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CHARACTERIZATION OF HAMILTONIAN INPUT-OUTPUT SYSTEMS

P.E. Crouch '
Department of Electrical and Computer Engineering
Tempe, AZ 85283, U.S.A.

Abstract

In this paper we review recent results on
characterization of Hamiltonian Input-Cutput systems,
which have been obtained by the authors and B.
Jakubczyk. We give three characterizations and develop
their interrelationship.

1. Introduction

In this paper we describe results obtained by the
authors and B. Jackubczyk concerning realization theory
for Hamiltonian input-output systems. The particular
aspect we stress here is the characterization of
Hamiltonian input-output systems as a subclass of all
input-output systems. For our current purposes we
define an input-output system as one which has a finite
dimensional state space representation in the following
form

. m
) x = f(x,u) , xeM, ue R R
y = h(x,u) ye RD
where M is an analytic manifold and for each ueQ,
x+f(x,u) is a complete analytic vector field on M. We
assume also that the maps (x,u)» f(x,u) (x,u)> hix,u)

are analytic. Let ZL denote the subclass defined by
equations

. m M

7Uox = g (x) + 3 uigi(x) , XeM, ueQ<R

i=1

vys 00, j=1....p ye RV,

Before we define the subclass of Hamiltonian input-
output system we discuss some important external (state
independent) representations of input-output systems.
The input-output map representation of a system
consists of a causal mapping F:U[o,=)>» Y[o,=) where
Ul(a,b)] is the class of Q-valued piecewise constant

functions on [(a,b)], and Y is the class of RP-valued
continuous functions on [(a,b)]. F has a realization
by an input-output system ) in case there exists an
initial state xoeM such that the input ocutput map

defined by the initialized system } coincides with F.

There are two specific parameterizations of input-
outputs maps which interest us here. If we evaluate F
on particular elements of J[o,=) for a system ) we
obtain
"
F[(tT,u1)(p2,u2)...(tk_1,uk_1)uk)

k=1 1
=h oY o ...oY (x.) m
u, tr-T t1 o]
.
where (t1,u1)(t2,u2)...(tk_1,uk_1)uk , iis R denotes a
k-1

piecewise constant control on [o, ) ti], and if h, (%)
i=1

u

t

the flow of the (complete) vector field fu.

= h(x,u), fu(x) = f{(x,u) then (t,x) = Y, (x) denotes

We now
write

Quy..wuy) = - 'ti=OF ((tw,u1)(t2,u2)...

(2)
.) (x,).

Clearly Q(u1... £ (....(f (hu )N

1 Yp-q Uy
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Formally we may express the input-output map F in the

form F = § Qw)w , where M is the monoid constructed
weM

from the set of words on @, see Jakubeczyk [13], for

further details concerning realization theory based on

such representations. Note also that in the particular

7L, .
case of systems ) the expressions
Q(uw..uk) specialize to the coefficients in the Chen

series or generating series parameterization of the
input-output map, (see Fliess [6] for details). For
this reason we do not explicity need such a
parameterization here. The second parameterization of
the input-output map we consider applies only to the

L . .
systems Z , and is known as the Volterra series, which
Wwe denote by

t
yt) = Wo(t) + j W1(t,01)u(01))dc1 toaien
o
(t (OT (UK'i
+ J J e j wk(t'aw""Uk)U(°1))d01"'dUk
o o o
e, 820, (3

Here wk(t,s ) is a k-linear Rp valued mapping on

1%
Qc Rm. See [4] for detailed expressions for the
kernels in terms of the system data.

The input-output behavior representation of a
system Z consists of the set of all pairs (u,y) where
ug U(-», «) and ye Y(-», «), such that there exists an
absolutely continuous M valued function x on (-=, =),
with the property that the mapping t - (u(t), y(t),
x(t)) satisfies the equations a.e. on (-», ®),
Denote this set by Ze’ and denote by Zi the set of all

3~-tuples (u,y,x) where (u,y)sZe and x is a correspond-

+
ing state trajectory. Denote by Zi (0)(x,), the set of

all 3-tuples (u,y,x) where u,y,x are functions defined
on [0,=) coinciding with the restriction of functions

