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Abstract 
A preprocessor based on ( I  computational model of 
simple cells in  the mammalian primary visual cortex 
is combined with a self-organising artificial neural net- 
work classifier. After learning with a sequence of in- 
put images, the output units of the system turn out 
to  correspond to  classes of input images and this cor- 
respondence follows closely human perception. In par- 
ticular, groups of output units which are selective for 
images of human faces emerge. In  this respect the out- 
put units mimic the behaviour of face selective cells 
that have been found an the inferior temporal cortex 
of primates. The system as capable of memorising am- 
age patterns, building autonomously its own internal 
representations, and correctly classifying new patterns 
without using any a priory model of the visual world. 

1 Introduction 
The system described in this paper was inspired by 
two facts which are known from neurophysiological re- 
search on the visual cortex of primates. The first fact 
is that the majority of neurons in the primary visual 
cortex react strongly, in one way or another, to ori- 
ented lines, line and curve segments, bars and edges 
5, 61. The second fact is that in certain hierarchically i iigh areas of the visual cortex of monkeys, more pre- 

cisely in the inferior temporal cortex, cells have been 
found which react selectively to very complex visual 
patterns, such as faces [3, 111. (The availabilityof sim- 
ilar cells in the human visual system can be inferred 
from face recognition related deficits that can result 
from local neurological impairment due to lesions in 
the inferior temporal cortex.) 

As to  the first above mentioned fact, the extens- 
ive neurophysiological studies carried out in the past 
three and a half decades have resulted in a consider- 
able understanding of the organisation and function 
of trhe primary visual cortex and led to computational 
models of primary cortical cells based on so-called re- 
ceptive field functions (see e.g. [2, 41). On the basis of 
such models, one can compute quantities which cor- 
respond to the activities of primary visual cortex cells 

when an arbitrary input image is projected on the ret- 
ina, i.e. one can compute (an approximation to) the 
primary cortical representation of that image. 

As to the second above mentioned fact, at present 
there is no computational model of face selective and, 
more generally, class selective cells. The mere fact 
that such cells exist is, however, an important hint 
for computational modeling and research, in that it 
is an experimental evidence that the classification of 
complex visual stimuli proceeds in a convergent way, 
this means, the presence of a stimulus which belongs to  
a given class is ultimately signaled by individual cells 
rather than by the collective activation of a population 
of remote cells. 

Unfortunately, the facts known about the cortical 
areas between the primary cortex and the cortical 
areas in which face selective cells are found are not 
sufficient to complete the picture and become able to  
set up a full computational model allowing automatic 
classification according to and with the efficacy of the 
mechanisms employed by natural visual systems. In 
this study, a self-organising artificial neural network is 
used to bridge this gap in our knowledge of the visual 
system and to set up an artificial image classification 
system. 

In Section 2, a computational model of simple cells 
in the primary visual cortex is presented and the con- 
cepts of cortical filters and images are introduced. 
A self-organising artificial neural network structure 
which consists of two consecutive layers of Kohonen 
networks is given in Section 3. Section 4 gives some 
implementation details and summarises the results. 

2 Cortical filter bank preprocessor 
The receptive field of a visual neuron is the area of the 
visual field within which a stimulus can influence the 
response of the neuron. For several classes of visual 
neurons, such as the retinal ganglion cells, the cells 
in the lateral geniculate nuclei and the simple cells in 
the primary visual cortex, it is possible to introduce a 
receptive jield function g(x, y )  which can be used as an 
impulse response describing the response of a neuron 
to a small light spot as a function of position (z, y) in 
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thie visual field (to be denoted by R in the following, 
(x, y E Cl). The following model is widely used (see 
e.g. 141) to compute the response r of such neurons to  
a composite visual signal s(e, y), (e, y) E R: 

(i) Linear spatial summation. 
An integral 

is evaluated in the same way as if the receptive 
field function g ( x ,  y) were the impulse response of 
a linear system. 

