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Algorithms for interconnection and decomposition problems with
multidimensional systems

Diego Napp Avelli and Harry L. Trentelman

Abstract— The notion of interconnection is the basis of
control in the behavioral approach. In this setting, feedback in-
terconnection of systems is based on the still more fundamental
concept of regular interconnection, which has been introduced
by J. C. Willems. In this paper, the following problem is
addressed: given a plant, under what conditions does there exist
a controller such that their interconnection is regular and has
finite codimension with respect to a certain desired system. If
so, provide a constructive solution to the problem. The second
part of the paper treats the related problem of decomposition
of systems. First, the autonomous/controllable decomposition
is studied, and finally we look at the decomposition of the
controllable part.
keywords: multidimensional systems, behavioral approach
regular interconnection, feedback interconnection, multivari-
able polynomial modules, decomposition , controllability,
strong controllability

I. INTRODUCTION

The behavioral approach relies on the idea that systems
are described by equations, but their properties are naturally
described in terms of the set of all solutions to the equations.
This is formalized by the notion of system behavior due
to J.C.Willems, and denoted by B. In this setting, a new
perspective to control is given, see [17], based on intercon-
nection of systems, where no a priori input/output partition is
considered. The act of controlling a system is simply viewed
as intersecting its behavior B with a controller behavior
Bc in order to achieve a desired behavior Bd = B ∩Bc.
Of particular interest is the interconnection, called regular
interconnection, where the restrictions imposed on the plant
by the controller are not redundant, i.e. the restrictions of
the controller are independent of the restrictions already
present in the plant. Hence the notion of feedback control,
which is of significant interest in modern control theory,
is based on the still more fundamental concept of regular
interconnection. It is, indeed, a simple example of regular
interconnection since the controller imposes restrictions only
on the plant input, which is not restricted by the plant.

The regular interconnection problem can be formulated as
follows: given a plant behavior B together with a desired
behavior, find if possible, another behavior (the controller)
such that the interconnection is regular and equal to the given
desired behavior.

J.C.Willems in [17] stated and solved this problem for one
dimensional behaviors. The multidimensional counterpart
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was treated by P. Rocha and J.Wood [11], [10], E. Zerz [20],
and H. L. Trentelman and D. Napp [13].

Conditions and an algorithm were given for solving the
problem. Actually, for multivariable behaviors, these condi-
tions are very seldomly satisfied and strong properties will
be required on the plant and the desired system.

Therefore, the limits of achievability by regular intercon-
nection can be further studied. This suggests the idea of
looking for an equivalent problem with weaker requirements.
In this paper we will treat the following problem:

Given a plant behavior B and a certain desired behabior
Bd, find if possible, another behavior (the controller) such
that the interconnection is regular and is contained in the
given desired behavior with finite codimension, i.e. find if
possible another behavior Bc such that the interconnection
is regular and Bd/B∩Bc is an autonomous behavior that is
finite-dimension as a vector space over a field k, see [4], [8]
(we also use the notation dimk(Bd/B∩Bc) <∞ to denote
that it is finite-dimension over the field k). In the 1D case, all
autonomous behaviors are finite-dimensional, which means
that the state space is finite dimensional. For multivariable
behaviors this is, in general, not longer true, since it could
have an infinite set of initial conditions. These special class
of autonomous behaviors are called strongly autonomous in
[9].

If such Bc exists then we say that Bd is almost achiev-
able by regular interconnection from B. This constitutes a
generalization of the regular interconnection problem as it
represents the ‘closest’ achievability one can get through
regular interconnection in the sense of finite dimension.

Furthermore, in this paper we investigate in some detail
the related problem of decomposing a given behavior into
the sum of finer components. It is immediately apparent
that decomposition is a powerful tool for the analysis of the
system properties. Decomposition is, indeed, of particular
interest in the case of multidimensional systems, where a
description of the nD systems trajectories can be compli-
cated and decomposing the original behavior into smaller
components seems to be an effective way for simplifying
the systems analysis.

The autonomous-controllable decomposition has played a
significant role in the theory of linear time-invariant systems.
Such decomposition expresses the idea that every trajectory
of the behavior can be thought of as the sum of two
components: a free evolution, only depending on the set of
initial conditions, and a forced evolution, due to the presence
of the input. In the case of 1D systems, this sum is direct,



i.e.

B = Bcont + Baut and Bcont ∩Baut = 0.

Here Bcont and Baut represent the controllable and au-
tonomous part of B, respectively.
However, this decomposition is, in general, not longer direct
for n ≥ 2, and we may have that the controllable part of
B, (which is uniquely defined for a given B) intersects
all possible autonomous parts involved in the controllable-
autonomous decomposition [19], [15], [3].

Finally, in our quest to completely decompose a behavior,
we address the problem of decomposing the controllable
part. The following problem is studied: Given a controllable
behavior B and a sub-behavior Ba ⊂ B, find a third
behavior Bb ⊂ B such that Bb + Ba = B and Bb ∩
Ba has finite dimension.

If such Bc exists, then we say that Ba is an almost direct
summand of Bc. This constitutes a generalization of the
direct sum decomposition as it represents a decomposition
with ”minimal” intersection.

In this paper we denote the polynomial ring
k[x1, x2, . . . , xn] of polynomials in n indeterminates
with coefficients in the field k = R or C, by D.

We mainly investigate these problems for n = 2 (i.e.
dim(D) = 2), even though some results are still valid for
any n.

II. MULTIDIMENSIONAL BEHAVIORS

In this section we review some concepts of nD behavioral
systems. For a nice overview we refer to, for example, [9],
[22] or [19].

