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Robust Feature Detection and
Local Classification for Surfaces

Based on Moment Analysis
Ulrich Clarenz, Martin Rumpf, and Alexandru Telea

Abstract—The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and

convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature

detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching

cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on

surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for

smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local

zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy

results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale

parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and

surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented

approach.

Index Terms—Surface classification, surface processing, edge detection, nonsmooth geometry.

�

1 INTRODUCTION

FEATURE detection is known to be an indispensable tool in
image processing. Features such as edges and corners

have to be classified in a stable way to enable edge
preserving image denoising [19], [1], [25] and robust
segmentation of image subdomains bounded by edges
[18], [2], [25]. Correspondingly, the local classification of
surfaces, in particular the detection of edge and corner
features or the distinction of concave and convex areas on
the surface, turns out to be an important ingredient for
many surface processing applications. Indeed, some appli-
cations are:

. Surface fairing: A given initial, noisy surface is
smoothed, while edges on it are simultaneously
preserved or even enhanced (cf. [23], [8], [4]).

. Mesh decimation: A given surface mesh is simplified
while edge features are preserved (cf. [26], [11]).

. Surface segmentation: Identification of homogeneous
regions, indicated by characteristics such as con-
vexity and concavity, or bounded by feature lines.

. Surface matching: Surfaces are reduced to a skeleton
of features lines to enable a better comparison.

In image processing, a straightforward identification of

edges can be based on an evaluation of the image gradient.

A sufficiently large gradient is supposed to indicate an
edge. Alternatively, a frequently considered edge indicator
is the Canny edge indicator, which searches for extrema of
the second derivatives in the gradient direction [6].
Furthermore, the structure tensor (cf. [24]) enables a robust
classification of edges and edge directions in images. On
surfaces, gradients are no more natural objects for the
identification of intrinsic surface characteristics. Here, the
canonical quantity for the detection of edges is the curvature
tensor, in the case of codimension 1, represented by the
symmetric shape operator. An edge is supposed to be
indicated by one sufficiently large principle curvature and
the corresponding principle curvature direction is perpendi-
cular to the edgeon the surface. Thismethod iswell-suited for
smooth objects. Curvature evaluation for discrete surfaces
can be based on the algorithm proposed by Moreton and
Séquin [17]. In particular, in surface processing, curvature
evaluation is used to detect important features [4], [23], [14],
[7]. Another method of computing the curvature on discrete
data sets is given by [4], where the surface is locally projected
onpolynomial graphs over the tangent space. In [7], themean
curvature is defined as the first variation of the area
functional. This approach is closely related to the minimal
surface algorithm by Pinkall and Polthier [20]. Furthermore,
in [16], discrete curvatures are computed, where the discrete
Gaussian curvature is based on the quotient of a local
spherical image and the corresponding local surface area.
Curvature is an object which comes along with smoothness.
Consequently, on discrete surfaces, we can separate areas of
low curvature from nonsmooth areas. Nevertheless, we
cannot obtain information about the structure of the non-
smooth part. For that reason, curvature estimation requires a
tedious treatment and is unstable on irregular surfaces or
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on surfaces perturbed by noise. In addition, discrete
curvature evaluation is a local process without a scale
and therefore very noise sensitive (see [16, Fig6(c)]).

Here, in contrast to the curvature-based approach for
surface classification, we propose a novel set of surface
classification criteria based on local zero and first moments.
This approach is related to the structure tensor approach for
images [24] and provides a stable way to distinguish
smooth regions from the vicinity of edges and corners on
surfaces. Furthermore, it allows us to robustly extract
information on the geometry close to, or even on a feature
singularity (cf. Section 3). In [22], moments have already
been applied for the computation of skeletons from distance
function singularities in 2D and 3D. For an approach to
skeletons of 3D point clouds representing surfaces, we refer
to [15]. In this paper, we generalize the techniques
presented in [22] and [5] to yield a general tool for the
classification of feature singularities. A subsequent advan-
tage of our method is that it comes along with an embedded
scale factor that allows a simple and natural way for
detecting important surface structures at or above a user-
selected scale. In addition, this paper provides a detailed
quantitative analysis of the local surface classifiers which
we believe to be the backbone of the observed robustness in
the application. Here, in particular, the different scalings of
the zero moment in smooth and nonsmooth situations,
respectively, and the corresponding scaling and the
eigenvalues of the first moment are derived.

We apply the presented surface classification tool for a
number of fairly distinct triangular surfaces of different
origin, complexity, and resolution. Finally, as an application
in actual surface processing, we consider edge preserving
surface fairing. Hence, we apply an anisotropic geometric
diffusion. Here, moment-based local classification is used to
distinguish edges from smooth surface areas and to identify
edge directions on the surface. For the corresponding
background and literature, we refer to [4], [5].

