

 University of Groningen

Modeling the Variability of Architectural Patterns
Kamal, Ahmad Waqas; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kamal, A. W., & Avgeriou, P. (2010). Modeling the Variability of Architectural Patterns. In EPRINTS-BOOK-
TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/4323317c-9e6d-45e4-941a-d9718175d2af

Modeling the Variability of Architectural Patterns

Ahmad Waqas Kamal, Paris Avgeriou
Dep. of Mathematics and Computer Science

University of Groningen, the Netherlands
a.w.kamal@rug.nl, paris@cs.rug.nl

ABSTRACT
Architectural patterns provide proven solutions to recurring
design problems that arise in a system context. A major
challenge for modeling patterns in a system design is ef-
fectively expressing pattern variability. However, modeling
pattern variability in a system design remains a challeng-
ing task mainly because of the infinite pattern variants ad-
dressed by each architectural pattern. This paper is an at-
tempt to solve this problem by categorizing the solution par-
ticipants of patterns. More precisely, we identify variable
participants that lead to specializations within individual
pattern variants and participants that appear over and over
again in the solution specified by several patterns. With
examples and a case study, we demonstrate the successful
applicability of this approach for designing systems. Using
the UML extension mechanism, we offer extensible archi-
tectural modeling constructs that can be used for modeling
several pattern variants.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns, Languages,
Modeling

Keywords
Architectural Patterns, Variability, UML

1. INTRODUCTION
Architectural patterns document successful experiences of

designers and provide proven solutions to recurring design
problems that arise in a system context. They specify guide-
lines for designing the structural and behavioral aspects of
a system. An architectural pattern details a fundamental
solution to a design problem in the form of pre-defined pat-
tern participants (also known as pattern elements [1]) like
pattern-specific components, classes, or objects that work
together to resolve the identified problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

There are four approaches that have been used so far to
express the solution specified by a pattern in system design:

• Architectural Description Languages (ADLs) [2] that
have been traditionally used for describing software
architecture.

• Unified Modeling Language (UML) [3] [4], which is a
widely used generic modeling language for designing
systems in different domains but is mostly used to de-
sign software.

• Formal approaches [5] that specify precise pattern so-
lution to specific problems e.g. pattern-specific com-
ponents and connectors.

• Informal box and line diagrams that provide little in-
formation about actual computation represented by
boxes, and the nature of the interactions between them
[6].

In spite of the benefits that these 4 approaches offer, there
is not yet an established approach for effectively expressing
and applying pattern variants in a system design for the
following reasons:

• Modeling pattern variability effectively in a system
design using existing approaches remains a challeng-
ing task. A pattern determines only a basic solution
to a design problem rather than tangible architectural
elements that can be used ’as is’ in a design. The solu-
tion specified by a pattern provides only the guidelines
to solve a design problem and leaves blank spaces that
need to be filled in by a software designer [1]. This re-
quires specialization of a pattern’s solution in the con-
text of a system design that leads to different variants
of a pattern. Current modeling languages provide lim-
ited support for expressing pattern variability. UML
offers generic architectural elements (i.e. components,
connecters) while few other modeling languages (e.g.
ACME, Wright, Aesop) provide support for modeling
a limited set of architectural patterns but do not ad-
dress the challenges of modeling different variants of
patterns. Similarly, pattern formalization approaches
result in formalized solutions of patterns which may
narrow the applicability of a pattern in expressing dif-
ferent system-specific specialized solutions. Current
approaches are either too generic or provide support
for specific design solutions and fall short in offering a
mechanism to grasp the whole solution space covered
by architectural patterns.

2344

• The model checking support offered by current system
design approaches do not focus explicitly on validating
patterns in a system design. Some system design ap-
proaches provide generic support for constraint check-
ing e.g. CSP [6] for Wright and Object Constraint
Language (OCL) [7] for UML. However, the existing
approaches are aimed at describing constraints on a
system design in general and require extensive effort
for creating pattern-specific constraints in a system de-
sign.

The challenges described above are already a focus of ongo-
ing work in the field of software design to effectively model
patterns within a system design [8] [9]. In this paper, we
address these problems with a specific focus on tackling the
issue of modeling pattern variability. We propose to ad-
dress the problem by identifying and categorizing the pat-
tern participants. Specifically, we identify three kinds of
pattern participants: a) generic pattern participants: a set
of pattern-specific elements within the original solution of
a pattern that are required to express a pattern in a sys-
tem design; b) specialized pattern participants: architectural
elements within pattern variants that specialize generic pat-
tern participants; and c) architectural primitives: recurring
architectural abstractions found in the solution space of sev-
eral patterns which are used as key participants in modeling
a variety of patterns. The idea is that the use of architec-
tural primitives in combination with the specialized pattern
participants provides a valuable approach to effectively ex-
press the variants of several patterns.

