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Nonlinear inner-outer factorization 

A.J. van der Schaft * J.A. Ball t 

Abstract 

It is shown how the method for inner-outer fac- 
torization of stable nonlinear state space systems 
as put forward in [11] may be extended to the 
non-invertible case by replacing a Hamilton-Jacobi 
equation by a dissipation inequality. The construc- 
tion of the outer factor is based on the factorization 
of this inequality. 

In linear control theory inner-outer factorization (or more 
generally J-inner-outer factorization) of rational matrices 
has played an important role e.g. in the theory of 'H, op- 
timal control. In linear as well as in nonlinear theory [lo], 
(161, [6] it has been argued that the control design of non- 
minimum phase stable systems can be based upon the in- 
verse of the minimum phase (outer) factor, with the inner 
factor remaining as a limiting element in the closed-loop 
system. In a series of papers, see e.g. [2], [3], [I], Ball and 
Helton have investigated inner-outer factorization of non- 
linear input-output operators and of nonlinear state space 
systems in discrete time. In the present note we will study 
inner-outer factorizationof nonlinear state space systems in 
continuous time, using a quite different approach. Indeed 
our method will be a kind of "nonlinear spectral factor- 
ization" and concentrates on finding first the outer factor 
(instead of starting with the inner factor). The present 
paper is a continuation of [12] where the invertible case has 
been studied, and concentrates on the non-invertible case. 
More details will appear in [4]. 
Consider a (smooth) nonlinear system 

i: = a(z)+b(z)u,  U E  R" 

y = c(z)+d(z)u,  y E RP 
E : (  (1) 

where z = ( ~ 1 , .  . . ,z,) are local coordinates for the state 
space manifold M ,  with globally asymptotically stable equi- 
librium 0 (thus a(0)  = 0). Without loss of generality we 
assume c(0)  = 0. The problem of inner-outer factorization 
consists in finding a lossless nonlinear system 0 (the inner 
factor) and an asymptotically stable and minimum phase 
nonlinear system R (the outer factor), such that symboli- 
cally 

C = O . R .  (2) 

By this we mean that for every initial condition of C there 
exist initial conditions of 0 and R such that the input- 
output behavior of C equals the input-output behavior of 
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the series interconnection of R followed by 8. 
Let us recall [14] that a nonlinear system (1) is called 

lossless with respect to  the supply rate f 11 U IIz -f )I y 
if there exists a function V ( z )  2 0 (the storage function) 
such that 

V ( z ( t l ) ) - V ( z ( t o ) )  = ;&'(I1 u ( t )  1 1 2  - II ~ ( t )  l12)dt(3) 

for all to,tl and U(.), or equivalently, if V is C', 

V z ( z )  [a(.) + b(z)ul= 
( 4 )  

I T  TU U - f [c(z) + d(z)uIT [c(z) + d(z)u] 

for all r ,  U. (Vz(z) denotes the row vector of partial deriva- 
tives of V(z).) Taking t o  = 0 and tl = 00 in (3), it follows 
that (1) is L2-norm preserving Furthermore, a nonlinear 
(1) is called minimum phase if 0 is a Lyapunov stable equi- 
librium of its zero-dynamics [8]. 

Our approach for constructing the outer factor R runs 
as follows. First we consider the Hamiltonian eztension of 

- x ( z ) u a  BTc - u T 9 ( z ) u a ,  U. E RP ( 5 )  

y = 4.) +d(z)u, 

Yo = bT(z)p + fl(z)ua, y a  E R" 

which is Hamiltonian system living on T'M (with co- 
ordinates ( z , p ) ) ,  having inputs (u,ua) and outputs ( y ,  y.). 
Imposing the interconnection U, = y to ( 5 )  leads to the 
Hamiltonian system 

x = % ( z , p , u )  

C'C: p = - E ( z , p , u )  

BH 
Ya = Z ( ~ ~ P , U )  

with Hamiltonian function 
qz, P ,  U) = PT [a(.) + b(Z)UI + 

(7) 
f [c(z) + d(z)uIT [c(z) + d(z)u] 