The paper is organized as follows: In Section 2, we recall
how surfaces may be classified using curvature informa-
tion. In Section 3, the local moment analysis is presented.
We give proofs of the fact that the zero moment scales
quadratically in smooth domains of a surface, where it
scales only linearly in nonsmooth domains (cf. Theorem 2
and Theorem 4) and that the scaling of the first moment is
quadratically in smooth and nonsmooth areas. Indeed, to
distinguish smooth from nonsmooth regions based on first
moments requires a comparison of the eigenvalues of the
first moment (cf. Theorem 3 and Theorem 5). Furthermore,
we discuss the implementation on triangle meshes. In
Section 4, we compare curvature and moment classification
and demonstrate experimentally the robustness of the
approach. The application in surface fairing is described
in Section 4.2. Finally, in Section 5, we draw conclusions.

Notation. Let us summarize notations and conventions
we are going to use in the sequel. We consider a parameter
manifold M which essentially fixes the topological type of
immersed surfaces x : M ! IRdþ1. Hence, the actual surface
is xðMÞ. With a slight misuse of notation, we will denote
the surface x again by M. The parameter on M is denoted
by �. By T �M, we denote the tangent space at � and by T M

the tangent bundle of M. For immersions x, the differential
Dx induces, canonically, a metric on M via the relation
gðv; wÞ ¼ DxðvÞ �DxðwÞ which holds for all v; w 2 T M.
Here, the scalar product in IRm is denoted by �. In
coordinates, we obtain gij ¼ gð@i; @jÞ. Suppose

R
M f dA

denotes the usual integral of a function f over M. Thus,
the area element dA is given by

ffiffiffiffiffiffiffiffiffiffi
det g

p
d�, where g ¼ ðgijÞij

is the metric tensor corresponding to gð�; �Þ. Integration over
M leads to the L2-scalar product of L2-functions f; g on M:
ðf; gÞ :¼

R
M f � g dA. We will make use of the gradient rM

and the divergence divM on the manifold. For a function f
on M, the gradient rMf 2 T �M in � 2 M is defined by
gðrMf; wÞ ¼ d

dt fðcðtÞÞjt¼0, where cðtÞ is a curve on M with
cð0Þ ¼ � and _ccð0Þ ¼ w. Furthermore the divergence is
defined as the corresponding dual differential operator. In
particular

R
M divMv � dA ¼ �

R
M gðv;r�Þ dA. The manifolds

M are assumed to be oriented and the normal mapping will
be denoted by n : M ! Sd, where d is the dimension of the
manifold M. This enables us to define the shape operator
S : T �M ! T �M by gðST �Mw; vÞ :¼ @wn �DxðvÞ. The trace
of the shape operator is the classical mean curvature
h ¼ trST �M. We often write S ¼ ST �M if a misunderstand-
ing is ruled out. The Laplacian divM gradM is denoted by
�M. Finally, let us from now on use Einstein summation
convention.

2 A REVIEW OF CURVATURE-BASED LOCAL

SURFACE CLASSIFICATION

In this section,webriefly recall howto locally classify surfaces
based on curvature analysis. The quantity for the detection of
highly curved surface areas—namely, edges—is the curva-
ture tensor: In the codimension 1 case, it is represented by
the symmetric shape operator ST �M. An edge is supposed to
be indicated by one sufficiently large eigenvalue of ST �M.
The main drawback of this approach is that it involves
derivatives of “noisy” data, which is usually a risky
enterprise. In particular, in the interesting case of surfaces
with sharp edges, these quantities are not even defined on
the actual surface.

Thus, we have to stabilize the evaluation of the shape
operator. This can either be done by a straightforward
“geometric Gaussian” filter, which turns out to be a short
time-step � ¼ �2=2 of mean curvature motion (for details cf.
[4], [9]) or by local L2 projection of the surface onto quadratic
polynomial graphs. Let us denote this prefiltered surface by
M�. Hence, for stability reasons, we compute a shape
operator ST �M�

onM�. Here, the parameter � either indicates
the “geometric Gaussian” filter-width or the size of the
neighorhood, which we take into account for the local L2

projection [21]. Let us emphasize that we are able to reduce
noise by this filter operator. But, we might also remove
features in a hard to predict way. Now, we introduce, for
everypoint onM�, a classification tensora

�
T �M�

. It is supposed
to be a symmetric, positive definite, linear mapping on the
tangent space T �M�. Let us suppose that w1;�; w2;� are the
principal directions of curvature—the orthogonal eigendir-
ections of the shape operator—and �1;�; �2;� the principle
curvatures—the corresponding eigenvalues. Then, we
define the tensor a�T �M�

in the basis fw1;�; w2;�g as follows:
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a�T �M�
¼ G �1;�ð Þ 0

0 G �2;�ð Þ

� �
; ð1Þ

where the function G is given by GðxÞ :¼ 1
1þðx=�Þ2 . Here, �

serves as a user-defined threshold parameter which

classifies the significance of surface features. Hence, a point

is supposed to belong to an edge if there is one principal

direction of curvature on M� with large curvature com-

pared to �. If the second principal curvature is small w.r.t.

