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A state transfer principle for switching port-Hamiltonian systems

A.J. van der Schaft, M.K. Camlibel

Abstract— Instantaneous charge/flux transfers may occur
in switched electrical circuits when the switch configuration
changes. Characterization of such state discontinuities is a
classical issue in circuit theory which, typically, is based on
the so-called charge and flux conservation principle. This paper
proposes a general state transfer principle for arbitrary switch-
ing port-Hamiltonian systems. This new principle coincides with
the charge and flux conservation principle in the special case
of linear RLC circuits, but also covers circuits with nonlinear
capacitors and inductors, and of arbitrary topology. Moreover,
the new principle is applied to switching mechanical systems.

I. INTRODUCTION

A classical notion in electrical circuit theory concerns the

characterization of the discontinuous change in the charges

of the capacitors and/or in the magnetic fluxes of the

inductors whenever switches are instantaneously closed or

opened. This is sometimes referred to as the charge and flux

conservation principle, and is usually discussed on the basis

of examples [14]. Recently, this notion has been articulated

in [7], and formulated (for RLC circuits with independent

elements) in the following general sense. The discontinuous

change in the charges whenever switches are closed corre-

sponds to an impulsive current satisfying Kirchhoff’s current

laws for the circuit (under the new switch configuration)

where the inductors, resistors and external ports have been

open-circuited. Dually, the discontinuous change in the fluxes

resulting from opening switches corresponds to an instanta-

neous voltage drop satisfying Kirchhoff’s voltage laws for

the circuit where the capacitors, resistors and external ports

have been short-circuited. In the present paper, we extend

this result to arbitrary port-Hamiltonian systems by stating a

general state transfer principle whenever switches are being

opened or closed. The discontinuous change of the state

involved in the transfer principle amounts to an impulsive

motion satisfying a set of conservation laws derived from the

general conservation laws of the port-Hamiltonian system.

We show how in the case of RLC circuits with independent

elements one recovers from this state transfer principle the

charge and flux conservation principles as formulated in

[7], and how it extends this formulation to RLC-circuits of

arbitrary topology and arbitrary constitutive relations for the

capacitors and inductors. If the energy function is convex

and bounded from below we prove that the switching port-

Hamiltonian system satisfying the state transfer principle is

passive. As a second class of systems we apply the state

transfer principle to switching mechanical systems.

Institute of Mathematics and Computing Science University of Gronin-
gen, PO Box 407, 9700 AK Groningen, The Netherlands.

II. SWITCHING PORT-HAMILTONIAN SYSTEMS

Underlying the definition of a port-Hamiltonian system is

the notion of a Dirac structure, which relates the power vari-

ables of the composing elements of the system in a power-

conserving manner. The power variables always appear in

conjugated pairs (such as voltages and currents, or gener-

alized forces and velocities), and therefore mathematically

they are modelled to take their values in dual linear spaces.

Definition 2.1: Let F be a linear space with dual space

E := F∗, and duality product denoted as < e | f >=
eT f ∈ R for f ∈ F and e ∈ E . We call F the space of

flow variables, and E = F∗ the space of effort variables.

Define on F × E the following indefinite bilinear form

≪ (f1, e1), (f2, e2) ≫= < e1 | f2 > + < e2 | f1 >.

A subspace D ⊂ F × E is a (constant1) Dirac structure if

D = Dorth, where Dorth is the orthogonal complement of

D with respect to this indefinite bilinear form ≪ ·, · ≫.

Remark 2.2: For the case of a finite-dimensional linear

space F (as will be the case throughout this paper) a

Dirac structure is equivalently characterized [3], [8], [5] as a

subspace such that < e | f >= 0 for all (f, e) ∈ D together

with dimD = dimF . The property < e | f >= 0 for all

(f, e) ∈ D corresponds to power conservation.