U, ¥, x on (-=, =) such that (u, y, x) ¢ Ei and x(o) =

+ +
Xo'ze (0)(x ) is defined as the projection of Zi

(o)(xo) onto the set of pairs (u,y). Note that

Z;(o)(xo) is in fact the same object as the input
output map F defined by system Z initialized at Xy

For initialized, analytic systems satisfying a
completeness assumption the existence and uniqueness of
minimal realizations of input-output maps is well
understood, Sussmann [23], Jakubczyk [11]. Even in the

Ck and local cases many results are still valid [12],
[6]. However the corresponding theory based on the
input-output behavior representation of input output
systems is still in its infancy. (See Fliess [7]
concerning the differential equation representation),
In any case we shall not concern ourselves here with
conditions under which a given external representation
admits a realization by an input-output system.

We say Z is a Hamiltonian input-output system if M
can be given the structure of symplectic manifold
(M,w), with sympletic form w, with respect to which for



each fixed ue@, f(x,u) is a locally Hamiltonian vector
field, and for each xosM there exists a neighborhood U

of xo such that on U, Z can be written in the form
: - S
ZH X = XHu(x) v = )
P
Xe UcM ueQ R, m = p.

That is on U, for each fixed u, X is a globhal

H
u

Hamiltonian vector field with Hamiltonian function x -

Hu(x) = H(x, u), (w(XH VZ) = = dHu(z) for all vector

u

fields Z on U) See Van der 3Schaft [20] for details
concerning this definition., Note that we do not insist
that f(x,u) is a global Hamiltonion vector field on M.

L C s
In case of an input-output system Z , this definition

reduces to the fact that we may rewrite the system in
the form

m
L : . nP
P x = g (x) +iz1 uy xHi(x> , XeM, ueQ<.R
y; = H,0x) o, 1i<p , m o= p.
Here X are global Hamiltonian vector fields on M with

H,
i

Hamiltonian functions Hi’ and go is a locally

Hamiltonian vector field with locally defined
Hamiltonian function Ho' We say Z is a secondary

Hamiltonian input-ocutput system it has a representation
as above but in ZH we have y = H(x,u). There is some

reason to believe that the first definition of
Hamiltonian input-output system given above is more
natural from the systems theory point of view., 1In this
paper wWe consider the characterizations of Hamiltonian
input-output systems in terms of the external
representations described above. In section (2) we
will discuss an intermediate state space
characterization, which plays a vital role in the work
developed by the authors[5], and summarized in [19].
In section (3) we will discuss the characterization of
Hamiltonian systems in terms of the input-output
representation, principally the work of B., Jakubczyk
(103, [9], and in section (4) give a discussion of the
characterization in terms of the input-output behavior
as obtained by the authors.

2. The Self-Adjointness Criterion

For simplicity we consider only the class of

systems EL. Take an arbitrary, but fixed, input
function u(t), t ¢ [0,T], such that the solution x(t)

of ZL remains within one coordinate neighborhoocd of M.
This also yields an output y(t), t ¢ [0o,T]. Along this
input-state-output trajectory (u,x,y) the variational
system is given by

V(L) = Dgy(x(t)) v(t) + uy(t) Dg(x(6)) v(t)

+

Ca
Weg 3

—_

v
uj(t) gj(x(t)) (®

e

yz(t) = DH (x(6)) v(£), § = 1,...,p, ¥(O) = O ¢ R¥

where D denotes taking the Jacobian matrix.

v
Yo )
denote the inputs and outputs of the variational
system, and are called the variational inputs and
outputs. This nomenclature is explained as follows.
Let (u(t,e), x(t,e), y(t,e)), t ¢ [0,T], be a one-

L
parameter £amily of solutions of } with u(t,o) = u(t),
x(£,0) = x(t) and y(t,0) = y(t), t ¢ [0,T], called a

v v
Furthermore u' = (ulv,..., umv) and y = (¥, ,...
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variation of (u,x,y) then we have

(sult), sx(t), sy(t)) = (u'(t), vit),y (t)), telo,T]
where (su(t), Bx(t), Sy(t))
(3u 3x 3y

(Fele,0), 22(¢,00, £5(¢,0))
is called the variational field along (u,x,y).

