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Achievable Bisimilar Behaviour of Abstract State Systems

Giordano Pola, Arjan J. van der Schaft and Maria D. Di Benedetto

Abstract—Given a plant system and a desired system, we
study conditions for which there exists a controller that inter-
connected with the plant, yields a system that is bisimilar to the
desired system. Some sufficient and some necessary conditions
are provided in the general case of (non-deterministic) abstract
state systems and stronger results are obtained for the special
classes of autonomous abstract state systems, finite abstract
state systems, and non-deterministic linear dynamical systems.

I. INTRODUCTION

A basic question in systems and control theory is to char-

acterize the class of all achievable systems that result from

the interconnection of a given plant and a to–be–designed

controller. This problem has been extensively studied in the

past years in the case of external behaviour equivalence. In

fact two main research branches have been developed in the

literature depending on the control scheme considered. For

example, if we suppose that the controller takes as inputs

the state of the plant and an auxiliary control variable, we

deal with the classical model matching problem (e.g. [3],

[4]). In [3] the model matching problem is defined and

characterized for deterministic linear and non–linear control

systems while [4] extends these last results to the context of

discrete event systems. On the other hand, if the controller

does not have access to all the control variables and has as

inputs only some components of the output function, i.e. the

inputs and outputs of the plant are partially accessible by

the controller, the so–called achievable behaviour problem
is set (e.g. [19], [22], [5]). In [22], [5] a complete analysis

of the achievable behaviour problem is developed for the

special class of differential linear systems and [19] extends

the results of [22] to the context of general systems.

Different notions of equivalence between dynamical sys-

tems have been proposed in the literature and in particular

one of the most popular ones in the computer science

community is the notion of equivalence by bisimulation,

introduced in the 80’s of the last century by Milner [7]

and Park [9] in the context of concurrent processes. For

the classes of non–deterministic concurrent processes [2]

and linear systems [21], it was shown that equivalence
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by bisimulation implies external–behaviour equivalence and

that the converse implication is true if the systems are

deterministic.

Aim of this paper is to consider the problem of achievable

behaviour with focus on the bisimulation equivalence rather

than on the external behaviour equivalence: we refer to

this problem in the following as the achievable bisimilar
behaviour problem. The class of systems we consider is

that of non–deterministic abstract state systems. This class

generalizes the models of [15], [16] to a non–deterministic

setting. The proposed model includes as special cases linear

and non–linear dynamical systems, Kripke formulas [2],

hybrid systems [17], as well as infinite dimensional systems.

Given the generality of the model that we consider, the

results of this paper are developed in a pure set theory

point of view. In particular, some sufficient and necessary

conditions are derived for solving the achievable bisimilar

behaviour problem. Furthermore a characterization of the

class of controllers solving that problem is derived. Finally,

by specializing those results to the context of autonomous

abstract state systems, finite abstract state systems and

non–deterministic finite–dimensional linear systems, we give

conditions that are necessary and sufficient for solving the

achievable bisimilar behaviour problem. A full version of

this paper can be found in [11].

This paper is organized as follows. Section II formally

defines abstract state systems and formulates the problem.

Section III introduces some new results on bisimulation,

simulation and interconnection of abstract state systems that

are instrumental for the next developments. In Section IV

we characterize the achievable bisimilar behaviour problem

for the class of abstract state systems. Section V special-

izes those results to the case of autonomous abstract state

systems, finite abstract state systems and non–deterministic

linear dynamical systems. Finally, Section VI offers some

concluding remarks.

II. PRELIMINARIES AND PROBLEM STATEMENT

Aim of this section is to introduce the preliminary defini-

tions and the problem setting of this paper.

A. Abstract state systems and their interconnection

This section is devoted to the definition of an abstract

notion of non–deterministic dynamical systems.