To describe these concepts in a modeling language, we pick
UML which is a widely known language for software design
and provides explicit extensibility mechanism to generate
modeling constructs. UML includes extension mechanisms
like profiles, tagged values and stereotypes that are used
to describe the primitives, generic pattern participants and
specialize pattern participants in this work. We extend the
UML constructs in the Component-Connector view and use
the OCL to formalize the interaction among them.

The remainder of this paper is structured as follows: in
Section 2 we present our approach for expressing the pattern
variants using primitives, generic and specialized pattern
participants. In section 3, we detail the extension mech-
anism of UML and list the UML metaclasses used in this
work. Section 4 explains the UML profiles created for ex-
pressing the pattern variants and presents modeling of an
example pattern variant. In section 5, we provide validation
of this work by designing part of large system using pattern
variants. Section 6 mentions the related work and Section 7
discusses future work and concludes this study.

2. THE PROPOSED APPROACH
Despite a large list of architectural patterns documented

in the literature, patterns are rarely applied in a system de-
sign in their original form as the ’forces’ that describe the
problem addressed by a pattern largely influence its solu-
tion. Resolving these ’forces’ in the solution space of a pat-
tern yields different pattern variants. For instance, the Tee
and Join variant of the Pipes and Filters [1] pattern special-
izes the Pipe participant while another variant of the same
pattern may require the presence of feedback pipes and so
on. To serve the purpose of effectively expressing a variety
of pattern variants in a system design, we propose to catego-

rize the solution participants of architectural patterns into
three groups as follows:

• Generic Pattern Participants as Variation Points: The
term ’generic pattern participants’ refers to the solu-
tion participants of a pattern in their original form as
documented in the literature e.g. the Filter and Pipe
are the solution participants within the Pipes and Fil-
ters pattern. We identify the following four categories
that we use to define variability on Generic pattern
participants:

– Element Type: Element type refers to variability
in the use of pattern participants in context of dif-
ferent system designs e.g. active agents are a spe-
cific type [1] within the Active Object Presentation-
Abstraction-Control pattern variant and feedback
pipes are specific types within the Pipes and Fil-
ters pattern variant.

– Communication: Communication refers to data
transfer connections among pattern participants.
Variability in communication refers to different
kinds of interaction between the interacting ele-
ments e.g. the Client an Server participants can
interact either Asynchronously or Synchronously
within a system design.

– Data: Variability in data denotes the occurrence
of variation on a set of data types used by commu-
nication links or computational components. For
instance, the Model participant within the MVC
pattern can update data on views using Array,
String, etc.

– Interface: Interface is a contract for a component
with which surrounding components interact. In-
terface variability denotes the variation in services
offered and required by a component e.g. the
Controller participant within the MVC pattern
offers event based services to notify the View and
Model participants.

The categories described above help make it explicit
where variability is within the solution specified by
an architectural pattern. In this work, the locations
within the architecture of patterns where variability is
found are called variation points. The variation points
offer choices in applying patterns to a system design.
For instance, the Pipe participant within the Pipes and
Filters pattern can have several types like Fork, Join,
Feedback etc. Similarly the Model, View, and Con-
troller are marked as variation points within the MVC
pattern that can have several different forms depend-
ing on the system context.

• Specialized Pattern Participants within Pattern Vari-
ants: The specialized pattern participants detail the
solution structure of pattern variants and relationships
to solve specific design problems e.g. the Direct Com-
munication Broker and Adapter Broker pattern vari-
ants are specializations to the Broker pattern [1]. Pat-
tern variants can be modeled using one or more spe-
cialized pattern participants. This allows a designer to
model unique pattern variants by using different com-
binations of specialized pattern participants.

