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Structure preserving model
reduction of port-Hamiltonian
systems

R. Polyuga ∗ and A. J. van der Schaft †

Abstract
It is shown that by use of the Kalman-decomposition an uncontrollable and/or unobservable

port-Hamiltonian system is reduced to a controllable/observable system that inherits a port-
Hamiltonian structure. Energy and co-energy variable representations for port-Hamiltonian systems
are discussed and the reduction procedures are used for both representations. These exact
reduction procedures motivate two approximate reduction procedures structure preserving for a
general port-Hamiltonian system in scattering representation, Effort- and Flow-constraint reduction
methods.

Keywords: Energy, co-energy variable representations, port-Hamiltonian systems, Effort-
constraint, Flow-constraint, model reduction.

1 Introduction
Port-based network modeling of physical systems leads directly to their representation as port-

Hamiltonian systems which are, if the Hamiltonian is non-negative, an important class of passive
state-space systems. At the same time network modeling of physical systems often leads to high-
dimensional dynamical models. Large state-space dimensions are obtained as well if distributed-
parameter models are spatially discretized. Therefore an important issue concerns model reduction
of these high-dimensional systems, both for analysis and control. The goal of this work is to show
that the specific model reduction techniques of linear port-Hamiltonian systems preserve the port-
Hamiltonian structure, and, as a consequence, passivity.

Port-Hamiltonian systems are endowed with more structure than just passivity. Other
important issues like interconnection between port-Hamiltonian systems and energy dissipation
are also reflected by the port-Hamiltonian structure. In section 2 we provide a brief overview of
linear port-Hamiltonian systems. General theory on port-Hamiltonian systems can be found in
[10]. We will show by applying the Kalman-decomposition in section 3 that the reduction of the
dynamics of an uncontrollable/unobservable linear port-Hamiltonian system to a dynamics on the
reachability/observability subspace preserves the port-Hamiltonian structure. This result holds
both for energy and co-energy variable representations of linear port-Hamiltonian systems. The
co-energy variable representation of port-Hamiltonian systems is considered in section 4. It is
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shown in section 4 that the reduced models in the co-energy coordinates take a somewhat ”dual”
form to the reduced models obtained in the standard energy coordinates.

Within the systems and control literature a popular and elegant tool for model reduction is
balancing, going back to [7]. One favorable property of model reduction based on balancing, as
compared with other techniques such as modal analysis, is that the approximation of the dynamical
system is explicitly based on its input-output properties. Standard open-loop balancing assumes
that the system is asymptotically stable. Therefore this type of balancing cannot be directly
applied to lossless port-Hamiltonian systems. In order to overcome this difficulty it is useful to
switch to scattering representation presented in section 5, see also [11]. We will apply Effort- and
Flow-constraint methods of model reduction in section 6 to linear port-Hamiltonian systems in
scattering representation and show that the reduced-order models are again port-Hamiltonian.

2 Linear port-Hamiltonian systems
Port-based network modeling of physical systems leads to their representation as port-Hamiltonian
systems (see e.g. [5], [8]). In the linear case, and in the absence of algebraic constraints, port-
Hamiltonian systems take the form (see [2], [10], [11])

ẋ = (J −R)Qx + Bu
y = BT Qx

(1)

with H(x) = 1
2xT Qx the total energy (Hamiltonian), Q = QT ≥ 0 the energy matrix and

R = RT ≥ 0 the dissipation matrix. The matrices J = −JT and B specify the interconnection
structure of the system. By skew-symmetry of J and since R is positive semidefinite it immediately
follows that

d

dt

1
2
xT Qx = uT y − xT QRQx ≤ uT y (2)

Thus if Q ≥ 0 (and the Hamiltonian is non-negative) any port-Hamiltonian system is passive
(see [11], [14]). The state variables x ∈ Rn are also called energy variables, since the total energy
H(x) is expressed as a function of these variables. Furthermore, the variables u ∈ Rm, y ∈ Rm are
called power variables, since their product uT y equals the power supplied to the system.

