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Interpolation-based H2 Model Reduction for port-Hamiltonian Systems

Serkan Gugercin, Rostyslav V. Polyuga, Christopher A. Beattie, and Arjan J. van der Schaft

Abstract— Port network modeling of physical systems leads
directly to an important class of passive state space systems:
port-Hamiltonian systems. We consider here methods for model
reduction of large scale port-Hamiltonian systems that preserve
port-Hamiltonian structure and are capable of yielding reduced
order models that satisfy first-order optimality conditions with
respect to an H2 system error metric. The methods we consider
are closely related to rational Krylov methods and variants are
described using both energy and co-energy system coordinates.
The resulting reduced models have port-Hamiltonian structure
and therefore are guaranteed passive, while still retaining the
flexibility to interpolate the true system transfer function at
any (complex) frequency points that are desired.

I. INTRODUCTION

Port network modeling of physical systems leads directly
to their representation as port-Hamiltonian systems which
are, if the Hamiltonian is non-negative, an important class
of passive state space systems. At the same time mod-
eling of physical systems often leads to high-dimensional
dynamical models. State space dimensions tend to become
large as well if distributed-parameter (PDE) models are
spatially discretized, and so model reduction for such high-
dimensional systems becomes an important concern. The
goal of this work is to demonstrate that specific model
reduction techniques for linear states-space systems can be
also applied to port-Hamiltonian systems in such a way as to
preserve the port-Hamiltonian structure in the reduced order
models, which preserves, as a consequence, passivity as well.

There are a variety of methods for model reduction
of large-scale linear dynamical systems. Moment matching
methods are an important class and are based on matching
a specific number of the coefficients of the Laurent series
expansion of the transfer function of the full order model
with that of the reduced order model at certain points in
the complex plane, i.e. the reduced order transfer function
interpolates the original and possibly its derivatives, at se-
lected interpolation points (“shifts”). Since the moments are
numerically ill-conditioned, the goal is to match moments
without explicitly computing them. This is achieved in
practice by utilizing numerically efficient rational Krylov
methods; model reduction by moment matching is also called
model reduction by rational Krylov methods. In the last
decade, rational Krylov model reduction has become the

Christopher A. Beattie and Serkan Gugercin are with the Depart-
ment of Mathematics, Virginia Tech., Blacksburg, VA, 24061-0123, USA.
beattie@vt.edu, gugercin@math.vt.edu

R.V. Polyuga and A.J. van der Schaft are with Institute for Math-
ematics and Computing Science, University of Groningen, P.O.Box
407, 9700 AK Groningen, The Netherlands. R.Polyuga@rug.nl,
A.J.van.der.Schaft@rug.nl

method of choice in large-scale settings where the number
of state-variables extend to the hundreds of thousands.

The main drawback of moment matching for model re-
duction has been, until recently, the largely ad hoc choice
of interpolation points. This problem has been recently
resolved by Gugercin et al. [8], [9], [10] who inroduced a
shift selection strategy leading to H2-optimal reduced order
models. See also [24], [4], [15] for related work.

In this paper we concentrate on model reduction of port-
Hamiltonian systems using rational Krylov methods. We
show that rational Krylov methods may be applied to port-
Hamiltonian systems in such a way as to not only match
moments of the transfer functions at specific points in
the complex plane but also preserve the port-Hamiltonian
structure and passivity. We introduce a related algorithm
for H2-optimal structure-preserving model reduction of port-
Hamiltonian systems.

II. INTERPOLATORY MODEL REDUCTION

Consider a linear, time invariant (LTI) single-input/single-
output (SISO) continuous-time system G(s) described via

G(s) :
{

Eẋ = Ax + bu,
y = cx, (1)

where A,E ∈ Rn×n and b, cT ∈ Rn. x(t) ∈ Rn is the state,
u(t) ∈ R is the input, and y(t) ∈ R is the output of G(s).
The transfer function is given by G(s) = c(sE − A)−1b.
With usual abuse of notation, both the underlying dynamical
system and its transfer function will be denoted by G(s).