( i i )  1Xresholding (or half-wave rectification) and non- 
linear contrast normalisation. 
The result s" is submitted to thresholding 

where T is a threshold value (half-way rectifica- 
tion is a special case for T = 0), and non-linear 
local contrast normalisation: 

r ,  S 
r = -  if s" > T,  

C i L  + s (3) 

where L is the mean illuminance within the re- 
ceptive field of the concerned neuron and r ,  and 
cf are constants which specify the saturation re- 
sponse and the value (.?$/I,) of the contrast for 
which half-saturation is reached, respectively (see 
[8] for more details of these constants in the case 
of retinal ganglion cells). 

The classes of visual neurons mentioned above difler in 
the form of the receptive field function g. Retinal gan- 
glion and lateral geniculate cells have circularly sym- 
nietric receptive fields with concentric antagonistw re- 
gions and can be described by functions of so-called 
Mexican hat type. In contrast, the receptive iields 
of simple cells in the primary visual cortex arc not 
circular symmetric. They were found to consists of 
a number of oriented altering parallel excitatory and 
inhibitory zones, responsible for the orientation and 
spatial frequency tuning of these cells. J.G. Daugman 
111 proposed to  model the linear spatial summation 
properties of simple cells by complex two-dimensional 
Gabor functions which minimise the product of the 
variances in the space and spatial frequency domains. 
It has been demonstrated by Jones and Palmer that 
these functions adequately fit experimental data [7]. 
In  the following the family of functions proposed by 
Daugman [a] is used in a slightly modified paramet- 
risation: 

2' = (x .- [)cos@ - (y - q)sin@ 

y' = (x .-[)sin@ + (y  - q)cos@ 

The arguments a: and y specify the position of a light 
spot in the visual field and [, q, U ,  y, 0, X and p 
are parameters whose effect on the function g is next 
explained in more detail (Fig.l). 

The pair ) which has the same domain R as 
the pair (z, Irf,';pkcifies the center of a receptive field 
within the visual field. The standard deviation U the 

Gaussian factor e - (  2-2 ' determines the (linear) 
size of the receptive field. The response of a cell to  
a light spot in position ( x , y )  which is at a distance 
greater than 2u from the center ( s , ~ )  of the recept- 
ive field can practically be neglected. Neurophysiolo- 
gical research has shown that,  on the population of 
all simple cells, the receptive field sizes vary consider- 
ably, with the diameters of the smallest to  the largest 
receptive fields being in a ratio of at  least 1:30 121. 
The eccentricity of the Gaussian factor and herewith 
the eccentricity of the receptive field ellipse is determ- 
ined by the parameter y, called the spatial aspect ratio. 
It has been found It0 vary in a very limited range of 
0.23 < y < 0.92 [7]. One constant value y = 0.5 is 
used in this study. 

The angle parameter 0 (0 E 1 0 , ~ ) )  specifies the 
orientation of the normal to the parallel excitatory 
and inhibitory stripe zones (this normal is the axis x' 
in eq.4). The parameter X is the wavelength of the har- 
monic factor cos(27~$ + p). The ratio a / A  determines 
the number of parallel excitatory and inhibitory zones 
which can be observed in a receptive field. Neuro- 
physiological research shows that the parameters X 
and U are closely correlated; on the set of all cells, 
the ratio a/X which determines the spatial-frequency 
bandwidth of a cell varies in a very limited range of 
0.4-0.9 which corresponds to  two to  five excitatory and 
inhibitory stripe zones in a receptive field [a]. The 
value a / X  = 0.5 is used in this study. Typical re- 
ceptive fields for the parameter values y = 0.5 and 
u/X = 0.5 are shown in Fig.1a-c e f h. 