In the sequel we will often abbreviate J −R to F = J −R. Clearly

F + FT ≤ 0 (3)

while conversely any F satisfying (3) can be written as J −R as above by decomposing F into its
skew-symmetric and symmetric part

J = 1
2 (F − FT )

R = − 1
2 (F + FT ) (4)

Two special cases of port-Hamiltonian systems correspond to either R = 0 or J = 0. In fact,
if R = 0 (no internal energy dissipation) then the dissipation inequality (2) reduces to an equality

d

dt

1
2
xT Qx = uT y (5)

In this case the transfer matrix G(s) = BT Q(sI − JQ)−1B of the system satisfies

G(s) = −GT (−s) (6)

Conversely, any transfer matrix G(s) satisfying G(s) = −GT (−s) can be shown to have a minimal
realization

ẋ = JQx + Bu
y = BT Qx

(7)



with in fact Q being invertible.
The other special case corresponds to J = 0, in which case the system takes the form

ẋ = −RQx + Bu
y = BT Qx

(8)

with transfer matrix G(s) = BT Q(sI + RQ)−1B satisfying

G(s) = GT (s) (9)

Conversely, any transfer matrix G(s) satisfying (9) is represented by a minimal state-space
representation (8) with Q invertible, where, however, R need not necessarily be positive semidefinite.

In these two special cases, either R = 0 or J = 0, there is a direct relationship between
controllability and observability properties of the port-Hamiltonian system.

Proposition 2.1. Consider a port-Hamiltonian system (7) or (8), and assume detQ &= 0. The
system is controllable if and only if it is observable, while the unobservability subspace N is related
to the reachability subspace R by

N = R⊥ (10)

with ⊥ denoting the orthogonal complement with respect to the (possibly indefinite) inner product
defined by Q.

Proof. For any port-Hamiltonian system (1) with F = J −R we have





BT Q
BT QFQ

BT QFQFQ...



 =
[

B FT QB FT QFT QB . . .
]T

Q (11)

Since the kernel of the matrix on the left-hand side defines the unobservability subspace, while
on the right-hand side the image of the matrix preceding Q defines the reachability subspace if
FT = F or FT = −F , the assertion follows.

Nevertheless, in general controllability and observability for a port-Hamiltonian system are
not equivalent, as the following example shows.

Example 2.1. Consider a port-Hamiltonian system

[
ẋ1

ẋ2

]
=

[
−1 1
−1 −1

][
1 −1

−1 2

][
x1

x2

]
+

[
1
0

]
u

y =
[

1 0
][ 1 −1
−1 2

][
x1

x2

] (12)

corresponding to J =
( 0 1
−1 0

)
and R =

( 1 0
0 1

)
. The system is observable but not controllable.

3 The Kalman-decomposition of port-Hamiltonian systems
In this section we will show how an uncontrollable and/or unobservable port-Hamiltonian system
is reduced to a controllable/observable system that is again port-Hamiltonian.



3.1 Reduction to a controllable port-Hamiltonian system

Consider a port-Hamiltonian system which is not controllable. Take linear coordinates x = (x1, x2)T

such that the upper part of
[

ẋ1

ẋ2

]
=

[
F11 F12

F21 F22

][
Q11 Q12

Q21 Q22

][
x1

x2

]
+

[
B1

B2

]
u

y =
[
BT

1 BT
2

][ Q11 Q12

Q21 Q22

][
x1

x2

] (13)

is the reachability subspace R. By invariance of R (see e.g. [9]) this implies

F21Q11 + F22Q21 = 0
B2 = 0 (14)

It follows that the dynamics restricted to R is given as

ẋ1 = (F11Q11 + F12Q21)x1 + B1u
y = BT

1 Q11x1
(15)

Now let us assume that F22 in invertible. Then from the first equation in (14) we may solve for
Q21 as Q21 = −F−1

22 F21Q11. Substitution in (15) yields

ẋ1 = (F11 − F12F
−1
22 F21)Q11x1 + B1u

y = BT
1 Q11x1

(16)

which is again a port-Hamiltonian system. Indeed, F +FT ≤ 0 implies that the Schur complement
F̄ = F11 − F12F

−1
22 F21 satisfies F̄ + F̄T ≤ 0.