�, we consider the first direction as being orthogonal to an

edge on the surface. At corners, both principal curvatures of

M� are large. Summarizing this, our tensor leads to the

following surface classification:

. Smooth areas are characterized by a�T �M�
� diag½1; 1�.

. Edges are defined by a�T �M�
� diag½1; 0�. In this case,

the edge direction is given by w2;� and we assume
j�1;�j >> j�2;�j.

. Corners are defined by a�T �M�
� diag½0; 0�.

As a simple edge indicator, we can use the function
Ccurv� ðxÞ ¼ tr a�T �M�

. Depending on the threshold parameter
�, edges and corners are given by Ccurv� ðxÞ < 1. However, the
above classifier encounters serious problems on noisy data
or data containing features (e.g., edges) at several spatial
scales (cf. Section 4).

Finally, let us mention that we can make use of this
classification tensor as a diffusion tensor for surface fairing.
Generalizing the algorithm introduced by Dziuk [10] for
mean curvature flow, we can define an anisotropic
geometric diffusion process which smoothes the surface in
regions being classified as smooth and preserves edges on
the surface. In addition, we can allow smoothing along an
edge. The corresponding generalized mean curvature flow
is given by the following equation:

@tx� divMða�T �M�
rMMxÞ ¼ 0:

For a more detailed discussion of this type of equation, we
refer to Section 4.2 and to [4]. This approach generalizes the
image processing methodology presented and discussed by
Perona and Malik [19], Alvarez et al. [1], and Weickert [24].
Let us mention that our approach here differs from
Kimmel’s method [13], where denoising of textures on
surfaces is discussed, whereas we consider the denoising of
the surface itself.

3 MOMENT-BASED SURFACE ANALYSIS

In the following, we will introduce and discuss local surface
classification based on zero and first order surface
moments. This will, in particular, allow us to robustly
distinguish smooth regions from the vicinity of edges on the
curve or surface. To begin with, we introduce the
corresponding definitions:

Definition 1. For an embedding x : M ! IRdþ1, the zero
moment is given by the barycenter M0

� ðxð�ÞÞ; � 2 M, of
xðMÞ \B�ðxð�ÞÞ, where B�ðxð�ÞÞ is the Euclidean �-ball in
IRdþ1 centered at xð�Þ:

M0
� ðxð�ÞÞ ¼ �

Z
B�\M

x dA:

The parameter � is called the scanning width. Furthermore, the

first moment is defined as:

M1
� ðxð�ÞÞ

¼ �
Z

B�\M
ðx�M0

� ðxð�ÞÞÞ � ðx�M0
� ðxð�ÞÞÞ dA;

where y� z :¼ ðyizjÞi;j¼1;...;dþ1.

Due to the definition via local integration, the zero and the

first moment are expected to be robust with respect to noise.

To study the effectiveness of our moment-based classifiers,

we next examine their behavior on smooth (Section 3.1),

respectively, nonsmooth (Section 3.2) surfaces.

3.1 Smooth Surface Case

We first show that a locally smooth surface is characterized

by a quadratic scaling of the zero moment shift n� ¼
M0

� ðxð�ÞÞ � xð�Þ and the first moment M1
� ðxð�ÞÞ. Here, n�

plays the role of a scaled approximate normal.
Indeed, for a smooth function � on a Euclidean �-ball

B�ð0Þ � IRd, we have:

�
Z

B�

� ¼ �
Z

B�

�ð0Þ þ r�ð0Þ � x

þ 1

2
r2�ð0Þx � x dxþ oð�2Þ

¼ �ð0Þ þ 1

2
�
Z

B�ð0Þ
r2�ð0Þx � x dxþ oð�2Þ

¼ �ð0Þ þ 1

2
�i�
Z

B�ð0Þ
x2
i dxþ oð�2Þ;

where the �i for i ¼ 1; . . . ; d are the eigenvalues of r2�ð0Þ.
Note that, in the above equation, we used the fact that:

Z
B�

r�ð0Þ � x dx ¼
Xd
i¼1

Z
B�

@i�ð0Þxi dx

and
R
B�
xi dx ¼ 0. Therefore, we have:

�
Z

B�

�

¼ �ð0Þ þ 1

2
� 1
d
�
Z

B�ð0Þ
jxj2dx � trr2�ð0Þ þ oð�2Þ

¼ �ð0Þ þ cðdÞ �2��ð0Þ þ oð�2Þ;

where the dimension depending constant cðdÞ is given by

cðdÞ ¼ 1=½2ðdþ 2Þ�.
Now, we consider the surface M in the vicinity of some

point � on M. In a first step, we replace the Euclidean ball

B�ðxð�ÞÞ � IRdþ1 by a geodesic ball eBB�ðxð�ÞÞ � M and

compute the barycenter eMM0
� ðxð�ÞÞ of eBB�ðxð�ÞÞ. To evaluateReBB�ðxð�ÞÞ

xð�ÞdAð�Þ, we take into account normal coordinates,

i.e.,

gijð0Þ ¼ 	ij; @kgijð0Þ ¼ 0:

