
 

 

 University of Groningen

Automatic Attribute Threshold Selection for Blood Vessel Enhancement
Kiwanuka, Fred N.; Wilkinson, Michael H.F.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kiwanuka, F. N., & Wilkinson, M. H. F. (2010). Automatic Attribute Threshold Selection for Blood Vessel
Enhancement. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/6f197ffd-85e0-4e5c-930e-98c9b6c9cc21


Automatic Attribute Threshold Selection for Blood

Vessel Enhancement

Fred N. Kiwanuka

Johann Bernoulli Institute for

Mathematics and Computer Science,

University of Groningen, The Netherlands

Faculty of Computing & Information

Technology, Makerere University

Kampala, Uganda

F.N.Kiwanuka@rug.nl

Michael H.F. Wilkinson

Johann Bernoulli Institute for

Mathematics and Computer Science,

University of Groningen, The Netherlands

m.h.f.wilkinson@rug.nl

Abstract—Attribute filters allow enhancement and extraction
of features without distorting their borders, and never introduce
new image features. These are highly desirable properties in
biomedical imaging, where accurate shape analysis is paramount.
However, setting the attribute-threshold parameters has to date
only been done manually. This paper explores simple, fast and
automated methods of computing attribute threshold parameters
based on image segmentation, thresholding and data clustering
techniques. Though several techniques perform well on blood-
vessel filtering, the choice of technique appears to depend on the
imaging mode.

I. INTRODUCTION

Attribute filters [1], [2] allow fast, shape preserving filter-

ing based on properties of the desired image features. By

computing some property, or attribute of image components,

and preserving only those components which have the desired

attribute values, it is possible to enhance image features in

a scale-invariant way [3]. Attribute filters are a subset of

connected operators [1], [2], which means they preserve edges

strictly. Image components can either be removed or remain

intact but new ones do not emerge. This is a desirable property

in biomedical image analysis where accurate shape analysis is

of importance. For a recent review see [4].

In their simplest form, attributes are compared against an

attribute-threshold. Those features with attributes above (or

below) the threshold are preserved, the rest are removed.

Choosing the ’the best’ attribute threshold λ is done manually,

which is subjective.

Usually the threshold is obtained interactively [5] through

trial and error. This is particularly tedious if the dynamic range

of the attributes is large. Choosing ’the right’ λ is important

because it determines what is retained or rejected besides the

filtering criteria. In this research we explore automatic com-

putation of this threshold, by adapting conventional automatic

grey-level thresholding techniques as well as data clustering

techniques to attribute threshold computation.

This work was funded by Nuffic under the NPT project on Building

sustainable ICT Training Capacity in Four Public Universities in Uganda.

Attribute filter computation is discussed briefly in section

II. Discussion of the various methods is in section III. Per-

formance evaluation of the methods in 3D blood vessels en-

hancement and manual selection is discussed in section IV. We

show that several automatic techniques obtain threshold values

close to those selected manually in blood vessel enhancement

in MR angiography.

II. ATTRIBUTE FILTERING

In the binary case, attribute filters [1], retain those connected

components of an image, which meet certain attribute criteria.

After computing the connected components, some property or

attribute of each component is computed. A threshold is usu-

ally applied to these attributes to determine which components

are retained, and which removed. Thus, the criterion usually

has the form

Λ(C) = (Attr(C) ≥ λ) (1)

with C the connected component, Attr(C) some real-valued

attribute of C and λ the attribute threshold. More formally,

attribute filters rely on connectivity openings γx, x ∈ E

with E the image domain. In the binary case, γx(X) returns

the foreground component to which x belongs if x ∈ X ,

and ∅ otherwise. After extracting the connected components

using these connectivity openings, a trivial filter ψΛ, based on

attribute criterion Λ is applied to each. These are defined as

ψΛ(C) =

{

C if Λ(C) is true

∅ otherwise.
(2)

Finally, the attribute filter ψΛ based on criterion Λ is defined

as

ψΛ(X) =
⋃

x∈E

ψΛ(γx(X)). (3)

Thus, the attribute filter is the union of all connected compo-

nents which meet the criterion Λ.

For a grey-scale image f , we compute these attributes for

the connected components of threshold sets Xh(f) defined as

Xh(f) = {x ∈ E|f(x) ≥ h}. (4)
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Fig. 1. A 1-D signal f (left), the corresponding peak components (middle)
and the Max-Tree (right). Figure after [9].

In principle, we can apply the binary filter to each threshold

set and stack the results. A more efficient approach uses

the Max-Tree [2] data structure. The nodes Ck

h
, with k the

node index and h the gray level of the Max-Tree represent

connected components for all threshold levels in a data set.

These components are referred to as peak components and

are denoted as P k

h
. The root node represents the set of pixels

belonging to the background, and each node has a pointer

to its parent. An example of a Max-Tree of a 1-D signal is

given in Fig. 1. Each node contains a reference to its parent,

its original and filtered grey level and its attribute value, or

values, in the case of vector-attribute filtering [6].