In many applications; see, for example, [1], [14], the
system dimension n is quite large, making computation
infeasible due to memory, time limitations, and numerical
ill-conditioning. The goal of model reduction is to produce
a much smaller order system Gr(s) with state space form

Gr(s) :
{

Erẋr(t) = Arxr(t) + bru(t)
yr(t) = crxr(t), (2)

where Ar,Er ∈ Rr×r, br, cT
r ∈ Rr with r � n such that

yr(t) approximates y(t) well in some norm. Here we use an
H2 performance measure, which is introduced in Section V.

We will construct reduced order models Gr(s) via projec-
tion. That is, we construct matrices Vr,Wr ∈ Rn×r such
that the reduced order Gr(s) in (2) is then obtained using

Ar = WT
r AVr, Er = WT

r EVr, br = WT
r b, cr = cVr. (3)
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A. Moment matching and Krylov-based model reduction

Given the full order model as in (1), the moment matching
problem is to find a reduced system as in (2) so that Gr(s)
interpolates G(s) (and perhaps some of its derivatives as
well) at selected interpolation points in the complex plane
— the shifts, sk. Simple interpolation will suffice (see the
discussion of Section V); hence we seek Ar, Er br, and cr

so that for k = 1, . . . , r: Gr(sk) = G(sk), or equivalently,
c(skE−A)−1b = cr(skEr −Ar)−1br.

The quantity c(skE−A)−(j+1)b is called the jth moment
of G(s) at sk. Moment matching for finite sk ∈ C, becomes
rational interpolation, see for example [2]. Solution of the
rational interpolation problem via projection was introduced
by Skelton et. al. in [5], [28], [29]. Grimme [7] showed how
to construct the required projection using the numerically
efficient rational Krylov methods of Ruhe [20]. Gugercin et
al. [10] presented a concise proof of rational interpolation via
Krylov projection. Theorem 1 below shows how to solve by
projection the rational interpolation problem stated above:
find Ar, Er br, and cr so that Gr(sk) = G(sk). More
general cases are discussed in [7], [5], [28], [29].

Theorem 1: Given G(s) = c(sE − A)−1b and a set of
distinct shifts {sk}rk=1, construct Vr such that

Vr =
[
(s1E−A)−1b, · · · , (srE−A)−1b

]
(4)

Then for any Wr ∈ Cn×r, the reduced order system
Gr(s) = cr(sEr − Ar)−1br defined by Ar = WT

r AVr,
Er = WT

r EVr, br = WT
r b, cr = cVr satisfies G(sk) =

Gr(sk) for k = 1, · · · , r, provided that siE − A and
siEr −Ar are invertible for i = 1, . . . , r.

Remark 1: The interpolation property still holds if Vr

above is replaced with any matrix V̂r having the same
range as Vr: V̂r = VrL for invertible L ∈ Rr×r. This
is because the basis change L taking Vr to V̂r is simply
a state space transformation for the reduced model. This
property guarantees that so long as the shift set is closed
under conjugation (as always done in practice), V̂r can
always be chosen to be real and hence the reduced order
quantities are guaranteed to be real as well.

III. LINEAR PORT-HAMILTONIAN SYSTEMS

In the absence of algebraic constraints, linear port-
Hamiltonian systems take the form ([23], [18], [19]):{

ẋ = (J−R)Qx + bu
y = bT Qx (5)

where Q = QT is the energy matrix associated with the
total energy (Hamiltonian), H(x) = 1

2x
T Qx. R = RT > 0

is the dissipation matrix and both J = −JT and b specify
the interconnection structure. Note that the system (5) has
the form (1) with E = I, A = (J−R)Q, and c = bT Q.

Theorem 2: A port-Hamiltonian system (5) is passive if
the energy matrix Q is positive semidefinite.

Proof: Follows from passivity theory, see [25], [23].
The state variables x ∈ Rn are called energy variables,

since the total energy H(x) is expressed with respect to x.

1L1, ! 2! L2,I

C1,q1 C2, q2 R2

R1

Fig. 1. Ladder Network

The variables u, y ∈ R are called power variables, since their
product u · y is the power supplied to the system.

