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A Behavioral Approach to Passivity and Bounded Realness Preserving
Balanced Truncation with Error Bounds

H.L. Trentelman*, P. Rapisarda**

Abstract— In this paper we revisit the problems of passivity
and bounded realness preserving model reduction by balanced
truncation. In the behavioral framework, these problems can be
considered as special cases of balanced truncation of strictly half
line dissipative system behaviors, where the number of input
variables of the behavior is equal to the positive signature of the
supply rate. Instead of input-state-output representations, the
balancing algorithm uses normalized driving variable represen-
tations of the behavior. We show that the diagonal elements of
the minimal solution of the balanced algebraic Riccati equation
are the singular values of the map that assigns to each past
trajectory the optimal storage extracting future continuation.
Since the future behavior is only an indenite inner product
space, the term singular values should be interpreted here in
a generalized sense. We establish some new error bounds for
this model reduction method.
Keywords: Model reduction, strictly half line dissipative behaviors,
balanced truncation, bounded real balancing, positive real balanc-
ing, normalized driving-variable representations.

I. INTRODUCTION

The method of balanced truncation is the most prominent method
of model reduction for linear dynamical systems. The method is
straightforward and simple, has a nice and convincing physical
interpretation, preserves stability, and, last but not least, comes with
simple and effective H∞ error bounds.

Starting with the seminal paper [3] by Desai and Pal on stochastic
model reduction, there has been also an interest in balanced
truncation methods that preserve typical structural properties of the
original system. The paper by Desai and Pal introduces a balanced
truncation method to approximate a given positive real transfer
matrix by a reduced order positive real transfer matrix. In [5] this
problem was revisited, and it was shown that also stability and
minimality are preserved under this balanced truncation method.
In [14], and later in [2], H∞ error bounds for balanced reduction
of strictly positive real transfer matrices were found. The related
problem of balanced truncation of bounded real transfer matrices,
including H∞ error bounds, was studied extensively in [8]. For a
nice overview, we refer to [1].

Research on balanced reduction methods using ideas from
stochastic model reduction can also be found in the the work of
Weiland [15]. In [15], the problem of model reduction by balancing
is put into a more general, behavioral, framework. It is shown
that the system invariants that appear as diagonal elements in the
solutions of the algebraic Riccati equations after balancing are,
in fact, the nonzero singular values of a given map from past to
future behavior. This map assigns to any past trajectory its optimal
continuation, in an appropriate sense.

In the present paper we revisit the problems of reduction by
balancing of positive real and bounded real systems from a behav-
ioral point of view. Positive real (or passive) and bounded real (or
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contractive) systems are special cases of systems with a given input-
output partition that are dissipative on the negative half line, and
whose number of input components is equal to the positive signature
of the supply rate. In this paper we study the general problem of
model reduction by balancing for such strictly half line dissipative
systems. In particular, the property of strict half line dissipativity
should be preserved, and the input-output partition of the original
system should be respected.

We find a number of frequency domain inequalities involving
the error transfer matrix, i.e. the difference between the original
and reduced order transfer matrix from driving variable to manifest
variable. We study in what sense these inequalities can be inter-
preted as error bounds. In particular, for the special case of strictly
bounded real systems we find a new error bound for bounded real
balanced truncation.

Most of the proofs of the results in this paper are omitted. For
these, we refer to a future, full version of the paper.

Notation and background material. C∞(R,Rw) denotes the
space of all infinitely often differentiable functions from R to
Rw. D(R,Rw) denotes its subspace of functions with compact
support. For this space we use the shorthand notation D. We
denote by Lloc

2 (R,Rw) the space of all measurable functions w
from R to Rw such that

R b
a
‖w‖2dt < ∞ for all a, b ∈ R.

L2(R,Rw) denotes the ambient space of all measurable functions
w from R to Rw such that

R∞
−∞ ‖w‖

2dt < ∞. The L2-norm
of w is ‖w‖2 := (

R∞
−∞ ‖w‖

2dt)1/2. We denote by R− the set
of negative real numbers, and by R+ the complementary set of
nonnegative real numbers. L2(R−,Rw) (L2(R+,Rw)) denotes the
space of all measurable functions w from R− (R+) to Rw such
that

R 0

−∞ ‖w‖
2dt < ∞ (

R∞
0
‖w‖2dt < ∞). When the dimension

of the codomain is clear from the context, we denote these spaces
by L2(R), L2(R−) and L2(R+). For a given function w on R,
we denote by w|R− and w|R+ the restrictions of w to R− and
R+, respectively. C− (C+) is the subset of C of all λ such that
Re(λ) < 0 (Re(λ) > 0). For a given nonsingular, symmetric matrix
Σ ∈ Rw×w we denote by σ+(Σ) (the positive signature of Σ) the
number of positive eigenvalues of Σ.