Remark 3.1. Note that F̄ is skew-symmetric if F is skew-symmetric, and is symmetric if F is
symmetric.

3.2 Reduction to an observable port-Hamiltonian system

Consider again a port-Hamiltonian system (1) and suppose the system is not observable. Then
there exist coordinates x = (x1, x2)T such that the lower part of (13) is the unobservability
subspace N . By invariance of N (see again [9]) it follows that

F11Q12 + F12Q22 = 0
BT

1 Q12 + BT
2 Q22 = 0 (17)

Then the dynamics on the quotient space X!N is

ẋ1 = (F11Q11 + F12Q21)x1 + B1u
y = BT

1 Q11x1 + BT
2 Q21x1

(18)

Assuming invertibility of Q22 it follows from (17) that F12 = −F11Q12Q
−1
22 and BT

2 = −BT
1 Q12Q

−1
22 .

Substitution in (18) yields

ẋ1 = F11(Q11 −Q12Q
−1
22 Q21)x1 + B1u

y = BT
1 (Q11 −Q12Q

−1
22 Q21)x1

(19)

which is again a port-Hamiltonian system with Hamiltonian H̄ = 1
2xT

1 (Q11 −Q12Q
−1
22 Q21)x1.

Remark 3.2. Note that (Q11 −Q12Q
−1
22 Q21) ≥ 0 if Q ≥ 0.



3.3 The Kalman-decomposition

It is well known that a linear system ẋ = Ax + Bu, y = Cx can be represented in a suitable basis
as (see [9], [13])

A =





A11 A12 0 0
0 A22 0 0

A31 A32 A33 A34

0 A42 0 A44



, B =





B1

0
B3

0



, C =





CT
1

CT
2

0
0





T

with X = X1 ×X2 ×X3 ×X4, where

N = X3 ×X4

R = X1 ×X3
(20)

Writing out




A11 A12 0 0
0 A22 0 0

A31 A32 A33 A34

0 A42 0 A44



=





F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44









Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44





this implies that the blocks of the F and Q matrix satisfy

(a) F11Q13 + F12Q23 + F13Q33 + F14Q43 = 0
(b) F11Q14 + F12Q24 + F13Q34 + F14Q44 = 0←
(c) F21Q11 + F22Q21 + F23Q31 + F24Q41 = 0
(d) F21Q13 + F22Q23 + F23Q33 + F24Q43 = 0
(e) F21Q14 + F22Q24 + F23Q34 + F24Q44 = 0←
(f) F41Q11 + F42Q21 + F43Q31 + F44Q41 = 0←
(g) F41Q13 + F42Q23 + F43Q33 + F44Q43 = 0←

(21)

and similarly by writing out

[
BT

1 0 BT
3 0

]





Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44



 =
[
C1 C2 0 0

]

we obtain

BT
1 Q13 + BT

3 Q33 = 0
BT

1 Q14 + BT
3 Q34 = 0 (22)

The resulting dynamics on X1 (the part of the system that is both controllable and observable)
can be identified in port-Hamiltonian form, by combining the previous two reduction schemes
corresponding to controllability and observability. Indeed, application of Section 3.2 yields the
following observable system on X1 ×X2

[
ẋ1

ẋ2

]
=

[
F11 F12

F21 F22

]
Q̄

[
x1

x2

]
+

[
B1

0

]
u

y =
[
BT

1 0
]
Q̄

[
x1

x2

] (23)

where

Q̄ =
[

Q11 Q12

Q21 Q22

]
−

[
Q13 Q14

Q23 Q24

][
Q33 Q34

Q43 Q44

]−1[
Q31 Q32

Q41 Q42

]
(24)



Next, application of Section 3.1 to (23) yields the following port-Hamiltonian description of the
dynamics on X1

ẋ1 = (F11 − F12F
−1
22 F21)Q̄11x1 + B1u

y = BT
1 Q̄11x1

(25)