For the definition of a switching port-Hamiltonian system

we need the following ingredients (see [6], [9] for more

restricted versions). We start with an overall Dirac structure

D on the space of all flow and effort variables involved:

D ⊂ Fx × Ex ×FR × ER ×FP × EP ×FS × ES (1)

The space Fx × Ex is the space of flow and effort variables

corresponding to the energy-storing elements (to be defined

later on), the space FR × ER denotes the space of flow and

effort variables of the resistive elements, while FP × EP

is the space of flow and effort variables corresponding to

the external ports (or sources). Finally, the linear spaces FS ,

respectively ES , denote the flow and effort spaces of the ideal

switches. Let s be the number of switches, then every subset

π ⊂ {1, 2, . . . , s} defines a switch configuration, according

to

ei
S = 0, i ∈ π, f j

S = 0, j 6∈ π (2)

We will say that in switch configuration π, for all i ∈ π the

i-th switch is closed, while for j /∈ π the j-th switch is open.

For each fixed switch configuration π this leads to the

following subspace Dπ of the restricted space of flows and

1For the definition of Dirac structures on manifolds we refer to [3], [5].
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efforts Fx × Ex ×FR × ER ×FP × EP :

Dπ = {(fx, ex, fR, eR, fP , eP ) | ∃fS ∈ FS , eS ∈ ES

such that ei
S = 0, i ∈ π, f j

S = 0, j 6∈ π, and

((fx, ex, fR, eR, fP , eP , fS , eS) ∈ D}
(3)

For every π the subspace Dπ defines a Dirac structure.

Indeed, every switch configuration π given by (2) defines

a Dirac structure on the space of flow and effort variables

fS , eS of the switches, and Dπ equals the composition of

this Dirac structure with the overall Dirac structure D. Since

the composition of any two Dirac stuctures is again a Dirac

structure [16], [4] it thus follows that Dπ is a Dirac structure.

The dynamics of the switching port-Hamiltonian system

is defined by specifying, next to its Dirac structure D,

the constitutive relations of the energy-storing and resistive

elements. Let the Hamiltonian H : X → R denote the total

energy at the energy-storage elements with state variables

x = (x1, · · · , xn); i.e., the total energy is given as H(x).
In the sequel we will throughout take X = Fx, but X may

also denote an n-dimensional manifold (in which case Fx

is the tangent space to this manifold X at the state x). The

constitutive relations between the state variables x, and the

flow and effort vector of the energy-storing elements are

given as2

ẋ = −fx, ex =
∂H

∂x
(x) (4)

This immediately implies the energy balance

d

dt
H =

∂TH

∂x
(x)ẋ = −eT

x fx, (5)

The constitutive relations for the linear resistive elements are

given as

fR = −ReR, R = RT > 0, (6)

implying the power-dissipating property

eT
RfR = −eT

RReR < 0, for all eR ∈ ER, eR 6= 0 (7)

The geometric definition of a switching port-Hamiltonian

system is given as follows:

Definition 2.3: Consider a Dirac structure (1), a Hamilto-

nian H : X → R, and a resistive relation fR = −ReR.

Then the dynamics of the corresponding switching port-

Hamiltonian system is given as

(−ẋ(t),
∂H

∂x
(x(t)),−ReR(t), eR(t), fP (t), eP (t)) ∈ Dπ

(8)

at all time instants t during which the system is in switch

configuration π.

In general the conditions (8) will define a set of differential-

algebraic equations (DAEs); see below. It follows from the

power-conservation property of Dirac structures and (5) that

2The vector ∂H

∂x
(x) of partial derivatives throughout denotes a column

vector.

during the time-interval in which the system is in a fixed

switch configuration

d

dt
H = −eT

RReR + eT
P fP ≤ eT

P fP , (9)

thus showing passivity for each fixed switch configuration

if the Hamiltonian H is bounded from below. For more

information regarding port-Hamiltonian systems, their rep-

resentations, and their properties, we refer to [15], [8], [5].

m

kd

g

x

y sum of forces

zero on foot

spring/damper

in series

foot fixed

to plate

spring/

damper

parallel

Fig. 1. Bouncing pogo-stick: definition of the variables (left), flying phase
(middle), contact phase (right).