2345

• Architectural Primitives: The primitives are recurring
pattern participants discovered within the solution of
several patterns. Architectural primitives act as mod-
eling units to express parts of the solution specified by
a variety of patterns. Where specialized pattern par-
ticipants are aimed at defining different variants of a
specific pattern, architectural primitives capture parts
of the solution specified by several patterns. In our
previous work, we have mined and documented several
architectural primitives that we use in this work to ex-
press pattern variants (see Appendix A for a complete
list of primitives). For instance, we have found the
Push-Pull primitive as a solution participant to express
data transfer among the participants of Pipes and Fil-
ters [1], Publish-Subscribe [1], and Client-Server [1]
patterns.

Also, in our previous work [10], we have provided a list of
the most commonly used architectural patterns by survey-
ing several existing system designs. We define the generic
pattern participants of all such well-know patterns which
are then specialized to define several other variants of these
patterns. However, due to space restriction, in this paper we
express selected patterns only. We first work with the MVC
pattern and later demonstrate the applicability of this ap-
proach by designing part of a large system.

3. UML EXTENSIONS FOR COMPONENT
DIAGRAMS

UML is a widely known extensible modeling language
[4]. There are two approaches for extending UML: extend-
ing the core UML metamodel or creating profiles which ex-
tend metaclasses. Our work focuses on the second approach
where we create profiles specific to individual architectural
patterns that entail stereotypes and constraints to express
several variants of the same pattern. In order to facilitate
the unambiguous and error-free modeling, we define the se-
mantics of the selected patterns more precisely with the help
of OCL.

We extend the UML metamodel for each selected archi-
tectural pattern using UML profiles. That is, we define the
pattern participants as extensions of existing metaclasses of
the UML using stereotypes, tagged values, and constraints:

• Stereotypes: Stereotypes are one of the extension mech-
anisms to extend UML metaclasses. We use stereo-
types to extend the properties of existing UML meta-
classes. For instance, the Connector metaclass is ex-
tended to generate a variety of pattern-specific connec-
tor types.

• Constraints: We use the Object Constraint Language
(OCL) [7] to place additional semantic restrictions on
extended UML elements. For instance, constraints can
be defined on associations between stereotypes, navi-
gability, direction of communication, etc.

• Tags: Tagged Values allow one to associate tags to ar-
chitectural elements. For example, tags can be defined
to represent individual layers in a layered architecture,
mark the presence of variation points etc.

For the architectural patterns variants, presented in this
paper, we mainly extend the following classes of the UML 2
metamodel:

• Components are associated with required and provided
interfaces and own ports. Components use connectors
to connect with other components or with its internal
ports.

• Interfaces provide contracts that classes (and compo-
nents as their specialization) must comply with. We
use the interface meta-class to support provided and
required interfaces, where provided interface represents
functions offered by a component and required inter-
face represents functions expected by a component from
its environment.

• Ports are the distinct point of interaction between the
component that owns the ports and its environment.
Ports specify the required and provided interfaces of
the component that owns them.

• Connectors connect the required interfaces of one com-
ponent to the provided interfaces of other matching
components.

3.1 UML Profiles for Defining Architectural
Patterns

In this section, we use the UML to describe the approach
presented in the previous section for modeling pattern vari-
ants in UML’s Component-Connector view. Figure 1 shows
the general relationships among these concepts in UML. The
UML’s extension mechanism of stereotypes, constraints, and
tagged values is used to express these notions. Defining ar-
chitectural primitives using UML is already covered in our
previous work [8] [11] while in this section we focus on defin-
ing the mechanism to express generic and specialized pat-
tern participants. We extend the UML meta-classes in the

Figure 1: The Relationship between Primitives,
Generic and Specialized Participants in UML

Component-Connector view to express generic and special-
ized pattern participants while the tag values are used to
mark the variation points and variants. The pattern par-
ticipants marked as variation points represent the variation
that an element entails for its use in several variants of the
same pattern. For instance, in the Model-View-Controller
pattern, the Model component marked as variation point
is specialized as Document to express the Document-View
pattern variant as explained in next section. To serve this
purpose, the meta-classes Component, Connector, Port, and
Interface are used as described below:

2346

• Expressing Generic Pattern Participants as Variation
Points in UML: We extend the above mentioned UML
meta-classes to express the generic pattern participants
as stereotypes. The UML’s profile mechanism is used
to serve the purpose. For instance, the Pipe and Fil-
ter participants of the Pipes and Filters pattern are
expressed as stereotypes by extending the Connector
and Component meta-classes respectively. To mark
selected pattern participants as variation points, the
tagged values are defined for pattern participants as a
string variable. The variation in UML elements is des-
ignated by small dot symbols in UML diagrams used
in this work. Although this symbol is not included in
UML standard, it has been widely used in literature to
denote variation points [12]. We use UML tag syntax
vp <VariationCategory> <Variation1, Variation2, ...
VariationN> to show different variable choices in ap-
plying a pattern to a system design.