Example 1: Consider the Ladder Network in Fig. 1, with
C1, C2, L1, L2, R1, R2 representing (linear) capacitances, in-
ductances and resistances as shown. The port-Hamiltonian
representation of this physical system will be of the form
(5) with the corresponding matrices

J =


0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0

 ,
R = diag{0, 0, 0, R2},

Q = diag{C−1
1 , L−1

1 , C−1
2 , L−1

2 },

b =
[

1 0 0 0
]T
.

(6)

The A matrix is

A =


0 −L−1

1 0 0
C−1

1 0 −C−1
2 0

0 L−1
1 0 −L−1

2

0 0 C−1
2 −R2L

−1
2


and the state space vector x is given as

xT =
[
q1 φ1 q2 φ2

]
with q1, q2 the charges on the capacitors C1, C2 and φ1, φ2

the fluxes through the inductors L1, L2 respectively. The
input of the system u is given by the current I from the
external current source; the output y is the voltage over the
first capacitor.

The system matrices A and b follow directly from writing
the linear input-state differential equation for this system. Q
comes from the Hamiltonian H(x) = xT Qx (known from
physics). With A and Q it is easy to derive a dissipation
matrix R and a structure matrix J so that A = (J−R)Q.
The port-Hamiltonian output matrix c is given as bT Q .

In order to proceed we recall from [18], [19] that a port-
Hamiltonian system (5) in co-energy coordinates takes the
following form{

ė = Q(J−R)e + Qbu,
y = bT e, (7)

The coordinate transformation [18] between energy x and
co-energy e coordinates is given by the energy matrix Q

e = Qx. (8)
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Example 2: (continued). The state space vector e for the
Ladder Network of Example 1 in co-energy coordinates is

eT =
[
V1 I1 V2 I2

]
with V1, V2 the voltages on the capacitors C1, C2 and I1, I2
the currents through the inductors L1, L2 respectively.

IV. REDUCTION OF PORT-HAMILTONIAN SYSTEMS BY
RATIONAL KRYLOV METHODS

In this section we show how to use rational Krylov meth-
ods in order to construct reduced order models which would
not only interpolate the original system but also preserve the
original port-Hamiltonian structure of the full order systems.
The key observation is that even though simple application
of Theorem 1 to the original port-Hamiltonian state space
structure in (5) would satisfy interpolation conditions, the
reduced-model would no longer be in the port-Hamiltonian
form; i.e. the structure and properties such as passivity will
be lost. The loss of structure follows from the fact that when
Theorem 1 is directly applied to (5), the reduced system
matrix will have the form WT

r (J − R)QVr. Since this
reduced form can be no longer represented as (Jr −Rr)Qr

where Jr is skew-symmetric, and Rr and Qr are symmetric
positive semi-definite. Therefore, in order to preserve the
structure as well as to guarantee interpolation, one would
need to perform Krylov-based model reduction in such as
a way that the reduced order quantities will satisfy Jr =
V̂T

r JV̂r, Rr = V̂T
r RV̂r, and Qr = V̂T

r QV̂r. Clearly,
these reduced order matrices preserve original structure. In
what follows we show how to achieve this goal; i.e. forcing
interpolation and preserving structure simultaneously.

A. Model reduction in original energy coordinates

The key component for obtaining a structure-preserving
Krylov-based model reduction is the freedom in choosing the
matrix Wr once Vr is chosen appropriately as discussed in
Theorem 1. We present our first main results that exploits
this property:

Theorem 3: Consider the full order port-Hamiltonian sys-
tem (5). Let s1, . . . , sr be r distinct interpolation points.
Construct Vr as in (4) using A = (J − R)Q and E = I,
i.e.

Vr = [(s1I− (J−R)Q)−1b, . . . , (srI− (J−R)Q)−1b].
(9)

Let V̂r = VrL−1 where L is the Cholesky factor of
VT

r QVr, i.e. VT
r QVr = LT L. Choose Ŵr = QV̂r.

Define

Jr = ŴT
r JQV̂r = V̂T

r QJQV̂r,

Rr = ŴT
r RQV̂r = V̂T

r QJQV̂r,

Qr = ŴT
r V̂r = Ir

br = ŴT
r b = V̂T

r Qb.

(10)

Then, the reduced order model{
ẋr = (Jr −Rr)Qrxr + br u
yr = bT

r x (11)

is port-Hamiltonian and passive. Furthermore the reduced
order port-Hamiltonian system (11) interpolates the original
system (5) at s1, . . . , sr.

