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Mathematical Structures in the Network Representation 
of Energy-Conserving Physical Systems 

A.J. van der Schaftl, M. Dalsmo2, B.M. Maschke3 

Abstract 

It is shown that network modelling of energy- 
conserving physical systems naturally leads to the con- 
sideration of (nonlinear) implicit generalized Hamilto- 
nian systems. Behavioral systems theory may be in- 
voked to formulate and analyze the system-theoretic 
properties of these systems. 

1 Generalized Hamiltonian modelling 

Most of the current modelling approaches of physical 
systems (e.g. multi-body systems) are based on some 
sort of network representation, where the physical sys- 
tem under consideration is seen as the interconnection 
of a possible large number of simple sub-systems (the 
elementary building blocks). This way of modelling has 
several advantages. The knowledge about sub-systems 
can be stored in libraries, and is re-usable for later occa- 
sions. Because of the modularity the modelling process 
can be performed in a “recursive” manner, first neglect- 
ing certain effects and gradually refining the model by 
adding other sub-systems. Further, the approach is 
suited to general control design where the overall be- 
havior of the system is sought to be improved by the 
addition of other sub-systems (controllers). 

In our previous work [2], [3], [4], (51, [6], [7], [8], [9] we 
have mainly concentrated on energy-conserving physi- 
cal systems, where we have argued that the basic dy- 
namic building blocks are of the form 

Here z = (21,. . . , 2,) denotes the vector of (indepen- 
dent) energy variables, coordinatizing the state space 
manifold X ,  H(z1 ,  . . . , z,) is the total stored energy of 
the sub-system, with 2 (z) denoting the transposed 
gradient vector of H, and the n x n structure matrix 
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J ( z )  (the modulated gyrator in bond graph terminol- 
ogy) is associated with the network topology of the 
sub-system. Since the internal interconnections are all 
assumed to be energy-conserving we have the impor- 
tant property 

J ( z )  = - J T ( z ) ,  for all z. (2) 

Finally, the columns gj(x),j = l , - . . , m ,  of the ma- 
trix g(z) denote the (state modulated) transformers 
describing the influence of the external flow sources 
fj, j = 1,. . , m. The components ej of e are the cor- 
responding conjugated efforts. 
Because of (2) we immediately obtain the energy- 
balance 

d T - H = e  f, 
dt (3) 

expressing that the increase in energy equals the ex- 
ternally supplied power (eTf j  is the power of the j-th 
source). Thus (1) describes an energy-conserving phys- 
ical system with internal variables 5 1 ,  . . , zn (associ- 
ated with energy storage) and terminal or port variables 
fi, , fm, e l ,  , e,  (associated with power). 

In [6], [9] the system (1) was called a port-controlled 
generalized Hamiltonian system, because of the follow- 
ing reason. Given the skew-symmetric matrix J ( z )  we 
may define a skew-symmetric bracket operation on the 
real functions on X (the space of energy variables 3; 

generally a manifold) as 

L 

(4) 
In many cases of interest (e.g., if J ( z )  is constant) this 
bracket satisfies the Jacobi-identity 

{F, {G, H))+{G, { H ,  F) )+{H,  {F,  GI1 = 0, VF, G7 H 
(5) 

If (and only if!) the Jacobi-identity holds, then, 
by a generalized form of Darboux’s theorem, we 
may find in the neighborhood of every point 
zo E X where J ( z )  has constant rank, coordinates 
q1,. . . , q k ,  P I , .  . . , pk,  r1, . , re for X in which J ( z )  
takes the form 



In such coordinates (called " canonical") the internal 
dynamics x = J ( x ) g ( x )  takes the form 

d H  41 = - (q ,p , r ) ,  8Pl i.1 = 0 

8 H  
qk = G ( q , P , r ) ,  PI? = 0 

(7) 
p1 = -Bql(Q, a H  P, 

which are almost the standard Hamiltonian equations 
of motion except for the appearance of the conserved 
quantities r1, - . - , re. 

