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ABSTRACT

In the biomedical field, infrared (IR) spectroscopic studies can involve the processing of

data derived from many samples, divided into classes such as category of tissue (e.g., nor-

mal or cancerous) or patient identity. We require reliable methods to identify the class-

specific information on which of the wavenumbers, representing various molecular groups,

are responsible for observed class groupings. Employing a prostate tissue sample divided

into three regions (transition zone, peripheral zone, and adjacent adenocarcinoma), and

interrogated using synchrotron Fourier-transform IR microspectroscopy, we compared two

statistical methods: (a) a new “cluster vector” version of principal component analysis (PCA)

in which the dimensions of the dataset are reduced, followed by linear discriminant anal-

ysis (LDA) to reveal clusters, through each of which a vector is constructed that identifies

the contributory wavenumbers; and (b) stepwise LDA, which exploits the fact that spectral

peaks which identify certain chemical bonds extend over several wavenumbers, and which

following classification via either one or two wavenumbers, checks whether the resulting

predictions are stable across a range of nearby wavenumbers. Stepwise LDA is the simpler

of the two methods; the cluster vector approach can indicate which of the different classes

of spectra exhibit the significant differences in signal seen at the “prominent” wavenumbers

identified. In situations where IR spectra are found to separate into classes, the excellent

agreement between the two quite different methods points to what will prove to be a new

and reliable approach to establishing which molecular groups are responsible for such sep-

aration.
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1. INTRODUCTION

PROBLEMS MAY ARISE when groupings are to be identified from patterns obtained by the processing of

high-dimensional data, such as those derived from microspectroscopy analysis using Fourier transform

infrared (FTIR) methods. Such data are obtained from infrared (IR) spectral measurements on many

samples where the variables (such as wavenumbers in spectroscopic data) may number several thousand.

We will be concerned with multivariate pattern recognition (“cluster analysis”), rather than classification

modelling where a training or calibration set of samples is available. Once any groupings (clusters) have

appeared, class-specific information on which variables give rise to the observed separation of IR spectra

into clusters is often required. Thus, one may infer the physical meaning of a factor by observing which

original variables “load” most heavily onto it.

High-dimensional prediction problems are intrinsically difficult and beyond current techniques. One

approach to make progress is to try and use more information implicitly known about the data. The issue

of over-fitting is a perennial threat to be guarded against. There is a serious problem in applying linear

discriminant analysis (LDA) directly to high-dimensional data such as IR spectra, just as there is in fitting

regression equations with very large numbers of variables (Fearn, 2002). The large number of dimensions

allows too much scope for discrimination to be achieved by chance, in directions that represent mainly

noise. One way of reducing the dimensionality problem is simply to reduce the dimensionality of the

feature space in a way that takes no account of the class labels. Principal component analysis (PCA) or

related methods are ideal candidates, but the problem with these dimension reduction techniques is the

lack of interpretability of the resulting classifiers.

Our aim was to find a means of obtaining class-specific information on which wavenumbers, and hence

chemical bonds, are responsible for the observed grouping into clusters of IR spectra derived from a

biological sample (prostate tissue). To this end, we compared two methods:

� The first uses a new variation of PCA that we term the “PCA-LDA cluster vector approach.” The

dimensions of the dataset are reduced, and LDA is then used to reveal clusters, through each of which

a vector is constructed that identifies the contributory wavenumbers.
� The second method uses another way of reducing the dimensions of the same data set, namely stepwise

LDA. It exploits the fact that the feature space in this problem is highly structured, in that measurements

along the wavenumbers are strongly spatially correlated. In fact, it is well known that IR spectral peaks

that identify certain chemical bonds extend over several wavenumbers. Following classification via either

one or two wavenumbers, the method checks whether the resulting predictions are stable across a range

of nearby wavenumbers.

2. METHODS

We employed a set of IR spectroscopic data derived from a previous publication (German et al., 2006),

in particular those data whose analysis is summarized in Figure 5 of that paper.