Proof: Note that by construction Er = ŴT
r EV̂r = Ir.

Also,

Ar = ŴT
r AV̂r = V̂T

r Q(J−R)QV̂r

= (Jr −Rr)Qr

where Jr, Rr and Qr are as defined in (10). Similarly,
br = ŴT

r b = V̂T
r Qb and cr = bT QV̂r = bT

r . Hence,
the reduced order model has the state space form (11).
Moreover, by construction Jr is skew-symmetric, Rr is
symmetric and positive semidefinte and Qr is symmetric
positive definite. Therefore, the reduced-model (11) is in
the form of (5), and hence is a reduced port-Hamiltonian
system. The interpolation property is a direct consequence
of Theorem 1 .

B. Model reduction in scaled energy coordinates

In this section, we will introduce Krylov-based model
reduction of port-Hamiltonian system in the scaled energy
coordinates. Unlike the model reduction in the original co-
ordinates (5), the new coordinate system will allow choosing
Wr = Vr in the reduction step while preserving port-
Hamiltionian structure and guaranteeing interpolation.

Consider a full order port-Hamiltonian system (5) with
Q > 0. Then there exists a coordinate transformation S such
that in the new coordinates x̃ = S−1x, we obtain

Q̃ = ST QS = I. (12)

By defining the system matrices

J̃ = S−1JS−T , R̃ = S−1RS−T , b̃ = S−1b, (13)

we obtain the port-Hamiltonian system (5) in the new coor-
dinate system:{

˙̃x = (J̃− R̃)x̃ + b̃u,
y = b̃T x̃.

(14)

Note that there are many ways to compute the coordinate
transformation S in (12), among them being the computa-
tionally efficient Cholesky factorisation of the matrix Q.

Theorem 4: Consider the full order port-Hamiltonian sys-
tem (5). Let s1, . . . , sr be r distinct interpolation points.
Transform (5) into energy coordinates (14) using (13) and
construct Ur as in Theorem 1 using A = J̃− R̃, E = I and
b = b̃, i.e.

Ur = [(s1I− (J̃− R̃))−1b̃, . . . , (srI− (J̃− R̃))−1b̃] (15)

Let Ûr be an orthogonal basis for the columns of Ur. Define

J̃r = ÛT
r J̃Ûr, R̃r = ÛT

r R̃Ûr, b̃r = ÛT
r b̃. (16)

Then, the reduced order model{
˙̃xr = (J̃r − R̃r)x̃r + b̃r u

yr = b̃T
r x̃r

(17)
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is port-Hamiltonian and passive. Furthermore the reduced
order port-Hamiltonian system (17) interpolates the original
system (5) at s1, . . . , sr.

Proof: Note that by construction Er = ÛT
r EÛr =

Ir. Moreover, Ar = ÛT
r AÛr = ÛT

r (J̃ − R̃)Ûr = J̃r −
R̃r. Clearly J̃r is skew-symmetric and R̃r is symmetric and
positive semidefinite. Hence, the reduced order model (17)
is of the same form as (14); and hence is port-Hamiltonian
and passive. Interpolation property is direct consequence of
Theorem 1.
We have thus introduced two ways of Krylov-based
structure-preserving model reduction of port-Hamiltonian
systems; one in the original energy coordinates, one in the
scaled energy coordinates. The next result connects these two
frameworks.

Theorem 5: Consider the full order port-Hamiltonian sys-
tem (5). Let s1, . . . , sr be r distinct interpolation points.
Then, the reduced order model of Theorem 3 and Theorem
4 are equivalent.