Note that for a linear system (1) C'C reduces to the series 
interconnection of C and its adjoint linear system C', hav- 
ing transfer matrix GT(-s)G(s) (G(s) being the transfer 
matrix of E). In [12] we have shown how to obtain the 
outer factor R by "spectral factorization" of the Hamilto- 
nian system C'C, assuming the invertibility condition 



E ( z )  := dT(z)d(z) is invertible for all I (8) 
In fact, if (8) is satisfied then we may directly compute 
the inverse system (C*C)-'. The outer factor R is now 
obtained by computing the stable invariant manifold of the 
inverse system via the Hamilton-Jacobi equation in P ( z )  

Pz(.)[a(z) - b( z)E-'(  x)fl(~)c(~)]+ 

gc"( z) [ I p  - d(z)E-l(  x)dT(z)]c( x)- ( 9 )  

g P z ( I ) b ( I ) E - ' ( I ) b T ( x ) P ~ ( x )  = 0, P(0)  = 0, 

with Pz(z) = (E(z);..,E(z)). Factorizing E ( z )  = 
&"(z)d(z) as 

d T ( z ) d ( z )  = Z(z)d(z) (10) 

for some m x m matrix d ( r )  (this may be always done; 
however for d to depend smoothly on x we need to invoke 
Morse's Lemma), the outer factor is now given as 

j. = U(.) + b ( x ) ~  

j j  = ?(x) + ( S ( Z ) U  

,U E R" 

, y E R" 
R :  { (11) 

?(z) = J(z )E- ' (x )  [dT(z)c(x) + bT(z)P,T(x)] 

In this paper we will concentrate on the non-invertible case, 
i.e. if (8) is not satisfied. First of all, we note that (9) 
is the Hamilton-Jacobi-Bellman equation corresponding to 
the cost-functional (with 10 the initial condition) 

for E, and that H as given in ( 7 )  is the pseudo-Hamiltonian 
of the Maximum Principle. If (8) is not satisfied then this 
optimal control problem is singular. Our approach will be 
heavily motivated by the work of Hill and Moylan [7], and 
the work of Willems [15] and Schumacher [13] on singular 
LQ-control where it is shown that the Riccati-equation for 
the regular LQ optimal control problem may be replaced 
by a natriz inequality in the singular case. We define the 
optimal cost for any LO as 

P'(z0) = inf(J(z0,u) I U admissible, z(co) = 0}(13) 

Assumption 1 P+(zo) exists for every TO, and P+ is a 
smooth function on M .  

We now consider the dissipation inequality correspond- 
ing to the pseudo-Hamiltonian (7) 

e - ( x ) I a ( z )  + b(Z)UI+ 

;[.(I) + d(z)u]T(c(x) + d(z)u]  2 0, P ( 0 )  = 0, 
(14) 

which should hold for every z and U. It immediately follows 
from (13) that P+ satisfies (14). Furthermore (compare 
~51,1131) 

Proof Let P be any solution to (14). Consider any in- 
put function U on the time-interval [0, TI, and integrate 
(14) from t = 0 to t = T for this particular U to obtain 

P(,(T)) - P ( x ( 0 ) )  + f I," II y 112 dt  2 0 (15) 

Now let U be defined on ( 0 , ~ )  such that i-03 lim x ( t )  = 0. 
Then it follows that 

and thus by definitionof P+ weobtain P+(z(O)) 2 P ( x ( 0 ) )  
0 

Thus P+ is completely characterized as the maximal 
solution to (14), and, in principle, may be computed this 
way. 
Now consider the following smooth function of x and U 

for all ~ ( 0 )  E M .  