• Expressing Specialized Pattern Participants in UML:
We use the UML’s inheritance relationship to instan-
tiate several variants from the generic pattern variant
participants. For instance, the Feedback and Fork are
the specialized pattern participants within the Pipes
and Filters pattern that are expressed using the UML’s
inheritance relationship. Pattern participants that of-
ten work in conjunction to model a pattern in sys-
tem design are expressed using UML’s dependency re-
lationship. For example, the Model participant within
the MVC pattern has a dependency relationship with
data or event ports to communicate with surrounding
elements. Furthermore, the same tagged values de-
fined for expressing variation points are overridden to
mark the specialized pattern participants.

We also use the following UML metaclasses in order to ex-
press the OCL constraints while traversing the UML meta-
model: AggregationKind, Classifier, ConnectableElement.

4. DEFINING ARCHITECTURAL PATTERNS
IN UML

In this section, we exemplify the approach presented in
section 2 and define a well-know architectural pattern namely
the Model-View-Controller(MVC) which is one of the most
commonly used pattern for designing interactive applica-
tions [10] while in the next section, we model part of the
design of a large system using pattern variants.

4.1 Defining the MVC pattern in UML
The structure of the MVC pattern consists of three com-

ponents namely the Model, View, and Controller [1]. The
Model provides functional core of the application and up-
dates views about the data change. Views retrieve informa-
tion from the Model and display it to the user. Controllers
translate events into requests to perform operations on View
and Model elements. In such a structure, the Model com-
ponent provides services to the View and Controller compo-
nents. Following we use the approach presented in section2
to define participants of the MVC pattern and its variants
in UML as shown in Figure 2.

In the solution specified by MVC pattern, the View sub-
scribes to the Model to be called back when some data
change occurs. Such a structure can be effectively expressed

using the Callback primitive. Also, the Controller sends
events to the Model for an action to take place, which can
be expressed using the Control primitive.

The Callback and Control primitives express part of the
solution specified by the MVC pattern. The Model, View
and Controller are the generic pattern participants within
the MVC pattern that lead to several different forms within
individual pattern variants hence marked as variation points.
The participants of the MVC pattern use both the event and
data based services realized using the ports attached to the
Model, View, and Controller components which are used to
send/receive data or events. In the specific case of the MVC
pattern, the variability in communication is covered by the
Callback and Control primitives and hence not marked in
the MVC profile shown in Figure 2.

GenericModel: A stereotype that extends the Component
meta-class of UML and attaches ports for interaction with
the Controller and View components that is formalized using
the following OCL constraints:

Component.allInstances()->iterate(

i;pairs : Set(Tuple(c1 : Component,

s : Bag(Component))) = Set |

let comp : Component = i.oclAsType(Component),

stemp : Bag(Component) =

comp.ownedConnector->select(j |

let Callback : Port = j.oclAsType(

Connector).end.partWithPort->any(

owner=i).oclAsType(Port),

EventPort : Port = j.oclAsType(

Connector).end.partWithPort->any(

owner<>i).oclAsType(Port) in

if

j.oclAsType(Connector).getAppliedStereotypes()->

any(name=‘Callback ’)->notEmpty() and

EventPort.getOwner() = ‘GenericView’and

Model.ElementType = ‘vp’

then

true

else

false

endif

GenericController: The controller stereotype is an exten-
sion to the Component metaclass of UML and attaches ports
for interaction with the Model and View components. The
controller is formalized using the following OCL constraints:

let comp : Component = i.oclAsType(Component),

stemp : Bag(Component) =

comp.ownedPort->select(j |

j.oclAsType(Port), self.ownedPort =

EventPort and i.oclAsType(Port) in

if

EventPort.getOwner() = ‘GenericView ’and

Controller.ElementType = ‘vp ’

then

true

else

false

endif

GenericView: A stereotype that extends the Component
meta-class of UML and attaches ports for interaction with
the Controller and Model components which is formalized
using the OCL constraints as follows:

let comp : Component = i.oclAsType(Component),

2347

Figure 2: The Model-View-Controller defined in UML

Figure 3: Modeling the PageController MVC Pat-
tern Variant

stemp : Bag(Component) = comp.ownedPort->select(j |

j.oclAsType(Port), self.ownedPort =

EventPort and i.oclAsType(Port) in

if

EventPort.getOwner() = ‘GenericModel ’and

View.ElementType = ‘vp ’

then

true

else

false

endif

A combined use of the specialized pattern participants and
primitives results in the MVC structure as shown in figure
3:

5. CASE STUDY
The basic functionality of the IS2000 system [13] is to

acquire images as raw data and convert them into sensor
readings and images suitable for viewing. The system has
a set of acquisition procedures aimed at customized acquisi-
tion of the images. The product requirements are expected
to change during the development and future life span of the
system. The current design of the system does not employ
pattern modeling. However, a study of the system design
documentation revealed different variants of architectural
patterns modeled within its design e.g. Pipes and Filters,
Layers, and Model-View-Control(MVC). In this section, we
re-design parts of the system by applying two prominent ar-
chitectural patterns to IS2000 system design. Due to space
restriction, we provide only an excerpt of the design i.e. we
cover only the Component-Connector view and leave cer-
tain sub-systems un-touched. However, with this limitation
the study is not meant to be exhaustive as the same ap-
proach can be followed to express the same system design in
different architectural views such as the process flow view,
interaction diagrams etc.

5.1 Modeling the Pipes and Filters Pattern Vari-
ant within IS2000 System

One prominent architectural pattern used in the IS2000
system is the Pipes and Filters pattern providing a chain
of image processing functions. The chain receives input as
raw data and after performing a number of processing tasks
produces refined data to the user and database. As shown in
Figure 4, each filter in the Imaging component acts as a data
processor by receiving input at one end and forwarding pro-
cessed data to the next filter in the chain. The Acquisition

2348

Figure 4: Pipes and Filters Pattern Variant Expressed in IS2000 system

Figure 5: Internal Structure of the ImageProcessing
Component

component controls the data processing, the Imaging com-
ponent processes raw data, and the Exporting component
sends data to other systems.

The PostProcessing component pushes data to both the
Monitor and Exporting components, forming a Fork which is
a variation from the documented Pipes and Filters pattern.
In the Acquisition component, the ProbeControl, Acquisi-
tionManagement, and Acquire components control the pro-
cessing of data, which is expressed using the Control prim-
itive. In the Imaging and Exporting components where the
actual data processing takes place; the flow of data is ex-

pressed using the Push primitive. From the existing Pipes
and Filters pattern elements, as defined in the previous sec-
tion, we apply the Filter stereotype on sub-components of
the Imaging and Exporting components, Pipe stereotype to
express the flow of the image data, and Fork stereotype to
express the pattern variant as shown in Figure 4.

Inside the ImageProcessing component, as shown in Fig-
ure 5, the PipelineMgr component transfers processing con-
trol to both the Framer and Imager component which is
expressed using the Control primitive. Furthermore, it con-
verts the incoming data in a suitable form to be sent to the
Framer and Imager component that is expressed using the
Adaptor primitive. In addition to applying these primitives
in the design, the Pipes and Filters structure is expressed
using the Filter and Pipe stereotypes.

5.2 Modeling the MVC Pattern Variant within
IS2000 System

In the example IS2000 system, the GUI module is re-
sponsible for defining and managing the user display and
handle user events, whereas the core functionality that de-
fines necessary action when an event takes place is handled
by the application module. The GUI module can accept
input from the mouse, keyboard, or the screen menus to
which the application module set up the acquisition pa-
rameters, forward messages, or report the status of acqui-
sition to the GUI. Thus, the display and event handling
are handled by the GUI module while the application logic
resides in the application module. This kind of structure
is known as the document-view architecture [1], which is a
variant of the MVC pattern. The Document component cor-
responds to the Model in MVC while the View component
of the Document-View merges the Control and View compo-
nents. Figure 6 shows the Document-View pattern variant
expressed using the Callback, Control, and Push primitives

2349

in combination with the View and Document stereotypes to
fully express the pattern variant.

Figure 6: Modeling Document View MVC Pattern
Variant

6. RELATED WORK
Using different approaches, few other researchers have been

working actively for the systematic modeling of architec-
tural patterns [14, 15]. Garlan et al. [14] proposes an object
model for representing architectural designs. They charac-
terize architectural patterns as specialization of the object
models where each such specialization is built as an indepen-
dent environment to be applied in a specific project. Our
approach significantly differs in a way that our focus is on
reusing primitives and pattern participants and only where
required we extend the UML elements to capture the missing
pattern variant semantics.

