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Partial Linearization of Mechanical Systems with Application to
Observer Design

Ioannis Sarras, Aneesh Venkatraman, Romeo Ortega, and Arjan van der Schaft

Abstract—We consider general mechanical systems and es-
tablish a necessary and sufficient condition for the existence
of a suitable change in the generalized momentum coordinates
such that the new dynamics become linear in the transformed
momenta. The class of systems which can be (partially) linearized
by the proposed approach is characterized by (the solvability
of) a set of partial differential equations and is shown to be
larger than the class reported in all the previous works on
linearization. We employ this linearization procedure to design
an observer for mechanical systems where, we first (partially)
linearize the system to make it affine in the new momenta and
then construct a globally exponentially stable reduced order
observer (which estimates the new momenta) by using the
Immersion and Invariance approach.

I. INTRODUCTION

We consider n degree of freedom mechanical systems
modeled in Hamiltonian form as

(
q̇
ṗ

)
=

[
0 In
−In 0

] (
∂H
∂q
∂H
∂p

)
, (1)

where q ∈ Rn, p ∈ Rn are the generalized positions and
momenta respectively. Further, the Hamiltonian function H :
Rn × Rn → R is the total energy of the system and is given
as

H (q , p) =
1
2

p>M−1 (q)p + V (q). (2)

where M = M> > 0 is the mass matrix and V the potential
energy function.

The problem of transforming the dynamical equations
of a given mechanical system into a form that admits a
relatively simple controller or an observer design, is of
great practical interest and has henceforth been extensively
studied in the literature. References [5], [12], [14], [18]
for instance, consider mechanical systems and propose a
coordinate transformation that renders the system linear. In
the context of observer design, more particularly, the problem
of velocity reconstruction has been treated exhaustively and
many interesting solutions have been reported —we refer the
reader to the recent books [2], [6] for a list of references.

The contributions of this paper are:
• Characterization, by a set of partial differential equations

(PDEs), of the class of mechanical systems that can
be rendered linear in the generalized momenta under a
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(partial) change of coordinates of the form (q, P ) =
(q, T >(q)p), with T : Rn → Rn×n full rank. We also
prove that the results reported in the control literature on
linearization are particular cases of our result and that
the new characterization covers a large class of practical
examples.

• Identification, in terms of two sets of PDEs (including
the one mentioned previously), depending on M , of the
class of systems for which we can construct a globally
(exponentially) convergent reduced order observer for p.

The remaining of the paper is organized as follows. In
Section II the main result on linearization via a partial change
of coordinates is stated and proved. Section III is devoted to
the system theoretic interpretation of some special choices of
the matrix T . In Section IV we present the observer design
methodology and identify—in terms of two key assumptions
that yield the two sets of PDEs—the class of systems for which
we can generate a stable observer error dynamics. We wrap
up the paper with some concluding remarks and future work
in Section V.

II. A NECESSARY AND SUFFICIENT CONDITION FOR
PARTIAL LINEARIZATION

Given a inertia matrix M , we introduce the following
assumption.

Assumption 1: There exists a full rank matrix T : Rn →
Rn×n such that the parameterized vector

DT (q, P ) = 0, (3)

where

DT := {P, P}J ∂

∂P
(
1
2
P>M̄−1P )+{P, q}J ∂

∂q
(
1
2
P>M̄−1P )

(4)
with P = T >(p)q, M̄(q) = T >(q)M(q)T (q) and the
quantity {., .}J is the matrix Poisson bracket of vector fields
[5], [9] with respect to the standard skew symmetric matrix
J, being defined for any given Q(q, p) : R2n → Rn, P (q, p) :
R2n → Rn as,

{Q, P}J =
[

∂Q
∂q

∂Q
∂p

] [
0 In

−In 0

] [
∂>P
∂q

∂>P
∂p

]
. (5)

We will show that Assumption 1 is precisely identifying the
class of mechanical systems for which a change of coordinates
of the form (q, P ) = (q, T >(q)p) exists, that renders the
system linear in the transformed momenta P .

