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ABSTRACT
Motivation: Numerical output of spotted microarrays dis-
plays censoring of pixel intensities at some software de-
pendent threshold. This reduces the quality of gene ex-
pression data, because it seriously violates the linearity of
expression with respect to signal intensity. Statistical meth-
ods based on typically available spot summaries together
with some parametric assumptions can suggest ways to
correct for this defect.
Results: A maximum likelihood approach is suggested to-
gether with a sensible approximation to the joint density of
the mean, median and variance—which are typically avail-
able to the biological end-user. The method ‘corrects’ the
gene expression values for pixel censoring. A by-product
of our approach is a comparison between several two-
parameter models for pixel intensity values. It suggests
that pixels separated by one or two other pixels can be con-
sidered independent draws from a Lognormal or a Gamma
distribution.
Availability: The R/S-Plus code is available at http://www.
stats.gla.ac.uk/∼microarray/software.
Contact: ernst@stats.gla.ac.uk

1 INTRODUCTION
Typically the gain of microarray scanners is adjustable.
This transforms the scanned intensities approximately by a
multiplicative constant. The main reason for such adjust-
ment is generally to increase the intensity level of lowly
expressed genes to a level that exceeds the intrinsic noise
level of the scanner. Low frequency noise could potentially
swamp all low level gene expression as well as subtle dif-
ferences between such lowly expressed genes. After ad-
justment unexpressed genes and differences between ex-
pressions are more clearly visible.

Unfortunately this advantage doesn’t extend indefinitely
because a similar problem exists at the very upper range of
the scanner’s sensitivity. Increasing the gain of the scanner
too much has as a result that highly expressed genes get
spot values close to or at the largest possible value that
the scanner software allows. In a 16-bit (double precision)

∗To whom correspondence should be addressed.

computer storage system, this is equal to 216−1 = 65 535.
These two complementary problems require real skill

on the part of the experimenters to make sure that the
main bulk of the expression levels lie in the central
region of the scanner sensitivity range. However, careful
execution of the experimental methods is not sufficient.
Figure 1 shows that the problems with so-called intensity
censoring already begin in the middle region of the normal
scanner sensitivity range. At an intensity of approximately
45 000 the mean becomes smaller than the median. Also
at that level the variance starts to decrease. In other words,
already when the mean and median spot intensity are only
two thirds of the maximum intensity certain pixels are
expressed higher than the highest possible value and are
therefore censored. For this reason, it is paramount to
consider ways to postprocess the intensity data in order
to correct for such spurious effects.

Early papers (Chenet al., 1997) make assumptions of
normality for the raw pixel values. (Yanget al., 2000)
and many other commentators suggest that the logarithm
of the pixel values can be assumed normal, although
others (Kerr et al., 2000) notice large tails even in
the log-transformed data and suggest to use bootstrap.
However, none mention the curious cut-off effect at the
higher expression levels. Amaratunga and Cabrera (2001)
suggest the use of bilinear or spline transformations to
adjust for the apparent clustering of expression values at
the upper threshold, although also they do not seem to
be aware of the underlying reason. Similar alternatives
involve modelling the expression data by a distribution
that is defined on a finite interval, such as the Beta
distribution. However, all these methods fail to address the
issue of pixel censoring specifically and as a result may
lead to bias.

Our method does not suffer from these aforementioned
defects. It uses several pixel summaries such as the mean,
median and variance to estimate the fraction of pixels that
are censored and on the basis of a pixel distribution model
it proposes adjustments. A fast maximum likelihood algo-
rithm is deduced. Complications due to lack of indepen-
dence of the pixel values and due to approximations are
also addressed.
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Fig. 1. Most scanner software give several spot pixel summaries. Plotting the median and the standard deviation versus the mean reveals that
pixel values are censored at 65 535. (Data are provided by Dr N.Barr from the Beatson Institute, The University of Glasgow.)

2 METHODS
2.1 Maximum likelihood
Random variables are quantities subject to noise or uncer-
tainty. Pixel values are the random variables considered in
this paper. The expressions ‘censored atc’ and ‘restricted
on interval I ’ are used in the following ways. A random
variableX is censored atc, if weobserveX∗ = min{X, c}.
If X is distributed according to distributionD(α, β), then
we indicate the censored distribution byD∗(α, β). A ‘ran-
dom variableX is restricted onI ’ stands for the condi-
tional distribution ofX given X ∈ I . This conditional dis-
tribution is written asD(α, β)|I . The distribution function
FX is defined as the non-exceedence probability of ran-
dom variableX , i.e. FX (x) = P(X ≤ x). The notation
pX (x) is used for the probability density function, which
loosely stands for the probability that random variableX
takes on valuex .