II. REDUCTION OF DISSIPATIVE LINEAR DIFFERENTIAL
BEHAVIORS

This paper deals with model reduction of dissipative linear
differential systems. A subspace B ⊂ Lloc

2 (R,Rw) is called a
linear differential system (or a linear differential behavior) if it is
equal to the space of (weak) solutions w : R → Rw of a system
of linear, constant coefficient, higher order differential equations,
i.e., there exists a polynomial matrix R ∈ R•×w[ξ] such that
B = {w ∈ Lloc

2 (R,Rw) | R( d
dt

)w = 0} (see [9]). The variable
w is called the manifest variable of the system B. The set of all
linear differential systems with w variables is denoted by Lw.

It is well known, see e.g. [9], [15], that any B ∈ Lw admits state
space representations. In this paper we will use mainly one type of
state space representation, namely driving variable representations
(DV-representations). Consider the equations

ẋ = Ax+Bv, w = Cx+Dv, (1)
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with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rw×n and D ∈ Rw×m. These
equations represent the full behavior

BDV (A,B,C,D) := {(w, x, v) ∈ Lloc
2 (R,Rw)× Lloc

2 (R,Rn)

×Lloc
2 (R,Rv) | (1) holds}.

The variable x is a state variable, taking its values in Rn, the state
space, and v is called the driving variable, taking its values in Rm.
The external behavior corresponding to this full behavior is defined
as

BDV (A,B,C,D)ext = {w ∈ Lloc
2 (R,Rw) | ∃ x and v such

that (w, x, v) ∈ BDV (A,B,C,D)}.

If B = BDV (A,B,C,D)ext then we call BDV (A,B,C,D) a
driving variable representation of B.

We now review the notions of input and output. For a given
system B, a partition of the manifest variable w into w =
col(w1, w2) is called an input-output partition if w1 is maximally
free, meaning that it is free (i.e. for any w1 ∈ Lloc

2 (R,Rw1) there
exists w2 such that col(w1, w2) ∈ B), and one can not enlarge
w1 to a new variable w′1 by adding components of w2 such that
the new variable w′1 is free. If w = col(w1, w2) is an input-output
partition then w1 is called input and w2 is called output of B. For
details we refer to [9]. The number of input components in any
input-output partition of B ∈ Lw is an integer invariant of B, and
is called the input cardinality of B, denoted by m(B).

Now assume B ∈ Lw, and partition w = col(w1, w2). Let
BDV (A,B,C,D) be a driving variable representation of B. Of
course, the partition of w into col(w1, w2) induces a partition of
the matrices C and D into

C =

„
C1

C2

«
, D =

„
D1

D2

«
.

A natural question is now: under what conditions on the driving
variable representation is the partition w = col(w1, w2) an input-
output partition? The answer is given in the next lemma:

Lemma 2.1: Under the above assumptions, w = col(w1, w2) is
an input-output partition for B if and only if the rational matrix
G1(ξ) := C1(ξI−A)−1B+D1 is square and nonsingular. In that
case, the transfer matrix from w1 to w2 is equal to G2(ξ)G−1

1 (ξ),
with G2(ξ) := C2(ξI −A)−1B +D2.

Another important integer invariant of a given behavior B is
the minimal dimension of the state space over all its state space
representations. This integer is called the McMillan degree of B,
denoted with n(B).

A driving variable representation BDV (A,B,C,D) of B, with
state space dimension n and driving variable dimension m is called
minimal if n and m are minimal over all such driving variable
representations. The minimal n is equal to the McMillan degree
n(B) and the minimal m is equal to the input cardinality m(B).
A given DV-representation BDV (A,B,C,D) of B is a minimal
DV-representation if and only if (A,B,C,D is strongly observable
(meaning that the pair (C +DF,A+BF ) is observable for every
F ) and D has full column rank (see [15]).

We restrict ourselves to controllable behaviors in this paper. A
behavior B ∈ Lw is called controllable if for all w1, w2 ∈ B there
exists T ≥ 0 and w ∈ B such that w(t) = w1(t) for t < 0, and
w(t) = w2(t − T ) for t ≥ 0. Properties of controllable behaviors
are discussed in [9]. Lw

cont (a subset of Lw) will denote the set of
controllable behaviors.

If BDV (A,B,C,D) is a minimal DV-representation of B, then
B is controllable if and only if the pair (A,B) is controllable, see
[15].

We will now review the basic material on dissipative behaviors.
For an extensive treatment we refer to [12], [13], [17], [18]. Let
B ∈ Lw

cont and let Σ = Σ> ∈ Rw×w be nonsingular. The quadratic
form w>Σw is called a supply rate. B is said to be Σ-dissipative

if
R +∞
−∞ w>Σwdt ≥ 0 for all w ∈ B ∩ D. B it is said to be

Σ-dissipative on R− if
R 0

−∞QΣ(w) dt ≥ 0 for all w ∈ B ∩ D.
We will also call such behaviors half line dissipative. It is easily
seen that if B is Σ-dissipative on R−, then it is Σ-dissipative. A
controllable behavior B is said to be strictly Σ-dissipative if there
exists an ε > 0 such that B is (Σ − εI)-dissipative. We have the
obvious definition for strict dissipativity on R−. If B is strictly
Σ-dissipative on R−, then it is strictly Σ-dissipative.