Example 2.4: Consider a pogo-stick that bounces on a

horizontal plate of variable height (see Figure 1). It consists

of a mass m and a mass-less foot, interconnected by a linear

spring (with stiffness k and rest length x0) and a linear

damper d. The states of the system are x (length of the

spring), y (height of the bottom of the mass), and z = mẏ
(momentum of the mass). The total energy is

H(x, y, z) =
1

2
k(x− x0)

2 +mg(y + y0) +
1

2m
z2

where y0 is the distance from the bottom of the mass to the

center of mass. The overall Dirac structure of the system is

described by the linear equations

fy = fx − fS , fR = fx, fz = ex + ey + eR

eS + ex + eR = 0, ez = −fy

whereas the constitutive relations are given as

fx = −ẋ, fy = −ẏ, fz = −ż, fR = − 1
d
eR

ex = k(x− x0), ey = mg, ez = p
m

In the switch configuration eS = 0 (no external force on the

foot) the pogo-stick is in its flying mode, while for fS = 0
the foot is in contact with a horizontal plate.

The conditions (8) for a particular switch configuration π
may entail algebraic constraints on the state variables x.

These are characterized by the constraint subspace defined

for each switch configuration π as follows:

Cπ := {ex ∈ Ex | ∃fx, fR, eR, fP , eP , such that

(fx, ex, fR, eR, fP , eP ) ∈ Dπ, fR = −ReR}
(10)

(Note that Cπ may depend on the resistive relation, but not

on the energy storage constitutive relation.) The subspace

Cπ determines, together with H , the algebraic constraints

WeA02.2
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in each switch configuration π. Indeed, from (8) it follows

that
∂H

∂x
(x(t)) ∈ Cπ (11)

for all time instants t during which the system is in switch

configuration π. Hence if Cπ 6= Ex then in general (depend-

ing on the Hamiltonian H) this imposes algebraic constraints

on the state vector x(t). (In the above example of the pogo-

stick the subspace Cπ is equal to Ex for any of the two switch

configurations, and hence there are no algebraic constraints.

This would change, however, if e.g. the mass of the foot is

taken into account.)

Remark 2.5: Under non-degeneracity conditions on the

Hamiltonian H , e.g. the Hessian of H being invertible, it

can be shown [8] that the algebraic constraints are always of

index one, implying that every state satisfying the algebraic

constraints is a consistent state for the set of DAEs, from

which a unique solution exists.

Next, we define for each π the jump space

Jπ := {fx | (fx, 0, 0, 0, 0, 0) ∈ Dπ} (12)

The following crucial relation between the jump space Jπ

and the constraint subspace Cπ holds true. Recall that Jπ ⊂
Fx while Cπ ⊂ Ex, where Ex = (Fx)∗.

Theorem 2.6:

Jπ = C⊥
π (13)

where ⊥ denotes the orthogonal complement with respect to

the duality product between the dual spaces Fx and Ex.

Proof Let f̃x ∈ Jπ. Furthermore, consider any ex ∈ Cπ , that

is, there exist fx, fR, eR, fP , eP with fR = −ReR such that

(fx, ex, fR, eR, fP , eP ) ∈ Dπ. Since (f̃x, 0, 0, 0, 0, 0) ∈ Dπ

it follows that

0 =≪ (fx, ex, fR, eR, fP , eP ), (f̃x, 0, 0, 0, 0, 0) ≫= eT
x f̃x,

implying that Jπ ⊂ C⊥
π .

For the converse direction, we take any f̃x ∈ C⊥
π . It

follows from eT
x f̃x = 0 for all ex ∈ Cπ that

0 = eT
x f̃x =≪ (fx, ex, fR, eR, fP , eP ), (f̃x, 0, 0, 0, 0, 0) ≫

for all (fx, ex, fR, eR, fP , eP ) ∈ Dπ with fR = −ReR. This

implies that

(f̃x, ex = 0, fP = 0, eP = 0) ∈ (Dπ ◦ R̃)orth

where R̃ denotes the linear relation R̃ := {(fR, eR) |
fR = −ReR}, while Dπ ◦ R̃ denotes the composition of

the relations Dπ and R̃ via their shared variables fR, eR. It

has been shown in [11] that

(Dπ ◦ R̃)orth = {(fx, ex, fP , eP ) | ∃f̄R, ēR with

f̄R = RēR such that (fx, ex, f̄R, ēR, fP , eP ) ∈ Dπ}

(Note the different sign before the R-matrix !). Hence

(f̃x, 0, f̄R, ēR, 0, 0) ∈ Dπ

for some f̄R, ēR with f̄R = RēR. However, any vector d :=
(f̃x, 0, f̄R, ēR, 0, 0) ∈ Dπ satisfies