We recall that given a set Ω, ≺Ω is a partial order on Ω
if it satisfies the following conditions: (reflexivity) ω ≺Ω ω,

∀ω ∈ Ω; (transitivity) (ω1 ≺Ω ω2, ω2 ≺Ω ω3) ⇒ ω1 ≺Ω ω3,

∀ω1, ω2, ω3 ∈ Ω; (antisymmetry) (ω1 ≺Ω ω2, ω2 ≺Ω ω1)
⇒ ω1 = ω2, ∀ω1, ω2 ∈ Ω. A set Ω is a partial ordered set
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(poset) if there exists a partial order ≺Ω on it. A total ordered
set Ω is a poset such that ∀ω1, ω2 ∈ Ω, either ω1 ≺Ω ω2 or

ω2 ≺Ω ω1. Denote by T a poset that represents the time

set. Throughout the paper we assume that all the systems

involved have the same time set coinciding with T . We now

introduce the notion of time path that is, roughly speaking, a

‘trajectory’ embedded in T representing the set of all times

‘visited’ during an evolution of the system. A time path is a

subset τ of T such that: (ordering condition) τ is a totally

ordered set; (existence of the initial time) ∃t0 ∈ τ such that

∀t ∈ τ , t0 ≺T t; (continuity condition) ∀t1, t2 ∈ τ and

∀t ∈ T , (t1 ≺T t, t ≺T t2) =⇒ t ∈ τ . Denote by [T ] the

set of all time paths in T . Given τ ∈ [T ], denote by tτ
0 the

minimum element in τ w.r.t. ≺T , i.e. tτ0 ≺T t, ∀t ∈ τ ;

moreover for any t′ ∈ τ , let be ↓t′

τ := {t ∈ τ : t ≺T t′}
and ↑τ

t′:= {t ∈ τ : t′ ≺T t}; note that ↓t′

τ , ↑τ
t′∈ [T ]. The

introduction of time paths is motivated by the necessity

to develop a general framework where for example hybrid

systems appear as special cases: in fact the notion of time

path generalizes the usual notion of hybrid time basis [17],

which applies to hybrid systems. Given a set X, a pair of time

paths τ1, τ2 ∈ [T ], such that τ1∪τ2 ∈ [T ] and τ1∩τ2 = {t′},

and a pair of functions χ1 : τ1 → X, χ2 : τ2 → X, denote

by (χ1 · χ2) : τ1 ∪ τ2 → X the concatenation of χ1(.) and

χ2(.) such that (χ1 · χ2) (t) = χ1(t), if t ∈ τ1\ {t
′} and

(χ1 · χ2) (t) = χ2(t), if t ∈ τ2. We can now propose the

following definition of abstract state systems that generalizes

the notion of deterministic dynamical system of [15], [16].
Definition 1: An abstract state system Σ is a tuple

(X, W,X , w) where:

• X is the state space;

• W is the manifest variables space;

• X : X × [T ] → 2{χ:[T ]→X} associates to any initial

condition x0 ∈ X and any time path τ ∈ [T ], the set

X (x0, τ) of solutions χ : τ → X, such that:

◦ (identity) ∀x0 ∈ X, ∀τ ∈ [T ], ∀χ(.) ∈ X (x0, τ),
χ(tτ0) = x0;

◦ (semigroup property)

− ∀x0 ∈ X, ∀τ ∈ [T ], ∀χ(.) ∈ X (x0, τ), ∀t′ ∈ τ ,

∃χ1(.) ∈ X (x0, ↓
t′

τ ), ∃χ2(.) ∈ X (χ(t′), ↑τ
t′) such

that χ(t) = (χ1 · χ2) (t), ∀t ∈ τ ;
− ∀x0 ∈ X, ∀τ1, τ2 ∈ [T ], such that τ1 ∪ τ2 ∈ [T ]
and τ1 ∩ τ2 = {t′}, ∀χ1(.) ∈ X (x0, τ1), ∀χ2(.) ∈
X (χ1(t

′), τ2), ∃χ(.) ∈ X (x0, τ1 ∪ τ2) such that

χ(t) = (χ1 · χ2) (t), ∀t ∈ τ1 ∪ τ2;

• w : X → W is a function that represents the interaction

of the system with all the rest of the environment.

Remark 1: Abstract state systems are general enough to

include as special cases, linear and non–linear dynamical

control systems [15], [16], Kripke structures [2], finite state

machines [1], hybrid systems [17], as well as infinite–

dimensional systems. For example, the following linear sys-

tem in pencil form,

Σ :

{
Eẋ = Ax, x ∈ X,

w = Hx, w ∈ W ,
(1)

can be represented by an abstract state system Σ′ =

(X, W,X ′, w), where for any initial condition x0 ∈ X and

for any time path τ ∈
[
R

+
0

]
, X ′(x0, τ) = {χ : τ → X|

χ ∈ C1(X), χ(tτ0) = x0, Eχ̇(t) = Aχ(t), ∀t ∈ τ}.