Weassume that a parametric family with two parameters
D(α, β) is an appropriate description of the uncensored
pixel intensity distribution. The original expression values
for each spot are assumed independent draws from this
distribution, i.e.

X1, . . . , Xn
i.i.d.∼ D(α, β),

where n is taken to be large, typically several hundred
pixels. For convenience of notation we assume that the
number of pixels is odd,n = 2h + 1. This assumption is
not essential becausen is large and can easily be replaced
by n − 1 in case it is even. The observed pixel intensity
is censored at a certainmaximum intensity, MaxInt. The
basis of the summary statistics are the observed pixel

values,

X∗
i = min{Xi , MaxInt}, i = 1, . . . , n.

We denote bym, x̄ and s2 the median, mean and
variance respectively of the censored observations, i.e.

m = Median{X∗
1, . . . , X∗

n}, x̄ = 1
n

∑n
i=1 X∗

i ,

s2 = ∑n
i=1(X∗

i − x̄)2/(n − 1).

Using the standard multiplication formula from probabil-
ity theory (Grimmett and Welsh, 1988, p. 12), the likeli-
hood ofα, β given the observed spot mean, median and
variance can be factorized as:

L(α, β|x̄, m, s2) = p(x̄, m, s2|α, β)

= p(m|α, β)p(x̄ |m, α, β)p(s2|x̄, m, α, β) (1)

2.1.1 Contribution of median to likelihood. The prob-
ability density of the median is a continuous distribution
with an atom at MaxInt. A standard result (Grimmett and
Welsh, 1988, p. 138) yields an expression for the continu-
ous part, whenm < MaxInt,

p(m|α, β) ∝ FX (m)h pX (m) (1 − FX (m))h .

At m =MaxInt the likelihood is a point mass,

p(m = MaxInt|α, β) =( n
h+1

)
FX (MaxInt)h (1 − FX (MaxInt))h+1 .

2.1.2 Contribution of the mean to likelihood. For the
conditional distribution of the mean given the median,
we use several approximations. Notice that givenm <
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MaxInt, the meanx̄ can approximately be written as
the convolution of the mean ofh draws fromD(α, β)

restricted to(0, m) and the mean ofh draws fromD(α, β)

restricted to(m, ∞) and censored at MaxInt. On the
assumption thatn is large (typically over 200 pixels),
these two means can both be adequately approximated by
a normal distribution. This assumption may be in some
doubt for the second mean whenm is close to MaxInt and
a lot of the pixels are censored.

Given the medianm < MaxInt the density of the mean
can approximately be written as convolution of the mean
X̄1 of h pixels belowm and the meanX̄2 of h pixels
above m. We approximateX̄1 and X̄2 by N (µ1, σ

2
1/h)

and N (µ2, σ
2
2/h) respectively, where the parameters are

the means and variances ofD∗(α, β) restricted to(0, m)

and (m, MaxInt] respectively. Although no closed form
expressions are available for the coefficients, accurate
numeric approximations are readily found due to the
parametric structure ofD(α, β). Given these definitions
we write for x̄ < MaxInt,

p(x̄ |m, α, β) = n p

(
n∑

i=1

X∗
i = nx̄ |m, α, β

)

≈ n p(h X̄1 + m + h X̄2 = nx̄ |α, β)

≈ n ϕ


 (nx̄ − m) − (hµ1 + hµ2)√

hσ 2
1 + hσ 2

2


 ,

whereϕ is the density of a standard normal.
A case that deserves some attention is when the median

is equal to MaxInt, but the mean is not. In this case, at least
half of the observations are known to be equal to MaxInt.
To find the conditional density for the meanx̄ , weconsider
the mean of the censored distribution over the remaining
h random variables,

X̄1 = 1

h

h∑
i=1

Y ∗
i , Y1, . . . , Yh

i.i.d.∼ D∗(α, β).