In a mechanical context the simplest examples of sys- 
tems (1) include the "generalized spring element" 

q =  f , q , f , e  E !J23 

e = g(q) 
(8) 

with q E !R3 the configuration coordinates, f E sR3 the 
velocity, and e E !R3 the force delivered by the spring 
with potential energy H ( q ) .  Comparing with (1) we see 
that J = 0, while g is the 3 x 3 identity matrix. Another 
basic example are the equations of a point mass in !R3 

p =  f , P , f , e E ! J 2 3  
(9) 

1 e = -  rnp 

where p is the vector of momenta, N ( p )  = & 1 1  p /I2 
is the kinetic energy, m is the mass, f is the vector of 
external forces, and e denotes the velocity of the point 
mass. 
A more involved basic example concerns the equations 
of a rigid body with fixed center of mass 

e = sT(P)g(P) 
(10) 

where p = (pm pY p z )  is the vector of body angular mo- 

f are external torques, and e the corresponding angu- 
lar velocities. In this case we encounter a non-trivial 
J ,  which in fact is determined by the geometry of the 
underlying matrix group SO(3). (The equations for a 
rigid body with moving center of mass are similarly ob- 
tained by taking instead of SO(3) the special Euclidean 
group SE(3).)  In the above example, the terminal vari- 
ables f and e are the torques, respectively, the veloc- 
ities in a body-fixed frame. The values in an inertial 
frame are obtained by a transformation depending on 

menta, H ( p )  = l (r P? + 2 P2 + e) is the kinetic energy, 

the configuration of the rigid body, see e.g. 151. 
In addition to these dynamic generalized Hamiltonian 
sub-systems we may also find static Hamiltonian sub- 
systems in the network representation. In the mechan- 
ical context the most well-known examples are kine- 
matic constraints 

AT(q)u = 0, (11) 

with U E En the vector of generalized velocities and 
A(q)  some n x IC matrix of rank IC .  The resulting con- 
straint forces are by d'Alembert of the form 

F = A ( Q P ,  (12) 

where the Lagrange multipliers X E 8' are determined 
by the requirement that the constraints (11) need to 
be satisfied for all time. 

The overall physical system is now obtained by in- 
terconnecting the various port-controlled generalized 
Hamiltonian systems using Kirchhoff's laws (with re- 
spect to generalized forces and generalized velocities, 
or to voltages and currents), resulting in a mzxed set of 
differential and algebraic equations. Since the overall 
system is a power-conserving interconnection of gener- 
alized Hamiltonian systems one would expect that this 
resulting mixed set of differential and algebraic equa- 
tions is again Hamiltonian in some sense. Indeed, it 
can be seen that it is an implicit generalized Hamilto- 
nian system, as defined in [7], [8] .  The key concept in 
the definition of an implicit Hamiltonian system is the 
notion of a generalized Dirac structure, introduced in 
[lo], 1111. 

A generalized Dirac structure V on an n-dimensional 
manifold X is given by specifying for every x E X an 
n-dimensional subspace 

V ( x )  c T,X x T,X, (13) 

depending smoothly on x, with the property that for 
all ( X , a )  E T'X x T,*X 

( X , a )  E D ( x )  * a T X  = 0 (14) 

Let now H : X ---f !J2 be given. Then the (autonomous) 
implicit generalized Hamiltonian system on X corre- 
sponding to the generalized Dirac structure D on X 
and the Hamiltonian H is given by the specification 
(see [71, 181) 

Note that in general the specification (15) puts con- 
straints on the state space X, since in general there will 
not exist for every 5 E X a tangent vector II: E T,X 
such that (15) is satisfied. If on the other hand the 
subspace D ( x )  for every x can be parametrized by the 



co-tangent vectors a, that is, there exists an n x n ma- 
trix J(z)  such that 

D ( x )  = {(X,a) I x = J(z)a} (16) 

then by (14) J ( z )  = -JT(z) for every z, and (15) 
reduces to the explicit generalized Hamiltonian system 

d H  
dx x = J(z)-(z) 

Now let us consider k port-controlled Hamiltonian sys- 
tems as in (l), i.e., for i = l , . . . , k  

j.i = J i (Z i )%(Zi )  + Si(Si)fi 
ei = 9 T ( Z i )  (Xi) (18) 

xi E Xi, fi E 3i = Xm', ei E &i = Xmi 

with Xi an ni-dimensional state space, and consider a 
general power-conserving interconnection of these sys- 
tems given by an (ml + a  . . + mk)-dimensional subspace 
(possibly parametrized by z1, . . . , mc) 

I(xl,.'*,zk) C 31 x ' * *  x 3 k  x &1 x "*&k (19) 

with the property 

k 
(fl,"'rfk,el,"',ek) E I(xl,'**,xk) =$ ZeTfi = o  

i= 1 
(20) 