In the following of the paper it will be of interest also

to consider some special classes of abstract state systems.

An abstract state system Σ = (X, W,X , w) is said to be:

finite, if the cardinality of X is finite; deterministic if, for

any x0 ∈ X, any τ ∈ [T ] and any χ1(.), χ2(.) ∈ X (x0, τ),
w(χ1(t)) = w(χ2(t)), ∀t ∈ τ implies χ1(t) = χ2(t), ∀t ∈ τ .

Moreover a deterministic abstract state system is said to be

autonomous if for any given x0 ∈ X and any τ ∈ [T ], the

cardinality of X (x0, τ) is a most one.

Given an abstract state system Σ = (X, W,X , w), some-

times it is useful to split the manifest variables w ∈ W into

two or more components, such that w = (w1, w2, ...) and

W = W1 ×W2 × ... to distinguish the different meanings of

manifest variables [22], [19], as for example variables that

are accessible for control action etc.

We can now introduce the notion of interconnection be-

tween abstract state systems. The following definition is

inspired by the notion of interconnection of Discrete Event

Systems (DESs), that is a well–established issue in the theory

of Supervisory Control (e.g. [13], [14]) and is based on the

synchronization of the events driving the transitions in the

interconnected DESs.

Definition 2: Given two abstract state systems Σ1 = (X1,

W1 × Z, X1, (w1, z1)), Σ2 = (X2, Z,X2, z2), the intercon-

nection Σ1||ZΣ2 between Σ1 and Σ2 in the shared variables

set Z, is an abstract state system (X, W,X , w) where: X =
X1 × X2; W = W1; X ((x10, x20), τ) = {(χ1(.), χ2(.)) ∈
X1(x10, τ) × X2(x20, τ)| z1(χ1(t)) = z2(χ2(t)), ∀t ∈ τ},
∀(x10, x20) ∈ X, ∀τ ∈ [T ] ; w((x1, x2)) = w1(x1),
∀(x1, x2) ∈ X.

Given any set Ω ⊂ Ω1 × Ω2, denote by Π|Ωi
(Ω),

i = 1, 2 the projection of Ω onto Ωi, i.e. Π|Ωi
(Ω) =

{ωi ∈ Ωi|(ω1, ω2) ∈ Ω}, i = 1, 2. Given two abstract state

systems Σ1 and Σ2, interconnected as in Definition 2, let us

define the following tuples: Π|Σ1
(Σ1||ZΣ2) := (Π|X1

(X),
W1 × Z, Π|X1

(X ), (w1, z1)), Π|Σ2
(Σ1||WΣ2) :=

(Π|X2
(X), Z, Π|X2

(X ), z2), that represent the ‘projection’

of Σ1||ZΣ2 onto Σ1 and Σ2 respectively.

Proposition 1: The tuples Π|Σ1
(Σ1||ZΣ2) and

Π|Σ2
(Σ1||W Σ2) are abstract state systems.

Moreover, it is easy to see that,

Proposition 2: Σ1||Z
(
Π|Σ2

(Σ1||ZΣ2)
)

= Σ1||ZΣ2.

B. The achievable bisimilar behaviour problem

This section is devoted to the problem setting of this paper.

We start with formally defining the notion of bisimulation of

abstract state systems.

Definition 3: Given two abstract state systems Σi =
(Xi, Wi × Z,Xi, (wi, zi)), i = 1, 2, a set S ⊂ X1 × X2,

is a simulation relation of Σ2 by Σ1 w.r.t. Z if for any

(x01, x02) ∈ S, for any time path τ ∈ [T ], for any

solution χ2(.) ∈ X2(x20, τ), there exists a solution χ1(.) ∈
X1(x10, τ) such that: (χ1(t), χ2(t)) ∈ S, z1(χ1(t)) =
z2(χ2(t)), ∀t ∈ τ . Moreover Σ2 is simulated by Σ1 or
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equivalently Σ1 simulates Σ2 w.r.t. Z, denoted Σ2 �Z Σ1,

if there exists a simulation relation S w.r.t. Z, such that

Π|X2
(S) = X2.