Mehta et al. [15] focus on the fundamental building blocks
of software interaction and the way these can be composed
into more complex interactions. They present a classifica-
tion framework with a taxonomy of software connectors and
advocate the use of the taxonomy for modeling software ar-
chitecture. However, the taxonomy lacks the information to
model a variety of architectural patterns rather it is focused
on the basic building blocks of component-based develop-
ment. Our work focuses on systematic software design using
the primitives, generic and specialized pattern participants
within pattern variants that provide reusable architectural
building blocks to design a system.

Pattern formalization approaches are another paradigm
successfully practiced in software design community for mod-
eling patterns in a system design [16] [5]. However, the ex-
isting pattern formalization approaches are mainly focused
on modeling object oriented design patterns. Few formal
pattern modeling approaches address architectural patterns
but the pattern solutions offered by such approaches are
more applicable to specific system design rather than mod-
eling patterns in general. Our approach offers primitives,
generic and specialized pattern participants that in combi-
nation can be used to model several pattern variants rather
than modeling individual pattern solutions.

Mathias [17] sketches a proposal for modeling variabilities
in software families with UML extensions. He uses the stan-
dardized extension mechanism of UML to model selective
variability in a software design. The system-specific model
that he proposes for modeling variability offers mandatory

and optional modeling elements for expressing variability in
a design. Our work significantly differs as we focus on defin-
ing system-independent variation points on generic pattern
participants that can be re-used or further specialized in the
context of a system design at hand. Moreover, our work
is explicitly focused on modeling pattern variability with
pattern-specific UML profiles defined whereas his work fo-
cuses on broader system-specific UML profiles.

7. CONCLUSIONS AND FUTURE WORK
The idea to use primitives and UML models extension for

software design is not novel and has been applied in differ-
ent software engineering disciplines [15]. The novelty of our
work lies in using the primitives in combination with the
generic and specialized pattern participants for expressing
several pattern variants, which has not been fully addressed
before.

The combined use of the architectural primitives, generic
and specialized pattern participants offers an effective way
to model pattern variants in a system design. We show the
applicability of our approach by successfully modeling ar-
chitectural patterns variants within a system design. The
scheme to use primitives in combination with the generic
and specialized pattern participants offers: a) reusability
support by providing vocabulary of patterns’ solution par-
ticipants that entail the properties of known pattern partic-
ipants; b) automated model validation support by ensuring
that the patterns are correctly applied in a system design;
and c) explicit representation of architectural patterns in
system design using UML’s stereotyping scheme.

As future work, we are in the process of developing a
pattern modeling tool called Primus [18], which will sup-
port modeling pattern variability, analyzing the quality at-
tributes, architectural views synchronization (e.g. synchro-
nizing UML diagrams in different architectural views), source
code generation, etc. We plan to apply our approach to
industrial case studies for designing systems using primi-
tives, generic and specialized pattern participating. We be-
lieve that we can cover more architectural patterns in the
near future, which will provide a better re-usability support
to the architects for systematically expressing architectural
patterns variants.

8. REFERENCES
[1] Frank Buschmann, Regine Meunier, Hans Rohnert,

Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture, Volume1. Wiley & Sons, 1996.

[2] Nenand Medvidovic and Richard N.Taylor. A
classification and comparison framework for software
architecture description languages. (Volume 26, No.
1):–, 2007.

[3] Nenand Medvidovic, David S.Rosenblum, David
F.Redmiles, and Jason E.Robbins. Modeling software
architectures in the unified modelong language. ACM
Transactions on Software Enginnering and
Methodology(Volume 11, No. 1):–, 2007.

[4] Morgan Bjorkander and Cris Kobryn. Architecting
systems with uml 2.0. IEEE Softw., 20(4):57–61, 2003.

[5] T. Mikkonen. Formalizing design patterns. In
Proceedings of the 20th international conference on
Software engineering, pages 115–124, Kyoto, Japan,
1998. IEEE Computer Society.

2350

[6] Robert Allen and David Garlan. A formal basis for
architectural connection. ACM Transactions on
Software Engineering and Methodology, Volume 6, No.
3:213–249, 1997.

[7] Object constraint language specification. OMG
Standard, 1.1.