Then the resulting interconnected system is an im- 
plicit generalized Hamiltonian system with state space 
X := XI x x xk, Hamiltonian (total energy) 
H(x l , - . . , xk )  := Hl(x1) + + &(Zk), and gener- 
alized Dirac structure D on XI x . . . X xk defined as 

(x,Cr) = (Xl,"',Xk,~l,'",ak) E D(xl,"*,xk) 

Xi = Ji(zi)ai + gi($i)fi 
, k  i =  1, ... ei = gT(zi)ai, 

(11, * * * , f k ,  el, * 7 ek) E I(xl, ' ' ' , xk) 
(21) 

k 

I 
Indeed, this defines a Dirac structure since by direct 
computation 

k c a:xi = aT(Ji(xi)ai + Si(5i)fi) 
i= 1 i=l 

(22) 
k k 

i= 1 i=l 
= aTgi(zi)fi = eFfi = 0, 

by (20), while it can be checked that the dimension of 
D(x1,. . . , Z k )  equals n1+ . . . + nk. 
Note that Kirchhoff's laws for the flows f ~ ,  . . . , fk 
and efforts el, . a . , ek, as well as static Hamiltonian 
sub-systems as given in ( l l ) ,  (12), are a special case 

of a power-conserving interconnection I .  (Also any 
transformer-type of interconnection will define a power- 
conserving interconnection I . )  Thus we have indeed 
shown that any power-conserving interconnection of 
port-controlled generalized Hamiltonian systems (1) 
defines an implicit generalized Hamiltonian system 
(15). 

Usually the following integrability condition is imposed 
on the generalized Dirac structure: 

< LXla2, x3 > + < LXza3, x1 > + < LXsa1, x2 > 
= O  

(23) 
for all pairs of vector fields and one-forms (X~,ai), 
(X2, az), (X2, as) which are elements of D(z )  for all 
z E X. If this is satisfied, then D is called a (true) Dirac 
structure [lo], [ll]. When the generalized Dirac struc- 
ture is given as in (16), then (23) is nothing else then 
the Jacobi-identity (5). Similarly to this case one can 
show ([lo], [ll]) that if and only if the integrability con- 
dition (23) is satisfied one may find local (canonical) co- 
ordinates QI, - , p k ,  TI,. . , re, s ~ , .  s e ,  sq in 
the neighborhood of any point xo E X where the di- 
mensions of the distribution D(x)  n (T,X x 0) and the 
co-distribution D(x)  n (0 x T,*X) are constant, such 
that the implicit Hamiltonian system (15) is given as 

- , Qk, p ~ ,  

(241 

Comparing (24) with (7) we see that while (7) explici- 
tates the conserved quantities, the equations (24) also 
make explicit the algebraic constraints 

aH 0 = = ( q , P , T , S )  

0 = K ( Q , P , T , $ )  

(25) 
a H  

If H is non-degenerate in the energy-variables 
SI,. e ,  sq, that is 

then by the Implicit function theorem one may locally 
express the variables SI, . . . , sg as functions of q, p, r, i.e. 
si = si(q,p,r), i = 1 , .  - ,q. Defining the constrained 
Hamiltonian 
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it follows that (24) reduces to the same format as (7) 

q1 = aH, apl f l  = 0 

p ,  -aH, 
a q k  

which is an explicit Hamiltonian dynamics on the con- 
strained state space X, = { (q ,  p ,  T ,  s )  I ( 4 ,  p ,  T ,  s )  = 
0 ,  i = l , . . .  , q } .  Also note that while under the as- 
sumption (26) the variables SI, .  . ’ , sq together with 
the Hamiltonian H define a (constraint) submanifold 
X, of X ,  dually the level sets of the variables T I ,  . . . , rg 
define a foliation of X. Both the constraint submani- 
fold X, and the foliation are invariant for the Hamilto- 
nian dynamics. It should be noted, though, that there 
are cases of interest where the generalized Dirac struc- 
ture does not satisfy the integrability condition (23). 
In fact, the generalized Dirac structure resulting from 
kinematic constraints (11) satisfies (23) if and only if 
the kinematic constraints are holonomic, i.e., can be 
integrated to geometric constraints ([3], [l]). E’urther- 
more, also if the integrability condition (23) is satis- 
fied the actual construction of the canonical coordi- 
nates qz ,pz ,  T ~ ,  sa, may be very involved, and preferably 
should be avoided. 