Again, using a normalN (µ1, σ
2
1/h) approximation for

X̄1, wecan write forx̄ < MaxInt

p(x̄ |m = MaxInt, α, β)

= n p

(
n∑

i=1

X∗
i = nx̄ |m = MaxInt, α, β

)

≈ n p(h X̄1 + (h + 1)m = nx̄ |α, β)

≈ n ϕ


 (nx̄ − (h + 1)m) − (hµ1)√

hσ 2
1


 ,

whereϕ is the density of a standard normal.

For the atomx̄ = MaxInt, we don’t have to resort to
approximations. Notice that this can only occur in the case
that the median is also equal to MaxInt and that therefore
already half of the observations are known to be equal to
MaxInt.

px̄ (MaxInt|m = MaxInt, α, β) = (1 − FX (MaxInt))h

2.1.3 Contribution of variance to likelihood. Similarly
for the conditional density of the variance given the
mean and median, we shall employ a series of normal
approximations. First we consider the case that both the
mean and the median are less than the maximum intensity,
i.e. m, x̄ < MaxInt. The density of the variance can
approximately be written as convolution ofS1 and S2,
where

S1 =
h∑

i=1

Y 2
i , Y1, . . . , Yh

i.i.d.∼ D(α, β)|(0,m)

S2 =
h∑

i=1

Z∗2
i , Z∗

1, . . . , Z∗
h

i.i.d.∼ D∗(α, β)|(m,MaxInt]

We approximate S1 and S2 by N (µ3, hσ 2
3 ) and

N (µ4, hσ 2
4 ) respectively, where the parameters are

the means and variances of the distribution of the square
of D∗(α, β) restricted to(0, m) and(m, MaxInt] respec-
tively. Just as before, accurate numeric approximations are
readily found due to the parametric structure ofD(α, β).
Given these definitions we write form, x̄ < MaxInt,

p(s2|x̄, m, α, β)

≈ n p

(
n∑

i=1

X∗2
i − nx̄2 = (n − 1)s2|m, α, β

)

≈ n p(S1 + m2 + S2 = (n − 1)s2 + nx̄2|α, β)

≈ n ϕ


 ((n − 1)s2 + nx̄2 − m2) − (hµ3 + hµ4)√

hσ 2
3 + hσ 2

4




whereϕ is the density of a standard normal.
If the median is equal to MaxInt and the mean is not,

then at least half of the observations are known to be equal
to MaxInt. To find the conditional density for the variance
s2, the sum of the squares of the remainingh random
variables is considered,

S1 =
h∑

i=1

Y ∗2
i , Y1, . . . , Yh

i.i.d.∼ D∗(α, β).
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Using a normal approximation forS1, we can write for
x̄ < MaxInt

p(s2|x̄, m = MaxInt, α, β)

≈ np

(
n∑

i=1

X∗2
i = (n − 1)s2 + nx̄2|m=MaxInt, α, β

)

≈ np(S1 + (h + 1)m2 = (n − 1)s2 + nx̄2|α, β)

≈ nϕ


 ((n − 1)s2 + nx̄2 − (h + 1)m2) − (hµ3)√

hσ 2
3


 .

If both the mean and median are equal to MaxInt, then
all pixel intensities are equal to MaxInt and therefore the
variance is equal to zero with probability one.

2.1.4 Maximum likelihood procedure. Given the ap-
proximation of the likelihoodL(α, β) in Equation (1), the
function can now be maximized over the parametersα

andβ. The values

α̂, β̂ = arg maxL(α, β | m, x̄, s2)

are called the maximum likelihood estimates. They repre-
sent the ‘most likely’ values ofα andβ for the pixel distri-
butionD(α, β) for some spot, given the mean, median and
variance of that spot. For each of the spots on the array a
different set of parameters(α̂1, β̂1), . . . , (α̂ns , β̂ns ) is esti-
mated from(m1, x̄1, s2

1), . . . , (mns , x̄ns , s2
ns

). The median

or mean of the distributionD(α̂i , β̂i ) is a better estimate
of the true gene expression than the observed median or
mean intensity of spoti .

2.2 Complications: approximations
The calculation of the likelihood involves a series of
approximations. Each of these approximations affects the
best possible estimate of the parameters of the distribution.
Particularly when the median is close to the maximum
intensity the approximation using the normal is highly
suspect for reasons explained in the previous paragraph.

Similarly, we have assumed that the number of pixels
per spot is large. Whereas this is true for typical spotted
cDNA microarrays, it is not the case for Affymetrix chips.
The U95 chips, for instance, have only some 25 pixels per
probe. The question is whether this small amount of pixels
justifies the normal approximation.