In this paper we deal with linear differential behaviors B ∈ Lw
cont

that are strictly Σ-dissipative on R−. In addition, we assume that
m(B) = σ+(Σ), i.e. the input cardinality of B is equal to the
positive signature of Σ. Two important special cases of such systems
are

1. strictly bounded real input-output systems, where the manifest
variable is partitioned as w = col(u, y), with u input and y
output, and where Σ = diag(Im,−Ip), and

2. strictly passive input-output systems, where w = col(u, y),
with u input and y output (having the same dimension m, and

where Σ = 1
2

„
0 Im
Im 0

«
.

As announced in the introduction, this paper deals with ap-
proximation of strictly passive input-output systems by a strictly
passive input-output systems with a given lower McMillan degree,
and approximation of strictly bounded real input-output systems
by a strictly bounded real input-output systems with a given lower
McMillan degree. By the above remarks, these problems can be put
into one single framework, namely the following: given a strictly
half line Σ-dissipative behavior B with input cardinality m(B)
equal to the number σ+(Σ) of positive eigenvalues of Σ, and a given
input-output partition of its manifest variable, approximate it by a
strictly half line Σ-dissipative behavior of a given lower McMillan
degree, with the same input-output partition. More precise, the
problem can be formulated as follows:

Main Problem. Let B ∈ Lw
cont, with system variable w =

col(w1, w2), where w1 is input and w2 is output. Let Σ =
Σ> ∈ Rw×w be nonsingular and assume that m(B)(= dim(w1)) =
σ+(Σ). Assume that B is strictly Σ-dissipative on R− and let k
be an integer such that 0 < k < n(B). Find B̂ ∈ Lw

cont such that
1) B̂ is strictly Σ-dissipative on R−,
2) in B̂ w1 is input and w2 is output,
3) n(B̂) ≤ k,
4) B̂ is an approximation of B.

We will show that for the two special cases of strictly passive

and strictly bounded real systems, i.e. Σ = 1
2

„
0 Iw1
Iw1 0

«
and

Σ = diag(Iw1 ,−Iw2), respectively, reduction by balancing using
normalized driving variable representations leads to a behavior B̂
satisfying properties 1,2 and 3. Finally, the question whether our
balanced truncation method leads to a reasonable approximation is
studied afterwards, and amounts to finding reasonable error bounds.

III. Σ-CHARACTERISTIC VALUES OF SYSTEM BEHAVIORS

In this section we introduce the notion of Σ-characteristic values
of behaviors that are strictly Σ-dissipative on R− and that have the
property m(B) = σ+(Σ).

We will use the property that B is strictly dissipative on R−
to endow the past behavior with an inner product, with the inner
product given by the integral of the supply rate. In the same way,
the supply rate will only yield an indefinite inner product on the
future behavior. We will formulate a theorem that states that certain
operators between past and future behavior allow singular value
decompositions. This terminology should however be interpreted
carefully, since the future behavior is not an inner product space.
The ”singular values” will form a set of invariants of the strictly Σ-
dissipative behavior, and will be called the Σ-characteristic values
of B.

ThB04.1
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Let B ∈ Lw
cont and let a supply rate be given by the nonsingular

symmetric matrix Σ = Σ> ∈ Rw×w. Assume B is strictly Σ-
dissipative. Introduce the following notation:

B− := {w|R− | w ∈ B}, B+ := {w|R+ | w ∈ B}.

Furthermore, for a given past trajectory w− ∈ B− define the set
of all future trajectories w+ whose concatenation at time zero with
past trajectory w− is in B by

B+(w−) := {w+ ∈ B+ | there exists w ∈ B such that
w|R− = w− and w|R+ = w+},

and for a given future trajectory w+ ∈ B+ define the set of all
past trajectories w− whose concatenation at time zero with future
trajectory w+ is in B by

B−(w+) := {w− ∈ B− | there exists w ∈ B such that
w|R− = w− and w|R+ = w+}.

For a given past trajectory w− ∈ B− ∩ L2(R−) we define the
associated available storage by

Vav(w−) := sup{−
Z ∞

0

w>+Σw+dt | w+ ∈ B+(w−)∩L2(R+)},
(2)

and for a given future trajectory w+ ∈ B+ ∩ L2(R+) we define
the associated required supply by

Vreq(w+) := inf{
Z 0

−∞
w>−Σw−dt | w− ∈ B−(w+) ∩ L2(R−)}.

(3)
The available storage associated with past trajectory w− is the
maximal amount of supply that can be extracted from the system
over all future trajectories w+ ∈ B+(w−)∩L2(R+). The required
supply associated with future trajectory w+ is the minimal amount
of supply that has to be delivered to the system over all past
trajectories w− ∈ B−(w+) ∩ L2(R−).

Due to Σ-dissipativity of B, the supremum and infimum above
are finite for all w− and w+, respectively (see [12], [17], [18]).
Also, by strict Σ-dissipativity, both the supremum and infimum
are attained for all w− and w+. In particular, for given w− ∈
B− ∩ L2(R−) there is a unique w∗+ ∈ B+(w−) ∩ L2(R+) such
that

Vav(w−) = −
Z ∞

0

w∗>+ Σw∗+dt

and for given w+ ∈ B+ ∩ L2(R+) there is a unique w∗− ∈
B−(w+) ∩ L2(R−) such that

Vreq(w+) =

Z 0

−∞
w∗>− Σw∗−dt.