Along this same trajectory (u(t), x(t), y(t)), t ¢
[0,T], the adjoint system is defined as the dual linear
time-varying system

. T n T
-p(t) = Dgo(x (t))p(t) + uy ng (x(¢)) p(t)
J=1
p
)

=1
yj) - gg (x(£)) p(t) 3 = 1,000, m, p(O) = 0 ¢ RS

a T
uj(t) DHj(x(t)) (5)

a

with inputs u = (u,a

, upa) and outputs ya =

(y,a,...yma) . For any input functions uv(t) and ua(t)
it follows from (4) and (5) that

L v = R o - gYenhie) e

a a
Moreover, if a system with inputs u  and outputs y

satisfies (6) for any uV and yv then it is equal to the
adjoint system [5]. Hence the adjoint system is
uniquely determined by the variatiocnal system. The
variational and adjoint systems are only defined
locally along a trajectory (u(t), x(t), (y(t)), t ¢
[a,b], such that x(t) remains within one coordinate
neighborhood. However, global (and coordinate free)
definitions can be given if we combine the original
system together with all its variational or adjoint

systems. Equations (ZL together with (11) define the
prolonged system, or prolongation, which has state

m
space TM (local coordinates (x,v)), input space T R

(local coordinates (u, uv)) and output space T Rp

(local coordinates (y, YV)). Equations EL together
with (5) define the Hamiltonian extension, which has
state space T*M (local coordinates (x,p)), input space
Rm X Rp (local coordinates (u,ua)) and output space Rp
x R™ (local coordinates (y,y™)).

The input-output map of the variational system

along a trajectory (u(t), x(t),y(t)) of ZL is given by

£
y () = f W, (t,0,u) u'(0) do, t,0 3 0 "
0
where wv(t,c,u) is the pxm matrix with (i,j) - th
element
DH, (x(t)) & (t,0) g (x(a)) (8)

u
and the transition matrix & (t,¢) is the unique
solution of

m
%E ¢%(t, o) = [Dg (x(£)) + I

u, (t)Dg,(x(£))1e (L, 0)
jo1 3 3

(9)

@u(c,c) is kxk identity matrix
It is easily seen that wv (t,o,u) exists for all t,
g 4 0 and also can be defined in a coordinate free way

[5]. Similarly, the input-output map of the adjoint
system is given by



nwv

y26) = | W (t,0,u) u?(a) do, t, 0 =0 (10)

Ot

and wa(t,c,u) is determined by wv(t,o,u) since [5]

wa(c,c,u) = -W:l(o,t,u) for all u (11)

Definition A variational system along an input u is
called self-adjoint if

wv(t,o,u) = wa(t,o,u)(=—w3(c,t,u)) for all t,cZO (12)

(in particular p = m) @

Note that from (7) it follows that a variational system
v a
is self-adjoint if for any input u (t) = u (t) we

>
have %E pT(t) v(t) = 0 and hence pT(t) v(t) =0, t = 0.

We can now state the main theorem of this section.
Recall that usually a nonlinear system is called
minimal if it is observable and accessible. Because an
observable and accessible Hamiltonian system is
necessarily strongly accessible, we shall henceforth
call a system minimal if it is observable and strongly
accessible. The following results are contained in

(51,

L . .
Theorem 2.1 A minimal system ) is Hamiltonian if and
only if all the variational systems along any piecewise
constant input are self-adjoint. =

We shall only sketch tre basic steps in the proof.
The "only if" direction is straightforward. For the
"if" direction we note that all variational systems are
self-adjoint if the input-output maps of the

prolongation and of the Hamiltonian extension of ZL
coincide. If both the prolongation and Hamiltonian
extension are minimal, this yields by the Sussmann
uniqueness theorem on minimal realizations [22], an
isomorphism between the two systems:

L
Theorem 2.2. A system )} is minimal if and only if the
prolongation is minimal, if and only if the Hamiltonian
extension is minimal. a

Hence, since ZL is minimal, there exists a unique
diffeomorphism ¢ from the state space TM of the
prolongation to the state space T*M of the Hamiltonian
extension. The next step is to show that ¢ is a
vector-bundle isomorphism which is the identity on the
base space M, or equivalently, ¢ is locally of the form
e(x,v) = (x, p = w(x)v), with w(x) an invertible

matrix. From the uniqueness of ¢ it follows that w(x)
k

is skew-symmetric. Hence w: = z wij (x) dxiA dxj,
i, j=1

where mkj(x) the (i,j)-th element of w(x) defines a

non-degenerate two-form on M. The hardest part is now
to show that w is also closed, and so defines a
symplectic form. It then follows quickly that the
system is Hamiltonian with respect to this symplectic
form.