Proof: As noted before, model reduction using Vr
and Wr is equivalent to model reduction using VrT and
WrZ where T and Z are invertible matrices. Therefore, it is
enough to show the equivalence of the reduced order models
of Theorems 3 and 4 without the orthogonalization of the
reducing matrices in each case. For Theorem 3, we will have
Er = VT

r QVr, Ar = VT
r Q(J − R)QVr, br = VT

r Qb
and cr = bT QVr; leading to the transfer function

Gr(s) = bT QVr

“
sVT

r QVr −VT
r Q(J−R)QVr

”−1

VT
r Qb

In the case of Theorem 4, we obtain Er = UT
r Ur, Ar =

UT
r (J̃− R̃)Ur, br = UT

r b̃ and cr = b̃T Ur; leading to the
reduced order transfer functioneGr(s) = ebT Ur

“
sUT

r Ur −UT
r (eJ− eR)Ur

”−1

UT
r
eb (18)

We use the definitions of J̃, R̃ and b̃ in (13) with the
definition of Ur in (15) and obtain Ur = S−1Vr where Vr

is as defined in (9). Then, plugging Ur = S−1Vr together
with the definitions of J̃, R̃ and b̃ from (13) into G̃r(s) in
(18), one obtains the desired result that G̃r(s) = Gr(s).

Remark 2: Theorem 5 proves the equivalence of two
model reduction approaches in original energy coordinates
and in scaled energy coordinates. Model reduction in original
coordinates is usually numerically more efficient since there
is then no need for a full order state space transformation.
Moreover, such transformations are usually ill-conditioned.
In all our examples, we employ the method of Section IV-A.

C. Scaled co-energy coordinates

Given the full order port-Hamiltonian system (7) in the co-
energy coordinates, construct a state transformation T such
that in the new coordinates ê = T−1e, the energy matrix
Q̂ is an identity matrix, i.e. Q̂ = T−1QT−T = I, and
consequently the state-dynamics have the form{

˙̂e = (Ĵ− R̂)ê + b̂u,
y = b̂T ê,

(19)

where Ĵ = TT JT, R̂ = TT RT, and b̂ = TT b. (20)

These are called scaled co-energy coordinates.
Theorem 6: Consider the full order port-Hamiltonian sys-

tem (19). Let s1, . . . , sr be r distinct interpolation points.
Construct an orthogonal matrix Vr as as in Theorem 1 and
Remark 1 using A = Ĵ− R̂, b = b̂ where Ĵ, R̂ and b̂ are
as defined in (20). Then the reduced order system{ ˙̂er = (Ĵr − R̂r)êr + b̂ru,

yr = ĉrêr
(21)

with Ĵr = VT
r ĴVr, R̂r = VT

r R̂Vr,

Q̂ = VT
r Q̂Vr = Ir, b̂r = VT

r b̂, ĉr = b̂T
r ,

is a port-Hamiltonian system; hence is also passive. The
reduced order port-Hamiltonian system (21) interpolates the
original system (19) at s1, . . . , sr.

Proof: Similar to that of Theorem 4; hence omitted.
Remark 3: Structure-preserving interpolatory model re-

duction for port-Hamiltonian system in co-energy coordi-
nates can also be performed without the scaling of the co-
energy coordinates by representing (7) equivalently in the
descriptor form as{

Q−1ė = (J−R)e + bu,
y = bT e, (22)

Then the reduced order system takes the form{
VT

r Q−1Vrėr = VT
r (J−R)Vrer + VT

r bu,
yr = bT Vrer

(23)

has the same properties as the one in Theorem 6. Moreover,
one can construct the projection map Vr in (23) such that
VT

r Q−1Vr = Ir. We omit details here for conciseness but
will include in them in the full paper.

Theorem 7: Consider the port-Hamiltonian system (5).
Let s1, . . . , sr be r distinct interpolation points. Then, the
reduced models of Theorem 3 and Theorem 6 are equivalent.

Proof: Similar to that of Theorem 5; hence omitted.

V. INTERPOLATION-BASED OPTIMAL H2

APPROXIMATION OF PORT-HAMILTONIAN SYSTEMS

The main prior disadvantages of interpolatory model re-
duction have been the ad hoc selection of interpolation points
and the lack of a guarantee on global H2 and H∞ perfor-
mance of the resulting reduced model. Recently, Gugercin
et al. [10] have shown that an optimal shift selection strat-
egy exists for the optimal H2 approximation problem, and
introduced an Iterative Rational Krylov Algorithm (IRKA)
for model reduction that exploits it. Besides providing high
quality reduced models, IRKA have also proved to be
numerically effective and have been successfully applied to
tackle the H2-optimal approximation problem for systems of
order n > 160, 000, see [13], [21].