For more details on normal coordinates see e.g., the

textbook [12, p. 19]. Then, one obtains for the Laplacian

on M at xð�Þ:
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ð�M�Þðxð�ÞÞ ¼ ð@i@i�Þð0Þ ¼ ��ð0Þ: ð2Þ

Hence, for the difference eMM0
� ðxð�ÞÞ � xð�Þ we get. Note that

we identify xð�Þ and xð0Þ as well as eBB�ðxð�ÞÞ and B�ð0Þ in

the chart and on the surface, respectively. Due to the choice

of normal coordinates, the Euclidean ball in IRd and the

geodesic ball on M coincide via the chart map.

eMM0
� ðxð�ÞÞ � xð�Þ ¼ �

Z
B�ð0Þ

x dx� xð0Þ

¼ cðdÞ�2�xð0Þ þ oð�2Þ
¼ cðdÞ�2�Mxð�Þ þ oð�2Þ
¼ �cðdÞ�2hð�Þnð�Þ þ oð�2Þ;

where h is the mean curvature of M. Here, we have taken

into account the classical [3] relation between the Laplace-

Beltrami operator applied to the coordinate mapping and

the mean curvature vector:

�Mx ¼ �hn:

Let us point out here that, for the Euclidean ball on the

surface B�ðxð�ÞÞ \M and for the geodesic ball eBB�ðxð�ÞÞ, we

have the relation

j jB�ðxð�ÞÞ \Mj � j eBB�ðxð�ÞÞj j ¼ Oð�dþ2Þ:

We observe an order dþ 2 instead of d due to the vanishing

first order terms @kgijð0Þ for normal coordinates. Therefore,

one can replace the geodesic ball by the Euclidean ball

without losing the corresponding scaling order.
So far, we obtain:

Theorem 2. Let x : M ! IRdþ1 be an immersion. For � 2 M
consider a ball of radius � with center xð�Þ and the �-normal

n�ð�Þ ¼ M0
� ðxð�ÞÞ � xð�Þ. Then, n� scales quadratically in �

and

n�ð�Þ ¼ ��2cðdÞhð�Þnð�Þ þ oð�2Þ:

Using (2), we can give a corresponding scaling result for the

first moment. Choosing � ¼ xixj, one easily evaluates the

components of the first moment:

�
Z

B�\M
xixj dA

¼ xið�Þxjð�Þ þ cðdÞ �2 �MðxixjÞ þ oð�2Þ
¼ xið�Þxjð�Þ þ cðdÞ �2 ð2rMxi � rMxj

þ xj�Mxi þ xi�MxjÞ þ oð�2Þ:

Therefore, the scaling of the first moment is also quadratic:

ðM1
� Þij

¼ �
Z

B�\M
xixj dA��

Z
B�\M

xi dA �
Z

B�\M
xj dA

¼ 2 cðdÞ �2rMxirMxj þ oð�2Þ
¼ 2 cðdÞ �2ð�T �MÞij þ oð�2Þ;

where �T �M is the linear projection onto the tangent space

of M at point xð�Þ. More precisely, �T �M is the matrix

representation w.r.t. the canonical basis of IRdþ1 and

ð�T �MÞij is the corresponding matrix entry. We can state:

Theorem 3. For an embedding x : M ! IRdþ1, the first moment

w.r.t. xð�Þ and scanning width � scales quadratically:

M1
� ðxð�ÞÞ ¼ 2 cðdÞ �2�T �M þ oð�2Þ:

3.2 Nonsmooth Surface Case

We now discuss the case of nonsmooth surface features,

such as edges and corners. To this aim, let x : M ! IRdþ1 be

a Lipschitz continuous immersed surface, which is smooth

up to a one-dimensional subset �M. Here, �M is the edge

set on the surface. With respect to the scaling behavior of

the shift n� of the zero moment centered at x0 ¼ xð�0Þ,
�0 2 �M, it suffices to assume that, for a small open domain

U ¼ Uðx0Þ � IRdþ1, the set M\ U is of cone type, i.e., x 2
M\ U implies 
ðx� x0Þ þ x0 2 M\ U for all 
 2 ½0; 1Þ.
This is a first order, i.e., linear approximation of the

curvilinear case. Furthermore, consider �0 such that

B�0ðx0Þ � Uðx0Þ and let �1; �2 < �0. If we assume for a

moment x0 ¼ 0, we derive from the cone property the

following identity:

��d�1
1

Z
B�1

\M
x dA ¼ ��d

1

Z
B�1

\M
x=�1 dA

¼ ��d
2

Z
B�2

\M
x=�2 dA ¼ ��d�1

2

Z
B�2

\M
x dA;

and this leads to

��1
1 �
Z

B�1
\M

x dA ¼ ��1
2 �
Z

B�2
\M

x dA: ð3Þ

These equations are a result of the self-similarity of a cone.