In the behavioral approach to nD systems, a system is
defined by a triple (A, q,B), where A is the signal space,
q ∈ Z

+ is the number of components and B ⊂ Aq is the
behavior. Here, we consider A the space of all infinitely
often differentiable functions from R

n to k (denoted by
C∞(Rn, k)) or all k-valued distributions on R

n (denoted by
D′

(Rn, k)). The results of the paper are perfectly valid also
for the discrete case A = kNn. For the sake of simplicity we
will however focus on the continuous case A = C∞(Rn, k).

We call B a linear differential nD behavior or simply
nD behavior if it is the solution set of a system of linear,
constant-coefficient partial differential equations, more pre-
cisely, if B is the subset of Aq consisting of all solutions
to

R(
d

dx
)w = 0 (1)

where R is a polynomial matrix in n indeterminates xi, i =
1, . . . , n, and d

dx = ( ∂
∂x1

, . . . , ∂
∂xn

). The elements of B are
called trajectories. We call (1) a kernel representation of B
and we write B = ker(R). Obviously, any linear differential
nD behavior B is a linear subspace of Aq. Furthermore, it
has the structure of a module over the ring of differential or
difference operators.

It was shown in [7] that there is a one-to-one correspon-
dence between nD behaviors and submodules of Dq. With

any nD behavior B ⊂ Aq we associate the submodule B⊥

of Dq defined by

B⊥ := {r ∈ Dq | r( d

dx
)w = 0 for all w ∈ B}.

Conversely, for any submodule M of Dq we have that

M⊥ := {w ∈ Aq | r( d

dx
)w = 0 for all r ∈M}

is an nD behavior. Indeed one has that B⊥⊥ = B and
M⊥⊥ = M. With this bijection, we have (B1 ∩B2)⊥ =
B⊥

1 + B⊥
2 and (M1 ∩ M2)⊥ = M⊥

1 + M⊥
2 . If B =

ker(R) then B⊥ is the submodule of Dq of all D-linear
combinations of the rows of R.

The relation between B and B⊥ has provided many
results and some authors reffer to it as a “duality”. Even
if it is strongly related it is not the same as the duality due
to Malgrange [6] and defined as follows:

Let HomD(M,A) = {D − linear map from M →
A} and B any nD behavior then one has that B =
HomD(Dq/B⊥,A).

LetM be a finitely generated D-module, we use the nota-
tion D(M) := HomD(M,A) and M∗ := HomD(M,D).
We will omit an explicit reference to the ring D as there will
be no ambiguity and write Hom(, ) instead of HomD(, ).

We now introduce some basic definitions, mathematical
tools and known results which will be needed in the rest of
the paper.

Given the D-modules B,C, and E and the D-linear maps
α : B −→ C, we define

Hom(α,E) : Hom(C,E) −→ Hom(B,E)

by ϕ �−→ ϕ ◦ α.

Definition 2.1: A sequence · · · −→ Aj−1
dj−→ Aj

dj+1−→
Aj+1 −→ · · · of R-modules and homomorphisms dj is
called exact if for every (relevant) j one has ker (dj+1) =
im (dj) and is called complex if for every (relevant) j one
has ker (dj+1) ⊃ im (dj).
For example the sequence 0 −→ A1

α−→ A2
β−→ A3 −→ 0

is exact if and only if α is injective, β surjective and
ker β = im α. In other words, A1 can be identified with a
submodule of A2, and A3 with the module of A2/A1. Exact
sequences are an easy way to express algebraic and system-
theoretic properties.
Oberst in [7] extended the work of Malgrange and Palam-
odov and proved the following fundamental theorem.

Theorem 2.1: Given finitely generated D-modules B,C
and D, D-linear maps α and β, the complex

0 −→ B
α−→ C

β−→ D −→ 0 (2)

and its dual complex

0← Hom(B,A) α̃← Hom(C,A)
β̃← Hom(D,A)← 0

(3)
then we have that (2) is exact if and only if (3) is exact.
The last theorem amounts to say that the signal space A is
an injective cogenerator and is important to note that many



other signal spaces, e.g. the set of smooth functions with
compact support, are not injective cogenerators [12].

Given a D−module M, an element m ∈ M is called a
torsion element if there exists 0 �= d ∈ D such that dm = 0.
The set of torsion elements is a submodule of M. If this
submodule is the 0-module, then M is called torsion-free.

In the behavioral approach, interconnection of systems
is defined by intersection of the corresponding behaviors.
Thus the interconnected behavior consists of the trajectories
satisfying the equations of both systems, i.e. if B1 =ker(R1)
and B2 =ker(R2) then B1 ∩B2 =ker( R1

R2
) .

Definition 2.2: The interconnection B1 ∩ B2 is called
regular if B⊥

1 ∩B⊥
2 = 0.

Hence we have that regular interconnection expresses the
idea that the controller imposes new constrains on the plant
which are not already present, i.e. there is no redundancy
between the laws of the plant and the controller. Hence,
feedback interconnections are regular interconnections since
the controller imposes restrictions only on the input of the
plant, which is unconstrained.

Definition 2.3: Let B = {w ∈ Aq | R( d
dx )w = 0} ⊂ Aq.

Then the i-th component wi of w is called free or input if
πi : B −→ A given by w �−→ wi is surjective. The behavior
is called autonomous if has no free variables.

Theorem 2.2: (see [19], [21], [9]) Given B = {w ∈
Aq | R( d

dx )w = 0} ⊂ Aq. The following are equivalent:

1) B is autonomous;
2) Dq/B⊥ is torsion.

A strong form of autonomy is studied next.
Definition 2.4: A behavior B is said to be strongly au-

tonomous if it is finite dimensional as a vector space over
k..

Theorem 2.3: (see [9], [8] ) Given a behavior B ⊂ Aq,
the following are equivalent:

1) B is strongly autonomous;
2) For every open non empty U ⊂ R

n the restriction map
rU : Aq → A|qU is injective on B.