By associating with any past trajectory w− ∈ B− ∩ L2(R−) the
unique optimal future trajectory w∗+ ∈ B+(w−) ∩ L2(R+) we
obtain a map

Γ− : B− ∩ L2(R−)→ B+ ∩ L2(R+), Γ−(w−) = w∗+,

and by associating with any future trajectory w+ ∈ B+ ∩L2(R+)
the unique optimal past trajectory w∗− ∈ B−(w+) ∩ L2(R−) we
obtain a map

Γ+ : B+ ∩ L2(R+)→ B− ∩ L2(R−), Γ+(w+) = w∗−.

In the remainder of this section, assume that B is strictly Σ-
dissipative on R−. This implies that there exists ε > 0 such thatZ 0

−∞
w>Σwdt ≥ ε

Z 0

−∞
w>wdt

for all w ∈ L2(R−). Consequently, the bilinear form

< w1, w2 >−,Σ :=

Z 0

−∞
w>1 Σw2dt

defines an inner product on B− ∩ L2(R−). On B+ ∩ L2(R+)
consider the bilinear form

< w1, w2 >+,Σ := −
Z ∞

0

w>1 Σw2dt.

Since Σ is a nonsingular symmetric matrix, this defines an indefinite
inner product on B+ ∩L2(R+). (Note that we have assumed strict
Σ-dissipativity on R−, implying only positive definiteness of the
bilinear form over the past, and not necessarily over the future!).
Now, in the sequel it will be shown that the maps Γ− and Γ+ are
linear. We will denote by Γ∗− : B−∩L2(R−)→ B+∩L2(R+) the
adjoint of Γ−, i.e. the (unique) linear map Γ∗− : B+ ∩L2(R+)→
B− ∩ L2(R−) that satisfies

< w1,Γ−(w2) >+,Σ = < Γ∗−(w1), w2 >−,Σ

for all w1 ∈ B+∩L2(R+) and w2 ∈ B−∩L2(R−). The existence
and uniqueness of this adjoint can be easily proven, see e.g. [4],
chapter 4. Likewise, Γ∗+ : B− ∩ L2(R−) → B+ ∩ L2(R+) will
denote the adjoint of Γ+, i.e. the unique linear map that satisfies

< w1,Γ+(w2) >−,Σ = < Γ∗+(w1), w2 >+,Σ

for all w1 ∈ B− ∩ L2(R−) and w2 ∈ B+ ∩ L2(R+).
We now formulate a theorem stating that if B is strictly Σ-

dissipative on R− and m(B) = σ+(Σ), then the maps Γ− and Γ+

allow singular value decompositions that, in a certain sense, are
compatible. It should however be understood that, strictly speaking,
the terminology singular value decomposition is not appropriate in
the present context, since our maps do not act between genuine
inner product spaces: only the past behavior is an inner product
space, on the future behavior we have an indefinite inner product.
The notion singular value should therefore be interpreted in a
generalized sense:

Theorem 3.1: Assume that B is strictly Σ-dissipative on R−
and m(B) = σ+(Σ). The maps Γ− and Γ+ are linear. The map
Γ∗−Γ− : B− ∩L2(R−)→ B− ∩L2(R−) has a finite-dimensional
image, and it is Hermitian and nonnegative. There exist positive
real numbers σ1 ≥ σ2 ≥ . . . ≥ σn > 0, where n = n(B), the
McMillan degree of B, such that σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

n > 0
are the nonzero eigenvalues of Γ∗−Γ−. There exists an orthonormal
set {w−1 , w

−
2 , . . . , w

−
n } ⊂ B− ∩ L2(R−), and an orthonormal set

{w+
1 , w

+
2 , . . . , w

+
n } ⊂ B+ ∩ L2(R+) such that

Γ− =

nX
i=1

σi < . ,w−i >−,Σ w+
i , (4)

Γ+ =

nX
i=1

1

σi
< . ,w+

i >+,Σ w−i . (5)

An important result in the above theorem is the nonnegativity of
the map Γ∗−Γ−. Of course, in genuine inner product spaces this
nonnegativity is trivially satisfied. In the present context it is a
statement that needs to be proven explicitely, and which follows
from the fact that im(Γ−) is a positive subspace for the indefinite
future inner product. This follows from the nonnegativity of the
available storage (which in turn follows from dissipativity on the
negative half line and the assumption that m(B) = σ(Σ)).

The positive real numbers σ1 ≥ σ2 ≥ . . . ≥ σn > 0 will
be called the Σ-characteristic values of B. As noted before, in a
generalized sense these numbers are the singular values of the map
Γ−. In that sense, the pairs of functions (w−i , w

+
i ) can be consid-

ered as Schmidt pairs of Γ−. We note that for the special cases
of strict passivity and strict bounded realness, the Σ-characteristic
values coincide with the positive real characteristic values and
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bounded real characteristic values, respectively. This will follow
immediately from the characterization of the Σ-characteristic values
in terms of solutions of the algebraic Riccati equation in the next
section.