To evaluate the practical impact of these approxima-
tions, we simulate several ‘spots’ with different number of
pixels (25, 201) and for different levels of censoring. Each
of the pixels are sampled from a lognormal distribution.
The results of this simulation study in Table 1 suggest
that the approximations do not harm the estimates even
when 50% of the data are censored and only 25 pixels
are used. At higher levels of censoring, it seems that

Table 1. Simulation results for the mean of 10 replicates. The pixel data are
generated according to a censored lognormal. The estimates are based only
on the mean, median and variance of the pixel data

Lognormal % 25 pixels 201 pixels
µ σ Censored µ̂ σ̂ µ̂ σ̂

7 2 2.0 7.1 1.9 7.0 2.0
9 2 14.8 8.8 1.7 9.1 1.9

10 2 29.3 9.6 2.2 10.0 1.8
11 0.2 27.3 11.0 0.4 11.0 0.2
11.1 0.2 52.6 11.1 0.4 11.1 0.4
11.3 0.2 91.9 11.2 0.4 11.2 0.3

the approximation procedure slightly underestimates the
mean and overestimates the variance of the pixel values.

2.3 Complications: lack of independence
In the calculation of the likelihood we assumed that the
pixel values constituted independent draws from some
intensity distribution. This assumption is generally made
off-hand without much justification (Brownet al., 2001,
p. 8945). However, spatial effects such as print-pin effects
invalidate independence and hybridization patterns even
undermine conditional independence.

Nevertheless, independence is a very powerful assump-
tion that makes calculations computationally tractable and
fast. In the interest of calculability we propose to limit the
independence assumption to non-neighbouring pixels of a
certain separation. For this assumption to hold, the spatial
hybridization effect is thought to be constant over the spot
and the print-pin dependence is thought to act within the
limits of the proposed pixel separation.

Given ak-pixel separation, each pixel value is replaced
by the mean of the(k +1)2 pixels neighbouring that pixel.
Wemake the explicit assumption that the means over(k +
1)2 pixel values are ‘approximately’ independent. Theo-
retically, this approach is supported by the idea that for
sufficient separation points in a two-dimensional first or-
der Markov process are uncorrelated. Moreover, ergodic-
ity results suggest that using the mean over more but cor-
related observations—rather than the independent ones—
improves efficiency (Gamerman, 1997, Section 5.3.3.).

As a result, all the calculations in Section 2.1 are still
valid with the only exception that the effective number of
spot pixelsn in the calculation of the likelihood is reduced
by a factor(k + 1)2. If one pixel separation is sufficient
for independence, then effectively the number of pixels in
the normal calculations is divided by four; for two pixels
of separation this number is nine.

2.4 Goodness-of-fit statistics
The methodology described allows us to fit any two
parameter pixel intensity probability model to the data for
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each of the spots. It is of considerable interest to find out
which of the models proposed seems the most adequate
for pixel intensities of spotted microarrays. Goodness-of-
fit statistics comparing the pixel probability models are
therefore interesting. Because none of the pixel probability
models are nested, typical likelihood based goodness-of-
fit statistics are irrelevant. Instead we consider a variant of
the chi-squared statistic.

This goodness-of-fit statistic is calculated for only the
observed means̄xi of the pixel values.

X2 =
ns∑

i=1

(x̄i − E
α̂i ,β̂i

X̄)2

Var
α̂i ,β̂i

X̄
(2)

Under the null-hypothesis that the uncensored pixel
distribution is indeedD(α, β), the mean ofX̄ is iden-
tical to the mean of a single pixel value generated by
D∗(α, β), whereas the variance is approximately equal
to the variance of a single pixel value divided by the
number of independent pixels in the spot. Therefore,
under the null-hypothesis the statisticX2 is approximately
distributed like a chi-squaredχ2

ns
with approximately

3ns − 2ns degrees of freedom.

3 IMPLEMENTATION
In order to maximize the likelihood, several methods
are available. Usual Newton–Raphson, gradient or other
maximization procedures are infeasible due to the non-
explicit nature of the parametersµi , σ

2
i (i = 1, . . . , 4). We

opt instead for maximizing the likelihood by an iterative
grid-search procedure. Depending on the distributionD,
a grid of values forα and β is chosen over which the
likelihood is evaluated. Around the maximum likelihood
value in this grid a new, narrower grid is selected over
which the likelihood is calculated. This procedure is
repeated several times, until a numerically stable value of
(α̂, β̂) that maximize the likelihood is attained.