Thus, every trajectory of a strongly autonomous behavior is
determined by its values on any open subset of R

n.
Definition 2.5: A behavior B is said to be controllable if

for all w1, w2 ∈ B and all sets U1 ,U2 ⊂ R
n with disjoint

closure, there exist a w ∈ B such that w |U1 = w1 |U1 and
w |U2 = w2 |U2 .

Theorem 2.4: (see [19], [21], [9]) Given a behavior B ⊂
Aq, the following conditions are equivalent:

1) B is controllable;
2) Dq/B⊥ is torsion free.
The following definition was first introduced in [11], see

also [10].
Definition 2.6: A behavior B = D(M) is said to be

strongly controllable if M is free.
Definition 2.7: A behavior B is said to be regular if it

has a full row rank kernel representation.
For the case n = 1, all behaviors are regular. This is not

longer true for n ≥ 2, take for instance the 2D differential
behavior B =ker( x1

x2
), consisting of all constant functions,

which cannot be described as the kernel of a single polyno-
mial operator.

III. A USEFUL THEOREM

In this section we will provide most of the technical
results of the paper. The main algebraic tool we will use is
localization. Localization is a systematic method of adding
multiplicative inverses to a ring in order to construct local
rings out of a ring. This notion allows us to reduce many
questions concerning arbitrary rings to local rings. A ring
is called local if it has exactly one maximal ideal. The
unique maximal ideal consists precisely of the non-invertible
elements of the ring.

Let R be a ring (always commutative with identity element
1), and S ⊂ R a multiplicative set (i.e. 1 ∈ S and s1, s2 ∈ S
implies s1s2 ∈ S). We introduce the following equivalence
relation ∼ on R× S:

(a, s) ∼ (b, t)⇐⇒ ∃u ∈ S such that u(at− bs) = 0.

We will write a/s for the class of (a, s). Then the ring
of fractions of R with respect to S, denoted by S−1R, is
(R × S)/ ∼ with ring operations defined by the usual
arithmetic operations on fractions:

a

s
± b

t
=

at± bs

st
and

a

s
· b
t

=
ab

st
.

Proposition 3.1: The following statements hold:

1) The ring operations are well defined, and S−1R is a
ring.

2) ϕ : R −→ S−1R defined by a �−→ a/1 is a ring
homomorphism.

Given a ring R, there are two popular and useful choices of
multiplicative sets S ⊂ R:

1) S = {1, z, z2, z3, ....}, for a given element z ∈ R and
we write Rz := S−1R.

2) S = R \ m where m is a maximal ideal of the ring
R. Then S−1R is a local ring with unique maximal
ideal m · S−1R. The local ring S−1R is called the
localization of R at m, and denoted by Rm := S−1R.

Note that if 0 ∈ S then S−1R = 0. We now proceed in
a similar way with modules instead of ideals. Let M be
an R-module and S ⊂ R a multiplicative set. Define the
equivalence relation ∼ on M × S as follows:

(m, s) ∼ (n, t)⇐⇒ ∃u ∈ S such that u(tm− sn) = 0.

Denote (M × S)/ ∼ by S−1M . This is again a module,
this time over the ring S−1R, with operations defined by:

m

s
± m

t
=

tm± sn

st
and

a

s
· n

t
=

an

st
.

If S = R \ m, with m a maximal ideal, then S−1M is a
module over the local ring S−1R = Rm. This S−1R-module
is denoted by Mm. If S = {1, z, z2, . . . } for a given element
z ∈ R then we denote S−1M = Mz .

Let D = k[x1, x2, . . . , xn], M be a finitely generated D-
module and S = D−{0}. Hence S−1D, denoted by DS , is
the set of rational fuctions and S−1M = {m

p | m ∈M, 0 �=



p ∈ D} is a vector space over the field S−1D and is denoted
by MS .

We will now introduce the notion of codimension. Codi-
mension is a term used to indicate the difference between the
dimension of certain objects and the dimension of a smaller
object contained in it.

Definition 3.1: Let A ⊂ B be finitely generated D-
modules. A has finite codimension in B means that the
dimension of B/A as a vector space over k is finite i.e.
dimk(B/A) <∞, and is denoted by A ⊂

<∞
B.

Lemma 3.1: Let D = k[x1, x2, . . . xn] and M be a
finitely generated D-module. The following are equivalent:

1) dimk(M) <∞;
2) For all xi there exists a non constant pi(xi) ∈ D[xi]

with p(xi)M = 0, i = 1, . . . n;
3) There exists an ideal I ⊂

<∞
D with I · M = 0;

4) dimk(Hom(M,A)) <∞.

Furthermore, given B1,B2 two behaviors then B2 ⊂
<∞

B1 ⇔ B⊥
1 ⊂

<∞
B⊥

2 .

Proof : Any finitely generated D-module can be written in
the form Dq/N for some q and some submodule N of Dq.

(1) ⇒ (2): Let {f1, f2, . . . fs} be a set of generators of
M = Dq/N . Consider the sequence {fj , xifj , x

2
i fj . . . },

since dimk(M) < ∞ one has that there exists t ∈ N

such that xt
ifj = at−1fjx

t−1
i + at−2fjx

t−2
i + · · · + a0fj ,

with a0, a1, a2, . . . , at−1 ∈ k. Define pj,i(xi) := −xt
i +

at−1x
t−1
i + at−2x

t−2
i + · · ·+ a0 and clearly pj,i(xi)f̄j = 0.

Hence one may compute pi,j for all j = 1, 2, . . . s, and
pi(xi) := p1,i(xi)p2,i(xi) . . . ps,i(xi) satisfies pi(xi)M = 0.
This holds for any i = 1, . . . , n.