IV. STATE SPACE CHARACTERIZATIONS AND
REPRESENTATIONS

In this section we review the characterizations of (strict) Σ-
dissipativity in terms of the algebraic Riccati equation associated
with a minimal DV-representation of the given behavior B. We
explicitely compute representations of the linear maps (and their
adjoints) that assign to each past (future) trajectory the unique state
at time zero, and we characterize the extremal solutions of the
Riccati equation in terms of these maps. We also compute the maps
Γ− and Γ+ in terms of compositions of these maps. It will turn out
that the Σ-characteristic values are the eigenvalues of the product
of the inverse of the maximal solution and the minimal solution
of the algebraic Riccati equation, and that B admits a Σ-balanced
minimal DV-representation. Much of the material in this section is
an extension of results in [15] to the case that the future behavior
is an indefinite inner product space.

Proposition 4.1: Let B ∈ Lw
cont with minimal DV-

representation BDV (A,B,C,D) and let Σ = Σ> ∈ Rw×w

be nonsingular. Assume D>ΣD > 0. Then
1) B is Σ-dissipative if and only if there exists a real symmetric

solution P = P> ∈ Rn×n of the algebraic Riccati equation
(ARE)

A>P + PA− C>ΣC+

(PB − C>ΣD)(D>ΣD)−1(B>P −D>ΣC) = 0.(6)

If this is the case, then there exist real symmetric solutions
P− and P+ such that every real symmetric solution P
satisfies P− ≤ P ≤ P+.

2) B is Σ-dissipative on R− if and only if there exists a positive
semidefinite solution P = P> ∈ Rn×n of the ARE (6).

3) If m(B) = σ+(Σ) then B is Σ-dissipative on R− if and only
if all solutions of ARE (6) are positive definite, equivalently
P− > 0.

Proposition 4.2: Let B ∈ Lw
cont with minimal DV-

representation BDV (A,B,C,D) and let Σ = Σ> ∈ Rw×w

be nonsingular. If B is strictly Σ-dissipative then D>ΣD > 0,
and the minimal and maximal real symmetric solution P− and
P+ of the ARE (6) satisfy P+ > P−. Furthermore, P− and P+

are stabilizing and anti-stabilizing, respectively, i.e., σ(A−) ⊂ C−
and σ(A+) ⊂ C+, where we denote

A+ := A+B(D>ΣD)−1(B>P+ −D>ΣC), (7)

A− := A+B(D>ΣD)−1(B>P− −D>ΣC). (8)

Finally, the following statements are equivalent:
1) B is strictly Σ-dissipative on R−,
2) D>ΣD > 0 and the maximal solution P+ of the ARE (6)

is positive definite and anti-stabilizing, i.e., σ(A+) ⊂ C+.
We will now study the maps Γ− and Γ+ in terms of DV-

representations of the given behavior B. Let B ∈ Lw
cont with

minimal DV-representation BDV (A,B,C,D). Let n = n(B) be
the McMillan degree of B. By minimality, for every w ∈ B there
is a unique state trajectory x. For any given x0 ∈ Rn, let B(x0)
denote the set of all w ∈ B such that the corresponding state
trajectory x satisfies x(0) = x0. Thus, for every w ∈ B there is
a unique x0 ∈ Rn such that w ∈ B(x0). Moreover (see [15]),
there exists linear surjective maps R− : B− ∩ L2(R−)→ Rn and
R+ : B+ ∩ L2(R+)→ Rn such that for all x0 ∈ Rn we have

w ∈ B(x0) ⇔ {R−(w−) = x0 and R+(w+) = x0},

where w− := w|R− and w+ := w|R+ . In the sequel we will
explicitely compute representations of the maps R− and R+, and

their adjoints R∗− and R∗+ in terms of the systems matrices A,B,C
and D. On Rn we take the standard Euclidean inner product.
Note that R∗+ denotes the generalized adjoint with respect to the
indefinite inner product on B+ ∩ L2(R+).

It is well known (see [13]) that the extremal solutions of the
Riccati equation (6) are associated with the available storage and
required supply as reviewed in the previous section:

Proposition 4.3: Let B ∈ Lw
cont with minimal DV-

representation BDV (A,B,C,D). Assume that D>ΣD > 0.
Assume B is Σ-dissipative and let P− and P+ be the minimal
and maximal real symmetric solution of the ARE (6). Then for
any w− ∈ B− ∩ L2(R−) we have Vav(w−) = x>0 P−x0, where
x0 := R−(w−). Also, for any w+ ∈ B+ ∩ L2(R+) we have
Vreq(w+) = x>0 P+x0, where x0 := R+(w+).
If B is strictly Σ-dissipative then P− and P+ satisfy σ(A+) ⊂
C+ and σ(A−) ⊂ C− (see Theorem 4.1). Introduce the following
notation:

C+ = C +D(D>ΣD)−1(B>P+ −D>ΣC), (9)

C− = C +D(D>ΣD)−1(B>P− −D>ΣC). (10)

The following is also well-known (see also [16]):
Proposition 4.4: Let B ∈ Lw

cont with minimal DV-
representation BDV (A,B,C,D). Assume B is strictly Σ-
dissipative. Then for w− ∈ B− ∩ L2(R−) the unique optimal
future trajectory w∗+ is given by w∗+(t) = C−e

A−tx0, where
x0 := R−(w−). Also, for w+ ∈ B+ ∩ L2(R+) the unique
optimal past trajectory w∗− is given by w∗−(t) = C+e

A+tx0,
where x0 := R+(w+).