Definition 4: Given two abstract state systems Σi =
(Xi, Wi × Z,Xi, (wi, zi)), i = 1, 2, a set B ⊂ X1 × X2,

is a bisimulation relation between Σ1 and Σ2 w.r.t. Z if B
is a simulation relation of Σ1 by Σ2 and of Σ2 by Σ1, w.r.t.

Z. Moreover Σ1 is bisimilar to Σ2 w.r.t. Z, denoted Σ1 ≈Z

Σ2, if there exists a bisimulation relation B w.r.t. Z such that

Π|Xi
(B) = Xi, i = 1, 2.

Remark 2: Definitions 3 and 4 are inspired by the notions

of simulation and bisimulation of concurrent processes, as

introduced by Milner [7] and Park [9], and unify the notions

of simulation and bisimulation given for Kripke formulas [2],

linear and non–linear dynamical systems introduced in [21],

and switching systems introduced in [10].

Remark 3: While

Σ1 ≈W Σ2 ⇒ (Σ1 �W Σ2 and Σ2 �W Σ1), (2)

the converse implication does not hold for the general class

of abstract state systems (see some classical counterexamples

for Kripke formulas in [2].) On the other hand, the converse

implication of (2) is proved in [21] to be true for the special

class of finite–dimensional non–deterministic linear systems.

Remark 4: The notion of bisimilarity is an equivalence

relation on the space of abstract state systems, since it

satisfies the reflexivity, symmetry and transitivity properties.

On the other hand, the notion of simulation is not an

equivalence notion on the space of abstract state systems,

since the symmetry property is not satisfied, while reflexivity

and transitivity are fulfilled.

Remark 5: One of the most popular application of the

bisimulation theory is the reduction, in terms of ‘size’, of

the system under consideration. The basic idea is to find a

bisimulation relation B between an abstract state system Σ
and itself and then to factorize the state space X of Σ by

the equivalence relation, on X induced by B.

We expect that an algebraic characterization of the no-

tions of bisimulation and simulation depend strongly on

the models under consideration. For example, a complete

algebraic characterization of non–deterministic linear and

non–linear dynamical systems has been developed in [21],

and for switching systems in [10]. Given two abstract state

systems Σi = (Xi, Wi × Z,Xi, (wi, zi)), i = 1, 2, the

maximal simulation relation of Σ1 by Σ2 w.r.t. Z, is that

simulation relation S∗
Z(Σ1, Σ2) such that for any simulation

relation S of Σ1 by Σ2 w.r.t. Z, S ⊂ S∗
Z(Σ1, Σ2); moreover

the maximal bisimulation relation between Σ1 and Σ2 w.r.t.

Z, is that bisimulation relation B∗
Z(Σ1, Σ2) such that for

any bisimulation relation B between Σ1 and Σ2 w.r.t. Z,

B ⊂ B∗
Z(Σ1, Σ2).

Theorem 1: Given a pair of abstract state systems Σi =
(Xi, Wi × Z,Xi, (wi, zi)), i = 1, 2, S∗

Z(Σ1, Σ2) and

B∗
Z(Σ1, Σ2) exist.

Remark 6: The computation of the maximal bimulation

and simulation relations is expected to depend strongly

on the semantics of the models under consideration. For

example, algorithms converging in a finite number of steps

to the maximal bisimulation relation between finite Kripke

formulas can be found in [2], between non–deterministic

linear and non–linear dynamical control systems in [21] and

between switching systems in [10].

We can now formalize the problem that we focus on in

this paper:

Problem 1: (Achievable bisimilar behaviour problem)

Given a plant abstract state system P = (Xp, W × Z,

Xp, (wp, zp)) and a desired abstract state system Q =
(Xq , W,Xq, wq), find conditions for which there exists a

controller abstract state system C = (Xc, Z,Xc, zc), such

that P||ZC ≈W Q.

The achievable bisimilar behaviour problem is in fact very

close to what addressed in [19] that studies conditions for

which, a plant system P interconnected with a controller C,

was external behaviour equivalent to a desired system Q.

The notion of external behaviour equivalence is very close

to the notion of bisimilarity for deterministic systems and

at least, for the classes of deterministic finite–dimensional

linear systems and of deterministic transition systems, the

two equivalence notions are proved in [21] and respectively

in [2] to coincide: therefore for those classes of deterministic

systems, results of [19] solve in fact also the achievable

bisimilar behaviour problem. On the other hand, when

dealing with non–deterministic abstract state systems, while

bisimilar equivalence implies external behaviour equivalence,

there are several examples in the literature showing that the

converse is not true in general (see [21] for the class of linear

dynamical systems and [2] for the class of Kripke structures)

and this motivates the results of this paper.