Proposition 1: The dynamics of the system (1) expressed
in the coordinates (q, P ), where P = T >(q)p, is linear in P if



and only if Assumption 1 holds, in which case, the dynamics
becomes

q̇ = M−1T −>P,

Ṗ = −T > ∂V
∂q

. (6)

Proof: The transformed system can be expressed in the
form (refer to [5], [9]):

(
q̇

Ṗ

)
=

[ {q, q}J {q, P}J
{P, q}J {P, P}J

] (
∂H̄
∂q
∂H̄
∂P

)
, (7)

with the new energy function being given as

H̄ (q ,P) :=
1
2

P>M̄−1P + V (q),

and the new inertia matrix M̄(q) := T >(q)M(q)T (q). Using
the definition of the matrix Poisson bracket (5), we can
compute

{q, q}J = 0n×n

{q, P}J = ∂P
∂p

>

{P, q}J = −∂P
∂p

{P, P}J = −∂P
∂p

∂P
∂q

>
+ ∂P

∂q
∂P
∂p

>

(8)

where, to obtain the third identity we have invoked the
skew-symmetry property of the matrix Poisson bracket i.e.
{P, q}J = −{q, P}>J . The dynamics of q follows trivially from
the definition of P . By performing some simplifications, we
get

Ṗ = {P, q}J ∂H̄

∂q
+ {P, P}J ∂H̄

∂P

= DT (q, P )− T > ∂V

∂q
, (9)

where we have used (4) and (8). We see from (9) that, if and
only if Assumption 1 holds, that is if and only if DT = 0, the
dynamics is linear in P , and assumes the form (6).

When Assumption 1 does not hold, the transformed dynam-
ics in the coordinates (q, P ) is given by

(
q̇

Ṗ

)
=

[
0 {q, P}J

{P, q}J {P, P}J

] (
∂H̄
∂q
∂H̄
∂P

)
. (10)

To streamline the presentation in the sequel we find it con-
venient at this point to recall the Lagrangian model of the
mechanical system (1)

M (q)q̈ + C (q , q̇)q̇ +
∂V
∂q

(q) = 0 , (11)

where C(q, q̇)q̇ is the vector of Coriolis and centrifugal forces,
with the ik–th element of the matrix C : Rn × Rn → Rn×n

defined by

Cik(q, q̇) =
n∑

j=1

Ck
ij(q)q̇j .

The elements Ck
ij : Rn → R are the Christoffel symbols of

the second kind, of the inertia matrix M , given by

Ck
ij(q) :=

1
2
{∂Mik

∂qj
+

∂Mjk

∂qi
−∂Mij

∂qk
}, ∀ i, j, k ∈ n̄ := {1, . . . , n},

(12)
where Mij is the ij–th element of M . It is well known that,
for all vectors x, y ∈ Rn, we have

C(q, x)y =




x>C1(q)y
x>C2(q)y

...
x>Cn(q)y




where the ij element of the symmetric matrices Ck : Rn →
Rn×n is precisely Ck

ij . We also recall the well–known fact
that

∂

∂q
{1
2
q̇>Mq̇} = (C − Ṁ)q̇ (13)

See [13] for other properties of mechanical systems that are
relevant in control applications.

III. SOME PARTICULAR CASES OF T
In this section we discuss some particular selections of T

(and hence P ) that have some nice physical or geometrical
interpretation and have been considered in the literature.

A. T = M−1: A Strong Condition for (Partial) Linearizability
With the choice T = M−1, we have

DM−1 = {P, P}JMP + {P, q}J ∂

∂q
(
1
2
P>MP ) (14)

and P = q̇. Furthermore, (6) becomes

q̈ = −M−1 ∂V
∂q

. (15)

Unfortunately, Assumption 1 in this case is extremely restric-
tive as shown in the following proposition.

Proposition 2: Consider the parameterized vector DT in-
troduced in Assumption (1). The following statements are
equivalent:
(i) Assumption 1 holds with T = M−1, that is, DM−1 = 0.