K + ( I , u )  := P,'(z) [a(.) + b(z)u]+ 
(17) 

[c(z) + d(x)uIT [c(z) + d(x)u] 
Clearly, IC+(O,O) = 0 and K+(r ,u )  2 0. Our next main 
assumption is 

Assumption 3 There exists a smooth mapping G : M x 
R"' -+ R' for some p E N, such that 

(18) 
1 -  K+(z ,  U )  = -G"(z,u)G(z, U)  2 

Note that without the smoothness assumption Assump- 
tion 3 is trivially satisfied since we may take = 1 and 

Sufficient conditions for the local existence of a smooth G 
satisfying (18) are provided by the following generalization 
of Morse's Lemma: 

L" 4 Suppose the Hessian matrix of I {+ ,  i.e., 

G ( x ,  U) = JM. 

has constant rank, say j, on a neighborhood of ( x , ~ )  = 
(0,O). Then locally near (0,O) there exists a C" mapping 
G : M x Rm -t RI' such that (18) is satisfied. 

Proof Can be based on [9]. 0 

Now let us define the new system E, defined as 

j . = a ( z ) + b ( z ) u  , u E R ' "  , z E M  

(20) 

Proposition 2 Let P satisfy (14), then P ( z )  5 P+( I ) ,  for 
all x. 

It can be readily checked that in the invertible case (i.e. 
E ( z )  = fl(~)d(z) being invertible) c coincides with R 
given in (11). We claim that also in the non-invertible case 
2 is the outer factor of E. In order to prove this we first 
consider the dissipation in equality (14) for c, i.e., 
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PJz) [a(.) + b(z)u] + ;Q(z,u)G(z,u) 2 0, 
(21) 

P ( 0 )  = 0 

L e m m a  5 The maximal solution P+ to (21) is P+ = 0. 

Proof Clearly P = O satisfies (21). Let now P 2 O satisfy 
(21). Then by adding (21) and (14) for P = P + ,  and using 
(17), (18) we conclude that P+ + I‘ is a solution to (14). 

0 By Proposition 2 this implies P = 0. 

This lemma is instrumental in proving the main result: 

T h e o r e m  6 The zero-dynamics of E is not exponentially 
unstable. 

For the proof, based on Lemma 5 and a linearization idea 
(making use of the linear results described in [13], [15]) we 
refer to [4]. It follows that if the zero-dynamics of E does 
not have imaginary eigenvalues, then it will be actually (lo- 
cally) asymptotically stable, and thus E is an outer factor 
of C! 
The inner factor 0 of C is now easily obtained, at  least in 
the following “right factorization” format: 

i = a ( z ) +  b(z)u 

(22) 

g = G(z,u)  

(with driving variables U). Indeed, by considering (14) for 
P = P+ and (18), we obtain 

implying that 0 is lossless (from y to y ) ,  with storage func- 
tion P + .  
An explicit input-output representation of 0, however, may 
not be easily obtainable, due to non-invertibility of E(z )  = 

A useful property of the inner factor E is that E and C have 
the same static gains, in the following sense. Consider the 
set of all controlled equilibria for C ,  i.e., 

f l ( x ) d ( x ) .  

E, = {(z,~) E M x Rmlo(z) + b(z)u = 0) 

L e m m a  7 Consider C and E. For every (z,~) E E, 

(24) 

II 4.1 + d b b  11=11 G ( z , u )  I I  (25) 

(or equivalently 11 y 11=(1 y 11). 

Proof Consider the equality 

PrYzN4z) + b(z)uI+ 

f[c(z) + d(z)uIT[c(z) + d(z)u] = 

;G=(z,u)G(z,u) 

(26) 

on E,. 0 

Thus, if we compare the step responses of C and for 
every constant input U, then the static gains of C and 
(assuming that the corresponding controlled equilibrium 
( z , ~ )  of i = a(.) + b(z)u is (globally) asymptotically sta- 
ble) are equal. Thus for output set-point control of C one 
may also consider its outer factor 2, which is asymptoti- 
cally equivalent to C. The control of C thus can be based 
on 2, and since 2 is minimum phase, inversion techniques 
can be applied. This idea, which generalizes an old idea in 
linear control theory (see e.g. [lo]), is discussed in [IS], 161. 

_____ ~ - _ _  
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