2.1. Biological samples

As described in German et al. (2006), informed consent to obtain a prostate tissue set for research

was obtained (LREC no. 2003.6.v; Preston, Chorley and South Ribble Ethical Committee) from patients

(n D 6) undergoing radical retropubic prostatectomy for prostate adenocarcinoma (CaP). A CaP-free

prostate tissue mass separate to the area of CaP, which would be present in the gland, was isolated post-

surgery. Tissue slices representing the peripheral zone (PZ) or transition zone (TZ) were dissected out from

these tissue masses. Independently of this procedure, a slice containing CaP and isolated from a different

part of the prostate gland was also retrieved. Subsequently, a microtomed 10-�m-thick section of each

tissue slice was prepared for analysis by IR spectroscopy. These microtomed sections were floated onto

0.5-mm-thick BaF2 windows (Photox Optical Systems, Sheffield, UK) for transmission-mode synchrotron

FTIR microspectroscopy. The sections were then dewaxed by immersion in fresh xylene (5 min) and then

washed in absolute alcohol (74OP; 5 min), to remove the xylene. Spectra were acquired at Daresbury

(Warrington, UK) synchrotron source on beamline 11.1 using the Thermo Nicolet Continuum microscope
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and Nexus FTIR spectrometer. Spectral collection was in transmission mode, and spectra were converted to

absorbance using Thermo Omnic software. A �32 Reflachromat objective was used, and the aperture area

was 10 � 10 �m. Spectra were collected at 4 cm�1 spectral resolution and co-added for 1024 scans. In

CaP-free tissues (PZ or TZ), five independent spectral measurements were taken on each of three randomly

chosen glandular elements. In CaP regions, three independent spectral measurements were taken on each

of five randomly chosen glandular elements. Spectra were baseline corrected using OPUS software and

normalized to the amide II (1533 cm�1) absorbance band.

2.2. The PCA cluster vector approach

IR microspectroscopic studies of biological samples can involve the processing of spectral measurements

derived from many samples, divided into classes such as category of sample (Walsh et al., 2007) or patient

identity (German et al., 2006). Interpretation typically yields two types of information: clustering and the

identification of the chief contributory variables. One may group spectra into clusters and determine the

extent to which these clusters correspond to classes of sample, using PCA, which is built on the assumption

that variation implies information. It replaces the original several hundred wavenumber variables by linear

combinations thereof, termed principal components (PCs), which seek to capture as much variability as

possible. The PCs are automatically listed in order, according to how much of the original data variance is

accounted for by each one: often, typically no more than the first 10 or so need to be taken into account.

For each spectrum obtained, the whole set of many hundreds of readings (one for each wavenumber) is

replaced by a small number of “scores,” one for each significant PC. Thus in a scores plot, each set of

measurements (IR spectrum) appears as a single point, whose coordinates are its scores on the one, two

or more PCs chosen as axes for the plot (Fig. 1).

In PCA, plots showing the extent to which each wavenumber contributes to a given PC constitute a

pseudo-spectrum or “loadings plot,” giving the class-specific information on which of the spectral peaks

(and molecular constituents) are responsible for the observed groupings. Comparing line plots of the

original data and loadings lets one see which data features are captured by a particular PC. However, in

general no single PC will pass through the median of any of the particular clusters of interest. Hence, we

decided to address the need to construct a “cluster vector,” which will likewise exhibit a loadings plot,

even though it will not be a true PC in that it is not in general orthogonal to all the others (German et al.,

2006).

Previously, in order to derive a loadings plot (pseudo-spectrum) to define those regions of the spectra

that exhibit bio-molecular and/or conformational changes, we developed a semi-graphical method that

constructs the cluster vector, passing through the median of the cluster (see the Supplementary Data in

German et al. [2006]). Its loadings plot may be calculated simply by taking a weighted average of the

components of the loadings of three real PCs that were used to identify the cluster. Thus, the method was

a graphical version of the following procedure:

a. In PCA, identify the three PCs which, when used as axes in hyperspace for the cluster plot, allow it to

be rotated to the point where its projection gives the best cluster separation (Fig. 1A).

b. For each of these PCs (e.g., nos. 1, 2, 4), find the median score for the samples in the cluster that one

wants to characterize.

c. Sum the three loadings vectors (given by the PCA software) for PCs 1, 2, 4 weighted by the median

scores.

d. The resultant is a loadings vector that is plotted as an effective loadings plot for that cluster (Fig. 1B),

even though it is not orthogonal to the PCs themselves.