Finally, the parameter p ('p E -n,n]), which is a 

cos(2n$ + p), determines the symmetry of the func- 
tion g: for p = 0 (Fig.1a-f) and p = a (this later 
case can be illustrated by the negatives of Fig.la-f), 
the function g is symmetric, or even, with respect to  
the center ( t , ~ )  of the receptive field; for p = -5r 
and p = $T, the function g is antisymmetric, or odd 
(Fig.lh), and all other cases are mixtures of these two. 
In our simulations, we use for 'p the following val- 
ues: 0 (symmetric receptive fields to  which we refer 
as 'center-on' in analogy with retinal ganglion cell re- 
ceptive fields whose central areas are excitatory), T 
(symmetric receptive fields to which we refer to as 
'centre-off ' )  since their central lobes are inhibitory) 
and -+T and f a  (antisymmetric receptive fields with 
opposite polarity). As far as the phase differences of 
T or -$r in this set of functions are concerned, this 
choice is consistent with neurophysiological data,  in 

= I 2  +72 .la 

phase offset in the argument of ' L  t e harmonic factor 

1 
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that adjacent cells have been found which exhibit ex- 
actly such phase differences in simultaneous record- 
ings [14]. On the other hand, neurophysiological data 
shows that there are no preferred values for cp such 
as 0,  -$IT, +IT and IT and that the possible values are 
rather uniformly spread in the interval [0,2n). 

Figure 2: Two input images (size 512 x 512). 

Substituting a receptive field function gc,,,,a,y,e,A,(o(Z, y) 
in eqs.1-3, one can compute the response rg.n.o.r.e.A.lo ., ,, I I .  

of asimple visual cortical cell modelled by this func- 
tion to an input image s (x ,y) .  Fig.2 shows two in- 
put images for which a number of such quantities are 
computed and shown in Fig.3 and Fig.4, respectively, 
grouped together in so-called cortical images. The 
quantities grouped in one such image are computed 
with receptive field functions of the same values for 
all parameters but ([, 77); the later specify the coordin- 
ates of a pixel to which the value of such a quantity is 
assigned. The filters which generate such images are 
referred to as cortical filters or channels. The (max- 
imum value) superpositions of the two sets of cortical 
images shown in Fig.3 and Fig.4 are given in Fig.5a 
and Fig.5b, respectively . 

Roughly speaking, the effect of such a filter is to 
enhance luminance transitions of a given orientation 
and at a give scale. The filters with antisymmetric 
receptive field functions are particularly selective for 
edges whereby those with symmetric receptive field 
functions are selective for bars of a given width. These 
selectivity properties of the cortical filters can be fur- 
ther enhanced by additional non-linear mechanisms in 
which the four filters responsible for the same orient- 
ation but having different phase (symmetry) interact 
with each other to Droduce cortical images in which 

I either edges or barsL(but not both at thgsame time) 

Figure 1: Receptive fields of different positions (a ,  b 
, eccentricities ( b ,  d ) ,  orientations ( e ,  f 

sizes number ( b l  o cJ excitatory and inhibitory zones ( b ,  g ) ,  and 
symmetries ( b ,  h ) .  The gray level of the background 
labels positions in which a light spot stimulus has no 
cffect on the firing rate of a cell. Lighter or darker 
colours indicate excitatory and inhibitory zones, re- 
spectively. 

" 
are enhanced in a cor'tical image [12]. 

3 Self-organising neural network clas- 
sifier 

Fig.6 shows a two-layer artificial neural network con- 
structed of one-dimensional Kohonen networks [9]. In 
the first layer, there are m such networks, each of n 
nodes. Each first-layer network accepts a cortical im- 
age as input and the number m of such networks is 
equal to the number of cortical channels used. In this 
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Figure 3: Cortical images computed from the input 
image shown in Fig.2a using antisymmetric receptive 
field functions of different orientations: a) 0 = 01, p = 

d) 
F) = %r, 4 cp = - ;T ,  e) 0 = 0, cp = +T, f) 0 I= :.rr, 
YJ = L~ 2 1  g) 0 = %T, 'p = L~ 2 7  h) 0 = $7, cp = fn. The 
values of the other receptive field functlon parameters 

--p, 1 b) 0 = $r, cp = -$r, c) 0 = ZT, $0 = -p, 1 

are; a = 32, 7 = 0.5, X = 2 a .  (Image size 512 x 512.) 