In the remainder of this section we will assume that B is strictly
Σ-dissipative on R− and that m(B) = σ+(Σ). In that case, in
addition we have 0 < P− < P+ (see Prop. 4.2). The next theorem
is the main result of this section. It computes representations of R−
and R+ and their adjoints R∗− and R∗+, and shows that P− and P+

can be expressed in terms of compositions of these maps.
Theorem 4.5: Let B ∈ Lw

cont with minimal DV-representation
BDV (A,B,C,D). Assume that B is strictly Σ-dissipative on R−
and that m(B) = σ+(Σ). Then for any w− ∈ B− ∩ L2(R−) and
w+ ∈ B+ ∩ L2(R+) we have

R−(w−) =

Z 0

−∞
e−(A+−P

−1
+ C>+ ΣC+)sP−1

+ C>+ Σw−(s)ds, (11)

R+(w+) = −
Z ∞

0

e−(A−−P
−1
− C>−ΣC−)sP−1

− C>−Σw+(s)ds.

(12)
Furthermore, for any x0 ∈ Rn we have

R∗−(x0) = C+P
−1
+ e−(A+−P

−1
+ C>+ ΣC+)>tx0 (13)

and
R∗+(x0) = C−P

−1
− e−(A−−P

−1
− C>−ΣC−)>tx0. (14)

Finally, P+ = (R−R
∗
−)−1 and P− = (R+R

∗
+)−1.

Remark 4.6: In the case that both the past and the future behav-
ior are inner product spaces a result analogous to P+ = (R−R

∗
−)−1

and P− = (R+R
∗
+)−1 was proven in [15] using a general least

squares argument, without computing explicit representations of
R−, R

∗
−, R+ and R∗+.

Corollary 4.7: Let B ∈ Lw
cont with minimal DV-representation

BDV (A,B,C,D). Assume that B is strictly Σ-dissipative on R−
and that m(B) = σ+(Σ). Then we have Γ− = R∗+(R+R

∗
+)−1R−

and Γ+ = R∗−(R−R
∗
−)−1R+.

The eigenvalues σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n > 0 of Γ∗−Γ− are in

fact the eigenvalues of P−1
+ P−, with 0 < P− < P+ the extremal

solutions of the ARE (6), for any minimal DV-representation of B.
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Theorem 4.8: Assume that B is strictly Σ-dissipative on R−
and m(B) = σ+(Σ). Let σ1 ≥ σ2 ≥ . . . ≥ σn > 0 be the Σ-
characteristic values of B. Let BDV (A,B,C,D) be a minimal
DV-representation of B with 0 < P− < P+ the extremal solutions
of the ARE (6). Then {σ2

1 , σ
2
2 , . . . , σ

2
n} = σ(P−1

+ P−). Furthermore
0 < σi < 1 for all i.

After a suitable coordinate transformation x̂ = Tx in the state
space of the DV-representation BDV (A,B,C,D), the maps R−
and R+ transform to TR− and TR+. Thus R−R∗− transforms to
TR−R

∗
−T
> and R+R

∗
+ to TR+R

∗
+T
>. This implies that P−1

+

transforms to T−>P+T
−1 and P− to T−>P−T

−1. It is well
known, see e.g. [20], that there exists a coordinate transformation
T such that T−>P−T−1 and T−>P+T

−1 are equal and diagonal.
Since the set of eigenvalues of P−1

+ P− is {σ2
1 , σ

2
2 , . . . , σ

2
n} this

diagonal matrix must be equal to the diagonal matrix Π :=
diag(σ1, σ2, . . . , σn). Thus we obtain:

Corollary 4.9: Assume that B is strictly Σ-dissipative on R−
and m(B) = σ+(Σ). Let σ1 ≥ σ2 ≥ . . . ≥ σn > 0 be
the Σ-characteristic values of B. There exists a minimal DV-
representation BDV (A,B,C,D) of B such that the corresponding
extremal solutions P− and P+ of the ARE (6) satisfy P− = P−1

+ =
diag(σ1, σ2, . . . , σn).

A minimal DV-representation of B such that P− = P−1
+ =

diag(σ1, σ2, . . . , σn) is called a Σ-balanced DV-representation of
B.

V. Σ-NORMALIZED Σ-BALANCED DV-REPRESENTATIONS

In this section we show that if B is strictly Σ-dissipative on
R− and m(B) = σ+(Σ), then it has a Σ-balanced minimal DV-
representation that is, in addition, Σ-normalized.

The idea of Σ-normalization originates from the concept normal-
ized coprime factorization, see e.g. [20]. In the following lemma
we state that strictly Σ-dissipative behaviors allow Σ-normalized
DV-representations.

Lemma 5.1: Assume that B ∈ Lw
cont is strictly Σ-dissipative.