0 =≪ d, d≫= 0 · f̃x + ēT
Rf̄R + 0 · 0 = ēT

Rf̄R

Since f̄R = RēR and R is positive definite this implies ēR =
f̄R = 0. Hence, (f̃x, 0, f̄R = 0, ēR = 0, 0, 0) ∈ Dπ showing

that C⊥
π ⊂ Jπ.

The state transfer principle for a switch configuration π
is now formulated as follows.

Definition 2.7 (State transfer principle): Consider the

state x− of a switching port-Hamiltonian system at a

switching time where the switch configuration of the system

changes into π. Suppose x− is not satisfying the algebraic

constraints corresponding to π, that is

∂H

∂x
(x−) 6∈ Cπ (14)

Then the new state x+ just after the switching time satisfies

x+ − x− ∈ Jπ,
∂H

∂x
(x+) ∈ Cπ (15)

This means that at this switching time an instantaneous jump

from x− to x+ with xtransfer := x+ − x− ∈ Jπ will take

place, in such a manner that ∂H
∂x

(x+) ∈ Cπ.

The jump space Jπ is the space of flows in the state space

X = Fx that is compatible with zero effort ex at the energy-

storing elements and zero flows fR, fP and efforts eR, eP

at the resistive elements and external ports. Said otherwise,

the jump space consists of all flow vectors fx that may be

added to the present flow vector corresponding to a certain

effort vector at the energy storage and certain flow and

effort vectors at the resistive elements and external ports,

while remaining in the Dirac structure Dπ, without changing

these other effort and flow vectors. Since Dπ captures the

full power-conserving interconnection structure of the system

while in switch configuration π, reflecting the underlying

conservation laws of the system, the jump space Jπ thus

corresponds to a particular subset of conservation laws, and

the state transfer principle proclaims that the discontinuous

change in the state vector is an impulsive motion satisfying

this particular set of conservation laws.

For physical systems one would expect that the value of

the HamiltonianH(x+) immediately after the switching time

is less than or equal to the value H(x−) just before:

Theorem 2.8: Let H be a convex function. Then for any

x− and x+ satisfying the state transfer principle (15)

H(x+) ≤ H(x−) (16)

Proof A function f : R
n → R is convex if and only if [12]

f(y) ≥ f(x)+ < ∂f
∂x

(x) | y − x > for all x, y. Application

to H with x = x+ and y = x− yields

H(x−) ≥ H(x+)+ <
∂H

∂x
(x+) | x− − x+ >

However, by (15) < ∂H
∂x

(x+) | x− − x+ >= 0 (since Jπ =
C⊥

π ), and the result follows.

By combining (9) and Theorem 2.8 we obtain

Corollary 2.9: Consider a switching port-Hamiltonian

system satisfying the state transfer principle, with its Hamil-

tonian H being a convex function. Then for all t2 ≥ t1

H(x(t2)) ≤ H(x(t1)) +

∫ t2

t1

eT
P (t)fP (t)dt
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and thus the system is passive [15] if H is bounded from

below. Moreover, if H has a strict minimum at some x∗ then,

whenever eP (t)fP (t) is identically zero, the equilibrium x∗

is stable (and under appropriate conditions on the resistive

relation asymptotically stable).

If the Hamiltonian H is a quadratic function H(x) =
1
2x

TKx (and thus the port-Hamiltonian system is linear),

then the state transfer principle reduces to

xtransfer = x+ − x− ∈ Jπ, Kx+ ∈ Cπ (17)

If K ≥ 0 then it follows from Theorem 2.8 and Corollary

2.9 that the switching port-Hamiltonian system is passive.