The filtering process is separated into three stages: con-

struction, filtering and restitution. During the construction

phase, the Max-tree is built from the flat zones of the im-

age, collecting auxiliary data used for computing the node

attributes at a later stage. The attributes can be moment-

based like non-compactness, elongation, flatness, sparseness

[5], non-moment-based like sphericity [7] or size-based such

as volume, surface area.

Once the attributes have been stored in the Max-Tree nodes,

we can apply the attribute criterion of choice to each node

to decide whether or not they should be retained. Various

strategies of filtering are discussed in [2], [3], [8].

III. THE METHODS

A. Robust Automatic Threshold Selection (RATS)

RATS [10] computes a grey-level threshold using an edge-

weighted average of the grey levels. We adapt this by defining

the an attribute gradient ∆A as along root path in the Max-

Tree as

∆A(C) =
Attr(C) −Attr(par(C)

f(C) − f(par(C))
(5)

with par(C) the parent of node C in the Max-Tree, and f(C)
denotes the grey level of node C. As this is a one-sided

gradient, it corresponds best to the mean MA(C) attribute

value of C and par(C), i.e.

MA(C) =
Attr(C) +Attr(par(C)

2
(6)

An optimal attribute threshold can then be computed as

T =
ΣN−1

i=0 ∆2
A
(Ci)MA(Ci)

ΣN−1
i=0 ∆2

A
(Ci)

, (7)

with N the number of nodes in the tree.

B. Maximum Entropy Based Classification (MaxEnt)

We adapted a method by [11] to compute maximum entropy.

We considered attribute values of nodes as two clusters by

clustering the histogram. The maximum entropy sum method

is based on the maximization of the attribute measure between

the two classes. Let pi = h[i] be an estimate of the probability

node attribute, where i is histogram bin index of the node’s

attribute and N is the number of histogram bins. If we assume

two classes of node attributes, c1 and c2, the maximum entropy

ψ(T ) can be computed using the equation:

ψ(T ) = ln[p(c1)p(c2)] +
H(t)

p(c1)
+
HT −H(t)

1 − p(c2)
(8)

with

p(c1) = Σt

i=0pi, p(c2) = ΣN−1
i=t+1pi,

HT = −ΣN−1
i=0 pi ln pi, and, H(t) = −Σt

t=0pi ln pi.

To compute an optimal threshold, we first compute the at-

tributes for all nodes as before and sort them. We then

compute a histogram (usually with about 1000 bins). Finally,

we compute the entropy using (8) for each t, and select the

attribute value corresponding to the bin with the maximum

entropy as the optimum threshold.

C. Otsu Based Classification

The Otsu [12] computes an optimal threshold by maximiz-

ing the between-class variance σ2
btn

(T ):

σ2
btn(T ) = nc1(T ) ∗ nc2(T )[µc1(T ) − µc2(T )]2 (9)

with

nc1(T ) = ΣT

i=0p(i), nc2(T ) = ΣN−1
i=T+1

p(i),

and µc1(T ) and µc2(T ) the means of clusters c1 and c2

respectively. We adapt this to attribute thresholding, by sorting

the attributes in ascending order, and computing σ2
btn

(T ) for

all attribute values present, and selecting the threshold that

maximizes the σ2
btn

(T ).

D. K-means Based classification

In this method based on [13], which means we try to

approximate the attribute distribution by two univariate dis-

tributions, the centroids of which are to be chosen optimally.

We considered nodes’ attribute values as two clusters. The

algorithm is as follows:

• Compute the attribute as in section II.

• Initialize the number of clusters to 2 and assume the

centroid of these clusters.

• Take any random attributes as the initial centroids.

• Iterate until convergence by:

– Determining the centroid attributes

– Determining the Euclidean distance of each attribute

to the centroids

– Group the node attributes based on minimum dis-

tance

• Compute the point of inter-cluster separation.
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TABLE I
OPTIMAL ATTRIBUTE THRESHOLDS

Manual Otsu MaxEnt RATS k-means

Dataset

angiolarge 2.55 0.25 2.13 2.02 2.30

mrt16 angio 2.70 0.20 6.30 0.80 0.80
mrt16 angio2 3.60 0.020 3.20 0.90 3.70

aneurysm 2.00 0.25 3.37 2.34 4.68
angiolarge(kflat) 2.50 2.02 4.60 2.35 3.74

The optimal threshold is the point of inter-cluster separation

which is equivalent to the mean of final centroids after con-

vergence. This method can be generalized to multiple clusters

most easily.