(2) ⇒ (3): Let ti be the degree of the
pi. The basis of Dp/ < p1, p2, . . . , ps > is
{1, x1, . . . , x

t1−1
1 , x2, . . . x

t2−1
2 , . . . xtn−1

n }. Thus
I :=< p1, p2, . . . , ps > ⊂

<∞
D and I · M = 0.

(3)⇒ (4): Since I ⊂
<∞

D it is clear that there exists non

constant pi(xi) ∈ I, i = 1, . . . , n. Let {f1, f2, . . . fs} be a
set of generators of M = Dq/N . Every � ∈ Hom(M,A)
can be identified with �(f1), �(f2), . . . , �(fs) ∈ A. Hence it
is enough to show that { �(f1) ∈ A | � ∈ Hom(M,A)}
is finite dimension. Since If1 = 0 ⇒ I�(f1) = 0 one has
that { �(f1) ∈ A | � ∈ Hom(M,A)} ⊂ {g ∈ A | Ig =
0} ⊂ {g ∈ A | pi(xi)g = 0, i = 1, 2 . . . , n}. Thus it is
enough to show that {g ∈ A | pi(xi)g = 0, i = 1, 2 . . . , n}
is finite dimensional. This follows from the fact that {g ∈
A | pi(xi)g = 0 i = 1, 2 . . . , n} = spank{xαiexp(λi) ∈
A | λi a root of pi , i = 1, 2 . . . , n, αi = 0, 1, . . . deg(λi)−
1} which has finite dimension over k.

(4)⇔ (1): Already done in [8].
Finally, by theorem 2.1, one has that the exact sequence

0 −→ B⊥
2 /B⊥

1 −→ Dq/B⊥
1 −→ Dq/B⊥

2 −→ 0 (4)

implies that

0←− Hom(B⊥
2 /B⊥

1 ,A)←− B1 ←− B2 ←− 0 (5)

is exact which means that Hom(B⊥
2 /B⊥

1 ,A) ≈ B1/B2.
Hence, B⊥

2 /B⊥
1 is finite dimension if and only if

Hom(B⊥
2 /B⊥

1 ,A) ≈ B1/B2 is finite dimension using the
equivalence of the statements (1) and (4). �

Throughout the rest of this section we will take n = 2 and
consider the ring D = k[x1, x2]. The results we will obtain
are valid for this particular ring.

Lemma 3.2: Let D = k[x1, x2], I ⊂ D be an ideal and
{f1, ...fm} be a generating set for I . Then the following
three statements are equivalent:

1) I ⊂
<∞

D;

2) the greatest common divisor (g.c.d) of {f1, ...fm} is
equal to 1;

3) Z(I) = {(a1, a2) ∈ C
2 | ∀f ∈ I f(a1, a2) = 0} is

finite.
Proof : First recall that radical(I) =

√
I = {d ∈ D | dm ∈

I for some positive integer m}.
(1) ⇒ (2): Suppose that g.c.d(f1, . . . fm) = f with f

not constant, clearly I ⊂ (f) ⊂ D. A consequence of
the Noether normalization is that after a linear change of
variables f can be written as f = xd

2 + ad−1(x1)xd−1
2 +

. . . a0(x1) and therefore D/(f) is a free k[x1]-module of
rank d with infinite dimension over k.

(2) ⇒ (3): Every fi can be decomposed as fi =
g1g2 . . . gr with gj irreducible polynomials and

√
(gj) cor-

responds to an irreducible curve in C
2 (i.e. Z(

√
(gi) is an

irreeducible curve). Hence
√

(fi) corresponds to a curve Γi

which is a finite union of irreducible curves, and therefore
Z(
√

I) corresponds to the intersection of all Γi. The assump-
tion g.c.d({f1, ...fm}) = 1 means that the curves Γi do not
coincide anywhere and therefore they intersect just in points
, i.e. the set Z(

√
I) = Z(I) contains just points and it is

finite because Γ1,Γ2, . . . ,Γr can not intersect infinite many
times.

(3) ⇒ (1): Since Z(I) = Z(
√

(I)) ⇒ Z(
√

(I)) is finite.
By definition

√
I = ∩Pi⊃IPi, Pi prime ideals. For all Pi ⊃ I

one has that Z(
√

I) ⊃ Z(Pi) which implies Pi is a maximal
ideal (since Z(

√
I) finite). For any two maximal ideals

m1,m2 ⊂ D one has that Z(m1) = Z(m2) ⇔ m1 = m2,
so there exists finite number of Pi such that

√
I = ∩Pi⊃IPi.

Conclusion,
√

I = ∩t
i=1mi for some t ∈ N. Each maximal

ideal is of the form m = (p, q) ⊂ D where p ∈ R[x1]
irreducible and q ∈ D irreducible in (R[x1]/(p))[x2]. We
claim that there exists h(x1, x2) = xr

2 + xr−1
2 qr−1(x1) +

. . . q0(x1) ∈ mi for some qr−1, . . . , q0 ∈ R[x1]. Proof of
the claim: gi(x1, x2) ∈ R[x1][x2], with not all coefficients
in (pi) (otherwise mi = (pi) which is not maximal). One
can always write gi(x1, x2) = xs

2qs(x1) + xs−1
2 qs−1(x1) +

· · ·+ q0(x1). Take hi ≡ gi(x1, x2) mod(p), hi �= 0. Since
(R[x1]/(pi)) is a field there exists f ∈ R[x1] such that
fhi ≡ xs′

2 + xs′−1
2 qs′−1(x1) + · · · + q0(x1) mod(pi) ⇒

xs′
2 + xs′−1

2 qs′−1(x1) + · · · + q0(x1) ∈ mi. Finally p =
p1p2 · · · pt = xN1

1 +lower order terms ∈ R[x1] and h =
h1h2 · · ·ht = xN2

2 + (lower order terms in x2) ∈ R[x1][x2].
There exists N ∈ N such that pN , hN ∈ I ⇒ D/I has finite
dimension over k.