[8] Uwe Zdun and Paris Avgeriou. Modeling architectural
patterns using architectural primitives. Proceedings of
the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and
applications, pages 133–146, 2005.

[9] Ahmad Waqas Kamal and Paris Avgeriou. Modeling
architectural patterns’ behavior using architectural
primitives. ECSA ’08: Proceedings of the 2nd
European conference on Software Architecture, pages
164–179, 2008.

[10] Neil B. Harrison and Paris Avgeriou. Incorporating
fault tolerance tactics in software architecture
patterns. SERENE ’08: Proceedings of the 2008
RISE/EFTS Joint International Workshop on
Software Engineering for Resilient Systems, pages
9–18, 2008.

[11] Ahmad Waqas Kamal, Paris Avgeriou, and Uwe Zdun.
Modeling variants of architectural patterns. In
Proceedings of 13th European Conference on Pattern
Languages of Programs (EuroPLoP 2008), pages 1–23,
2008.

[12] Diana L. Webber and Hassan Gomaa. Modeling
variability in software product lines with the variation
point model. Sci. Comput. Program., 53(3):305–331,
2004.

[13] Christine Hofmeister, Robert Nord, and Dilip Soni.
Applied software architecture. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[14] David Garlan, Robert Allen, and John Ockerbloom.
Exploiting style in architectural design environments.
SIGSOFT Softw. Eng. Notes, 19(5):175–188, 1994.

[15] Nikunj R. Mehta and Nenad Medvidovic. Composing
architectural styles from architectural primitives. In
ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 347–350,
New York, NY, USA, 2003. ACM.

[16] N. Soundarajan and J. O. Hallstrom. Responsibilities
and rewards: Specifying design patterns. In
Proceedings of the 26th International Conference on
Software Engineering, pages 666–675. IEEE Computer
Society, 2004.

[17] Mathias Klaus. Generic modeling using uml
extensions for variability. Intershop Research
Intershop, Jena Software Engineering Group, Dresden
University of Technology, 2004.

[18] Nick Kirtley, Ahmad Waqas Kamal, and Paris
Avgeriou. Developing a modeling tool using eclipse.
International Workshop on Advanced Software
Development Tools and Techniques, Co-located with
ECOOP 2008, 2008.

9. APPENDIX A
This section provides an overview to 14 primitives discov-

ered during our previous work [8, 11]. Architectural primi-

tives, as modeling participants of the architectural patterns,
serve as the building units for expressing the related pat-
terns. A detailed explanation of defining the primitives us-
ing UML extensions can be found in [8, 11]. Our original
set of primitives is comprised of the following:

1. Callback: A component B invokes an operation on Com-
ponent A, where Component B keeps a reference to
component A - in order to call back to component A
later in time.

2. Indirection: A component receiving invocations does
not handle the invocations on its own, but instead redi-
rects them to another target component.

3. Grouping: Grouping represents a Whole-Part structure
where one or more components work as a Whole while
other components are its parts.

4. Layering: Layering extends the Grouping primitive,
and the participating components follow certain rules,
such as the restriction not to bypass lower layer com-
ponents.

5. Aggregation Cascade: A composite component consists
of a number of subparts, and there is the constraint that
composite A can only aggregate components of type B,
B only C, etc.

6. Composition Cascade: A Composition Cascade extends
Aggregation Cascade by the further constraint that a
component can only be part of one composite at any
time.

7. Shield: Shield components protect other components
from direct access by the external client. The protected
components can only be accessed through Shield.

8. Typing: Using associations custom typing models are
defined with the notion of super type connectors and
type connectors.

9. Virtual Connector: Virtual connectors reflect indirect
communication links among components for which at
least one additional path exists from the source to the
target component.

10. Push-Pull: Push and Pull occur when a target compo-
nent receives a message on behalf of a source compo-
nent (Push), or when a receiver receives information by
generating a request (Pull). Both structures can also
occur together at the same time (Push-Pull).

11. Virtual Callback: In many cases the callback between
components does not exist directly, rather there exist
mediator components between the source and the tar-
get components, which is expressed using the Virtual
Callback primitive.

12. Adaptor: This primitive converts the provided interface
of a component into the interface the clients expect.

13. Passive Element: Consider an element is invoked by
other elements to perform certain operations. Passive
elements do not call operations on other elements.

14. Interceder: Sometimes certain objects in a set of ob-
jects communicate with several other objects. Inter-
ceder components are used to decouple interacting com-
ponents and reduce the communication complexity.

2351