A. Optimal H2 Approximation
Given an nth order SISO dynamical system G(s), the

goal of optimal H2 approximation is to find a stable rth

order reduced system Gr(s) with r < n, such that Gr(s)
minimizes the H2 error, i.e.

Gr(s) = arg min
deg( bG)=r

∥∥∥ G(s)− Ĝ(s)
∥∥∥
H2

. (24)
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where

‖G‖H2
:=
(

1
2π

∫ +∞

−∞
| G(w) |2 dw

)1/2

.

Many researchers have worked on this problem; see [27],
[22], [3], [11], [17], [12], [26], [16], [30]. The main drawback
of most methods is that they require solution of large-scale
Lyapunov equations (possibly many of them) and dense
matrix operations such as inversion. Such approaches rapidly
become intractable in large-scale settings as the dimension
increases . Obtaining the global minimum is a hard task, so
the usual approach is to find a reduced order model satisfying
(local) first-order conditions for (24):

Theorem 8: [17] Let Gr(s) solve the optimal H2 problem
and let λ̂k denote the poles of Gr(s). Assume (for simplicity)
that the poles λ̂k are simple. Then, the first-order necessary
conditions for H2 optimality are

Gr(−λ̂k) = G(−λ̂k) and (25)

G′r(−λ̂k) = G′(−λ̂k), for k = 1, . . . , r. (26)
The work by Gugercin et al. [10] provides a new and simple
proof of these necessary conditions for H2-optimality, and
also shows equivalence with a variety of other (apparently
distinct) necessary conditions for H2-optimality.

Theorem 8 states that Gr(s) has to interpolate G(s)
and its first derivative at the mirror images of the reduced
order poles. Thus, first-order conditions are given in the
framework of interpolation. The method of Gugercin et al.
[10] produces a reduced order model Gr(s) satisfying the
interpolation-based first-order necessary conditions of (25)-
(26) exploiting the connection between the Krylov-based
reduction and interpolation. However note that the optimal
interpolation points depend on the final reduced model and
are not known a priori. Therefore, [10] uses rational Krylov
steps to iteratively correct the reduced order model Gr(s) so
that the next (corrected) reduced order model interpolates the
full order model at mirror images of λ̂i from the previous
reduced order model. This continues until the poles from
consecutive reduced order models stagnate. For details of
IRKA, see the original source [10].

B. H2 model reduction for port-Hamiltonian Systems

Direct application of IRKA in port-Hamiltonian settings
will destroy the port-Hamiltonian structure. Therefore, in the
port-Hamiltonian setting, we offer below a modified version
of IRKA which enforces only (25) yet preserves the port-
Hamiltonian structure.

Algorithm 1: An H2-based Iterative Rational Krylov
Algorithm for port-Hamiltonian systems G(s) as in (5):

1) Make an initial shift selection si for i = 1, . . . , r
2) Vr = [(s1I− (J−R)Q)−1b, . . . , (srI− (J−R)Q)−1b].
3) Let bVr = VrL

−1 with VT
r QVr = LT L.

4) Define cWr = QbVr .
5) while (not converged)

a) Jr = cWT
r JQbVr , Rr = cWT

r RQbVr , and Qr = Ir

b) Ar = (Jr −Rr)Qr

c) si ←− −λi(Ar) for i = 1, . . . , r
d) Vr = [(s1I− (J−R)Q)−1b, . . . ,

(srI−(J−R)Q)−1b].

q1

u m1

k1
m

k
2

2

c c1 2

Fig. 2. Mass-Spring-Damper system

e) Let bVr = VrL
−1 with VT

r QVr = LT L.
f) Define cWr = QbVr .

6) Jr = cWT
r JQbVr , Rr = cWT

r RQbVr ,
br = cWT

r b, cr = bT
r , Qr = Ir .

Step 5-c) in Algorithm 1 corresponds to reflecting the re-
duced order system poles as the next interpolation points.
Hence, upon convergence, the desired interpolation condi-
tions are satisfied due to the way Vr is constructed. i.e.
Gr(s) interpolates G(s) at the mirror images of the poles
of Gr(s) but interpolation of first-derivatives does not hold.
This is the price one may pay to preserve the structure. It
is not possible to force (25) and (26) while preserving port-
Hamiltonian structure in general. This will only be possible
if the skew-symmetric matrix J were the zero matrix, since
in that case the problem becomes symmetric. Even so, the
outcome of Algorithm 1 is optimal in a restricted sense.