A potential disadvantage of using PCA alone is that it does not unambiguously give the optimum

grouping into clusters. A similar approach exploits the benefit of linear discriminant analysis (or canonical

variants analysis, LDA), using PCA for preliminary dimensionality reduction (Fearn, 2002; Walsh et al.,

2007). LDA explicitly attempts to model the differences between the classes of data that were assigned

a priori. New variables (linear discriminants [LD]) are found such that the ratio of the between-cluster

variance to the within-cluster variance is maximized, and thus the clusters appear seen at maximum

separation. Thus LDA, like regression methods such as Partial Least Squares, is a “supervised” method,

in that it requires some knowledge (classes) of the spectra of the sample’s constituents, as indeed was
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necessary in (b) above. Consider N samples which separate into h clusters, the number of original variables

(wavenumbers) being m: the number of significant PCs used in the analysis is g, and the subsequent LDA

analysis yields d LD coefficients as outlined below. In this case we have 45 samples, 3 clusters, 234

wavenumbers, 7 PCs, and 2 LDs. The following notation employs the subscripts i , j , k, w to refer to

individual samples, PCs, LD coefficients, and wavenumbers, respectively. PCA gives a 45�7 scores matrix

SNg, a 234�7 loadings matrix Lmg , and a 3-element column vector of sample classes cN . LDA is then

used to process data in the form of cN and SNg, to give a 2�7 LD coefficients matrix Ddg. Using these

LD coefficients as weighting factors for the PCA scores, the 45�2 LD scores matrix SDikh D

P
.Dkj Sij )

is then computed. This gives the LDA scores plot.

LDA has the additional advantage that it allows a choice of the predetermined classes (in this case,

type of tissue or identity of patient) to be taken into account during the derivation of loadings plots

as well as clusters. The PCA-LDA cluster vector procedure is as follows: for each of the h clusters,

from SDikh the 2�3 mean cluster scores matrix mDkh is calculated, then the 234�2 LD loadings matrix

LDwk D

P
j .Dkj Lwj ), and finally the 234�3 cluster loadings matrix Emh D

P
h

P
k.LDwkmDkh). Plotting

a single column (fixed value of h) then gives the loadings plot for an individual cluster.

2.3. The “stepwise LDA” method

As mentioned previously, here we consider classification via either one or two wavenumbers, and then

check whether the resulting class predictions are stable across a range of nearby wavenumbers (Wit and

McClure, 2004). The prediction may be linear, as used here, or quadratic. The steps are as follows:

a. Any single prominent spectral peak is chosen, and LDA is used to process the data for all IR spectra

at this wavenumber. It finds a new axis in the usual way, by maximizing the ratio of between-group

variance to within-group variance. Thus the best Gaussian “posterior density” is fitted to each group.

b. Then one data point can be left out and the Gaussian is used to calculate the “predicted posterior class

probability” for that spectrum, across the h class categories, at the one wavenumber. This is repeated

for all IR spectra, omitting one data point at a time.

c. The above is then repeated for all wavenumbers.

d. For each data point, each of the predicted class probabilities is then compared with the known true

value (either 1 or 0).

e. For each wavenumber, these absolute deviations are now summed to give a sum of absolute posterior

misclassification or “misclassification error.” Troughs on a plot of this error against wavenumber are

then analogous to peaks on a PCA loadings plot, in that they indicate wavenumbers that best distinguish

one particular class from the rest.

If this single wavenumber predictor approach yields a relatively high number of misclassifications, it is

worthwhile to consider two or more wavenumbers simultaneously. It could be tempting to consider taking

the wavenumbers having the lowest misclassification errors as shown by the single-predictor method:

however, in case the two wavenumbers contain very similar information, in step 3 above one considers

all possible pairs of wavenumbers. For each pair, the best Gaussian mountain is fitted to each group

of data, and a three-dimensional graph of misclassification error as a function of wavenumbers 1 and 2

is plotted.