�

Lemma 3.3: Let m be a maximal ideal of D. Let Dm be
the localized local ring of D at m, and let z1, z2 be generators
of the unique maximal ideal in Dm. Suppose that a finitely
generated Dm-module N has the properties: N has no torsion
and N = Nz1 ∩Nz2 . Then N is free.
Proof : We claim that the Dm/(z2)-module N := N/z2N
has no torsion. Indeed, if this module has torsion then there
exists a non zero element n ∈ N , image of n ∈ N , with
an = 0 with a ∈ Dm/(z2). Since a = cz1 with c invertible,
then we may take a = z1 . Thus z1n ∈ x2N and we write
z1n = z2ñ and ξ := 1

z2
n = 1

z1
ñ. Then ξ ∈ Nz1 ∩Nz2 = N

and n = z2ξ is in contradiction with n �= 0.

Since Dm/z2Dm is a principal ideal domain (moreover
is a discrete valuation ring, see [1]) every torsion free
(Dm/z2Dm)-module is free. Hence the module N is free
and we can choose elements n1, . . . , ns ∈ N such that their
images in n1, . . . , ns in N form a free basis. In particular,
their images {ni}in N = N/(x1, x2)N form a basis over
the residue field of Dm. It follows (by Nakayama’s lemma)
that the {ni} generate N . Suppose now that there is a non
trivial relation f1n1 + · · ·+ fsns = 0. Then all fi lie in the
maximal ideal of Dm. Since N has no zero divisors, one
may divide by the g.c.d. of all fi and find a relation, again
written as f1n1 + · · ·+ fsns, where the g.c.d. of all fi is 1.

Write fi = z1gi + z2hi with gi, hi ∈ Dm. Then
z1(

∑
gini) + z2(

∑
hini) = 0. Thus z1(

∑
gini) ∈ z2N

and, since N has no torsion,
∑

gini has image 0 in N .
Since {ni} are free, one finds that all gi ∈ z2Dm. The latter
leads to the contradiction that all fi are divisible by z2. �

The following theorem and its corollaries will be essential
for the rest of the paper and will be used in most of the
results. First, we will recall a lemma (see ...) that will allow
us to check the freeness of a module over an arbitrary ring by
checking the freeness of certain modules over a local ring.

Lemma 3.4: ([1]) Let R be a ring (commutative with 1,
the identity element). Let N be an R-module. Then N is
projective if and only if for all maximal ideals m of R, Nm

is free over Rm.
Now we present the main technical result of this paper:

Theorem 3.1: Let M be a finitely generated torsion free
D-module. Then there exists a free D-module N such that
M ⊂

<∞
N .

Proof : M is contained in some free module F (see [5]
p.44). Let {f1, . . . fm} be a basis of F and m ∈ Fx1 ∩ Fx2 .
One can write m = a1f1 + . . . amfm = b1f1 + . . . bmfm

where ai ∈ Dx1 , bi ∈ Dx2 , and therefore aifi = bifi ⇒
(ai − bi)fi = 0 ⇒ ai − bi = 0 ⇒ ai, bi ∈ Dx1 ∩ Dx2 ⇒
ai, bi ∈ D, i = 1, . . . m. Hence Fx1 ∩ Fx2 = F and
N := Mx1 ∩Mx2 ⊂ Fx1 ∩ Fx2 = F is a finitely generate
D-module containing M .

Dm is a regular local ring of dimension two and we show
that the Dm-module Nm satisfies the requirements of the
lemma 3.3 and thus N is free by lemma 3.4.

Finally, there is an integer a ≥ 1 such that
(x1, x2)aN/M = 0. This implies that N/M has finite
dimension over k. �

As an immediately consequence we obtain the following
result for 2D behaviors:

Corollary 3.1: Let B =ker(R) = D(M) be a 2D behav-
ior. There exists a regular behavior B′ such that B′ ⊂

<∞
B.

Moreover if B is controllable then there exists a strongly
controllable 2D behavior B′ such that B = B′/B̃ with B̃
finite dimension over k.
Proof : The D−module B⊥ ⊂ Dq is a torsion free module.
By theorem 3.1 there exists a free D-module F such that
B⊥ ⊂

<∞
F and B ⊂

<∞
F⊥ = B′ by lemma 3.1.

If the D-module M is a torsion free module by theorem
3.1 there exists a free D-module F such that M ⊂

<∞
F .

Obviously B′ = D(F ) is strongly controllable since F is
free. Consider the following exact sequence:

0 −→M −→ F −→ F/M−→ 0 (6)

Using the injective and cogenerator properties of A, we have

0 −→ Hom(F/M,A) =: B̃ −→ B′ −→ B −→ 0 (7)

is exact. Thus B = B′/B̃ and B̃ is finite dimension over k
since F/M is finite dimension over k. �

We make some observations in the following lemma:
Lemma 3.5: Let M be a finitely generated torsion free

D-module, N a free D-module such that M ⊂
<∞

N and

S = D− {0}. The following holds:

1) NS = MS

2) If ξ ∈ N then the ideal I = {p ∈ D | pξ ∈
M} ⊂

<∞
D and therefore there is an ideal I with finite

codimension such that I ·N ⊂M .
3) If ξ ∈ NS = MS , but does not belong to N , then the

ideal I = {f ∈ D | fξ ∈ N} (and hence also the
ideal J = {f ∈ D | fξ ∈ M}) does not have finite
codimension in D.