Theorem 9: Given a port-Hamiltonian system G(s), let
the reduced model Gr(s) be obtained by Algorithm 1.
Then, Gr(s) is also port-Hamiltonian, and passive. Also,
let λ̂1, . . . , λ̂r denote the poles of Gr(s). Gr(s) interpolates
G(s) at −λ̂k, for k = 1, . . . , r, and minimizes the H2

error
∥∥∥G− G̃∥∥∥

H2

among all rth order reduced models G̃(s)

having the same poles λ̂k.
Proof: The interpolation property, preservation of port-

Hamiltonian structure and passivity are all a direct conse-
quence of Theorem 3. Optimality in the H2 sense is an
extension of Gaier’s result [6] to continuous time.

Remark 4: Theorem 9 states that among all rth order
reduced models having the same poles, Algorithm 1 yields
the best optimal reduced order model in the H2 norm.

Remark 5: Convergence of the original IRKA method
and effective initialization strategies have been investigated
in [10]. IRKA exhibits fast convergence in most cases re-
gardless of initialization. This seems to be true for Algorithm
1 as well. Details of convergence behavior and different
initialization strategies will be discussed in a later paper.

VI. NUMERICAL EXAMPLES

A. Mass-Spring-Damper system

Consider a Mass-Spring-Damper system as shown in Fig.
2 with masses mi, spring constants ki and damping constants
ci ≥ 0, for i = 1, . . . , n/2. pi and qi is the momentum and
displacement of the mass mi, respectively. The external force
acting on the first mass, m1, is the input u, while its velocity
is the output, y. State variables are defined in the following
way: for i = 1, . . . , n/2, x2i−1 = qi and x2i = pi.
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A minimal realization of this system for order n = 6
(corresponding to three masses, springs, and dampers) is

b = [ 0 1 0 0 0 0 ]T , c =
[

0
1
m1

0 0 0 0
]
,

J =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

R =


0 0 0 0 0 0
0 c1 0 0 0 0
0 0 0 0 0 0
0 0 0 c2 0 0
0 0 0 0 0 0
0 0 0 0 0 c3

 , and

Q =



k1 0 −k1 0 0 0
0 1

m1
0 0 0 0

−k1 0 k1 + k2 0 −k2 0
0 0 0 1

m2
0 0

0 0 −k2 0 k2 + k3 0
0 0 0 0 0 1

m3

 .

Then the A matrix of this model is given as

A = (J−R)Q =

0 1
m1

0 0 0 0
−k1 − c1

m1
k1 0 0 0

0 0 0 1
m2

0 0
k1 0 −k1 − k2 − c2

m2
k2 0

0 0 0 0 0 1
m3

0 0 k2 0 −k2 − k3 − c3
m3


.

The system matrices are obtained in the same way as
explained in Example 1. Adding another mass with a spring
and a damper would increase the dimension of the system
by two. In that case the main diagonal of the matrix A will
obtain 0 in the (n − 1, n − 1) position and −cn/2/mn/2

in the (n, n) position. The super diagonal of A will have
kn/2−1 in the (n − 2, n − 1) position and 1/mn/2 in the
(n − 1, n) position. The sub-diagonal of A will obtain 0
in the (n − 1, n − 2) position and −kn/2−1 − kn/2 in the
(n, n− 1) position. Additionally A will have kn/2−1 in the
(n, n− 3) position.