2 Representations of Dirac structures and 
implicit Hamiltonian systems 

There are different ways of representing generalized 
Dirac structures, which each have their own advan- 
tages, and which naturally come up in different mod- 
elling approaches. The most general representation is 
as follows [7] .  Let D be a generalized Dirac structure 
on an n-dimensional manifold X with local coordinates 
( ~ 1 , .  . . , z,). Then locally there exist n x n matrices 
E ( z )  and F ( z ) ,  depending smoothly on z, such that 
locally 

D ( z )  = {(X,Cr) 1 F ( z ) X  = E(z )a}  

rank [F(z) i  - E(z ) ]  = n (29) 

E(.)FT(.) + F(x)ET(z)  = 0 

(Conversely, any D defined as in (29) is a generalized 
Dirac structure). Given a Hamiltonian H : X 4 TI 
the corresponding implicit Hamiltonian system is thus 
given as 

which is in the usual implicit (or descriptor) form. This 
representation naturally comes up in the Hamiltonian 
description of electrical LG-circuits [4]. Note that two 
distributions and two co-distributions are intrinsically 
attached to any generalized Dirac structure. 

Go(z) = { X  E T,X 1 (X,O) E D ( z ) }  
= D ( z )  n (T,X x 0 )  

Gl(z)  = { X  E T,X I 3 s.t ( X , a )  E D ( z ) }  

Pi(.) = {Q E TZX 1 3 X s.t. ( X , a )  E D ( z ) }  
(31) 

Given the representation (29) for D it immedi- 

ately follows that (note that ker [ F ( z ) :  - E(z ) ]  = 

im [ -FT(x)  1) ET (x) 

Go(z) = ker F ( z ) ,  Po(z) = ker E ( z )  
(32) 

Gl(z) = im E*(z),  Pl(z) = im F T ( x )  

The distribution G1 describes the set of admissible 
flows k. In particular, if G1 is constant-dimensional (or 
equivalently, rank E ( z )  is constant) and involutiwe then 
there are (n - dim GI) independent conserved quanti- 
ties for (30). Dually the co-distribution PI describes 
the set of algebraic constraints of (30), i.e. 

(Note that the integrability condition (16) implies in- 
volutivity of G1 and PI ,  see [lo], [ll], [l]). 

If the co-distribution PI has constant dimension (or 
equivalently F ( z )  has constant rank), then there is 
another interesting representation of the generalized 
Dirac structure. Indeed, since F ( z )  has constant 
rank we may locally always transform the equations 
F ( z ) X  = E(z )a  into the form 

where Fl(z) is surjective. Furthermore it follows that 
ker R(z) = im ET(z) .  One derives (see [l] for details) 
that there exists a skew-symmetric matrix J ( z )  satis- 
fying Fl(z)J(z) = El(z). Thus the equations (34) can 
be rewritten as 

X - J(z)a E ker Fl(z) = im E;(%) 
(35) 

0 = .FZ(z)a 
or equivalently, defining the constant rank matrix 
g(z) := E,T(z) 

x = J(z)a+g(z)X 

0 = gT(z)cr  
(36) 
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where X are Lagrange multipliers. The correspond- 
ing implicit generalized Hamiltonian system is there- 
fore given as 

j. = J(z)g(z)  +g(z)X 

0 = g T ( z ) E ( z )  
(37) 

which can be interpreted as a port-controlled Hamilto- 
nian system (l), where the efforts e are set to zero. An 
appealing example of this representation is formed by 
a classical mechanical system q = 

p = -$$(q,p) with kinematic constraints AT(q)v  = 0 
(v = z ( q , p )  being the generalized velocity), which 
can be written as 

(q, p ) ,  

aP 

0 = AT(P.)$g(Q,P) 
(38) 

The Lagrange multipliers X have the interpretation of 
being constraint forces. It can be shown that the gen- 
eralized Dirac structure in this case satisfies the inte- 
grability condition (16) if and only if the constraints 
are hoEonomic ([3], [l]). 
Dually, a third representation of Dirac structures 
can be obtained if the distribution GI is constant- 
dimensional (or equivalently the matrix E(z)  has con- 
stant rank). In this case the implicit Hamiltonian sys- 
tem (15) can be written as 

(39) 
0 = p(z)* 

with U(.) = -wT(z)  and p ( z )  of constant rank ([l]). 
From a bond-graph point of view this corresponds to 
writing all elements in derivative causality, instead of 
in integral causality as in (37). The characterizations of 
the integrability condition (23) in these three different 
representations are detailed in [l]. 

