the training set. The main pur-
pose of the cross-validation scheme is to compare the
performance of different LVQ schemes, i.e. systems
with different numbers of prototypes.

4 Results

We have performed LVQ1 training following the
above described scheme for systems withm and n
prototypes representing class 1 and class 2 data, re-
spectively. The table 1 summarizes the observed error
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Figure 6:Upper panel: Two prototype profiles as obtained in LVQ1 from one set of 133 examples. The left and
right prototype represent class 1 of acrosome-intact and class 2 of acrosome-reacted spermatozoa, respectively.
Lower panel: Three prototype profiles as obtained in LVQ1 from one set of 133 examples. The leftmost and
center prototypes represent class 1 (of acrosome-intact spermatozoa), whereas the rightmost profile corresponds
to class 2 (of acrosome-reacted spermatozoa).

Table 1: Training and test errors observed usingm and
n prototypes of the class 1 and 2, respectively

(m,n) training error test error

(1,1) ǫtrain = 0.167 (0.01) ǫtest = 0.165 (0.09)

ǫ
(1)
train = 0.061 (0.01) ǫ

(1)
test = 0.054 (0.09)

ǫ
(2)
train = 0.404 (0.02) ǫ

(2)
test = 0.393 (0.13)

(2,1) ǫtrain = 0.165 (0.01) ǫtest = 0.165 (0.07)

ǫ
(1)
train = 0.057 (0.01) ǫ

(1)
test = 0.055 (0.06)

ǫ
(2)
train = 0.408 (0.04) ǫ

(2)
test = 0.423 (0.24)

(1,2) ǫtrain = 0.160 (0.01) ǫtest = 0.177 (0.05)

ǫ
(1)
train = 0.070 (0.01) ǫ

(1)
test = 0.080 (0.07)

ǫ
(2)
train = 0.359 (0.04) ǫ

(2)
test = 0.398 (0.23)

measures in the simplest LVQ configurations. Num-
bers in parentheses give the corresponding standard
deviations observed in the eight-fold cross-validation.

We would like to point out that even in the mini-
mal setting (m = n = 1), the outcome of LVQ1 dif-
fers significantly from a naive representation of the
two classes by their respective mean profiles. If we
replace the two LVQ prototypes by class-conditional
mean vectors, we obtain an average test and training
error of ǫtest ≈ ǫtrain ≈ 0.184. LVQ1 yields a better
performance because the supervised training proce-
dure detects and emphasizes the discriminative fea-
tures in the data.

Figure 6 (upper panel) displays two LVQ proto-
types as obtained in one of the training runs. The
lower panel shows an example outcome of LVQ1 with

two class 1 and one class 2 prototype (m = 2, n = 1).
Note how the class 1 prototypes havespecializedto
represent the two predominant types of acrosome-
intact profiles which are also apparent in Figure 5
(low or high intensity aroundξ1 andξ40).

In general, test and training error are lower with
respect to class 1, which reflects greater fluctuations
in the class 2 data. Employing more prototypes for
the second class yields a more balanced classifier,
however, the overall test performance remains un-
changed or even degrades. Note, for instance, that a
system with one class 1 but two class 2 prototypes
(m = 1, n = 2) clearly performs worse than the mini-
mal configuration withm = n = 1.

When increasing the number of prototypes, i.e. the
complexity of the LVQ system, we observe a decrease
of the overall training errorǫtrain. However, it is ac-
companied by a (moderate) increase of the test er-
ror which signalsover-fitting: While the particular
training set can be represented in greater detail, the
generalization ability deteriorates. At the same time,
the variance of the outcome tends to be larger in the
overly complex systems.

Finally, we obtained essentially the same results
with vectors of 20 elements that were obtained by
taking every second element of the vectors of 40 ele-
ments used above.

5 Summary and outlook
We extract feature vectors from boar sperm head im-
ages and use these vectors for LVQ training and clas-
sification as acrosome-intact (class 1) or acrosome-
reacted (class 2). As a feature vector we use the gradi-
ent magnitude along the contour of the sperm head. A
simple LVQ system with only three prototypes (two
for class 1 and one for class 2) allows us to classify
cells with equal training and test errors of 0.165. This
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is considered to be sufficient for semen quality control
in an artificial insemination center.

In future investigations we intend to increase the
number of features by considering also the grey level
distribution in the sperm head interior. We further-
more intend to apply more sophisticated cost func-
tion based schemes such asGeneralized Learning
Vector Quantization(GLVQ) as suggested in (Sato
and Yamada 1995). Modified distance measures and
relevance learning, see e.g. (Hammer and Villmann
2002), could be applied in order to obtain a better un-
derstanding of this classification task and to extract
the most relevant features.
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