Furthermore, for each x− there exists a x+ satisfying (17),

and moreover if K > 0 this x+ (and the jump xtransfer) is

unique. Indeed, the property Jπ = C⊥
π implies λTKx = 0

for all λ ∈ Jπ and all x ∈ X with Kx ∈ Cπ, or equivalently

λTKx = 0 for all x ∈ CK
π := {x ∈ X | Kx ∈ Cπ} and

all λ ∈ Jπ. Thus, Jπ is the orthogonal complement of the

subspace CK
π where the inner product on X is defined by the

positive definite matrix K . Hence it follows that the vector

x+ satisfying (17) is unique.

The state transfer principle in the linear case also allows

for a variational characterization (see also [7], [9]).

Theorem 2.10: Let K ≥ 0. A state x+ satisfying (17) is

a solution of the minimization problem (for given x−)

min
x,Kx∈Cπ

1

2
(x − x−)TK(x− x−), (18)

and conversely if K > 0 then the unique solution of (18) is

the unique solution to (17).

Proof By the Lagrange multiplier theory a minimum x+ of

(18) is found by minimizing

1

2
(x− x−)TK(x− x−) + λTKx

over all x ∈ X and λ ∈ C⊥
π = Jπ. A minimizing x+ is thus

found as a solution x of

K(x− x−) +Kλ = 0, λ ∈ Jπ, Kx ∈ Cπ

corresponding to x+ = x− + λ, λ ∈ Jπ, Kx+ ∈ Cπ.

Furthermore, an application of Dorn’s duality [10], [2]

yields (see also [2], [9])

Theorem 2.11: Let K > 0. Then the state transfer λ =
x+ − x− is the unique minimum of

min
λ∈Jπ

1

2
(x− + λ)TK(x− + λ) (19)

Proof By Lagrange multiplier theory the minimization prob-

lem (19) can be rewritten as the minimization

min
λ,e∈Cπ

1

2
(x− + λ)TK(x− + λ) − λT e

leading to the condition K(x− + λ) − e = 0, e ∈ Cπ .

III. CHARGE AND FLUX TRANSFER IN SWITCHED RLC

CIRCUITS

Consider an RLC-circuit with switches with an arbitrary

topology. It can be described as a switched port-Hamiltonian

system as follows (see also [6]). First consider the oriented

graph associated with the circuit. Identify every capacitor,

every inductor, every resistor and every switch with an edge.

Furthermore, associate with every external port an edge

(between the terminals of the port). Denote the incidence

matrix [1] of this oriented graph by B. The incidence matrix

has as many columns as there are edges, and as many

rows as there are vertices in the graph. Each column of B
corresponds to an edge, and equals the vector with a 1 at the

position of the terminating vertex and a −1 at the position of

the starting vertex, and zeros everywhere else. By reordering

the edges we partition the incidence matrix as

B = [BC

...BL

...BR

...BS

...BP ] (20)

where the submatrices BC , BL, BR, BS correspond, respec-

tively, to the capacitor, inductor, resistor, and switch edges,

and BP corresponds to the external ports. Then Kirchhoff’s

current laws are given as

BCIC +BLIL +BRIR +BSIS +BP IP = 0 (21)

with IC , IL, IR, IS , IP denoting the currents through, respec-

tively, the capacitors, inductors, resistors, switches, and the

external ports.

Correspondingly, Kirchhoff’s voltage laws are given as

VC = BT
Cψ

VL = BT
Lψ

VR = BT
Rψ

VS = BT
Sψ

VP = BT
Pψ

(22)

with VC , VL, VR, VS , VP denoting the voltages across the

capacitors, inductors, resistors, switches, and ports, respec-

tively, and ψ being the vector of potentials at the vertices.

Kirchhoff’s current and voltage laws define a Dirac struc-

ture D on the space of flow and effort variables given as

fx = (IC , VL)
ex = (VC , IL)
fR = VR

eR = IR
fS = VS

eS = IS
fP = VP

eP = IP

(23)

The constitutive relations for the energy storage are given as

(Q̇, Φ̇) = −(IC , VL)

(VC , IL) = (∂H
∂Q
, ∂H

∂Φ )
(24)
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where Q is the vector of charges at the capacitors, and Φ the

vector of fluxes of the inductors. For a linear RLC-circuit

H(Q,Φ) =
1

2
QTC−1Q+

1

2
ΦTL−1Φ (25)

where the diagonal elements of the diagonal matrices C
and L are the capacitances, respectively, inductances, of the

capacitors and inductors.