3 Implicit port-controlled generalized 
Hamiltonian systems 

The overall picture is however not yet complete. In- 
deed, we have shown that a power-conserving intercon- 
nection of port-controlled generalized Hamiltonian sys- 
tems leads to an implicit generalized Hamiltonian sys- 
tem, with respect to a generalized Dirac structure re- 
sulting from the structure matrices Ji together with the 
definition of the interconnection, and a Hamiltonian 
which is the sum of the Hamiltonians of all the sub- 
systems. However we cannot yet treat implicit gener- 
alized Hamiltonian systems with external ports. More- 
over, if we start from an implicit generalized Hamil- 
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tonian system (15), and we make a division into sub- 
systems different from the one we started with, then it 
is likely that (some of) the sub-systems will not have 
anymore the structure of a port-controlled generalized 
Hamiltonian system (l), but instead (at least, if the 
modularization is power-conserving) will be some sort 
of implicit port-controlled generalized Hamiltonian sys- 
tem. 
Implicit port-controlled generalized Hamiltonian sys- 
tems have been defined in [7] as follows: 
Let X be the n-dimensional manifold of energy vari- 
ables, and H : X 3 8 the Hamiltonian (total stored 
energy). Furthermore let F be the linear space Em 
of external flows f, with dual the space F$ of exter- 
nal efforts e. Then consider a Dirac structure D on 
X x F, only depending on z E X ,  that is D ( z )  is an 
(n + m)-dimensional subspace of Tx X x T,* X x F x F* . 
The implicit port-controlled generalized Hamiltonian 
system is now defined by the specification 

a H  (5, =(z), f, -e) E D(z) ,  for all 5 E X (40) 

(Here the minus sign in front of the effort e comes 
from the natural identification ( a , e )  E T,*X x F* I-+ 

(a, -e) E (T,X x F)*.) A clear example of such an im- 
plicit port-controlled generalized Hamiltonian system is 
that of a port-controlled generalized Hamiltonian sys- 
tem (1) with constraints 

j. = J(z)%(z)  + g(z)f + IC(z)X 

e = sT(4$&> (41) 

0 = ICT(z)E(z) 

(for example, an actuated mechanical system with kine- 
matic constraints), as can be seen by rewriting (41) as 

and comparing with (37). The integrability condition 
(23) for the resulting Dirac structure on X x F has an 
interesting interpretation, as will be shown in [l]. 

In [6], [9] it has been shown that the controllabil- 
ity and observability properties of port-controlled gen- 
eralized Hamiltonian systems are closely connected. 
For example, it has been shown that a linear port- 
controlled Hamiltonian system with non-degenerate 
quadratic Hamiltonian axTQx (that is, det Q # 0 )  
is controllable if and only if it is observable. A simi- 
lar statement can be proved for a linear port-controlled 



Hamiltonian system with constraints 

5 = J Q z + G f + K A  

e = G ~ Q ~  (43) 

0 = K T Q x  

with J = -JT and Hamiltonian H ( z )  = i z T Q x ,  Q = 
QT,  det Q # 0. Suppose for simplicity that the con- 
straints are independent, i.e. K is injective. Then fol- 
lowing the work of Willems [12] the controllability of 
the triple (5, f , A )  can be checked by considering the 
first and third set of equations rewritten as 

R(%) 

and by verifying that the rank of R(s)  is maximal for 
every s. Furthermore from the specific form of the 
equations it is seen that this is equivalent with control- 
lability only of the z-trajectories. On the other hand, 
observability of the variables ( x ,  A) from the external 
variables ( f ,  e )  can be verified by rewriting (43) as 

I $ - J Q  -K G O  

\ " / 

and by checking that the rank of P(s)  is maximal for 
every s. Furthermore, again from the specific form of 
the equations it follows that observability of (x ,  A) from 
(f, e )  is the same as observability of x from ( f ,  e ) .  Now 
it is seen that 

and thus controllability is equivalent with observability. 
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