For the general case, where x0 is not necessarily the origin,

we have the following result:

Theorem 4. Let x : M ! IRdþ1 be a Lipschitz continuous

embedding that is smooth on M� �M; then, for �0 2 �M,

consider a ball of radius � with center x0 ¼ xð�0Þ and

n�ð�0Þ ¼ M0
� ðxð�0ÞÞ � xð�0Þ. Then, there is a vector ~nn such

that

n�ð�0Þ ¼ � ~nnþ oð�Þ:

In the case d ¼ 1, we are able to compute the length of the

above vector ~nn. This enables us to determine the apex angle

of an edge of a given curve explicitly. The corresponding

computation and result can be found in [5].
Next, let us consider the first moment and consider the

following special situation for d ¼ 2:
L e t D� ¼ fðx1; x2; x3Þ 2 IR3jx3 ¼ 0; x1 � 0; x2

1 þ x2
2 � �2g

be a semidisc in IR3. Rotating D� around the x2-axis by an

angle ’, resp. �’, we obtain two semidiscs S1
� and S2

� ,

respectively. Now, we compute the first moment of the

union S ¼ S1
� [ S2

� . This tensor coincides up to higher order

terms with the actual first moment M1
� ðxð�ÞÞ, where xð�Þ is

contained in the singularity set �M of the Lipschitz

continuous surface, where S1
� and S2

� are the two tangential

planes at xð�Þ. Here, due to the invariance of the first

moment w.r.t. translations, we assume that xð�0Þ ¼ 0. We

observe that, for �1; �2 < �, one has
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��2
1 �
Z

S\B�1

x� x dA ¼ ��2
2 �
Z

S\B�2

x� x dA:

By Theorem 4, one obtains for the zero moment M0
�1

of

S \B�1 :

M0
�1
�M0

�1
¼ �21 ~nn� ~nnþ oð�21Þ:

Hence, we obtain quadratic scaling of the first moment, as in

the smooth case.
We now explicitly compute the eigenvalues of the first

moment ofS. Because of the above considerations concerning

the scaling behavior, we set � ¼ 1 as well as S1
1 ¼ S1, S2

1 ¼ S2,

D1 ¼ D. The two subsetsS1 andS2 are of the same area. Thus,

we can express the first moment M1ðSÞ of S by the first

moments of S1 and S2 and an additional correction term:

M1ðSÞ ¼ M1ðS1 [ S2Þ

¼ 1

4
M1ðS1Þ þ 1

4
M2ðS2Þ þ 1

4
�
Z

S1

x� x dA

�

��
Z

S1

x dA��
Z

S2

x dAþ�
Z

S2

x� x dA

��
Z

S2

x dA��
Z

S1

x dA

�

¼ 1

2
M1ðS1Þ þ 1

2
M2ðS2Þ þ 1

4
�
Z

S1

x dA��
Z

S1

x dA

�

��
Z

S1

x dA��
Z

S2

x dAþ�
Z

S2

x dA��
Z

S2

x dA

��
Z

S2

x dA��
Z

S1

x dA

�

¼ 1

2
M1ðS1Þ þ 1

2
M2ðS2Þ þ fTPTg;

ð4Þ

where, by TPT , we denote all tensor product terms above.

The first moment of the semidisc D in the x3-plane is

M1ðDÞ ¼
1=4� ½4=ð3�Þ�2 0 0

0 1=4 0

0 0 0

0
B@

1
CA

¼
	 	 0:0699 0 0

0 � ¼ 0:25 0

0 0 0

0
B@

1
CA:

Introducing the matrix Q ¼ diagð1; 1;�1Þ one gets

M1ðS2Þ ¼ QM1ðS1ÞQT . Analogous relations are valid for

each tensor product term of TPT in (4). Finally, by taking

into consideration these arguments, we obtain:

M1ðSÞ ¼
	 cos2 ’ 0 0

0 � 0

0 0 	 sin2 ’

0
B@

1
CA

þ
0 0 0

0 0 0

0 0 �
R
S1x3 dA

� �2
0
B@

1
CA:

Because of the equation 	 sin2 ’þ �
R
S1x3 dA

� �2¼ � sin2 ’, we

finally obtain:

Theorem 5. Let x : M ! IR3 be a C0;1-surface which is smooth

up to a one-dimensional set �M � M. We assume that, for

�0 2 �M, the surface xðMÞ has an edge of apex angle 2’. In
that case, the first moment M1

� ðxð�0ÞÞ scales quadratically as
in the smooth case. Furthermore, the eigenvalues of the first
moment are �2�, �2� sin2 ’, and �2	 cos2 ’ (up to higher order
terms) if � and 	 are the eigenvalues of the first moment of D.

Let us summarize what we have obtained so far: The
zero moment shift n� on surfaces scales quadratically with
respect to the scanning width � in smooth surface areas,
whereas it scales linearly in nonsmooth areas. Even though
the scaling behavior of the first moment in the smooth and
the nonsmooth case is identical, the eigenvalues give
additional information on the presence of an edge and the
corresponding edge angle. This justifies the usage of
moments as detectors for surface features. For a given,
usually small, parameter �, only features larger than � will
be detected. In Section 4.1, we will derive feature classifiers
based on these results and illustrate their performance by a
number of examples.