Further analysis (using a well-known matrix inversion formula) yields

Q̄11 = Q11 −Q13(Q33 −Q34Q
−1
44 Q43)−1Q31 + Q14Q

−1
44 Q43(Q33 −Q34Q

−1
44 Q43)−1Q31+

Q13Q
−1
33 Q34(Q44 −Q43Q

−1
33 Q34)−1Q41 −Q14(Q44 −Q43Q

−1
33 Q34)−1Q41

(26)
leading to a port-Hamiltonian description

ẋ1 = (F11 − F12F
−1
22 F21)Q̄11x1 + B1u

y = BT
1 Q̄11x1

(27)

having the same transfer matrix as the original system (1).

Remark 3.3. By first applying the procedure of Section 3.1 and then applying the procedure of
Section 3.2 we obtain a different, but equivalent, port-Hamiltonian formulation.

4 The co-energy variable representation
In this section we throughout assume that the matrix Q is invertible. This means that

e = Qx (28)

is a valid coordinate transformation, and the port-Hamiltonian system (1) in these new coordinates
takes the form

ė = QFe + QBu, F = J −R
y = BT e

(29)

Since e = Qx = ∂H
∂x (x), with H(x) = 1

2xT Qx the energy, the variables e are usually called
the co-energy variables.

Example 4.1. Consider the LC-circuit in Figure 1, with q the charge on the capacitor and φ1, φ2

the fluxes over the inductors L1, L2 correspondingly. The energy (in the case of a linear capacitor
and inductors) is given as

H(q, φ1, φ2) =
1

2C
q2 +

1
2L1

φ2
1 +

1
2L2

φ2
2 (30)

and x = (q, φ1, φ2) are the energy variables, in which the system takes the port-Hamiltonian form



q̇
φ̇1

φ̇2



 =




0 1 −1
−1 0 0
1 0 0








q
C
φ1
L1
φ2
L2



 +




0
1
0



u

y = φ1/L1

(31)

with u, y being the voltage across and the current through the voltage source. The co-energy
variables e = [ q

C
φ1
L1

φ2
L2

]T = [ VCIL1IL2 ]T are the voltage over the capacitor and the currents
through the inductors, leading to the following form of the dynamics




V̇C

İL1

İL2



 =




1
C 0 0
0 1

L1
0

0 0 1
L2








0 1 −1
−1 0 0
1 0 0








VC

IL1

IL2



 +




0
1

L1

0



u

y = IL1

(32)



Figure 1. LC-circuit

Example 4.2. Consider a mass-damper-spring system
[

ẋ1

ẋ2

]
= (

[
0 1
−1 0

]
−

[
0 0
0 c

]
)
[

kq
p
m

]
+

[
0
1

]
u

y = p
m

(33)

with energy H(q, p) = 1
2kq2 + 1

2mp2 (potential and kinetic energy) in the energy variables q
(elongation of the spring) and p (momentum of the mass). The constant c ≥ 0 is the damping
constant, and u is the external force.

The co-energy variables are e1 = kq (spring force) and e2 = p
m (velocity), leading to the

dynamics
[

ė1

ė2

]
=

[
k 0
0 1/m

] [
0 1

−1 −c

][
e1

e2

]
+

[
0

1/m

]
u

y = e2

(34)

Note that
d

dt

1
2
eT Q−1e = eT Fe + eT Bu = −eT Re + uT y (35)

and thus if Q ≥ 0 then V (e) = 1
2eT Q−1e (the Legendre transform of H(x) = 1

2xT Qx) is a storage
function of (29). V (e) is called the co-energy of the system, which is in this linear case equal to
the energy (V (Qx) = H(x)).

A main advantage of the co-energy variable representation of a port-Hamiltonian system
is that additional constraints on the system are often expressed as constraints on the co-energy
variables (see also Section 6).

The reduction of the port-Hamiltonian system to its controllable and/or observable part takes
the following form in the co-energy variable representation. Interestingly enough, the formula’s
take a somewhat ”dual” form to the formula’s obtained in the energy variable representation.