3. RESULTS

3.1. PCA-LDA

The prostate tissue sample included three regions: TZ, PZ, and adjacent CaP. A previously-published

analysis of the data (German et al., 2006) was performed by means of PCA alone, and for comparison,

some of those earlier results are shown in Figure 1A, showing the separation of data from the three regions

into three distinct clusters, and Figure 1B, the loadings plot. When the new method is applied to the same

raw data, as shown in Figure 1C, we obtain a PCA-LDA scores plot; Figure 1D shows the corresponding

loadings plot for the CaP cluster. When compared with the results obtained by PCA alone, there are

discrepancies, which may arise from the fact that the procedures described so far give loadings for vectors
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that point from the origin to the centers of each cluster. This origin is somewhat arbitrary, and would shift

somewhat if the numbers of samples in the clusters changed. There would be a major shift if, for example,

a fourth cluster were introduced.

Accordingly, it seems clear that these methods are likely to be at their most reliable when data giving

just two clusters are processed at any one time. An example is shown in Figure 2. Here, using the new

PCA-LDA method, we have shown data from six patients (German et al., 2006). There must be many

other factors (e.g., age, diet, disease progression) that contribute to spectral variations between different

patients, and we have also examined the variation between patients, using data from a single tissue type and

allocating a different class variable to each individual’s samples. As expected, inter-patient variations are

often significant, yet despite this, this method succeeds in picking out at least four prominent wavenumbers

as being responsible for the clustering of spectra according to the relevant region of prostate tissue (PZ,

TZ, or adjacent CaP).

3.2. Stepwise LDA

As explained above, the method involves classification via either one wavenumber (the single linear

predictor version) or two wavenumbers. A check of the extent to which the resulting predictions are

stable across a range of nearby wavenumbers then yields an absolute posterior misclassification or “mis-

classification error.” Alternatively, misclassification error may be calculated and plotted as a function of

two wavenumbers. Figure 3 shows a plot of misclassification error against wavenumber, as derived when

the single linear predictor version is applied to the same raw data as before. The troughs are analogous

to peaks on a PCA loadings plot, indicating the wavenumbers that best distinguish one particular class

from the rest. Figure 4 shows a three-dimensional graph of misclassification error as a function of two

wavenumbers. In this case it is observed, for example, that the two wavenumbers of approximately 1070

and 1135 cm�1 are prominent. Thus, differences in signal at these wavenumbers should provide a use-

ful identification of certain molecular groups that occur in different concentrations between the different

classes (i.e., regions) of prostate tissue (PZ, TZ, or adjacent CaP). For comparison with the loadings

plots given by the PCA-LDA method, it is useful to convert data such as those of Figure 4A into a line

plot of average misclassification error (i.e., the sum of absolute posterior misclassification); this is shown

in Figure 4B.

4. DISCUSSION

We have presented the results of two methods for identifying the variables responsible for cluster

formation: a variation of PCA-LDA that we term the cluster vector approach, and another way of reducing

the dimensions of the same data set, known as the stepwise LDA method. Both methods were applied to

the same sets of previously published data (German et al., 2006). In this case, when comparing Figures 3

and 4B, we see very little difference between the misclassification results given by the two variants of the

stepwise LDA method (single predictor vs. two predictor).

FIG. 1. Processed spectral data acquired from epithelial cells lining glandular elements of prostate tissue from one

patient, acquired using synchrotron Fourier transform infrared (FTIR) microspectroscopy. The spectra were collected

from particular tissue regions (peripheral zone, black circles; transition zone, blue squares; and adjacent adenocar-

cinoma, red triangles). (A) Three-dimensional scores plot on PCs 1, 2, and 4, selected to demonstrate best cluster

segregation using PCA (from Fig. 5A of German et al. [2006]). (B) Loadings plot corresponding to the cluster vector

for the “red” cluster, shown dotted in A (from Fig. 4D of German et al. [2006]). (C) The same data as in A, processed

using PCA-LDA. (D) The same data as in B, processed using PCA-LDA.