(ii) The Christoffel symbols of the second kind of the inertia
matrix M , (12), are all equal to zero.

(iii) The Coriolis and centrifugal forces C(q, q̇)q̇ are equal to
zero.
Proof: The proof follows directly comparing (11) with

(15).

B. T T > = M−1: A Weaker Condition for (Partial) Lineariz-
ability

In this subsection we propose—as suggested in [7], [8]—to
take T equal to a factor of M−1. More precisely, we set

M−1(q) = T (q)T>(q), (16)

with T : Rn → Rn×n being a full rank matrix, and select
T = T .1 Our motivation for this choice is threefold. Firstly,

1Since M is positive definite this factorization always exists, see, e.g.,
Corollary 7.2.9 of [10]. Further, T can be taken to be triangular with the
diagonal terms strictly positive—the so–called, Cholesky factorization [11],
which is uniquely defined. Also, notice that T is necessarily full rank—a fact
that follows from rank {AB} ≤ min {rank {A}, rank {B}}.



Assumption 1 takes a particularly simple form that can be
verified without solving any PDEs. Secondly, it leads to a
relatively simple observer design. Thirdly, it allows us to
establish some connections of our results with the existing
literature on linearization and observer design.

In this case, the new energy function becomes

H̄ (q ,P) =
1
2
|P |2 + V (q),

and the dynamics (10) takes the form
(

q̇

Ṗ

)
=

[
0 {q, P}J

{P, q}J {P, P}J

](
∂V
∂q

P

)
. (17)

Further, if Assumption 1 holds, the transformed system be-
comes

q̇ = TP

Ṗ = −T>
∂V
∂q

.

Compare with (15). We now prove that Assumption 1 in
this case is strictly weaker than the absence of Coriolis and
centrifugal forces and, furthermore, has a nice geometric
interpretation.

Proposition 3: Consider the factorization M−1 = TT>.
Assumption 1 holds with T = T if and only if {P, P}JP = 0.

Proof: Upon substituting in the parameterized vector DT ,
T = T , it becomes

DT = {P, P}JP, (18)

from which the proof follows directly.
Remark 1: A sufficient condition for {P, P}JP = 0, is

clearly that, {P, P}J = 0 where, the (i, j) element of {P, P}J
is given by

{P, P}i,j
J = {Pi, Pj},

with {Pi, Pj} being the standard poisson bracket [16] of
smooth functions being given as,

{Pi, Pj} =
n∑

k=1

[
∂Pi

∂pk

∂Pj

∂qk
− ∂Pi

∂qk

∂Pj

∂pk
] (19)

where Pi, Pj are the ith and jth elements of the vector P .
Hence, we can see that, {P, P}J = 0 implies that for all

0 ≤ i, j ≤ n, we have {Pi, Pj} = 0 — when it is said that the
Poisson bracket commutes.

Poisson commutativity of two functions Pi(q, p), Pj(q, p)
has an interesting geometrical interpretation. If {Pi, Pj} = 0,
then the vectors Pi, Pj are said to be in involution, that is, each
is constant along the integral curves of the other’s Hamiltonian
vector field which is in fact equivalent to the right hand side
of (19) becoming equal to zero.

Further, if Ti, Tj are the ith and jth columns of the matrix
T , then we have the relation ( from differential geometry),
{Pi, Pj} = {p>Ti, p

>Tj} = −p>[Ti, Tj], where [Ti, Tj] is the
standard Lie bracket [16] of vector fields defined as,

[Ti, Tj] =
∂Tj

∂q
Ti − ∂Ti

∂q
Tj.

We can thus see that {P, P}J = 0 if and only if the column
vectors of the matrix T satisfy, [Ti, Tj] = 0 – when it is said
that the columns of T commute among each other.

We show in the next subsection that (for n ≥ 3) the
condition {P, P}J = 0 is not necessary for {P, P}JP = 0
to hold.