We note that the extension of theorem (2.1) to
systems Z is also worked out in [5] and is accomplished

by introducing the extended system, X = f{x,v), v = u,

y = h(x,v), u,ve Rm, XeM, ye Rp, and applying theorem

(2.1).
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3. The Input-Output Map Characterization

We state first the initial result, characterizing
linear Hamiltonian systems, That is, an input-output
t

map y(t) = J W(t-s)u{s)ds , t 2 0, which has a finite
o)

dimensicnal linear realization, i = AX + Bu,y = Cx,
x(o) = L has a Hamiltonian realization if and only if

W(t) = -w(—t)T for t > 0. This result obtained by
Brockett and Rahimi [2], bears a very close resemblence
to our theorem (2.1); and indeed follows from it since
the variational system of a linear system is itself.
However it may also be viewed as a distinct result,
yielding a characterization of a Hamiltonian system
directly in terms of the input-output map. We pursue

this for more general systems Z. (Note that for linear

systems W(t) is an analytic matrix valued function, so
W(-t), t > 0 is defined from W(t), t > 0 by analytic
continuation). -

The linear result was first generalized in Crouch
and Irving [3], to input output maps defined by Finite
Volterra series. We do not give this result
explicitly, but see the remark after theorem (3.3).
The next result characterizes secondary Hamiltonian

input-output systems in terms of the maps (2). We need
some notation in this regard. Let
Q(ul..[uk,uk§1] ...un) = Q(ul"'ukuk+1“'un)
- Q(ux...uk+1uk...un)

and define Q(ul...[uk...ur]...un) by induction
Qlu ... N Ve = PN e

(u, [uk ur] un) Qlu, [uk ur-1]ur"‘un)

- Q(ul...ur[uk... ur_1]...un)

(13)

Theorem 3.1 Jakubezyk [9] [10]

Suppose that an input-output map F has a
realization by a minimal input-output system Z (with @
compact ), then 2 is a secondary Hamiltonian system if
and only if either

(1) Qllupeu D o= kQluyeiu )y k2 2, uy e Q
or
(ii) Q(Eul...uk]v,...vr) * vy Jupeoiu)

K
0, k, r 21 ui vi e 8]

(1w

To determine realizability conditions for Hamiltonian
systems ZH’ Jakubczyk introduces the following maps,

8 L) 3
Q(Ul---uk) = 5?7"'8tk_1
t.=0
1
(15)
&
| POt u) .. ey qu o duddu
Yk-1



Theorem 3,2 Jakubcezyk [9] [10]

Suppose an input-output map F has a realization by
a minimal input-output system } (with Q compact), then

Y is a Hamiltonian system ZH if and only if the maps, Q

satisfy either of the conditions (i), or (ii) of
theorem (3.1). =

So far the conditions in theorem (3.1) and (3.2)
are unrelated to the criteria introduced in the
previous section. A link is provided in the following
result, see [5],

Theorem 3.3

Consider an input-output map which has a minimal

realization by a system ZL and which is represented by
a Volterra series (3). Then all variational systems of

EL are self adjoint if and only if the Volterra kernels
satisfy

wn<[°°’°1“‘°k]° cee0 )=(k+1) W (0500 00,0000,)

k+1

for k > 1, n> 2. (16)
o

Note that theorem (2.1) shows that the conditions

. L
(16) are necessary and sufficient for E to be
Hamiltonian. 1In the case of finite Volterra series
this result was proven directly by Crouch and Irving
[3). The bracket operation on the kernels in (16),
defined in a similar way as the bracket on Q in (19),
was first introduced in Crouch [4]. Again there is no
ambiguity in the conditions (16), even though nominally
the input-output map provides the kernels. wn on the

domain ¢4 > 0; >... > 0., because for analytic systems

n
the kernels are also analytic, and the values of the
kernels on Rn” are determined uniquely by analytic

continuation., The relationship between the conditions
(16), and the conditions (14) and (15) 1is not

particularly simple because the affine nature of ZL is
heavily employed to obtain the conditions (16).
However, the underlying resemblence between the
conditions does have a common link -- that of the
Dynkin, Specht, Wever criterion for Lie elements in a
free algebra, (See [15]) and comes about because in all
three theorems (3.1), (3.2) and (3.3), when ] is

Hamiltonian Q, 5 and wn have the form of iterated

Poisson brackets for which the Lie structure is defined
by the conditions (14), (15) and (16). This
observation then suggests the possibility of
generalizing all these results so far obtained to more
general Poisson systems, whose underlying geometric
structure is a Poisson structure, not a symplectic
structure. This generalization is worked out in
Jakubezyk [14].