Similarly, the constitutive relations for the linear resistors

are given as

VR = −RIR (26)

with R denoting a diagonal matrix with diagonal elements

being the resistances of the resistors.

For every subset π ⊂ {1, · · · , s} (where s is the number of

switches) the Dirac structure Dπ is defined by the equations

BCIC +BLIL +BRIR +BSIS +BP IP = 0

VC = BT
Cψ

VL = BT
Lψ

VR = BT
Rψ

VS = BT
Sψ

VP = BT
Pψ

V i
S = 0, i ∈ π, Ij

S = 0, j 6∈ π

(27)

(That is, all switches corresponding to the subset π are

closed, while the remaining are open.) The constraint sub-

space Cπ for each switch configuration π is given as

Cπ = {(VC , IL) | ∃IC , VL, VR, IR, VS , IS , VP , IP

such that (26) and (27) is satisfied }
(28)

Furthermore, the jump space Jπ is given as the set of all

(IC , VL) satisfying for some ψ the equations

BCIC +BSIS = 0

0 = BT
Cψ

VL = BT
Lψ

0 = BT
Rψ

VS = BT
Sψ

0 = BT
Pψ

V i
S = 0, i ∈ π, Ij

S = 0, j 6∈ π

(29)

Hence the jump space can be written as the product of the

space

{IC | ∃IS , I
j
S = 0, j 6∈ π, BCIC +BSIS = 0}

with the space

{VL | ∃ψ such that VL = BT
Lψ, 0 = BT

Cψ, 0 = BT
Rψ,

0 = BT
Pψ, VS = BT

Sψ, V
i
S = 0, i ∈ π}

Thus the state transfer can be split into a charge transfer

Q+ − Q− = Qtransfer and a flux transfer Φ+ − Φ− =
Φtransfer. The direction of the charge transfer Qtransfer

corresponding to the switch configuration π is specified by

BCQtransfer +BSIS = 0, Ij
S = 0, j 6∈ π (30)

This corresponds to Kirchhoff’s current laws for the circuit

with switch configuration π, where the inductors and resis-

tors have been open-circuited, and the currents through the

external ports are all zero.

Furthermore, the amount of charge transfer is uniquely

determined by the condition

C−1(Q− +Qtransfer) = BT
Cψ

for some ψ satisfying VS = BT
Sψ, V

i
S = 0, i ∈ π

The direction of the flux transfer Φtransfer on the other hand

is determined by the equations

0 = BT
Cψ

Φtransfer = BT
Lψ

0 = BT
Rψ

VS = BT
Sψ, V i

S = 0, i ∈ π

0 = BT
Pψ

(31)

These are Kirchhoff’s voltage laws for the circuit corre-

sponding to the switch configuration π, where the capac-

itors and the resistors have been short-circuited, and the

voltages across the external ports are all zero. Furthermore,

the amount of flux transfer is uniquely determined by the

condition

BCIC +BLL
−1(Φ− + Φtransfer)

+BRIR +BSIS +BP IP = 0,

for some IC , IR, IP , IS with Ij
S = 0, j 6∈ π

Since in the case of a linear circuit the Hamiltonian

H(Q,Φ) = 1
2Q

TC−1Q + 1
2ΦTL−1Φ splits as the sum

of a quadratic function of the charge Q and the flux Φ,

the variational characterization of the state transfer principle

also splits into the variational characterization of the charge

transfer principle, given as the minimization of

min
Q,C−1Q∈CV

π

1

2
(Q−Q−)TC−1(Q−Q−) (32)

(where CV
π denotes the projection of the subspace Cπ on the

space of voltages VC ) and the variational characterization of

the flux transfer principle, given as the minimization of

min
Φ,L−1Φ∈CI

π

1

2
(Φ − Φ−)TL−1(Φ − Φ−) (33)

(where CI
π denotes the projection of the subspace Cπ on the

space of currents IL).