Remark 2: Referring to the sufficient condition for lineariz-
ability we notice that selecting T = T and rewriting the
dynamics in the Lagrangian form, we see that the Coriolis
and centrifugal forces matrix should satisfy

C = T−>
d

dt
(T−1).

Although the expression above relates the Coriolis matrix with
the factor of M , the geometric interpretation is far from clear.

C. Proposition 3 is Strictly Weaker than Commutativity

The case when the columns of the matrix T (which satisfies
(16)) commute has been extensively studied in analytical
mechanics and has a deep geometric significance—stemming
from Theorem 2.36 in [16]. It is widely accepted that this
condition is quite restrictive and a natural question is whether
Proposition 3 is strictly weaker than commutativity. In this
subsection we show that this is indeed the case for n ≥ 3.

Before presenting the result we find convenient to recall the
following well–known fact of Riemannian geometry that has
been used in the context of linearization, in the references [4],
[18].

Fact 1: Given an inertia matrix M . The following state-
ments are equivalent:

i) There exists a matrix T verifying (16) such that the
vector P = T>p satisfies {P, P}J = 0 or equivalently
(as shown in the remark 1) that the columns of T satisfy,
[Ti, Tj] = 0 for all 0 ≤ i, j ≤ n.

ii) There exists a vector function Q : Rn → Rn such that

∂Q
∂q

= T−1 (q). (20)

iii) The Riemann symbols (that can be computed directly
from M with the formulas given in (22)) vanish identi-
cally.

If the conditions in the above fact are satisfied, then the
system is said to be Euclidean [4], where the qualifier stems
from the fact that the dynamics expressed in the coordinates
(Q, P ) reduces to a “linear double integrator” of the form

Q̇ = P

Ṗ = −∂Ṽ
∂Q

,

where Ṽ (Q) := V (QI(Q)), with QI : Rn → Rn a left inverse
of Q(q), that is, Q(QI(x)) = x for all x ∈ Rn.

We next state the following interesting result.
Proposition 4: Given an inertia matrix M . The fact that

there exists a factorization (16) such that DT = 0 does not
imply that the system is Euclidean for n ≥ 3. On the other
hand, for n ≤ 2 both conditions are equivalent.

Proof: First, we prove that for n ≤ 2, the conditions
{P, P}JP = 0 and {P, P}J = 0 are equivalent for any non



trivial vector P . For n = 1 the equivalence is, of course,
obvious. For n = 2 this can be easily shown using the fact
that DT = {P, P}JP takes the form

DT =
[

0 {P1, P2}
−{P1, P2} 0

] [
P1

P2

]
.

We now construct an inertia matrix whose Riemann symbols
are not all zero, but for which we can find a factorization that
satisfies DT = 0. Towards this end, set n = 3 and consider

M−1 =




1 + q2
2 0 q2

√
1 + q2

2

0 (1 + q2
2)2 0

q2

√
1 + q2

2 0 1 + q2
2


 . (21)

We now compute the Riemann symbols, defined in page (4D-
7) of [17] as

Rijlk :=
1
2

[
∂2Mik

∂qj∂ql
+

∂2Mjl

∂qi∂qk
− ∂2Mil

∂qj∂qk
− ∂2Mjk

∂qi∂ql

]

+
n∑

a,b=1

(M−1)ab

[
Ca

jlC
b
ik − Ca

ilC
b
jk

]
(22)

where Ck
ij are the Christoffel symbols of the second kind

as defined in (12) and (M−1)ij is the ij-th element of the
inertia matrix inverse. Notice that we only need to calculate
R1212, R1213, R1223, R1313, R1323, R2323 because of he sym-
metries of the tensor. After some computations we verify that
R1212, R1323, R2323 6= 0 for all q and R1223 6= 0 for q2 6= 0,
and hence we conclude from Fact 1 that the system is not
Euclidean.