Consider the system (29) in co-energy variable representation. Take linear coordinates
e = (e1, e2)T such that the upper part of

[
ė1

ė2

]
=

[
Q11 Q12

Q21 Q22

][
F11 F12

F21 F22

][
e1

e2

]
+

[
Q11 Q12

Q21 Q22

][
B1

B2

]
u

y =
[
BT

1 BT
2

][ e1

e2

] (36)

is the reachability subspace R. By invariance of R this implies

Q21F11 + Q22F21 = 0
Q21B1 + Q22B2 = 0 (37)



Hence the dynamics restricted to R equals

ė1 = (Q11F11 + Q12F21)e1 + (Q11B1 + Q12B2)u
= (Q11 −Q12Q

−1
22 Q21)F11e1 + (Q11 −Q12Q

−1
22 Q21)B1u

y = BT
1 e1

(38)

which is a port-Hamiltonian system in co-energy variable representation, with energy matrix
Q̄ = Q11−Q12Q

−1
22 Q21, and interconnection/damping matrix F11. Notice that these formula’s are

dual to the corresponding formula’s (16) for the controllable part of the system in energy variable
representation, where the resulting interconnection/damping matrix is a Schur complement, while
the resulting energy matrix is Q11.

Analogously, take linear coordinates e = (e1, e2)T such that the lower part of (36) equals the
unobservability subspace N . This implies

Q11F12 + Q12F22 = 0
B2 = 0 (39)

leading to the observable reduced dynamics

ė1 = (Q11F11 + Q12F21)e1 + Q11B1u
= Q11(F11 − F12F

−1
22 F21)e1 + Q11B1u

y = BT
1 e1

(40)

Combination of the above leads to a similar Kalman-decomposition as in the energy variable
representation.

5 The scattering variable representation
Another useful representation of port-Hamiltonian systems is the scattering representation (see
[10], [11]). In this representation the power uT y supplied to the system is split into a non-negative
term denoting the power due to an “incoming wave” and a non-positive term denoting the power
of an “outgoing wave”. This is accomplished by the following well-known change of coordinates
in the space of input and output variables

v = 1√
2
(u + y)

z = 1√
2
(−u + y) (41)

with inverse

u = 1√
2
(v − z)

y = 1√
2
(v + z) (42)

The vector v is called the vector of incoming wave variables, and z is the vector of outgoing
wave variables. Note that v measures the deviation of the input u from the situation where the
system is terminated on a unit resistance, corresponding to ū = −y. Indeed v = 1√

2
(u− ū).

The basic relation between power variables u, y and wave variables v, z is expressed as

uT y =
1
2
‖ v ‖2 −1

2
‖ z ‖2 (43)

Expressing the power variables u, y into the wave variables v, z by (42) into the equation (1)
for a port-Hamiltonian system leads to

ẋ = (J −R−BBT )Qx +
√

2Bv
z =

√
2BT Qx− v

(44)

which is called the scattering representation of the port-Hamiltonian system (1). Note that the
term BBT ≥ 0 can be regarded as a virtual additional resistive term (corresponding to unit
resistances attached to the ports of the systems).



Because of (43), the basic dissipation inequality (2) of any port-Hamiltonian system takes
the following form for the scattering representation

d

dt

1
2
xT Qx =

1
2
‖ v ‖2 −1

2
‖ z ‖2 −xT QRQx (45)

If Q ≥ 0 then the scattering representation is under minimality conditions asymptotically stable
(see e.g. [11]).

Proposition 5.1. Consider the scattering representation (44) with Q > 0. Assume the pair

(A = JQ,C = ( BT Q
RQ )) is detectable. Then (44) for v = 0 is asymptotically stable.

Proof. The right-hand side of (45) for v = 0 equals −xT QBBT Qx − xT QRQx. Defining the
Lyapunov function V (x) = 1

2xT Qx it follows that {x | V̇ (x) = 0} = {x | BT Qx = 0, RQx = 0}.
Detectability thus implies by LaSalle’s Invariance principle asymptotic stability.