4., The Variational Criterion

In this section we again consider systems ZL for
simplicity, although similar results are valid for more
general systems Z We shall usually identify a
variational field along a given trajectory with the
variation of the trajectory itself. We restrict
ourselves to piecewise constant inputs and piecewise
constant variations, so for example any variational

field along an input u may be generated by a variation

ult,e) = ult) + ¢ sult)

where Su(t) is piecewise constant. The main technical

concept i% now introduced.

1426

Definition (du, 8y) is called an admissible variation
of compact support of (u, y) Z; (0) (xy) if

(1) su(0) = 0, and supp Su is compact

(i1) Supp 8y € supp 6u

(1ii) Let supp su< (0,T) and let (u', y') ¢ Z; (0)

(x,) be such that uw'(t) = u(t) and hence y'(t) = y(t)

for t ¢ [0,T]. Define a variation u'(u,e) of w by
setting u'{t,e) = u'(t) + esul(t). This yields a

variation (u'(t,e), y'(t,e)) of (u', y'). We require
that the resulting (infinitesimal) variation (8u', &y')

of (u', y') also satisfies (ii), i.e.

8uppdy'c supp du' = supp Su. [n]
Admissible variations (éu, &y) of (:1, ;') with supp

Su<(0,T) can be fully characterized in terms of the

kernel W, (t, o, U) of the variational system (4) along

(u, x, y) as defined in (8) and (9). Since the

transition matrix - in (15) satisfies ¢u(t,c) =

¢u(t,o) 8%(0,0), we may write
W (t,0,u) = G(t,u) H(o,u)

with G(t,u) an mxk matrix and H(g,u) a kxm matrix.

Theorem 3.1 Let ZL be a minimal system. A variation
- - +
(8u, &y) of (u, y)eze (0) (x) with supp su<(0,T) is

admissible if and only if
T

f H(g,u) & uloe) dg = 0
0

a7

Furthermore let (u, X, 3_/) be the corresponding element

of Z: (0) (x5). Then (8u, 6y) is admissible if and

only if supp éx<supp éu, and hence 6x (T) = 0.
Consider now the Hilbert space H = L, ([0,T], "),

and let D be the dense subspace of piecewise constant
right continuous functions. Let S be the finite

-.T
dimensional subspace of H defined by S = {H(+, u)

k
X; e R}, It follows that su satisfies (23) if and
only if su ¢ DN s+ , where . denotes the orthogonal
complement in H. Hence the admissible variations

(8u, 8y) of (u, y) with supp éu « (0,T) are in one-to-

one correspondence with the functions in D i 8% .

Sinece D is dense in H it follows (e.f. [5]) that D Ao st
is dense in S8+ , and so there are a great many

admissible variations of compact support. One of the

main results in [5] is

L
Theorem 3.2 Consider a minimal system } . The system

is Hamiltonian if and if for any (u,y) ¢ Z; (0) (x4)
and admissible variations (&;u, &;¥) of (u,y) with

compact support, i = 1,2, we have

f [62 y(t) 8, u(t) - 6? y(t) szu(t)] dt =0 (18)
0 o



So far we have only considered minimal systems.
However the self-adjointness as well as the variational
¢riterion are expressed solely in terms of the
(variational) input-output behavior of the system.