On the other hand, it can be easily verified that the matrix
M−1 admits a factorization (16) with

T =




sin(q1)q2 cos(q1)q2 1
(1 + q2

2) cos(q1) −(1 + q2
2) sin(q1) 0√

1 + q2
2 sin(q1)

√
1 + q2

2 cos(q1) 0


 . (23)

Using (19), we compute

{P1, P2} = −P3, {P2, P3} = −P1, {P3, P1} = −P2.
(24)

We conclude the proof by checking that DT = {P, P}JP = 0.

An explanation regarding the construction of the example
used in the proof above is in order. First, we observe that (24)
is a sufficient condition for DT = 0. Condition (24) is satisfied
by the vectors Ti = Aix where2 x ∈ R3 and Ai ∈ R3×3 are
the rotation matrices

A1 =




0 0 0
0 0 1
0 −1 0


 , A2 =




0 0 1
0 0 0
−1 0 0


 ,

A3 =




0 1 0
−1 0 0
0 0 0


 .

However, the resulting matrix T = [T1|T2|T3] has zero
determinant, hence cannot qualify as a factor of M−1.

2For reasons that will become clear below we find convenient to, temporar-
ily, use the notation x instead of q.

To complete the example we must invoke some concepts
from Lie group theory see, e.g., [17], [15]. The first ob-
servation is that the matrices Ai are tangent vectors at the
identity point of the Lie group SO(3) and, furthermore,
form a basis for its associated Lie algebra so(3). We then
extend these vectors to left–invariant vector fields on the group
SO(3) using a push–forward of the left multiplication map
Lg(h) = gh, where g, h ∈ SO(3). The push–forward is
defined as (Lg)∗(Ai) = gAi, where g is taken to be the matrix

R(x) =




cos x1 sin x1 0
− sin x1 cos x1 0

0 0 1







1 0 0
0 cos x2 sin x2

0 − sin x2 cos x2







cosx3 sinx3 0
− sin x3 cos x3 0

0 0 1


 ,

which is a parametrization (using the Euler angles) of SO(3).
The question is then to find the vectors T̃i, whose push–
forward by R∗, that is R∗(T̃i), will equal (LR)∗(Ai). This
leads to the following set of equations

∂R

∂x1
T̃i1(x)+

∂R

∂x2
T̃i2(x)+

∂R

∂x3
T̃i3(x) = R(x)Ai, i = 1, 2, 3.

Solving these equations we obtain the matrix T̃

T̃ (x) =



− sin(x1) cot(x2) − cos(x1) cot(x2) 1

cos(x1) − sin(x1) 0
sin(x1)cosec(x2) cos(x1)cosec(x2) 0


 .

Some simple computations show that the matrix T̃ has full
rank (almost everywhere) and verifies (24) as desired.

The matrix T̃ above has a singularity at zero that can
be easily “removed” introducing an homeomorphism F :
R × (0, π) × R → R3 : x 7→ q. For instance, F (x) =
[x1, tan(x2− π

2 ), x3]>, which has an inverse map F I : R3 →
R3, F I(q) = [q1,

π
2 + tan−1(q2), q3]>. We then define the

transformed vectors,

Ti(q) = [
∂F

∂x
(x)T̃i(x)]x=F I(q), i = 1, 2, 3,

that, after some simple calculations, yields (23).

IV. IMMERSION AND INVARIANCE OBSERVERS

In this section, we use our main result on (partial) lineariza-
tion to characterize a class of mechanical systems that admit
a globally exponentially convergent, reduced order observer
which estimates the (unmeasurable) momenta.

A. Problem Formulation and Proposed Approach

In this section we adopt the observer design framework
proposed in [8], which follows the Immersion and Invariance
(I&I) principles first articulated in [3]—see [2] for a tutorial
account of this method and its applications. In the context
of observer design the objective of I&I is to generate an
attractive invariant manifold, defined in the extended state-
space of the plant and the observer. This manifold is defined
by an invertible function in such a way that the unmeasurable
part of the state can be reconstructed by inversion of this



function. We thus introduce the definition of an I&I observer
for the system (7), which is a particular case of the one given
in [8], see also [19].