IV. STATE TRANSFER IN SWITCHED MECHANICAL

SYSTEMS

Consider a mechanical system subject to linear damping

and kinematic constraints, which is written in Hamiltonian

form as [15]

q̇ = ∂H
∂p

(q, p)

ṗ = −∂H
∂q

(q, p) − R̄(q, p)∂H
∂p

(q, p) +A(q)λ +B(q)F

0 = AT (q)∂H
∂p

(q, p)

v = BT (q)∂H
∂p

(q, p)
(34)
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where q = (q1, · · · , qn) denotes the vector of generalized

position coordinates, p = (p1, · · · , pn) is the vector of gener-

alized momenta, F ∈ R
m the vector of external generalized

forces, and v ∈ R
m the vector of conjugated generalized

velocities. H(q, p) denotes the total energy of the system

(which usually can be split into a kinetic and a potential

energy contribution). Furthermore, 0 = AT (q)∂H
∂p

(q, p) =

AT (q)q̇ denotes the kinematic constraints (such as rolling

without slipping) with corresponding constraint forces λ ∈
R

s, where s is the number of kinematic constraints (equal

to the number of rows of the matrix AT (q)).
The damping is characterized by the n×n matrix R̄(q, p)

which is assumed to be symmetric and positive semi-definite,

that is, R̄T = R̄ ≥ 0. This implies the usual energy-balance

dH

dt
(q, p) = −

∂H

∂p

T

(q, p)R̄(q, p)
∂H

∂p
(q, p) + vTF ≤ vTF

We throughout assume that the matrix R̄(q, p) admits a

factorization

R̄(q, p) = PT (q, p)RP (q, p), R = RT > 0

for some r× n matrix P (q, p) and constant r× r matrix R.

A switching mechanical system arises if the kinematic

constraints can be turned on and off. Denoting fS := λ and

replacing the kinematic constraints in (34) by

eS := AT (q)
∂H

∂p
(q, p) (35)

this defines a switching port-Hamiltonian system as before,

where any subset π ⊂ {1, · · · , r} defines as before the

switch configuration ei
S = 0, i ∈ π, f j

S = 0, j /∈ π. Thus

in switch configuration π each i-th kinematic constraint,

with i ∈ π, is active, while the other kinematic constraints

(corresponding to indices not in π) are inactive.

It follows that the constraint subspace Cπ in this case is

given as

Cπ = {ex | ∃fx, fR, eR, F, fS , with

f j
S = 0, j 6∈ Π, fR = −ReR, eR = PT (q, p)∂H

∂p
(q, p)

−fx =

[

0 In
−In 0

]

ex + P (q, p)fR + B(q)F +A(q)fS

eS = AT (q)∂H
∂p

(q, p), ei
S = 0, i ∈ Π}

Furthermore, the jump space Jπ is given as

Jπ = {fx | fx ∈ im

[

0
Aπ(q)

]

}

where the matrix Aπ(q) is obtained from the matrix A(q)
by leaving out every j-th column with j 6∈ π.

Thus the state transfer principle in this case amounts to a

jump in the momentum variables p given as

ptransfer = p+ − p− ∈ Aπ(q), AT
π (q)

∂H

∂p
(q, p+) = 0

If H can be written as the sum of a kinetic and a potential

energy H(q, p) = 1
2p

TM−1(q)p + V (q), with M(q) > 0
denoting the generalized mass matrix, then a variational

characterization of the state transfer principle is given by

defining p+ to be the unique minimum of

min
p,AT

Π
(q)M−1(q)p=0

1

2
(p− p−)TM−1(q)(p− p−) (36)

Furthermore, since in this case the kinetic energy is a convex

function of the momenta, it follows from Theorem 2.8 and

Corollary 2.9 that the switching mechanical system is passive

if the potential energy is bounded from below.

V. CONCLUSIONS

Inspired by the charge/flux conservation principle of cir-

cuit theory, we presented a state transfer principle for general

switching port-Hamiltonian systems. This principle extends

the charge/flux conservation principle to RLC circuits of

arbitrary topology with nonlinear capacitors and inductors.

Also, we applied the principle to switching mechanical

systems. A future research line concerns the extension of

the state transfer principle to port-Hamiltonian systems that

contain state-dependent switching elements, such as diodes

in circuits and unilateral constraints for mechanical systems.
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