The controllability and observability structure of the scattering representation is identical to
the power variable representation. This follows from

Proposition 5.2. The reachability subspace Rs of the scattering representation is equal to the
reachability subspace R of (1). The unobservability subspace Ns of the scattering representation
is equal to the unobservability subspace N of (1).

Proof. Rs = im[
√

2B | (J −R−BBT )Q
√

2B | . . .] = im[ B | (J −R)QB | . . . ] = R. Similarly

Ns = ker





√
2BT Q√

2BT Q(J −R−BBT )Q...



 = ker




BT Q

BT Q(J −R)Q...



 = N .

Hence, the Kalman-decomposition of the scattering representation is identical to the Kalman-
decomposition of (1).

From (45) it follows that for v = 0

1
2

∫ T
0 ‖ z(t) ‖2 dt = 1

2xT (0)Qx(0)− 1
2xT (T )Qx(T ) −

∫ T
0 xT (t)QRQx(t)dt (46)

for all T ≥ 0. Hence if Q ≥ 0 we conclude that 1
2

∫∞
0 ‖ z(t) ‖2 dt exists for all x(0), and is equal

to 1
2xT (0)Mx(0), with the observability Gramian M ≥ 0 being the solution to (see [11])

Q(J−R−BBT )TM +M(J−R−BBT )Q = −2QBBT Q (47)

Furthermore kerM = N . Note that

1
2
xT (0)Mx(0) =

1
2

∫ ∞

0
‖ z(t) ‖2 dt (48)

and thus equals the outgoing energy of the system (for the incoming wave v equal to zero). From
(46) if follows that M ≤ Q.

Furthermore it follows from (45) that

1
2

0∫

−T

‖v(t)‖2 dt = 1
2

0∫

−T

‖z(t)‖2 dt +
0∫

−T

xT (t)QRQx(t)dt + 1
2xT (0)Qx(0)− 1

2xT (−T )Qx(−T ) (49)

for all T ≥ 0. Hence if Q ≥ 0 we conclude that 1
2

∫ 0
−∞ ‖ v(t) ‖2 dt exists for all x(0), and

infv
1
2

∫ 0
−∞ ‖ v(t) ‖2 dt is equal to 1

2xT (0)W−1x(0), with the controllability Gramian W ≥ 0 being
the solution to (see [11])

(J−R−BBT )QW +WQ(J−R−BBT )T = −2BBT (50)



Moreover imW = R. Note also that

1
2
xT (0)W−1x(0) = inf

v

1
2

∫ 0

−∞
‖ v(t) ‖2 dt (51)

and thus equals the incoming energy of the system (for the outgoing wave z equal to zero). From
(49) it follows that W−1 ≥ Q.

Combining the obtained inequalities yields

M ≤ Q ≤ W−1 (52)

Now bringing the scattering system (44) into a balanced form where W = M (see [7], [12])
and computing the square roots of the eigenvalues of MW which are equal to the Hankel singular
values (see [4]) provides us the information about the number of state components of the system
to be reduced. These state components require large amount of the incoming energy to be reached
and give small amount of the outgoing energy to be observed. Therefore they are less important
from the energy point of view and can be removed from the system (see also [1]).

6 Reduction of port-Hamiltonian systems in general case
For a general port-Hamiltonian system in energy (1) or co-energy (29) coordinates with no
uncontrollable/unobservable but with ”hardly” controllable/observable states we may apply balancing
as explained in section 5 and use one of the following structure-preserving reduction techniques.