Proof : Note that such an N always exists from lemma 3.1.
(1) : There exists d ∈ D such that dn ∈M for all n ∈ N

since M ⊂
<∞

N . Hence for all n′ ∈ NS ⇒ dn′ ∈ MS ⇒
n′ = dn′/d ∈MS ⇒MS ⊃ NS and MS ⊂ NS is obvious.

(2) : Follows from statement (3) of lemma 3.1.
(3) : Write {e1, ..., em} for a free basis of N and ξ =

ξ1e1+· · ·+ξmem with all ξi ∈ DS . Using that D is a unique
factorization domain one can write each ξi as fi/gi, fi, gi ∈
D with g.c.d(fi, gi) = 1. Let g be the smallest common
multiple of g1, . . . , gm. Thus I = gD ⊂ D and does not
have finite codimension. �

Corollary 3.2: Let M be a finitely generated torsion free
D-module and S = D − {0}. Thus N = {ξ ∈ MS | {f ∈



D | fξ ∈M} has finite codimension } is the unique free D-
module such that M ⊂

<∞
N and therefore if M is free then

N = M . We write M+ for N . Moreover, (M+)+ = M+.
The computation of M+ will be essential for solving the
problems we have considered. We now provide a theorem
which allows to easily compute M+.

Theorem 3.2: Let M be a finitely generated torsion free
module over D and M+ the free D-module such that M ⊂

<∞
M+. Then M+ = M∗∗, thus the natural map M →M∗∗ is
the required embedding.

Proof : The exact sequence 0 → M → F → F/M → 0
induces the exact sequence 0 → Hom(F/M,R) → F ∗ →
M∗ → Ext1(F/M,R) → 0. Now Hom(F/M,R) = 0
and ext1(F/M,R) has finite dimension. Thus F ∗ ⊂ M∗

and dim M∗/F ∗ < ∞. Take a basis e1, . . . , ed of F ∗ and
consider an element b ∈ M∗. Write b = f1e1 + · · · + fded

with f1, . . . , fd ∈ k(x1, x2). The ideal I := {f ∈ R| fb ∈
F ∗} is the principle ideal generated by the smallest common
multiple of the denominators of f1, . . . , fd. Now (F ∗ +
Rb)/F ∗ ∼= R/I . Suppose that I �= R, then dim R/I = ∞
and this contradicts dim M∗/F ∗ < ∞. We conclude that
I = R and b ∈ F ∗. Thus F ∗ = M∗ and F ∗∗ = M∗∗. �

IV. “ALMOST” REGULAR IMPLEMENTABILITY

We consider the following problem:
Problem 1: Given a behavior B and a control objective

Bd ⊂ B, find a behavior Bc (a controller) such that

B ∩Bc ⊂
<∞

Bd and the interconnection is regular.

If such Bc exists, then we say that Bd is almost imple-
mentable by regular interconnection from B. The problem
of finding such a Bc is called the problem of almost regular
implementability of Bd from B.

In this section we aim to investigate under what conditions
a given Bd ⊂ B is almost implementable by regular
interconnection from B.

The following theorem reduces this problem to the prob-
lem of checking whether a given free module is a direct
summand of a larger free module.

Theorem 4.1: Given behaviors Bd ⊂ B, denote N1 =
B⊥, N = B⊥

d . If Bd is almost implementable by regular
interconnection from B then N+

1 is direct summand of N+.
Furthermore, if N+

1 is direct summand of N+ and B is a
regular behavior then Bd is almost implementable by regular
interconnection from B.
Proof : Using the relation between B and B⊥, and taking
N1 = B⊥, N = B⊥

d the problem of almost regular
implementability can be re-stated as follows: Given modules
N1 ⊂ N ⊂ Dq, does there exist a D-module N2 ⊂ Dq such
that N ⊂

<∞
N1 + N2 and N1 ∩N2 = 0.

Note that if N1 ⊂ N+ then N+
1 ⊂ (N+)+ = N+. Since

Hom(N1⊕N2,D) = Hom(N1,D)⊕Hom(N2,D) one has
that (N1 ⊕N2)+ = N+

1 ⊕N+
2 .

(a) Suppose there exists N2 such that N ⊂
<∞

N1 ⊕ N2,

then N+ ⊂
<∞

(N1⊕N2)+ = N+
1 ⊕N+

2 . Using (3) of lemma

3.5 one has that N+
1 ⊕N+

2 = N+.
(b) Suppose there exists N+

2 such that N+
1 ⊕N+

2 = N+

and N1 is free (because B is a regular behavior), i.e. N+
1 =

N1, this implies N ⊂
<∞

N+
1 ⊕N+

2 = N1 ⊕N+
2 . �

Theorem 4.1 provides a necesary and a sufficient condition
for solving the problem of almost regular implementability
of Bd from B. Indeed, such a necessary condition (and also
sufficient if N1 is free) can be computed by checking whether
N+

1 is direct summand of N+. This is computationally very
effective since both N+ and N+

1 are free modules.
One way to do it is to construct a matrix R which maps a

basis e1, e2, . . . en of N+
1 to the basis f1, f2, . . . fm of N+.

If the n×n minors of R do not generate the unit ideal D,
then Bd is not almost achievable by regular interconnection
from B.

If n×n minors of R generate the unit ideal D and N1 is
free, then N1 is direct summand of N and one can compute
elements {en+1, . . . em} ∈ N such that {en+1, . . . em} is a
basis of N+

2 . This means that N+
2 can be computed explicitly

and therefore the controller Bc = (N+
2 )⊥.