Figure 4: Cortical images computed from the input 
image shown in Fig.2b using antisymmetric receptive 
field functions of different orientations: a) 0 = 0, p = 
- 1 ~  b) @ = 1, 0 = -1, c) @ = $T,  p = -1. 2 ,  4 i j  2 ,  2T' d) 0 1 ax, p = --I.:A, e) o = 0, p = $ T ,  f) O = ZT? 1 

4 2 
cp = LT ) @ = Zn . ,  cp = IT, h) O = $7r, p = $r. The 2 '9 4 2 
values of the other receptive field function parameters 
are: o = 32, y I 0.5, 1 = 2a. (Image size 512 x 512.) 
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is chosen according to the above mentioned consider- 
ations and a particular test application in which five 
classes of objects (images of faces, bottles, armchairs, 
tea cups and triangles) have to be discriminated. 

For each first-layer network, the learning sequence 
consisted of 30 cortical images computed from 30 cor- 
responding input images (six images per class for each 
of the above mentioned classes). Convergence was 
achieved amazingly fast - typically in less than ten 
epochs (presentations of the learning sequence). The 
fast convergence can be explained by the fact that 
single cortical images are very simple patterns con- 
taining a small number of features (oriented elong- 
ated connected activity regions). In most of the cases 
these patterns are disjunct from class to  class so that,  
after such a pattern is assigned to a unit, it cannot be 
modified by patterns which arise from images of a dif- 
ferent class. As to self-organisation, as expected the 
units which are activated by images of the same class 
tend to build clusters, but interleaved units of differ- 
ent classes or units which are never activated as well 
as mixed-class units, i.e. units which react to  image 
patterns that belong to different classes, can also be 
observed. 

The existence of mixed-class units means that,  if 
one would use just one single-orientation cortical chan- 
nel with one associated Kohonen network, one can get 
misclassifications. This is not amazing, since for com- 
plex visual input patterns, individual cortical images 
are not necessarily characteristic of the classes of the 
corresponding input images. However, combznations 
of such images are characteristic of the class to  which 
an input image belongs as illustrated by the sets of 
cortical images shown in Fig.3 and Fig.4 and their re- 
spective superpositions shown in Fig.5a and Fig.5b, 
respectively. 

The proposed two-layer network structure is based 
on this assumption and expected to function as fol- 
lows: Each of the first-layer networks associated with 
the corresponding cortical channels makes its own 
classification of the cortical image it receives as input. 
One can think of the first-layer networks associated 
with different cortical channels as voting for different 
classes. These votes are counted by another network 
arranged in the second layer and the class which col- 
lects the largest number of votes wins. 

The second-layer network has a structure which is 
similar to the structure of the individual networks in 
the first layer, in that it is also one-dimensional with 
the same number of units n and the same neighbour- 
hood relations. The only difference is that, while the 
inputs to the first-layer networks are cortical images 
of size IC x k (IC 32 in this particular case), the inputs 
to the second-layer network are m x n binary activily 
patterns produced by the m first-layer networks, each 
of n units ( n  = 20, m = 32 in this case). 