IV. RESULTS AND DISCUSSION

To test the performance of the methods, We ran tests

on two time-of-flight magnetic resonance angiograms (MRA)

from http://www.volvis.org (mrt16 angio, mrt16 angio2) and

a phase-contrast MRA (angiolarge), all at 12 bit, and a CT

angiogram (aneurysm) (also from http://www.volvis.org) at 8

bit grey-level resolution, using the non-compactness attribute

[5]. We also asked 4 users to interactively find an optimal

threshold for extracting blood vessels from the data sets.

The average value from the user was used as the basis of

comparison.

A. Blood Vessel Filtering

The results are presented in Table I. On angiolarge the

methods based on RATS, MaxEnt and k-means are closer to

the average response value from the users while Otsu based

is too low because so many attribute values are close to zero

as shown by the left-most histogram in Fig. 3. The nodes’

non-compactness attribute histogram is skewed. Apparently,

the other methods are not biased by this, as can be seen in

Fig. 2. The three methods also suppress noise well, with the

k-means being slightly better that the others.

On the aneurysm data set, RATS, performed well, but

all others struggled. Otsu was swamped by noise as before,

MaxEnt and k-means removed too much vascular structure.

Time-of-Flight MRAs are very difficult to filter and very

noisy. On the mrt16 angio all values from the methods are

either too low or too large as compared with the manual value.

But on the mrt8 angio2 MaxEnt and k-means are closer to the

manually obtained value and are more robust while Otsu and

RATS continue to struggle because of so many nodes’ attribute

values close to zero.

In terms of computation speed the Otsu, maximum entropy

and RATS are very fast (0.36 s), whereas k-means is somewhat

slower (1.7 s) on a standard Core 2 Duo E8400 at 2.0 GHz

for angiolarge, but not prohibitively so.

B. The Effect of k-flat zones

To further improve the performance of the methods we

adapted hyperconnectivity k-flat zones [8], which are con-

nected regions of maximal extent, where the total grey level

Original Otsu

RATS MaxEnt

k-means Manual

Fig. 2. Blood-vessel filtering on volume angiolarge, showing maximum-
intensity projections of the original and filtered volumes for the different
attribute threshold values from the methods in Table I.

variation is not more than k. This restriction to grey-level

range automatically restricts the size to which the regions can

grow yielding overlapping pseudo-flat zones which improves

enhancement of internal details. The effect of using k-flat

zones means that any node in the Max-Tree which within k

of an extremum is not considered an independent entity, and

their attributes are ignored in any further computation.

For our purposes, this removes a large number of low-

contrast feature, which are predominantly noise, from the

computation of the optimal threshold. The effect of this can

be seen in Figure 3, right-most graph. The number of nodes

has reduced substantially with nodes that do not contribute

significantly to the object removed. The proper value of k

depends on the data set, and for angiolarge a value of 70 gave

good results. From Table I, the Otsu computed value increased

by 900% at k = 70 and by doing so we are improving the

distribution of the histogram by making it less skewed as seen

in Fig. 3. The improvement was also reflected in filtering the

angiolarge in Fig. 4 where the blood vessels were better filtered

as compared to Otsu in Fig. 2. RATS appears to be quite robust

to changes in k, but the results of k-means and MaxEnt became

worse, becoming too restrictive and showing substantial loss

of small vessels.

V. CONCLUSION

In this paper we presented methods for automatic com-

putation of the attribute threshold parameter. The methods

are simple, fast and in several cases perform well against

23082320231623162316
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(a) k = 0 (b) k = 70

Fig. 3. Attribute histograms for k = 0 and k = 70, showing the effect of
the removal of low contrast features from the tree.

Original Otsu

RATS MaxEnt

k-means Manual

Fig. 4. The effect of k-flat filtering for k = 70, using the same methods as
in Fig. 2.

the manual interactive method. Which method performed

best depended on the data set, probably due to the differing

imaging modes. We also show that the Otsu method can be

further improved by using hyperconnectivity based on k-flat

zones, but this does introduce a new parameter to set. RATS

performed well on three data sets, but failed on the time-of-

flight MRAs. Of the latter mrt16 angio was problematic to

all methods, which might indicate that we need a different

attribute in this case.

Though the focus was on Max-Tree based filtering, any

other tree structure used for connected filtering could be

used instead. All methods extend without change to auto-

dual filtering using level-line trees [14] and colour filtering

using, e.g., the binary partition tree [15]. All except the RATS-

based method, which relies explicitly on a unique parent/child

relationship could be extended to even more general connected

filters [16], [17].

Apart from automatic filtering, the methods could be used

to guide the user rather than to prescribe a value, especially

when the attribute’s dynamic range is large. In future, we shall

consider multilevel thresholding which we believe can improve

the accuracy of attribute threshold computation, and the use of

multiple attributes, e.g. using vector-attribute filtering [6]. The

method based on k-means filtering is particularly relevant in

this case, because it extends most easily to high dimensional

data. Other unsupervised clustering methods could also be

included in such a framework.
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