+
Also a non-minimal system with external behavior Ze (0)
(xo) has a minimal realization with this same external

behavior (where minimal means observable and
accessible, c.f. [22]). It may therefore be expected
that if a non-minimal system satisfies these criteria
then a minimal realization will be Hamiltonian. The
only flaw in this argument is that an observable and
accessible Hamiltonian system is necessarily streongly
accessible, Let L be the smallest Lie algebra

containing g4, 8, «+., S and LO the ideal in L
generated by g,, ..., gn
Theorem 3.4 Let EL be a nonlinear system such that

o e L,
8y (x4) € Lo(xo). Then a minimal realization of } is

Hamiltoniar if and only if every variational system
along any piecewise constant control u is self-adjoint,

'
if and only if along any (u, y) ¢ Ze (0) (xy) and for
any two admissible variations (éiu, Giy). i=1,2, of

(u,y) with compact support; condition (18) is
satisfied. A

The condition go(xo) € Lo(xo), of equivalently
L(xo) = Lo(xo) simply means that an accessible

realjization is also strongly accessible, Ir
go(xo) é Lo(xo) then we have to take recourse to time-

varying Hamiltonian systems as explained in [8].
Note that for minimal Hamiltonian realizations the
internal energy HO need not be globally defined, 0On

the other hand there always exists a Hamiltonian

realization Z; for which H. is globally and Z; is

0
quasi-minimal (strongly accessible and weakly
observable).

As the complexity of the statement of theorem
(3.2) suggests this characterization of Hamiltonian
systems is not particularly well suited to the input-
output map representation. As we now show it is far
better suited to the input-output behavior
representation introduced in section 1., We restate our
principal definition in this context.

Definition (&§u, 8y) is an admissible variation of

compact support of (E, ;) € Ze if

(i) supp Su is compact
(i1) supp 8y < supp &u
(1ii) Suppose supp 8 uc [T,, T.), ;(Tl) =

Xp s x(T,) = xp . Let (u', A I, be such that it

2

coincides with (u, x, y) for t ¢ Ty, T,). Define a
variation u' (t, e) of u{t) by setting u'(t,e) =
u(t) + ¢ 6 ult). This yields a variation (u' (t, e),
y' (t, €)) of (', y).
(infinitesimal) variation (éu’ Sy') of (ﬁ', §') also
satisfies (ii), i.e. supp 6y'c supp &u' = supp su. O

We obtain a direct analogue of Theorem 3.1 and the
following improved version of Theorem 3.2 (See [5].)

We require that the resulting

1427

Theorem 3.5 Consider a minimal non-initialized system

ZL. Every variational system is self-adjoint (or
equivalently (Theorem 2.1), the system is Hamiltonian),
if and only if for any (u, y) ¢ Ee all admissible

variations (siu. 6iy) of (u, y) with compact support,
i =1,2, satisfy

}m
J

-

[GE y(£)§, ult) - cf y(t)s, u(t)] dt = 0 (19)

Furthermore we have (See [5])

Theorem 3.6

Hamiltonian system EL.

Consider a minimal non-initialized

Let (u, y) ¢ Ze and suppose

that (u, y) also belongs to the external behavior Ee of

some other minimal (not necessarily Hamiltonian)
system, with the same state space M. Let (Du, Dy) be
an admissible variation of (u,y) of compact support

where (u, y) is viewed as an element of ie' If every

admissible variation (§u, 8y) of (u, y) with compact
support, where (u, y) is viewed as element Ze,

satisfies

+®

[

T T

J Dy (t) su(t) - 6 y(t) Du(t)] dt = 0

-
then (Du, Dy) is also an admissible variation with
compact support of (u, y) viewed as element of Ze'

Theorems 3.4 and 3.5 have the following formal
interpretation. Consider the "manifold" of maps NM o’

?

L
defined as the union of all behavior sets Ee as §
ranges over all non-initialized minimal systems, with

m
state space M and input space R'. On this manifold we
suppose the "tangent space" to it at (u, y), denoted

Tu, y) Ny o 3 sugested by (19), i.e.,

U(u'y) ((61U, 61Y)1 (5zu, Szy))

+o

- { Cay(t) 6,ult) - 6 3y(t) §,u(t)]) dt

Consider now a Hamiltonian system Z onM with m inputs.
Then ze is a "submanifold" of Ny .. Now Theorem 3.4
L

implies that the sympletic form pu is zero restricted to

Ze’ or equivalently, Ze {s an isotropic submanifold of

NM o On the other hand Theorem 3.5 implies that Ze is
’

also a coisotropic submanifold. Hence the following

corollary, stated as a conjecture in [20], is formally

proven.

Corollary 3.6 A minimal non-initialized system ZL on M
is Hamiltonian if and only if Ee is a Lagrangian

submanifold of NM,m' o
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