3.3 Implementation of Zero and First Moment
Computation

Above, we have treated arbitrary surfaces. In the applica-
tions, we usually deal with two-dimensional, irregular,
triangular grids. In the following, we will detail the
discretization of the presented local surface classification
in this case. Hence, we consider a polyhedron Mh

consisting of triangles. In our implementation, we compute
the moments centered at each node of the triangulation.

Let us fix one node Xi and denote the moments by M0
�;h

and M1
�;h. Here, h indicates the grid size and � is, as before,

the radius of the corresponding Euclidean ball. Given this

radius �, first of all, one collects all triangles fT1; . . .Tmg of

the triangulation such that Ti \B�ðXiÞ 6¼ ;; i ¼ 1; . . .m.

This set of triangles splits into two subsets. The first one

—denoted by T o—consists of all elements with Ti \B� ¼ Ti.

The second one, T @ , is supposed to be the complement, i.e.,

Ti 2 T @ implies Ti \B� 6¼ ;. Now, we iteratively compute

the integrals �
R
T ox dA and �

R
T ox� x dA. To this aim, we use

the following relation for averaged integrals over disjoint

sets A;B:

�
Z

A[B
f ¼ jAj

jAj þ jBj �
Z

A

f þ jBj
jAj þ jBj �

Z
B

f: ð5Þ

On each triangle of T 0, we use the following exact
integration formulas:

M0ðTiÞ ¼
1

3
ðX0 þX1 þX2Þ ;

�
Z

Ti

x� x dA ¼ 1

3
ðY0 � Y0 þ Y1 � Y1 þ Y2 � Y2Þ;

where X0; X1; X2 are the nodes of Ti and Y0 ¼ ðX0 þX1Þ=2,
Y1 ¼ ðX1 þX2Þ=2, and Y2 ¼ ðX0 þX2Þ=2. For the corre-
sponding computations on T @ \B�, we apply an approx-
imation. For each triangle Tl 2 T @ , the intersection of the
sphere @B� and the edges of the triangle consists of two
points, denoted by P1; P2. We replace the curvilinear
connection Tl \ @B� by the line segment connecting P1 and
P2. Hence, we replace Tl \B� by a polygon which we again
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can split into triangles. Now, we proceed as above using
exact integration on all these virtual triangles. Using (5), one
is able to compute the average integrals over the quad-
rilaterals. Next, once again, we iteratively compute �

R
T @ x dA

and �
R
T @ x� x dA. Finally, we get

M0
�;h ¼ �

Z
T o[T @

x dA

¼ jT oj
jT oj þ jT @ j

M0ðT oÞ þ jT @ j
jT oj þ jT @ j

M0ðT @Þ

and an analogous relation for �
R
T o[T @ x� x dA and achieve

M1
�;h ¼ �

Z
T o[T @

x� x dA�M0
�;h �M0

�;h:

4 FEATURE CLASSIFICATION AND APPLICATIONS

In this section, we will derive feature detectors on surfaces
and experimentally verify their robustness. We propose the
following two classification methods:

. zero moment classification: C0� ¼ Gðjn�j=�Þ,

. combined zero and first moment classification: C0;1� ¼
Gðjn�j�min

� �max
Þ with �min; �max, the smallest and largest

eigenvalue of M1
� ðxÞ.

Here, the function G is GðsÞ ¼ 1

þ�s2

with suitably chosen

; � > 0. The quotient �min=�max is approximatively given
by Theorem 5:

�min=�max ¼ 	=� cos2 ’ ¼ 0:2796 cos2 ’;

where 2’ is the apex angle as in Theorem 5. This relation for
�min=�max is valid for ’ larger than 0:2726 	 16o. Especially,
in the smooth case (’ ¼ �=2), this quotient vanishes where
it increases for decreasing ’. For ’ smaller than 16o, the
quotient again tends to 0 when ’ ! 0. In this sense, very
sharp features will be detected in a weaker sense as they
should be. Nevertheless, as our experiments show, this
seems to be a theoretical detail. In real-world applications,
the above observation does not play an important role and
is partly compensated by the zero moment.

First, we show the classifiers on various data sets
(Section 4.1) and compare the zero and first moment
classifiers with respect to robustness, detail detection, and
computation time. In particular, it turns out that the
combined classification is performing much better. Indeed,
already, for small parameters �, we obtain a robust feature
detection. Let us mention that the computational cost for a
single moment evaluation on a vertex of the surface Mh is
Oð�h

2Þ. Hence, the cost is large for a scanning width � which
is relatively large compared to the grid size h. As we will
see, one obtains satisfying results for typical meshes Mh

and � 	 3h; 4h. Finally, we present an application of the
proposed detectors for surface denoising (Section 4.2).