Definition 1: The dynamical system

η̇ = α(q, η), (25)

with η ∈ Rn, is called an I&I observer for the system (7) if
there exist a full rank matrix T : Rn → Rn×n and a vector
function β : Rn → Rn, such that the manifold

M := {(η, q, P ) : β(q) = η + P} ⊂ Rn × Rn × Rn (26)

is positively invariant and attractive.3 In this way, an asymp-
totic estimate of P , which we will denote by P̂ , is given by

P̂ = β − η.

Assumption 2: There exists a matrix P : Rn → Rn×n

satisfying the following two conditions:
(i) The matrix inequality

A(q) +A>(q) ≥ εIn, (27)

holds, uniformly in q, for some ε > 0, where

A(q) := P(q)T (q)M̄−1(q). (28)

(ii) The rows of P , denoted Pj , satisfy the integrability
condition

∂Pj

∂q
=

(
∂Pj

∂q

)>
, j ∈ n̄. (29)

Assumption 1 defines a set of PDEs that has to be solved
for the unknown T . Similarly, for a given T , the matrix P of
Assumption 2 can be computed from the solution of the PDEs
(29), subject to the inequality constraint (27).

B. I&I Observer

Proposition 5: If the matrices T and P satisfy Assumptions
1 and 2, the dynamical system

η̇ = PT M̄−1(β − η) + T > ∂V
∂q

P̂ = β − η (30)

with
∂β

∂q
= P, (31)

is a globally exponentially convergent reduced order observer
for (7)—with the estimation error verifying

|P̂ (t)− P (t)|2 ≤ exp−εt |P̂ (0)− P (0)|2,
where | · | is the Euclidean norm.

3We recall that the set M is positively invariant if (η(0), q(0), P (0)) ∈
M⇒ (η(t), q(t), P (t)) ∈M for all t ≥ 0. It is said to be globally attractive
if, for all (η(0), q(0), P (0)), the distance of the state vector to the manifold
asymptotically goes to zero, i.e., limt→∞ dist{(η(t), q(t), P (t)),M} = 0.

Proof: Following the I&I procedure [2], to prove that the
manifold M, defined in (26), is attractive and invariant we
show that the off–the–manifold coordinate

z = β − η − P, (32)

that determines the distance from the state vector to the
manifold M, verifies: (i) (z(0) = 0 ⇒ z(t) = 0) for all
t ≥ 0, and (ii) z(t) asymptotically (actually, exponentially)
converges to zero.

We first differentiate (32) to obtain the dynamics of z as

ż = β̇ − η̇ − Ṗ

=
∂β

∂q
{q, P}J ∂H̄

∂P
− [

∂β

∂q
T M̄−1(β − η) + T > ∂V

∂q
]

−{P, q}J ∂H̄

∂q
− {P, P}J ∂H̄

∂P

= −∂β

∂q
T M̄−1z −DT (q, P )

where we have used (7), (9), (30), and the fact {P, q}J =
T >(q).

Upon invoking Assumption 1, we get DT = 0. Now, with
the integrability condition (29) of Assumption 2 and (31), the
error dynamics reduces to,

ż = −PT M̄−1z. (33)

The manifold M is clearly positively invariant. To establish
global exponential attractivity of M consider the Lyapunov
function V (z) = 1

2 |z|2. Condition (27) ensures that V̇ ≤ −εV ,
which proves the global exponential convergence to zero of z,
hence of P̂ − P—with exponential rate ε.

Remark 3: The manifold M proposed above is a particular
case of the one considered in [8], where it is defined as
{(η, q, P ) : β̃(q, η) = P}, with β̃ : Rn × Rn → Rn—
notice that we have taken β̃ to be a linear function of η in
(26). It is clear that considering the more general manifold
expression it is possible—in principle—to handle a larger class
of systems. However, for the purposes of our work, which is to
explicitly define (in terms of PDEs) a class of inertia matrices
for which the construction works, this is done without loss of
generality—see Remark 4.