FIG. 2. Data obtained from six patients and processed using PCA-LDA, two tissue types and one patient at a time

(transition zone [TZ], adjacent adenocarcinoma [CaP]; compare part of Fig. 4D of German et al. [2006]). Other details

are as in Figure 1. (A) Scores plots, showing complete cluster separation. (B) Loadings plots. (C) As in B, showing

detail of the low-wavenumber region.
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FIG. 1. (See caption on page 1180.)

FIG. 2. (See caption on page 1180.)
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FIG. 3. The same raw data as in Figure 1, processed using the single linear predictor stepwise LDA method and

showing misclassification error as a function of wavenumber. Significant wavenumbers are shown by troughs.

FIG. 4. (A) As in Figure 3, processed using the two-wavenumber predictor method. Black indicates low misclassifi-

cation errors and good prediction values. (B) The data of Figure 4A re-plotted to show average misclassification error

(i.e., the sum of absolute posterior misclassification). Troughs show significant wavenumbers.
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FIG. 5. Comparison of the plots shown by PCA-LDA and stepwise LDA, for the same raw data sets: as in Figure 1D,

but showing loadings plots for all three clusters, versus result of two-wavenumber predictor method (stepwise LDA;

Fig. 4B). Significant agreement is shown by arrows. These appear as troughs in the stepwise LDA plot, and as either

peaks or troughs in the PCA-LDA plots.

In Figure 5, the predictions of PCA-LDA and stepwise LDA are compared, using the one-patient data

as an example:

a. As shown in Figure 1D, the PCA-LDA wavenumbers show four very prominent (positive or negative)

peaks for the CaP cluster. Also shown in Figure 5 are five peaks (or troughs) for the PZ cluster, and

three for the TZ cluster, which derive from the relevant PZ and TZ data. One needs to keep in mind

that the three PCA-LDA pseudo-spectra shown are linear combinations of just two LDA loadings, so

it is not surprising that one sees the same pattern repeated in all three, or that the signs change (see

the comment on the origin of the loading vectors, 3.1 above). In a situation where there are only two

clusters and hence one LDA loading, the two plots would be mirror images of each other. We see that

all these wavenumbers closely coincide with the predictions of the stepwise LDA method.

b. The troughs indicated by stepwise LDA are all confirmed by PCA-LDA, with one exception (at 1405

cm�1).

For example, as regards the molecular groups that distinguish the adjacent adenocarcinoma (CaP), both

methods pick out the wavenumbers 1135 cm�1 (C�O ring vibrations of nucleic acid “sugars”), 1110 cm�1

(phosphate species such as adsorbed H2PO4� , also CDO stretching and bending of ketones, C�H in-plane

vibrations of polyimide aromatic rings), 1075 cm�1 (PO2� symmetric stretching vibrations of nucleic acids

and phospholipids), and 1050 cm�1 (ribose-phosphate main-chain vibrations). This result is consistent with

the conclusions of our previously-published findings (German et al., 2006), using the same raw data; in

addition, it clarifies some of the uncertainties detailed there.

The remarkable degree of agreement between the two methods, the PCA-LDA cluster vector approach

and stepwise LDA, is encouraging. Stepwise LDA has the advantage of simplicity. For example, in ap-

propriate cases it will be very convenient to use just one of the pairs of wavenumbers indicated, in order

to pick out the key molecular groups responsible for clustering. However, stepwise LDA does not, in its
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present form, indicate which of the different classes of spectra are exhibiting the significant differences in

signal that are seen at the prominent wavenumbers identified. This is not necessarily a major disadvantage,

since as already remarked in connection with PCA-LDA, the identification of the variables responsible for

cluster formation is likely to be most reliable when just two classes are processed at any one time. In

such a case, there is no ambiguity about which class is involved. Accordingly, we claim that in situations

where IR spectra are found to separate into classes, this study points to what could prove to be a new and

reliable approach to establishing which molecular groups are responsible for such separation.
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