4.1 Classification Results

At first, we test our classification in Fig. 1 on a sequence of
octahedra with an increasing noise level. In this case, the
scale, i.e., the scanning width is always the same. Fig. 2
shows the detection of details on different scales choosing a
different scanning width �. Here, the norm of the linearly
rescaled zero moment shift n�ð�Þ ¼ M0

� ð�Þ � xð�Þ is color
coded from red (low) to green (high). Next, we consider the
classification of human cortices. Here, the focus is on
visually separating convex and concave areas of the surface,
which is a difficult task due to the complicated local
geometry. Potential applications are the segmentation of
certain domains on the cortex, analyzing the course of
diseases as, e.g., Alzheimer’s disease, and, perspectively,
the matching of different cortices.

Fig. 3 shows the classification of a human cortex using
our zero moment classifier, on the same red to green
colormap as in Fig. 2. Here, we use a slightly improved
color coding. To be able to distinguish sulci from gyri
(“mountains and valleys” or convex and concave areas,
respectively), we, in addition, consider the sign of the scalar
product n�ð�Þ � nð�Þ, where nð�Þ is an averaged oriented

CLARENZ ET AL.: ROBUST FEATURE DETECTION AND LOCAL CLASSIFICATION FOR SURFACES BASED ON MOMENT ANALYSIS 521

Fig. 1. From left to right: zero moment classifier (top row) and combined

classifier (bottom row) for white noise perturbations of maximal

amplitudes h, 2h, 3h in normal direction (from left to right). We always

choose the scanning width � ¼ 4h.

Fig. 2. Different scales of the zero moment shift on a surface choosing

� ¼ 0:02 on the left, 0:04 in the middle, and 0:06 on the right. The

diameter of the object is scaled to 1.

Fig. 3. Human cortex classification using the zero moment shift, different

viewpoints. The scanning width is � ¼ 0:05, where the diameter of the

object is scaled to 1.



normal on the surface. The surface was generated by a
marching cube algorithm and consists of approximately
130,000 triangles.

Fig. 4 compares both types of surface classifications.
Here, the scanning width is � ¼ 3h, where h is the average
diameter of the data set triangle cells. This corresponds to a
fraction of 0.015 of the object size. We notice that, by the
combined zero and first moment classification, we obtain
the best results. The zero moment classification delivers a
significantly weaker result for the same scanning width.
Although, for a larger scanning width, one is able to detect
the major edges (cf. Fig. 3), the combined classifier
visualizes and separates fine structures much better.
Furthermore, Fig. 5 shows a comparison of the classification
based on moments and based on local curvature computa-
tion as introduced in Section 2 (here, based on the local L2

projection onto polynomial graphs). This comparison
clearly demonstrates the robustness of the new moment
based method with respect to noise.

In Fig. 6, subsequent examples are shown using both
classifiers C0� and C0;1� The scanning width is � ¼ 4h in all
cases. As in the previous examples, the zero moment
classifier C0� is only able to detect coarser scale features. The
best results are obtained by the combined zero and first
moment classifier C0;1� . In all applications listed so far, we
used 
 ¼ 0:1, whereas � was set to 5 for the zero moment
classifier, 100 for the first moment classifier, and 20 for the
combined classifier, respectively. The computation of the
classifiers took around 7 seconds for a mesh of 269,000
triangles on a Pentium 4 PC at 1.7 GHz.

4.2 Edge Preserving Surface Fairing

As an application of our local surface classification in
surface processing, we consider the fairing of surfaces

based on anisotropic geometric diffusion. Our model

preserves edges and in addition enables tangential smooth-

ing along edges. Therefore—as in Section 2—we consider an

anisotropic diffusion tensor a�T �M. For a suitable definition

of a�T �M, we take into account the eigenvectors of the first

momentM1
� ðxÞ (see Section 3.2). Hence, we define the actual

diffusion tensor on T �M in the orthogonal basis

fw1;�; w2;�; ng, where n denotes the surface normal and

fw1;�; w2;�g � IR3 denote the embedded tangent vectors

corresponding to the eigenvectors of the first moment.

More precisely, w1;� corresponds to the largest eigenvalue of

the first moment and w2;� is the orthogonal complement of

w1;� in the tangent space. Practically, we compute the

eigenvalues and eigenvectors of the three by three matrix

M1
� ðT Þ of every mesh triangle T applying Jacobi iteration.
Next, we take the eigenvector w1;� corresponding to the

largest eigenvalue, project it on the plane of the triangle,

and normalize it. Then, we compute w2;� as a cross product

between w1;� and the triangle’s normal. This gives a stable

and simple way to determine the tangent basis ðw1;�; w2;�Þ.
To illustrate this procedure, we show in Fig. 7 the

eigenvector w1;� corresponding to the largest eigenvalue of

the first moment as an arrow plot. The vector is shown only

in areas where the combined zero and first moment

classifier is larger than a given threshold, i.e., where

features such as edges and cusps are detected. Hence, w1;�

is aligned to the direction of the features (edges). As shown

by the detailed images in Fig. 7, the computation of the

feature directions is robust and reliable.
Next, we define the application of the diffusion tensor

a�T �M to a vector z 2 R3 by
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Fig. 4. Zero moment (a) and combined (b) classifiers for the human

cortex in Fig. 3.

Fig. 5. Human cortex surface classified with zero moments (a) and

curvature classification (b).