Remark 4: Some connections between our observer and the
one proposed in [8] may be established at this point. Towards
this end we refer to the function D̃T (q, q̇) := DT (q, p) which
can be written (by performing some simplifications) as

D̃T = T > ∂

∂q
{1
2
q̇TMq̇} − Ṫ >Mq̇,

= [T >C − d

dt
(T >M)]q̇, (34)

where, to obtain the second identity, we have used (13).
Evaluating it for T = T we obtain

D̃T = [T>C − d

dt
T−1]q̇ =: C̄(q, q̇)q̇.

It can easily be shown that the matrix C̄(q, q̇)T (q) is linear in
q̇ and furthermore, exploiting the fact that Ṁ = C + C>, we
can also prove that it is skew–symmetric. These properties are
used in [8] to, adding to the observer a “certainty–equivalent”



term C̄(q, T β̃)T β̃, generate an error dynamics of the form
ż = [Γ(q, η) − C̄(q, q̇)T (q)]z, where Γ : Rn × Rn → Rn×n

is a matrix that can be shaped selecting the function β̃. A
constructive solution is given for some particular cases of
systems with n = 2, namely: diagonal inertia matrix and
inertia matrix with bounded elements. However, the extension
of the proposed techniques beyond these cases does not seem
to be immediate. Of course, it may be argued that the route
taken in the present paper (that aims at eliminating the term
DT ), although leading to the explicit identification of some
PDEs to be solved, is also not constructive—given our inability
to guarantee their solution in general.

Remark 5: The proposed linearization technique and the
observer design has been successfully applied to some well
known physical examples like the inverted pendulum on a cart,
the 3-link planar manipulator, the planar redundant manipula-
tor with one elastic degree of freedom. The Assumption 1, for
these examples, was satisfied by choosing T equal to a lower
triangular cholesky factorization T of M−1, and further, the
observer design was performed by following a constructive
procedure [1].

V. CONCLUDING REMARKS AND FUTURE WORK

We have identified a class of mechanical systems, charac-
terized by (the solvability of) a set of PDEs, that contains
all systems that can be rendered linear in (the unmeasurable)
momenta via a (partial) change of coordinates P = T (q)p.
We have shown that this class is larger than the one reported
in the literature of linearization and observer design. We have
also shown that the class admits a globally exponentially stable
reduced order observer.

Several open questions are currently under investigation:

• Similar to the well–known characterization of Euclidean
systems in terms of the Riemann symbols (as told in
fact 1), it would be interesting to derive necessary
and sufficient conditions on M to verify the condition
{P, P}JP = 0.

• In Remark 4 we have explained the difference between
our approach to observer design and the one used used
in [8]. Namely, the incorporation of the term C̄(q, q̇)
in the observer, which is absent in our design. Some
preliminary calculations show that, as expected, adding
this term modifies the perturbing term DT leading to
alternative conditions for it to be zero.

• It is possible to show that the condition of Proposition 3,
using the Cholesky factorization, is not verified for ma-
nipulators with more than one rotational joint. However,
it is not clear whether other factorizations may exist of
and whether they can be handled imposing the weaker
Assumption 1.

• The solvability of the PDEs arising in Assumption 1 is a
widely open question. These PDEs are, in general, non-
linear and quite involved. For instance, for the classical
two-dimensional Ball–and–Beam example, they take the

form
∂T11
∂q1

= 0
m1q1T11
1+m1q2

1
+ ∂T21

∂q2
= 0

m2
1+m1q2

1

∂T11
∂q2

+ ∂T21
∂q1

= 0
∂T12
∂q1

= 0
m1q1T12
1+m1q2

1
+ ∂T22

∂q2
= 0

m2
1+m1q2

1

∂T12
∂q2

+ ∂T22
∂q1

= 0.

It is possible to show that these equations do not admit
an explicit solution in separable variables form Tij(q) =
aij(q1)bij(q2).
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