V. AUTONOMOUS-CONTROLLABLE DECOMPOSITION

WITH FINITE DIMENSIONAL INTERSECTION

In the next two sections we address the problem of
decomposing a behavior into smaller components. We do it
in two steps. First in this section we look at the autonomous-
controllable decomposition and in the next section we treat
the decomposition of the controllable part. The autonomous-
controllable decomposition has played an important role in
the theory of linear systems. It has been studied intensively
in the context of 1D behaviors [16], in the context for
2D behaviors for [4], [15], and for higher dimensional in
[19], [21]. In our search to decompose a given behavior into
simpler components, it seems natural to study first weather
it is possible to have an autonomous-controllable decompo-
sition with finite dimensional intersection. In this section we
show that autonomous-controllable decomposition with finite
dimensional intersection is always feasible for 2D behaviors
and provide a counterexample for n = 3.

Lemma 5.1: Let Bcont be the controllable part of a given
behavior B. Denote M := D/B⊥ and let Mt be the
torsion submodule of M . Construct the exact sequence 0 −→
Mt −→ M

β−→ N ≈ M/Mt −→ 0 . The following
statements are equivalent:

1) There exists an autonomous behavior Baut ⊂ B such
that

B = Bcont + Baut and

Bcont ∩Baut has finite dimension; (8)

2) There exists an autonomous behavior Baut ⊂ B such
that

B⊥ = (Bcont)⊥ ∩ (Baut)⊥ and



(Bcont)⊥ + (Baut)⊥ ⊂
<∞

Dq; (9)

3) There exists a D-module A ⊂ M such that D(M) =
D(M/Mt)+D(M/A) and D(M/Mt)∩D(M/A) has
finite dimension;

4) There exists a D-module A ⊂M such that A∩Mt = 0
and A + Mt ⊂

<∞
M ;

5) There exists a D-module N ′ ⊂
<∞

N such that 0 −→
Mt −→ M ′ := β−1(N ′)

β−→ N −→ 0 splits, i.e. Mt

is direct summand of M ′.
The following remark and lemma will be needed in the proof
of lemma 5.1.

Remark 2: Consider the following exact sequence:

0 −→Mt −→M
β−→ N −→ 0 (10)

We could replace N by a submodule N ′ with dim(N/N ′) <
∞ and M by M ′ = β−1(N ′) (and therefore dim(M/M ′) <

∞ since N
N ′ ≈

M/Mt

M ′/Mt
≈

M
M ′ ) and get the exact sequence

0 −→Mt −→M ′ β−→ N ′ −→ 0. (11)
Lemma 5.2: Let A ⊂ M be two D-modules and Mt the

torsion part of M . Then the following hold:
(a) Mt ∩A = 0⇔ D(M) = D(M/Mt) + D(M/A).
(b) Mt + A ⊂ M ⇔ D(M/(Mt + A)) = D(M/Mt) ∩

D(M/A).
Proof : Easy using corollary 3 in [18].

�

Proof of lemma 5.1: The equivalence of (1), (2) and (3)
follows straightfoward from the results provided in section
II .

(3) ⇔ (4):Since Mt ∩ A = 0 ⇔ D(M) = D(M/Mt) +
D(M/A) is exactly part (a) of lemma 5.2, we just need
to prove that Mt + A ⊂ M with finite codimension ⇔
D(M/Mt) ∩ D(M/A) has finite dimension. Using part
(b) of lemma 5.2 one has that D(M/Mt) ∩ D(M/A) =
D(M/(Mt+A)), and D(M/(Mt+A)) has finite dimension
if and only if M/(Mt + A) has finite dimension, see [8],
which means that Mt + A ⊂

<∞
M .

(4) ⇐ (5): Since the sequence splits there exists a D-
module A such that Mt⊕A = M ′ and by remark 2 one has
that M ′ ⊂

<∞
M .

(4) ⇒ (5): Let N ′ := (Mt ⊕ A)/Mt. Then the sequence

0 −→ Mt −→ Mt ⊕ A
β−→ (Mt ⊕ A)/Mt −→ 0 is exact,

splits and (Mt ⊕A)/Mt ⊂
<∞

(M/Mt since Mt ⊕A ⊂
<∞

M .

�

The following theorem state that the autonomous-
controllable decomposition with finite dimensional intersec-
tion is always feasible.

Theorem 5.1: Let M be a finitely generated D-module
and let Mt be the torsion submodule of M . Then there exists
a submodule A ⊂M such that A∩Mt = 0 and A+Mt ⊂M
has finite codimension.

Proof : Using remark 2, it is enough to check that there
exists N ′ ⊂ N of finite dimension such that the sequence
(11) splits. There exists d ∈ R, d �= 0 with dMt = 0. Since
N ∼= M/Mt , N is torsion free and applying theorem 3.1
there is a free module F = Re1 + · · ·+Rem ⊃ N such that
F/N has finite dimension. By lemma 3.1 there is an ideal
J ⊂

<∞
D such that N contains the submodule Je1+· · ·+Jem

of the free module De1 + · · ·+ Dem i.e. J · F/N = 0.
Further J contains a non zero multiple p of d since J ⊂

<∞
D. We want to show that there exists an element q ∈ J such
that the ideal (p, q) ⊂

<∞
D ( or equivalently g.c.d.(p, q) = 1).

The radical
√

J corresponds to a finite set S of points in
the plane C

2. For any non zero element f ∈ J , the radical√
(f) corresponds to a curve Γ passing through S. This

curve Γ is a finite union of irreducible curves. The converse
is valid: let Γ be a curve, passing through S, then the radical
ideal corresponding to Γ has the form Rg for some element
g ∈ √J and thus, for some integer N ≥ 1 one has gN ∈ J .

Now
√

Rp defines a curve Γ passing through S, which
is a finite union of irreducible curves Γ1, . . . ,Γr. It is clear
that there exists a curve Γ′ passing through S, corresponding
to some radical ideal Rg, such that none of the irreducible
components of Γ′ coincides with a Γi. Let q := gN ∈ J .
The radical ideal

√
(p, q) corresponds to the intersection

Γ ∩ Γ′. This is a finite set and thus
√

(p, q) and also
I := (p, q) are ideals in R with finite codimension. In
particular g.c.d.(p, q) = 1.