The learning process for the second layer is started 
after the learning in the first layer is completed. The 
learning sequence for the second-layer network con- 
sisted of 30 activity patterns induced in the first-layer 
networks for the corresponding 30 input images. Sim- 
ilar to the convergence behaviour of the first-layer net- 
works, the learning process for the second layer took 

Figure 5 :  Pixel-wise maximum value superpositions of 
the cortical images shown in Fig.3 and Fig.4, respect- 
ively. (The value of a given pixel is computed as the 
maximum of the values of the corresponding pixels of 
the cortical images.) 

pilot study, a limited number of m = 32 cortical chan- 
nels are used. This number results from the use of 
eight orientations equidistantly spread in the interval 
[0, T) and four receptive field function types per ori- 
entation: two symmetric (‘centre-on’ and ‘centre-off’) 
and two antisymmetric functions (with opposite po- 
larity). 

t t s e c o n d  ( o u t p u t )  l a y e r  t 
K o h o n e o  n e l w o r k  

Figure 6: One one-dimensional Kohonen network is 
associated with each cortical filter channel, accepting 
a cortical image as an input. The two-dimensional 
activity pattern produced by the set of networks in 
the first layer is used as an input pattern to a second- 
layer (output) Kohonen network. 

Since the value of U used in this study is rather high 
(F = 32), the computed 512 x 512 cortical images can 
be subsampled and reduced to  a size of 32 x 32 to be 
used as input patterns to the networks. 

As to  the number of nodes n ,  it is chosen depending 
on the target application taking into account the fol- 
lowing considerations: (i) n has to be greater than the 
number of classes which have to be discriminated and 
( i i )  n should not be very large to prevent a very sparse 
assignment of units to classes and a large ensuing num- 
ber of learning cycles needed to achieve convergence. 
In this study, the number of units used for each first- 
layer network is taken to be n = 20. This number 
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not more than ten epochs. The classification of the 
learned input patterns was always correct, i.e., images 
from different classes always activated different units. 
As to test patterns, until now the system was tested 
only for the classification of images taken under similar 
conditions as the learning images (compare the two 
columns of images in Fig.7). The system succeeded to  
classify all test images correctly. 

An interesting question which may arise at  this 
point is the one of how essential the cortical filter bank 
preprocessor is for the quality of classification. An al- 
ternative system may, for instance, use directly the in- 
put image as input data to the self-organising neural 
network classifier -- the input image can, for instance, 
be split into m blocks and one such block, in place of a 
cortical image, cart be input into a corresponding first- 
layer neural network. Such an experiment was carried 
out and it turned lout that output units evolved which 
were activated by images of different classes, e.g. faces 
and chairs and bottles and cups. No mixed-class out- 
put units evolve when cortical images are used. 

This result may be related to the fact that the units 
of a Kohonen network store patterns against which 
input patterns are matched. Such a matching in the 
input image space turns out not to be very effective: 
a pixel of the body of a chair may, for instance, find a 
very good match in a face image, since only pixel in- 
tensities are compared. Preprocessing which enhances 
form attributes such as edges implies matching of fea- 
tures which are more relevant with respect to the clas- 
sification of images according to their form. As to  the 
proposed use of a set of oriented edge detectors such 
as the cortical filters given above vs. an isotropic edge 
detector such as a Laplacian, note that the former 
choice prevents from matching of pixels of edges of 
different orientations. In this approach it is, for in- 
stance, impossible to  match a pixel of a vertical edge 
in an input image with a pixel from a horizontal edge 
in a prestored image. 

A statistical analysis of the likelihood of input im- 
ages vs. the likelihood of their respective cortical rep- 
resentations with respect to form-based classification 
may deliver more solid arguments in support of the use 
of the cortical filter bank preprocessor than the qualit- 
ative explanations given above. The use of such a pre- 
processor in this study is based on the belief that do- 
ing things like biological vision systems do them is the 
right way to go, since natural selection has given rise 
l o  optimal solutions to vision problems in the given 

‘ I  I environment. 

Y 

face has two eyes, a nose, a mouth, etc., is used. The 
l”g,ure 7: Representatives of the image classes used for 
h-aining. 
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system computes its own internal representations of 
visual patterns, memorises and uses them to classify 
new patterns. It is notable that the output units of 
the classifier subsystem correspond to classes of visual 
patterns and not just to  individual patterns (general- 
isation property). This in a way corresponds to the 
neurophysiological observation that face selective cells 
are broadly tuned, in that such a cell would react to 
different faces instead of just one individual face. 