We considered a 100-dimensional Mass-Spring-Damper
system with mi = 2, ki = 1, and ci = 1. We reduce the
order using two approaches: the effort-constraint method in
balanced coordinates of [18], [19] with the reduced order
port-Hamiltonian model{

ẋb
1 = (Jb

11 −Rb
11)Q̄bxb

1 + bb
1u,

yr = (bb
1)T Q̄bxb

1,
(27)

where Q̄b = Qb
11 −Qb

12(Qb
22)−1Qb

21 is the Schur comple-
ment of the energy matrix Qb in the balanced coordinates
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Fig. 3. Evolution of the relative H2 and H∞ norms

(denoted by the superscript b), and the H2-based interpola-
tion method described in Algorithm 1. Using each method,
we produce reduced models of order r = 1, 2, . . . , 20.
For our proposed interpolation algorithm, initial shifts were
simply chosen as logarithmically spaced points between
10−4 and 10−1. The resulting relative H2 and H∞ error
norms for each order r is illustrated in Figure 3. With respect
to the H2 norm, our proposed interpolation method performs
better for each reduction order except for r = 1. A similar
observation can be made for the reduction errors relative to
the H∞ norm as well with the exception of r = 2, 7, and
8. We note that our proposed method achieves this superior
performance with less computational effort as well, since
no dense matrix operations are needed, in contrast to what
is required for system balancing within the effort-constraint
approach — typically Schur decompositions are involved in
solving the associated Lyapunov equations. We also note
that the performance of our proposed interpolation approach
may be further improved with better initialization choices
as proposed in [10]. This will be the focus of future work.
Finally, recall that the effort-constraint method used here is
applied in the regular balanced basis. For this example, it
appears that the usual balanced coordinates may not be the
best coordinates to perform the effort-constraint method.

For the special case of r = 10, the Amplitude Bode plots
of the full and reduced models, and that of the error models
are given in Figure 4. As the top plot illustrates, both reduced
models perform well. And it is clear from the bottom error
plot that the H∞ error norm is slightly larger for the effort-
constraint method in balanced coordinates.

B. Ladder Network

We consider a 100-dimensional Ladder Network with a
similar structure as in Example 1. The J,R,Q,b matrices
will be of the same structure as those of 4-dimensional
system as given in (6).

For this example, we compare the proposed approach
of Algorithm 1 with regular balanced truncation. Balanced
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Fig. 5. Evolution of the relative H2 and H∞ norms

truncation is well known to yield small H∞ and H2 error
norms. We note that balanced truncation does not preserve
the port-Hamiltonian structure. However, to illustrate the
effectiveness of our proposed method, we present the com-
parison with balanced truncation and show that our approach
performs as well as even regular balanced truncation which
is not constrained to preserve the structure.

We reduce order ranging from r = 2 to r = 30 in
increments of 2. Figure 5 shows the resulting relative H2

and H∞ errors for each r. Our H2-based interpolation
method outperforms balanced truncation by a large margin
with respect to H2 error for all observed values of r.
Similar behavior is observed for the H∞ error – although
for r = 30, balanced truncation performs as well as our
proposed interpolation method. Note that balanced trunca-
tion does not preserve structure, and also requires solving
two large-scale Lyapunov equations. For this example, our
structure-preserving numerically effective H2-based interpo-
lation method clearly outperforms balanced truncation.

One might expect this result based on the decay of the
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Fig. 6. Normalized Hankel singular values of the Ladder Network
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Fig. 7. Amplitude Bode plots for r = 30

(normalized) Hankel singular values of the full order model
depicted in Figure 6. The Hankel singular values show a
very slow decay, a situation in which balanced truncation
is known to show poor performance. We anticipate that our
proposed H2-based method will prove even more effective
in cases of slowly decaying Hankel singular values.

Figure 7 displays Amplitude Bode plots of the full and
reduced models for r = 30. As the figure clearly illustrates,
the reduced order model from balanced truncation does a
very poor job of matching the Bode plot.

VII. CONCLUSIONS AND FUTURE WORK

We have shown how to employ interpolatory model reduc-
tion for port-Hamiltonian systems so that the reduced system
both interpolates the original model and also preserves port-
Hamiltonian structure; the reduced order model is guaranteed
to be passive as well. We proposed an algorithm which
chooses interpolation points that satisfy a subset of the (un-
structured) H2 optimal necessary conditions. Two numerical
examples illustrate the effectiveness of the new method.

The reduced model produced by Algorithm 1 satisfies
r of the 2r necessary conditions for (unstructured) H2

optimality. We will investigate analogous first-order optimal-
ity conditions for a constrained optimal-H2 problem where
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the port-Hamiltonian structure appears as the constraint.
Developments for multi-input/multi-output port-Hamiltonian
systems will appear in a separate work.
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