Fig. 6. Classifier applied to different surfaces. Left column: C0� and right

column: C0;1� .



a�T �M z :¼ �T �M

�
Gð0Þðz � w1;�Þw1;�

þ C0;1� ðz � w2;�Þw2;� þ ðz � nÞn
	
:

ð6Þ

Here, �T �M denotes the orthogonal projection onto the
tangent space T �M and we identify the operator on the
abstract tangent space and the endomorphism in IR3.
Furthermore, the function Gð�Þ is chosen as in Section 4.1,
where, in our applications, 
 ¼ 0:1 and � ¼ 20. Now, we
apply a�T �M as diffusion tensor in the following type of
parabolic evolution problem:

Given an initial compact embedded manifold M0 in IR3,

we compute a one parameter family of manifolds

fMðtÞgt2IRþ
0
with corresponding coordinate mappings xðtÞ

which solves the system of anisotropic geometric evolution

equations:

@tx� divMðtÞða�T �M rMðtÞxÞ ¼ f on IRþ 
MðtÞ; ð7Þ

and satisfies the initial condition

Mð0Þ ¼ M0:

Hence, due to the anisotropy defined above, we enforce a
signal enhancement in the direction of the eigenvector
corresponding to the largest eigenvalue of the first moment.
In the perpendicular direction on the tangent space, the
amount of diffusion is determined by the combined zero and
first moment classifier C0;1� , i.e., as a function of the surface
smoothness. For f ¼ 0, we can rewrite the evolution problem
by use of the notion of the generalized mean curvature ha�T �M
(for the corresponding background, we refer to [3], [5]):

@tx ¼ �ha�T �M
nþ ðdivM a�T �MÞðxÞ:

Hence, the velocity @tx splits into a tangential component
and a component orthogonal to the surface,

�ðT �MÞ? @tx ¼ �ha�T �M
n;

�T �M @tx ¼ ðdivM a�T �MÞðxÞ:

Here, �ðT �MÞ? v ¼ ðv � nÞn (with n being the surface normal),

is the orthogonal projection onto the normal direction.
The tangential part �TxM @tx causes a tangential drift of

the surface coordinates on the surface, but it does not
influence the shape of the surface itself. Nevertheless, this
drift property may result in degeneration of triangles in the
case of discrete surfaces. To avoid this problem, we
reformulate (7) by

@tx� divM a�T �M;rMx
� 	

� n
� 	

n ¼ 0: ð8Þ

In the spatially discretized form, we project the displace-
ment of the mesh nodes onto node normals. The node
normals are recomputed after each mesh smoothing step.
The problem is discretized by a semi-implicit time stepping
scheme (cf. the algorithm by Dziuk [10] and its general-
ization in [4]). Frequently, due to the robustness of our
classification, it suffices to compute the classifier on the
initial noisy mesh once and use it subsequently for all the
deformation steps. The corresponding linear system is
solved using CG-iterations. One deformation step takes
about two seconds on a mesh of 269,000 triangles on a
Pentium 4 PC at 1.7 GHz.

Fig. 8 shows several time steps during the edge
preserving fairing of a triangular surface. The leftmost
image corresponds to the original noisy surface.

5 CONCLUSION

In this paper, we have presented a range of local classifiers
that are able to detect surface features such as edges,
corners, and concave and convex smooth regions. Our main
focus was to provide a stable tool that is robust even on
irregular, discrete, and noisy surfaces. We have described
two classifiers, based on the zero moment and a combina-
tion of the first moment eigenvalues and the zero moment.
The classifiers are able to detect surface features on
complex, real-world discrete surface meshes. They are
simple to compute and come with a built-in scale
parameter, which is the scanning width in the integration
of the moments. This parameter allows us to detect only
features which are above a user-specified scale. Moreover,
we have proven results about the scaling behavior as well
as the eigenvalues of the first moment in the smooth
surfaces areas and on edges. These results serve as a
quantitative basis for the use of the classifiers. For the
moment calculation, we consider a block filter approach. In
signal processing, it can be advantageous to use a Gaussian-
type filter kernel. But, in the geometric context relevant
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Fig. 7. In the vicinity of edges indicated by the combined classifier C0;1� ,

the feature directions based on the first moment M1
� are drawn. On the

right-hand side, we zoom into the areas a and b, respectively.

Fig. 8. Several time steps of the evolution problem for surface fairing

using anisotropic diffusion based on the local surface classification via

moments. The parameters of the function G are 
 ¼ 0:1 and � ¼ 20.



here, this would require a corresponding time step of mean

curvature motion [4] as the geometric counterpart of

Gaussian filtering. Hence, we confine ourselves to the

simplest filter here, which, in particular, allows us to

present a detailed qualitative and quantitative analysis.
Future work will address the use of the presented

surface classifiers, especially the combined one, for devising

better surface smoothing methods and for the multiscale

modeling of surfaces.
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Differential-Geometry Operators for Triangulated 2-Manifolds,”
Proc. VisMath Conf., 2002.
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