III. BISIMILAR AND SIMILAR INTERCONNECTED

ABSTRACT STATE SYSTEMS

Aim of this section is to characterize what are the re-

lationships of bisimulation/simulation equivalences of in-

terconnected abstract state systems, on the basis of the

bisimulation/simulation equivalence properties of the pre–
connected abstract state systems.

A. Interconnection preserves bisimulation and simulation
equivalences

In this section, we prove that interconnection does preserve

bisimulation and simulation equivalences, or in other words

that the so–called congruence property is fulfilled.

Theorem 2: Consider four abstract state systems Σ1 =
(X1, Z,X1, z1), Σ2 = (X2, Z,X2, z2), Σ3 = (X3, W×
Z,X3, (w3, z3)), Σ4 = (X4, W ×Z,X4, (w4, z4)). If Σ2 �Z

Σ1 and Σ4 �W×Z Σ3, then (Σ4||ZΣ2) �W (Σ3||ZΣ1).

If Σ1 ≈Z Σ2 and Σ3 ≈W×Z Σ4, then (Σ3||ZΣ1) ≈W

(Σ4||ZΣ2).
Remark 7: The result above is important to a compo-

sitional modeling and control of abstract state systems as

argued in [18] for the class of hybrid systems. Suppose for

instance, that the purpose is to design a controller Σ1 to be

applied to an abstract state system Σ2, for ensuring some

prescribed performances. Then, one can consider an abstract
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state system Σred
2 , obtained by reducing Σ2 by bisimulation

(cf. Remark 5), and then to design a controller Σ1 for the

‘smaller’ abstract state system Σred
2 : Theorem 2 ensures that

Σred
2 ||ZΣ1 is bisimilar to Σ2||ZΣ1.

B. Elimination of redundant variables in interconnection

When interconnecting a pair of systems, the resulting

system is characterized by some redundant internal state

variables that takes into account the interconnection between

the systems under consideration. A well–known result in

the context of linear differential systems is the so–called

Elimination Theorem [12], that allows a ‘reduction’ of the

redundant variables. The following result can be seen as

an extension of the Elimination Theorem to the context of

abstract state systems and of the notion of bisimulation.

Proposition 3: Given two abstract state systems Σ1 =
(X1, W × Z,X1, (w1, z1)) and Σ2 = (X2, Z,X2, z2), then

Π|Σ1
(Σ1||ZΣ2)≈W (Σ1||ZΣ2).

Moreover as a consequence,

Corollary 1: Consider four abstract state systems Σ1 =
(X1, W ×Z,X1, (w1, z1)), Σ2 = (X2, W ×Z,X2, (w2, z2)),
Σ3 = (X3, Z,X3, z3), Σ4 = (X4, Z,X4, z4) such

that Σ1||ZΣ3 ≈W Σ2||ZΣ4. Then Π|Σ1
(Σ1||ZΣ3)≈W

Π|Σ2
(Σ2||ZΣ4).

C. Bisimulation equivalence and interconnection

There is a deep connection between the notions of bisim-

ulation and of interconnection of abstract state systems. The

next results highlight those connections.

Proposition 4: Given two abstract state systems Σ1 =
(X1, W1×Z,X1, (w1, z1)) and Σ2 = (X2, Z,X2, z2). Then,

Π|Σ1
(Σ)≈Z Π|Σ2

(Σ) and X = B∗
Z(Π|Σ1

(Σ) , Π|Σ2
(Σ)),

where Σ = Σ1||ZΣ2 := (X, W,X , w).
Moreover,

Proposition 5: Two abstract state systems Σ1 = (X1,

W1 × Z,X1, (w1, z1)) and Σ2 = (X2, Z,X2, z2) are bisim-

ilar w.r.t. Z if and only if Π|Σ1
(Σ1||ZΣ2) = Σ1 and

Π|Σ2
(Σ1||ZΣ2) = Σ2.

We conclude this section, by giving the following result.