4 RESULTS
4.1 Corrected expressions
For the purposes of testing our methodology on a real
set of microarray data, we use unpublished data from Dr
N. Barr and her co-workers at the Beatson Institute at
the University of Glasgow. The data consist of 4 cDNA
spotted arrays, each with 9216 targets. Among the targets
were 4224 known genes and ESTs and 384 control spots,
each replicated twice on a single array. The probes were
Cy3 and Cy5 labelled mRNA from a skin cancer cell-line
(Bicr6) and a normal cell-line (Hec94). Dye swapping
took place for 2 of the 4 arrays. We selected at random
1000 spots and calculated the maximum likelihood esti-
mates of the parameters(α1, β1), . . . , (α1000, β1000) for
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Fig. 2. Gamma and Lognormal full independent pixel model used to
adjust the mean spot intensities of a single slide (Hgmp2b, Cy3, Dr
N.Barr).

three different parametric distributions (Gamma, Lognor-
mal, Weibull) for three different independence scenarios
(full independence, independence with 1 pixel separation,
independence with 2 pixel separation). Figure 2 shows
that for both the Gamma and the Lognormal pixel model
the adjusted pixel mean is larger than the unadjusted pixel
mean for the higher pixel spot intensities.

4.2 Impact on inference
The effect of signal censoring on inference can be ad-
dressed by considering the issue of differential expression,
in particular by looking at its effect on the common ex-
pression ratio. We simulate pixel values from a lognormal
distribution for the treatment and the reference channel so
that before censoring the treatment is twice upregulated
compared to the reference. This is done for several me-
dian pixel levels between 44 000 and 120 000 for the treat-
ment sample and between 22 000 and 60 000 for the ref-
erence sample. Then the pixels are censored at 65 535 and
median pixel levels are calculated for both reference and
treatment. Figure 3 plots the reference sample on thex-
axis and the expression ratios on they-axis. If there was
no censoring, the expression ratio should stay at 2. How-
ever, the raw expression ratio drops dramatically, whereas
the corrected expression ratio using the method outlined
in this paper performs much better.

4.3 Independence and distribution
In Table 2 the chi-square test shows that the hypotheses
that the pixels are independent draws can be rejected. It
suggests however, that the lognormal and Gamma model
with one pixel separation is consistent with the data.
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Table 2. Chi-squared statistic for three parametric models and three different
independence scenarios

Pixel Chi-squared
D(α, β) separation Mean p-value

Gamma 0 1856 0.000
1 866 0.993
2 881 0.978

Lognormal 0 1772 0.000
1 875 0.985
2 875 0.985

Weibull 0 3403 0.000
1 1562 0.000
2 1434 0.000

5 DISCUSSION
The maximum likelihood methodology described in this
paper gives a quick way to adjust actual mean or median
spot values for artificial pixel value censoring observed in
microarray gene expression studies with spotted arrays.
This method only uses the observed mean, median and
standard deviation which are typically provided by the
scanner output and to which the biologist has access.
On top of that the paper provides a method to compare
different two-parameter models for the pixel intensities.

However, three objections may be raised against this
method. First of all, if the bioinformatician has access to

the raw pixel values, much more accurate and analytically
simple adjustments to the observed mean or median spot
intensity can be proposed. Secondly, a much wider class of
two-parameter distributions could have been considered.
Finally, the estimate of the two parameters is based on only
three observations per spot, i.e. the mean, the median and
the variance. This may lead to unstable estimates.

Wewould like to counter each of these three arguments.
Although better adjustments based on all the pixel values
are possible, these data are generally unavailable to
the general scientific community—typically because it
challenges the scientist’s disk space. Nevertheless, we do
urge developers of scanner software to build-in options
that perform adjustments based on all pixel values,
analogous to the way we described, but possibly with more
complicated pixel distributions. Secondly, although more
complicated modelsare possible, it is encouraging that
some of the two-parameter models that we considered,
namely the Gamma and the Lognormal, are consistent
with the data. Finally, although the two parameters of each
spot pixel distribution were estimated based only on three
observations, i.e. the mean, median and variance, these
observations are highly reliable, because they themselves
were calculated on the basis of hundreds of pixel values.
Moreover, bioinformaticians normally use only one of the
values (mean, median), which is subject to more variation
than an estimate based on all three, as we propose.
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