6.1 Effort-constraint reduction

Consider a full-order port-Hamiltonian system (1). To make the system uniformly asymptotically
stable we bring the system (1) into the scattering coordinates (44) applying the coordinate
transformation (41). Now we balance the system (44) but in co-energy coordinates (with another
change of coordinates (28)), obtaining the following balanced representation of our system

ė = Q(J −R−BBT )e +
√

2QBv
z =

√
2BT e− v

(53)

where the lower part of the state vector e = (e1, e2)T is the most difficult to reach and observe.
Consider the system (44) again, but now in the coordinates where the system (53) is balanced

ẋ = (J −R−BBT )e +
√

2Bv
z =

√
2BT e− v

(54)

A natural choice for the reduced model would be a model which contains only the e1 dynamics
since the lower part of the state vector e2 is much less relevant from the energy point of view

e2 = Q21x1 + Q22x2 ≈ 0 (55)

Therefore the reduced system takes the following form

ẋ1 = (J11−R11−B1BT
1 )e1 +

√
2B1v

= (J11−R11−B1BT
1 )(Q11x1+Q12x2) +

√
2B1v

z =
√

2BT
1 e1 − v =

√
2BT

1 (Q11x1 + Q12x2)− v
(56)

After substituting x2 ≈ −Q−1
22 Q21x1 from (55) into (56), assuming that Q−1

22 exists, the reduced
system will take the final form in energy coordinates

ẋ1 =(J11−R11−B1BT
1 )(Q11−Q12Q

−1
22 Q21)x1+

√
2B1v

z =
√

2BT
1 (Q11−Q12Q

−1
22 Q21)x1 − v

(57)

which is again a port-Hamiltonian system.



6.2 Flow-constraint reduction

Another structure-preserving way of model reduction of port-Hamiltonian systems is the so-called
Flow-constraint Method, when after scattering change of coordinates (41) we balance the system
(44) and approximate the lower part of the state vector, but in energy coordinates, plus its
dynamics. Using the notation F := J −R−BBT we obtain

x2 ≈ 0
ẋ2 = (F21Q11 + F22Q21)x1 +

√
2B2v ≈ 0 (58)

with the reduced port-Hamiltonian system of the form

ẋ1 = (F11Q11 + F12Q21)x1 +
√

2B1v
z =

√
2(BT

1 Q11 + BT
2 Q21)x1 − v

(59)

From (58) it immediately follows that Q21x1 ≈ −F−1
22 F21Q11x1−

√
2F−1

22 B2v, assuming that F−1
22

exists. Substituting in (59) yields

ẋ1 = (F11−F12F
−1
22 F21)Q11x1 +

√
2(B1−F12F

−1
22 B2)v

z =
√

2(BT
1−BT

2 F−1
22 F21)Q11x1 − (2BT

2 F−1
22 B2 + 1)v

(60)

which is if (F12F
−1
22 )T = F−1

22 F21 again a reduced system in a port-Hamiltonian form.

Remark 6.1. The reduced-order port-Hamiltonian systems (57) and (60) are automatically
passive since the preservation of the port-Hamiltonian structure implies the preservation of the
passivity property (see [10]).

Remark 6.2. Though the Flow-constraint method is similar to the well-known Truncation
(x2 ≈ 0, see e.g. [1]) and less-known Singular Perturbation method (ẋ2 ≈ 0, see [3], [6]), it
is different from these reduction methods since it is easy to show that neither of them preserves
the port-Hamiltonian structure.

7 Conclusions
We have shown in section 3 that a full-order uncontrollable/unobservable port-Hamiltonian

system can be reduced to a controllable/observable system, which is again port-Hamiltonian, by
exploiting the invariance of the reachability/unobservability subspaces of the original systems. We
discussed energy and co-energy variable representations of port-Hamiltonian systems in section 4
illustrated by the example of electrical networks where the energy variables are charges and fluxes
while the co-energy variables are voltages and currents.

The scattering representation of port-Hamiltonian systems is discussed in section 5 showing
that in the scattering coordinates a stable port-Hamiltonian system becomes asymptotically stable,
provided an observability condition is satisfied, so that standard balancing can be applied to
the port-Hamiltonian system. Balancing is discussed in section 5. The reduction methods
Effort-constraint and Flow-constraint are introduced in Section 6 and applied to a general port-
Hamiltonian full-order system showing that the proposed approximations preserve the port-
Hamiltonian structure for the reduced-order systems as well as the passivity property. Effort-
and Flow- constraint methods motivate to investigate further important issues about the error
bounds between full-order and reduced-order systems which is the subject for ongoing research.
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