Proposition 6: Consider three abstract state systems Σ1 =
(X1, W × Z,X1, (w1, z1)), Σ2 = (X2, Z,X2, z2), Σ3 =
(X3, W,X3, w3) such that Σ1||ZΣ2 ≈W Σ3. Then, (Π|Σ1

(Σ1||Z Σ2))||W Σ3 ≈Z Π|Σ2
(Σ1||ZΣ2) .

As a consequence,

Corollary 2: Consider three abstract state systems Σ1 =
(X1, W × Z,X1, (w1, z1)), Σ2 = (X2, Z,X2, z2), Σ3 =
(X3, W,X3, w3) such that Σ1||ZΣ2 ≈W Σ3. Then

Π|Σ2
(Σ1||ZΣ2) �Z (Σ1||WΣ3).

IV. GENERAL RESULTS

In this section we give some sufficient and some necessary

conditions for solving the achievable bisimilar behaviour

problem for the general class of abstract state systems.

A basic sufficient condition for assessing the solvability

of the achievable bisimilar behaviour problem is that:

P||Z(P||WQ)≈WQ. (3)

Condition above makes use of the controller Ccan =
(Xcan, Z, Xcan, zcan) := P||WQ, that is known in the

literature (e.g. [8], [19], [5]) as the canonical controller. The

canonical controller was introduced in the context of network

interconnection structures appearing in [8], and after that a

research was carried out by the control system community

along this research direction (e.g. [19], [5].) Condition (3)

will be shown in Theorem 7 to be also necessary for solv-

ing the achievable bisimilar behaviour of non–deterministic

linear dynamical systems. Moreover,

Theorem 3: The achievable bisimilar behaviour problem

is solvable only if

Q �W P||ZCcan. (4)
On the other hand,

Remark 8: There are some counterexamples in the litera-

ture showing that the converse implication of (4),

P||ZCcan �W Q, (5)

is not necessary for solving the achievable bisimilar be-

haviour problem in the case of deterministic systems (e.g.

[19]) and therefore in the more general case of non–

deteministic abstract state systems. Note that even if con-

dition (5) were satisfied, then the combination of conditions

(4) and (5) does not imply P||ZCcan ≈W Q , as pointed out

in Remark 3, for the general case of abstract state systems.

Theorem 3 and Remark 8 suggest that the canonical

controller Ccan is in some way ‘too big’ for solving the

achievable bisimilar behaviour problem and therefore in the

following we look for a weaker condition than that one

in (3). More precisely inspired by [5], we will define a

controller C∗
can, that is a candidate to solve the achievable

bisimilar behaviour problem and that is ‘smaller’ than Ccan.

Given an abstract state system Σ = (X, W,X , w) and a set

X̄ ⊂ X define the restriction of Σ to X̄ as that abstract state

system Σ|X̄ whose state state is X̄ and whose dynamics

coincide with that one of Σ that makes X̄ invariant, i.e.

Σ|X̄ = (X̄, W, X̄ , w̄) where: X̄ (x0, τ) = {χ(.) ∈ X (x0, τ)|
χ(t) ∈ X̄, ∀t ∈ τ}, ∀x0 ∈ X̄ , ∀τ ∈ [T ]; w̄ : X̄ → W such

that w̄(x0) = w(x0), ∀x0 ∈ X̄ .

The following two results give some properties of the

restriction of abstract state systems, as defined above.
Proposition 7: Given an abstract state system Σ =

(X, W,X , w) and a set X̄ ⊂ X, Σ|X̄ �W Σ.

Proposition 8: Given two abstract state systems Σi =
(Xi, W,Xi, wi), i = 1, 2, Σ1|X̄1

≈W Σ2|X̄2
, where X̄i =

Π|Xi
(B∗

W (Σ1, Σ2)), i = 1, 2.

We can now propose the controller C∗
can. Let Λ : 2Xcan →

2Xp be such that for any given Xc ⊂ Xcan, Λ(Xc) :=⋃
xc∈Xc

Λ({xc}) and for any given xc ∈ Xc,

Λ({xc}) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xp ∈ Xp| ∀τ ∈ [T ] ,
∃χc(.) ∈ Xcan(xc, τ),
∃χp(.) ∈ Xp(xp, τ) :

zcan(χc(t)) = zp(χp(t)),
χc(t) ∈ Xc, ∀t ∈ τ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The map Λ(Xc) captures all the states of the plant P, that

are interconnectable with a state of the controller Ccan|Xc

1538



and in fact (xp, xc) is a state of P||Z (Ccan|Xc
), if and only

if xp ∈ Λ({xc}). Set

X∗
p = Π|Xp

(B∗
W (Q,P||ZCcan)), (6)

and let X∗
c be the maximal subset Xc of Xcan such that

Λ(Xc) ⊂ X∗
p ; finally set C∗

can := Ccan|X∗

c
.