Then there exists a minimal driving variable representation
BDV (A,B,C,D) of B such that A is asymptotically stable and
G>(−ξ)ΣG(ξ) = I , where G(ξ) := C(ξI −A)−1B +D.
A driving variable representation satisfying the two conditions of
Lemma 5.1 is called a Σ-normalized driving variable representation
of B. Σ-normalized representations have some nice properties. This
is elaborated in the following lemma.

Lemma 5.2: Let G(ξ) be proper rational and let G(ξ) = C(ξI−
A)−1B +D be a realization. Assume σ(A) ⊂ C−. Let M be the
unique symmetric solution of A>M + MA − C>ΣC = 0. If
B>M −D>ΣC = 0 and D>ΣD = I , then G>(−ξ)ΣG(ξ) = I .
If, in addition, (A,B) is controllable and (C,A) is observable,
then B>M − D>ΣC = 0 and D>ΣD = I if and only if
G>(−ξ)ΣG(ξ) = I
The above lemma suggests that for Σ-normalized representations
the controllability and generalized observability (or Σ-observability)
gramians are related to the maximal and minimal solutions of the
ARE. Indeed, we have:

Lemma 5.3: Assume that B ∈ Lw
cont is strictly Σ-dissipative.

Let BDV (A,B,C,D) be a minimal, Σ-normalized driving variable
representation of B. Let P− and P+ be the minimal and maximal
real symmetric solutions of the ARE (6). Let M be the unique
solution of A>M +MA−C>ΣC = 0 (called the Σ-observability
gramian), and let W be the unique solution of AW + WA> +
BB> = 0 (the controllability gramian). Then we have

1) M = P−,
2) W = (P+ − P−)−1.
If we start with a Σ-normalized driving variable representation,

then transforming into Σ-balanced coordinates results in a Σ-
normalized driving variable representation as well. This follows
immediately from the fact that the transfer matrix associated with
the DV-representation does not change under coordinate transfor-
mation. Thus we obtain:

Corollary 5.4: Let B ∈ Lw
cont be strictly Σ-dissipative on R−

and assume that m(B) = σ+(Σ). Then there exists a Σ-normalized,
Σ-balanced minimal DV-representation BDV (A,B,C,D) of B.

For a Σ-normalized, Σ-balanced minimal DV-representations of
B, the Σ-observability gramian and controllability gramian are
diagonal matrices, and their diagonal elements can be expressed
in terms of the Σ-characteristic values σ1 ≥ σ2 ≥ . . . ≥ σn of B:

Lemma 5.5: Let BDV (A,B,C,D) be a Σ-normalized, Σ-
balanced minimal DV-representation of B. Then the Σ-
observability gramian M and controllability gramian W are given
by

1) M = Π = diag(σ1, . . . , σn),
2) W = (Π−1 −Π)−1 = diag( σ1

1−σ2
1
, . . . , σn

1−σ2
n

).

VI. REDUCTION BY BALANCED TRUNCATION

Let B ∈ Lw
cont be strictly Σ-dissipative on R−, and parti-

tion w = col(w1, w2) with w1 input and w2 output. Assume
that m(B) = dim(w1) = σ+(Σ). Let BDV (A,B,C,D) be a
minimal Σ-normalized and Σ-balanced DV-representation of B.
Define G(ξ) = C(ξI − A)−1B + D. We have P−1

+ = P− =
diag(σ1, σ2, . . . , σn) = Π.

Pick k < n such that σk > σk+1. We will to compute a reduced
order approximation B̂ ∈ Lw

cont of B that inherits the input-output
partition of B, i.e., also in B̂ w1 is input and w2 is output, such
that its McMillan degree n(B̂) ≤ k, and B̂ is strictly Σ-dissipative
on R−. This computation consists of the following steps:

step 1. Partition A, B and C:

A =

»
A11 A12

A21 A22

–
, B =

»
B1

B2

–
, C =

ˆ
C1 C2

˜
,

(15)
with A11 k × k, B1 k × m and C1 p × k, and
define the truncated system Btrunc by Btrunc :=
BDV (A11, B1, C1, D).

step 2. Define the reduced order approximation as the control-
lable part of Btrunc:

B̂ := (Btrunc)cont. (16)

A DV-representation of B̂ can obtained by performing a
Kalman controllability decomposition (see [7], proposi-
tion 22):

T−1A11T =

»
Â ∗
0 ∗

–
, T−1B1 =

»
B̂
0

–
,

C1T =
ˆ
Ĉ ∗

˜
, D = D̂. (17)

We then have B̂ = BDV (Â, B̂, Ĉ, D̂)ext.
Our main result now states that the for the special cases of

strictly passive and strictly bounded real systems, the reduced order
behavior B̂ obtained in this way satisfies the required properties.

Theorem 6.1: Assume

Σ =
1

2

„
0 Iw1
Iw1 0

«
or Σ = diag(Iw1 ,−Iw2).