On the basis of this approach, a system can be set 
up for which it is sufficient to put an object in front of a 
camera and let the system (by a key stroke) to memor- 
ise it; this action would initiate grabbing a few images 
of the object, possibly from different views, computing 
the corresponding sets of cortical representations and 
using them as learning input for the self-organising 
classifier. In a classification task, when the same or 
a similar object is put in front of the camera and the 
system is requested (by another key stroke) to classify 
it,, the system would grab one or a few images, com- 
pute the corresponding sets of simple cell responses 
and use them as input for the classifier to assign a 
class membership to the object. 

The computation of a set of cortical images for each 
input image is a rather computationally intensive task. 
‘This computational intensiveness is due to the con- 
volutions (one for each cortical image) and selection 
operations (for the subsequent non-liner mechanisms 
of cortical image interaction) which have to be car- 
ried out. (Substituting a function g~,q,o,y,~,~,rp(x, y) 
in eq.l and taking into account that g~,q,o,y,e,x,lp(x, y) 
depends on x and y via the differences x - and 
y - 7 (eq.4), the integral on the right-hand side of 
eq.l  takes the form of a convolution. In this study, 
FF‘I‘ and inverse FFT were used for convolution com- 
putations. The Fourier image of the receptive field 
function g~,q,o,y,~,~,y(x, y) was generated directly in 
the frequency domain where it takes the form of a 
Gaussian function.) 

Computing one cortical image on a powerful con- 
temporary workstation takes approximately 5 seconds. 
Tn the current study only 32 cortical images are com- 
puted for each input image. In an ongoing extension, 
for each input image a set of 320 cortical images is 
computed (16 orientations 0,  four symmetries p and 
five receptive field sizes CT) which takes more than half 
an hour on a powerful workstation. 

In order to accelerate computations, the cortical fil- 
ter bank has been implemented on a Connection Ma- 
chine CM-5 scale 3 parallel supercomputer 16 nodes, 

acceleration by a factor of nearly forty was achieved. 
Since the filter bank consists of a large number of par- 
allel channels and there is a high degree of parallel- 
ism in each channel, we are confident that on a more 
powerful parallel computer the cortical filter bank can 
be realised to  give a delay of less than a second per 
input image which would be comparable with the re- 
sponse times of natural visual systems. (First runtime 
measurements on a Cray J916 parallel supercomputer 
( I  6 processing nodes, 3.2 Gflop/s, 2 Gbyte) have given 
very encouraging results.) 

The computational effort connected with the neural 

64 vector units, 2 Gflop/s, 512 Mbyte) an 6 effective 

network part of the system depends on the number of 
units used. The total number of units is proportional 
to the product of the number of cortical filters used 
and the number of classes which have to be distin- 
guished. In our first experiments, both of these num- 
bers were relatively small (32 cortical channels and 5 
image classes), so that computing time did not present 
a major problem both for learning and classification. 
The real time learning and classification for a large 
number of cortical channels, e.g. 320, and thousands 
of different image classes exceed the power of the cur- 
rently available parallel supercomputers. 

As demonstrated by the above example, studying 
and simulating the principles and mechanisms em- 
ployed by natural vision systems can lead to  new im- 
age analysis and object recognition techniques which 
may have the potential to  outperform traditional ma- 
chine vision approaches. Our further research will fo- 
cus on studying and applying the mechanisms used 
by natural vision systems to extract information from 
cortical representations. Another topic will be the 
extension of the above presented simple cell primary 
cortex representations with representations which cor- 
respond to the responses of so-called complex cells 
and gratin cells which do not abide to the simple 
cell model f l O ] .  For further details and discussion the 
reader is referred to [12, 131. 
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