Proposition 9: The achievable bisimilar behaviour prob-

lem is solvable if:

P||ZC
∗
can≈WQ. (7)

Condition (7) will be shown in Theorem 5 to be also
necessary for solving the achievable bisimilar behaviour

problem in the case of autonomous abstract state systems.

We conclude this section by highlighting some properties

of the class of controllers ensuring a solution to the achiev-

able bisimilar behaviour problem.

Proposition 10: If a controller C solves the achievable

bisimilar behaviour problem, then

Π|C (P||ZC) ≈Z Ccan|Xc
, (8)

where Xc = B∗
W (Π|P (P||ZC) ,Q)). Moreover Ccan|Xc

solves the achievable bisimilar behaviour problem.

A direct consequence of the result above is that,

Theorem 4: The achievable bisimilar behaviour problem

is solvable if and only if there exists Xc ⊂ Xcan such that

(P||Z (Ccan|Xc
)) ≈W Q.

By Proposition 10, one can uniquely associate to any

solution C of the achievable bisimilar behaviour problem a

controller Ccan|Xc
, for some subset Xc of Xcan, that we

call canonical representative of C. The space of canonical

representatives is a poset with respect to the partial ordering

≺ defined by Ccan|X1
c
≺ Ccan|X2

c
, if X1

c ⊂ X2
c ⊂ Xcan and

by Proposition 10, is ‘upper bounded’ by Ccan, i.e. for any

canonical representative Ccan|Xc
, Ccan|Xc

≺ Ccan.

V. SPECIAL CLASSES OF ABSTRACT STATE SYSTEMS

This section is devoted to the specialization of the theory

developed for general abstract state systems to some impor-

tant sub–classes of abstract state systems.

A. Autonomous abstract state systems

If the plant P and the desired system Q are autonomous,

then the canonical controller Ccan is also autonomous. The

following result stresses a property of the maximal bisimu-

lation relations between P||Z(Ccan|X1
c
) and Q and between

P||Z(Ccan|X2
c
) and Q, where Ccan|X1

c
and Ccan|X2

c
are

canonical representatives.

Proposition 11: If P and Q are autonomous, then for

any X1
c ⊂ X2

c ⊂ Xcan, B∗
W ((P||Z(Ccan|X1

c
)),Q) =

B∗
W ((P||Z(Ccan|X2

c
)),Q) ∩ (X1

p,c ×Xq), where X1
p,c is the

state space of P||Z(Ccan|X1
c
).

A direct consequence of the result above is that the map as-

sociating to any Xc ⊂ Xcan the set B∗
W (P||Z(Ccan|Xc

),Q)
is ‘monotone’ with respect to set inclusion.

Corollary 3: If P and Q are autonomous then, for

any X1
c ⊂ X2

c ⊂ Xcan, B∗
W ((P||Z(Ccan|X1

c
)),Q) ⊂

B∗
W ((P||Z(Ccan|X2

c
)),Q).

Moreover the following result shows that, for the special

class of autonomous abstract state systems, the space of

canonical representatives is upper bounded by C∗
can.

Proposition 12: If P and Q are autonomous, then for any

canonical representative Ccan|Xc
, Xc ⊂ X∗

c .

We can now give the main result of this section.

Theorem 5: The achievable bisimilar behaviour problem,

where the abstract state systems P and Q are autonomous,

is solvable if and only if P||ZC
∗
can ≈W Q.

B. Finite abstract state systems

If the plant P and the desired system Q are finite then,

the canonical controller Ccan is also finite. Moreover, by

applying Theorem 4 to this special case, a procedure can be

developed for finding a solution to the achievable bisimilar

behaviour problem, by checking for any Xc ⊂ Xcan, if the

controller Ccan|Xc
is a solution to the achievable bisimilar

behaviour problem. This approach is very important from the

decidability point of view, as shown in the following.