Let B̂ be defined by (16). Then

1. B̂ is controllable,
2. σ(Â) ⊂ C−,
3. BDV (Â, B̂, Ĉ, D̂) is a Σ-normalized DV-representation of

B̂,
4. B̂ is strictly Σ-dissipative on R−, n(B̂) ≤ k, and in B̂ w1

is input and w2 is output.
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VII. ERROR BOUNDS

A. A one-step frequency domain inequality
Starting with B, strictly Σ-dissipative on R−, with m(B) =

σ+(Σ), let BDV (A,B,C,D) be a Σ-balanced, Σ-normalized
minimal DV-representation. Let G(ξ) = D + C(ξI − A)−1B.
Assume that the distinct Σ-characteristic values of B are σ1 >
σ2 > . . . > σN , where σi appears ni times. Then Π =
diag(σ1I1, σ2I2, . . . , σNIN ), with Ii the ni × ni identity matrix.

Suppose now that we do a one-step reduction by eliminating the
state components corresponding to the last singular value σN : par-
tition Π = blockdiag(Π1,Π2), with Π2 = σNIN . Let Btrunc =
BDV (A11, B1, C1, D)ext be the truncated behavior as defined in
step 2. of our algorithm. Let Gtrunc(ξ) = D+C1(ξI−A11)−1B1.
Let B̂ = BDV (Â, B̂, Ĉ, D̂)ext be the reduced order behavior, and
Ĝ(ξ) = D̂+Ĉ(ξI−Â)−1B̂. Obviously, Gtrunc = Ĝ. We will now
derive some properties of the error transfer matrix E := G− Ĝ.

Theorem 7.1: The rational matrix E is stable. For all ω ∈ R we
have

0 ≤ −E>(−iω)ΣE(iω) ≤ 4σ2
N

1− σ2
N

IN . (18)

Of course, the question arises in what sense the inequality (18)
can be interpreted as an error bound. Note that the supply rate Σ
is still an arbitrary nonsingular symmetric matrix with the property
that σ+(Σ) = m(B). In the following, denote G∼(ξ) := G>(−ξ).
Since G∼ΣG = I and Ĝ∼ΣĜ = I , we have

I = (G− E)∼Σ(G− E) = I − E∼ΣG−G∼ΣE + E∼ΣE,

which implies that E∼ΣE = E∼ΣG + G∼ΣE. Thus (18) is
equivalent with: for all ω ∈ R

0 ≤ −[G>(−iω)ΣE(iω) + E>(−iω)ΣG(iω)] ≤ 4σ2
N

1− σ2
N

IN .

B. Error bounds for the strictly bounded real case
We will now study the case that our system B comes with

an input-output partition w = col(w1, w2), and that it is strictly
bounded real, i.e. is is Σ-dissipative on R− with Σ given by
diag(Iw1 ,−Iw2). We already know that our balanced truncation
method retains the given input-output partition. In this section we
will denote the input variable w1 simply by u and the output
variable w2 by y.

Let the original system B be represented by the minimal
normalized DV-representation

ẋ = Ax+Bv,„
u
y

«
=

„
C1

C2

«
x+

„
D1

D2

«
v.

Apply then the algorithm outlined in section VI to obtain a reduced
order behavior B̂ given in normalized DV representation by

ż = Âz + B̂v,„
û
ŷ

«
=

„
Ĉ1

Ĉ2

«
z +

„
D̂1

D̂2

«
v.

Next, we investigate the frequency domain inequality (18) for this
special case. Let

G(ξ) =

„
G1(ξ)
G2(ξ)

«
=

„
C1(ξI −A)−1B +D1

C2(ξI −A)−1B +D2

«
compatibly with the partition w = (u, y) (i.e., u = G1v and y =
G2v). Likewise, define Ĝ1 and Ĝ2. Denote E1 := G1−Ĝ1, E2 :=
G2 − Ĝ2. Assume now that we truncate one step, as explained in
subsection VII-A. According to Theorem 7.1, for all ω ∈ R we
have

E1(−iω)>E1(−iω) ≤ E2(−iω)>E2(−iω)

≤ 4σ2
N

1− σ2
N

I + E1(−iω)>E1(−iω)

This implies that if we ’drive’ both B and B̂ with the same
driving variable trajectory v ∈ L2(R) with ‖v‖2 = 1, and denote
the corresponding (unique) L2(R) input trajectories and output
trajectories for B and B̂ by u, û and y, ŷ, respectively, then we
have

‖u− û‖22 ≤ ‖y − ŷ‖22 ≤
4σ2

N

1− σ2
N

+ ‖u− û‖22,

so
‖u− û‖2 ≤ ‖y − ŷ‖2 ≤

2σNp
1− σ2

N

+ ‖u− û‖2.

Thus, the norm of the difference ‖u − û‖2 is a lower bound for
the norm of the difference of the corresponding outputs ‖y − ŷ‖2,
while for σN small the difference ‖y − ŷ‖2 is close to this lower
bound. In plain words: for small σN , ‖y − ŷ‖2 is approximately
‖u− û‖2. Also, of course, if the L2(R) inputs u and û of B and B̂
are equal, then the L2(R) outputs y and ŷ are close in the sense that
‖y− ŷ‖2 ≤ 2σN√

1−σ2
N

. This statement applies to one-step truncation.
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