We may replace N by Ie1+· · ·+Iem and M accordingly.
Choose, for i = 1, . . . ,m, elements ui, vi ∈M with images
pei, qei in N .

Consider an expression
∑m

i=1(aiui +bivi) (all ai, bi ∈ R)
having image 0 in N . Then

∑m
i=1(aip + biq)ei = 0 and it

follows that for suitable ci ∈ R we have ai = ciq, bi =
−cip. Note that qui − pvi ∈ Mt for all i and thus p(qui −
pvi) = 0.

Next, consider the submodule A of M generated by the
elements pui, qvi for all i. Then β(A) = (p2, q2)e1 + · · ·+
(p2, q2)em has finite codimension in N . We verify now that
A ∩Mt = 0.

Suppose that ξ :=
∑m

i=1(aipui + biqvi) lies in Mt. Then
there are ci such that aip = ciq, biq = −cip for all i. Then
ci is divisible by pq since g.c.d.(p, q) = 1. Write ci = pqdi.
Then ξ =

∑m
i=1 pqdi(qui−pvi). This expression is zero. �

The following counterexample shows that the theorem 5.1
does not hold for n ≥ 2.

Example 3: Take D = k[x1, x2, x3], and the exact se-
quence

0 −→ D(x2,−x1) −→ D2 β−→ I −→ 0

with β(a, b) = ax1 + bx2, I = (x1, x2) ⊂ D. Furthermore,

0 −→Mt −→M
β−→ I −→ 0

is exact, with D(x2,−x1)/Dx1(x1,−x2) = Mt and
D2/Dx1(x1,−x2) = M . There does not exist A ⊂M with



the required properties. In order to see this we take an ideal
J ⊂ I with finite codimension and check that the exact
sequence 0 −→ Mt −→ β−1(J)

β−→ J −→ 0 never splits.
All ideals J ⊂ I with finite codimension have the form
J = (xs

1, x
r
2, x1x

t
3, x2x

w
3 ) for some s, r, t, w ∈ Z

+. Then
β−1(J) = (β−1(xs

1), β
−1(xr

2), β
−1(x1x

t
3), β

−1(x2x
w
3 )) =

((xs−1
1 , 0), (0, x2r − 1), (xt

3, 0), (0, xw
3 )). Take m1 =

(x2x
t+w
3 , 0),m2 = (0,−x1x

t+w
3 ∈ β−1(J) but are not in

Mt. Finally note that m1 + m2 ∈Mt.
The next example shows that not every sub-behavior is an
almost direct summand of a given behavior, not even for
n = 2.

Example 4: Take D = k[x1, x2], and the exact sequence

0 −→ D(x2,−x1) −→ D2 β−→ I −→ 0

with β(a, b) = ax1 +bx2, I = (x1, x2) ⊂ D. There does not
exist A ⊂ Mwith A ∩D(x2,−x1) and A + D(x2,−x1) ⊂
finite codimension. Following the idea in previous exam-
ple, J = (p(x1)x1, q(x2)x2) for any polynomials p, q.
Then β−1(J) = ((p(x1, 0)), (0, q(x2))). Finally take m1 =
(x2qp, 0),m2 = (0,−x1pq).

VI. DECOMPOSITION OF THE CONTROLLABLE PART

Once we have decomposed the behavior into autonomous
and controllable parts, one may look for a finer decomposi-
tion. The autonomous part of 2D behaviors has been studied
in detail in [15], [14], [2], [4]. Indeed, autonomous 2D
behaviors, which are kernels of full column rank matrices,
can be represented as a direct sum of two sub-behaviors. One
finite dimensional and the other one a square autonomous be-
havior which is defined by a nonsingular square polynomial
matrix. Hence, continuing our search for more elementary
components, we look, in this section, at the controllable part
of a given behavior. In fact, we treat the following problem:

Problem 5: Given a controllable 2D behavior B ⊂ Aq

and a sub-behavior Ba ⊂ B find a behavior Bb ⊂ B such
that

1. Bb + Ba = B

2. Bb ∩Ba has finite dimension . (12)
Lemma 6.1: Let Ba ⊂ B ⊂ A be two 2D behaviors and

denote M = Dq/B⊥ and N1 = B⊥
a /B⊥. The following

problems are equivalent:
1) Problem 5;
2) Find a D-module N2 ⊂M such that N1∩N2 = 0 and

N1 + N2 ⊂
<∞

M ;

3) N+
1 is a direct summand of M+.

Proof : (1) ⇔ (2): It is enough to apply the map ()⊥ to
the conditions (12), take the quotient by B⊥ and write M =
Dq/B⊥, N2 = B⊥

b /B⊥ and N1 = B⊥
a /B⊥.

(2)⇒ (3) Suppose N1 ⊕N2 ⊂
<∞

M , then N+
1 ⊕N+

2 ⊂
<∞

M+, and by corollary 3.2 N+
1 ⊕N+

2 = M+ because N+
1 ⊕

N+
2 is free.
(2) ⇐ (3) Suppose there exists N+

2 with N+
1 ⊕ N+

2 =
M+. Because N1 ⊂ M and N2 ∩ M ⊂ M one has that
N1 ⊕ (N2 ∩M) ⊂

<∞
M . �

From this theorem, the problem is, for given N1 ⊂M , to
compute N+

1 and M+, and check whether N+
1 is a direct

summand of M+. One way to do it is to construct a matrix
R which maps a basis e1, e2, . . . en of N+

1 to the basis
f1, f2, . . . fm of M+. Thus, problem 5 is solvable is and
only if the n× n minors of R generate the unit ideal D.
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