Theorem 6: The achievable bisimilar behaviour problem,

for the class of finite abstract state systems, is decidable in

at most a finite number of steps,

N∗ ≤
N∑

k=1

(
N

k

)
,

where

(
N

i

)
is the Newton binomial coefficient and N is

the cardinality of Xcan.

C. Non–deterministic linear systems

We focus on here the class of linear systems, whose

dynamics are given by means of differential–algebraic equa-

tions [6], i.e. systems Σ of the form (1), where X and W

are finite–dimensional linear spaces and E, A and H are

matrices of appropriate dimensions. A linear system of the

form (1) can be seen as a particular abstract state system

Σ = (X, W,X , w), as pointed out in Remark 1.

Remark 9: Linear systems of the form (1) are in general

non–deterministic and generalize the usual notion of non–

deterministic finite–dimensional linear system [15].

In the following we focus on the achievable bisimilar

behaviour problem where, the systems under consideration

are as in (1). More precisely,

Problem 2: (Linear achievable bisimilar behaviour prob-
lem) Given a plant system,

P :

⎧⎨
⎩

Epẋp = Apxp, xp ∈ Xp,

wp = Hpxp, wp ∈ W ,

zp = Kpxp, zp ∈ Z,

and a desired system

Q :

{
Eqẋq = Aqxq, xq ∈ Xq ,

wq = Hqxq, wq ∈ W ,

find conditions for which there exists a controller

C :

{
Ecẋc = Acxc, xc ∈ Xc,

zc = Kcxc, zc ∈ Z,
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such that the interconnected system

P‖Z C :

⎧⎪⎪⎨
⎪⎪⎩

Epẋp = Apxp, xp ∈ Xp,

Ecẋc = Acxc, xc ∈ Xc,

Kpxp = Kcxc,

wp = Hpxp,

is bisimilar to Q w.r.t. W .

In view of Remark 1, the results of Section IV hold for

the class of systems that we are considering in this section.

Moreover, given the particular structure of linear systems, a

stronger result can be stated. In the following we will show

that the sufficient condition (3) is also necessary for solving

the linear achievable bisimilar behaviour problem. Given a

plant P = (Xp, W,Xp, wp) of the form (1), let us define the

state–constrained dynamical system P0 = (X0
p , W,X 0

p , wp0
),

characterized by the following dynamics:

P0 :

{
Epẋp0

= Apxp0
, xp0

∈ X0
p ,

wp0
= Hpxp0

,
(9)

where X0
p denotes the maximal invariant set contained in

ker (Hp), i.e. X0
p := {xp0

∈ Xp|Hpχ(t) = 0, ∀t ∈ τ, ∀τ ∈[
R

+
0

]
, ∀χ(.) ∈ X 0

p (xp0
, τ)}. The linear system P0 models

all the hidden dynamics associated with P. In order to solve

the linear achievable bisimilar behaviour problem, one has to

take into account the dynamics of P0, since they are internal

modes of the plant P and therefore, they cannot be controlled

by any controller C; for this reason it is necessary to assume

that the behaviour of P0, matches the specification given by

the desired system Q.

Proposition 13: Given a plant P and a desired system Q,

if P||ZC ≈W Q for some controller C, then P0 �W Q.

Moreover the following result shows that, if Q simulates

the hidden dynamics of P (represented by P0), then Q
simulates the overall system P||Z(P||WQ).

Lemma 1: If P0 �W Q then (P||Z (P||WQ)) �W Q.

By combining Proposition 13 and Lemma 1, the following

result holds.

Theorem 7: The linear achievable bisimilar behaviour

problem is solvable if and only if P||ZCcan≈WQ.

Conditions of Theorem 7 are checkable in a finite number

of steps, in view of the results of [20]. Moreover, even though

we are focusing here on continuous–time systems, Theorem

7 also holds for discrete–time linear systems. Furthermore,

the results of this section do not make use of the finite–

dimensionality of the state space and manifest space of

the systems under consideration. Therefore, Theorem 7 also

holds for infinite–dimensional linear systems.

VI. CONCLUSION

We considered the achievable bisimilar behaviour prob-

lem. Some sufficient and necessary conditions were devel-

oped for the general class of non–deterministic abstract state

systems and stronger results for characterizing the achievable

bisimilar behaviour problem for the special classes of au-

tonomous abstract state systems, finite abstract state systems

and non–deterministic linear systems were found.
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