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ON THE INTERCONNECTION STRUCTURES

OF OPEN PHYSICAL SYSTEMS

D. Eberard ∗∗,1, B. Maschke ∗,2,
A.J. van der Schaft ∗∗,3

∗ Laboratoire d’Automatique et de Génie des Procédés

UMR CNRS 5007, UCB Lyon, France
∗∗ Institute for Mathematics and Computer Science,

University of Groningen, the Netherlands

Abstract: An energy balance equation with respect to a control contact system
provides port outputs which are conjugated to inputs. These conjugate variables
are used to define the composition of port contact systems in the contact
framework. We then propose a power-conserving interconnection structure, which
generalizes the Dirac interconnection in the Hamiltonian formalism. Furthermore,
the composed system is again a port contact system, as illustrated on the example
of a gas-piston system undergoing some irreversible transformation.
Copyright c©2006 IFAC.
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1. INTRODUCTION

The properties of the control systems arising from
models of physical systems reveal to be extremely
useful for the design of control laws of nonlin-
ear systems not only for stabilizing purposes but
also for the design of the closed-loop behavior
(van der Schaft, 2000). For electro-mechanical
systems, the Lagrangian and Hamiltonian frame-
work revealed to be best suited to represent their
physical properties. Their state space is natu-
rally endowed with symplectic, Poisson or Dirac
structures arising from the variational formu-
lation and eventual symmetries (Abraham and
Marsden, 1994) (Arnold, 1989) (Libermann and
Marle, 1987) or directly from the interconnection
structure of complex physical systems like elec-
trical or hydraulic networks and spatial mech-
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3 E-mail address : a.j.vanderschaft@math.rug.nl

anisms (Maschke et al., 1992) and constraints
(van der Schaft and Maschke, 1995) (Maschke
and van der Schaft, 1997). However the Hamil-
tonian and Lagrangian framework represent only
the dynamics of reversible physical systems (in the
sense of Thermodynamics). If the dissipation can
no more be neglected, usually the Hamiltonian
systems are augmented with a dissipative output
feedback term (Dalsmo and van der Schaft, 1999)
and lead to define dissipative Hamiltonian systems
(defined on a so-called Leibniz bracket (Ortega
and Planas-Bielsa, 2004)) augmented with input
and outputs maps (van der Schaft, 2000). From a
thermodynamic perspective this means that the
Hamiltonian function represent the free energy
of the physical system which is not conserved.
However there is a way of representing simul-
taneously (internal) energy conservation and ir-
reversibility which uses model structures arising
from Irreversible Thermodynamics and which has
been developed in the context of Chemical Engi-
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neering. These systems are defined on the differen-
tiable manifolds endowed with a contact structure
which are canonically associated with the phase
space in Reversible Thermodynamics by consid-
ering a geometric structure, the contact struc-
ture, canonically associated with Thermodynam-
ics (Herman, 1973) (Arnold, 1989) (R. Mrugala
and Salamon, 1991). On these contact manifolds,
a class of control systems has been defined, called
conservative control contact systems, which en-
compasses both reversible and irreversible systems
and allows to express in both cases the conserva-
tion of the total energy (Eberard et al., 2005a)
(Eberard et al., 2005b).
In this paper we shall consider port contact sys-
tems as defined in (Eberard et al., 2005c) and
define their composition by power continuous in-
terconnection structure which strictly generalize
Dirac structures.

In the second section we shall briefly recall the
definition and motivation of conservative contact
systems. In the third section, we shall recall the
definition of the port conjugated variables and
then define the composition (or interconnection)
of conservative contact systems. This is then illus-
trated in details on the example of a gas in a cylin-
der submitted to irreversible transformations.

2. CONSERVATIVE CONTACT SYSTEMS

In this section we shall recall the motivation and
definition of conservative contact systems. The
reader is referred to (Libermann and Marle, 1987)
(Arnold, 1989) and (Abraham andMarsden, 1994)
for a detailed definition of the objects of contact
geometry.

2.1 Definition and motivation

The properties of thermodynamical systems are
defined as the space of 1-jets of real functions of
its extensive variables corresponding to their fun-
damental equation (Gibbs, 1928) (Herman, 1973)
(Mrugala, 1978). If one denotes the manifold of
extensive variables (excluding the internal en-
ergy) by N , it is known that the space of 1-
jets of functions on N may be identified with
R × T ∗N (Libermann and Marle, 1987). This
space is called the Thermodynamic Phase Space
and has a canonical geometric structure, called
contact form, which plays an analogous role as
the Liouville form for cotangent bundle of differ-
entiable manifolds. It may then be shown that the
Thermodynamic Properties of physical systems
(including thermodynamical systems but also me-
chanical systems) is defined by a Legendre sub-
manifold of the Thermodynamic Phase Space T

(Herman, 1973) (Arnold, 1989) (Mrugala, 1978)
(Mrugala, 1980).

The dynamic models of systems undergoing re-
versible or irreversible transformations, have lead
to the definition of a class of control contact
systems that we have called conservative control
contact systems (Eberard et al., 2005a) (Eberard
et al., 2005b).

Definition 1. A conservative control contact sys-

tem is defined by (M, E ,L,K0, . . . ,Km,U), where
(M, E) is a strict contact manifold with L a given
Legendre submanifold, the Ki’s are smooth real-
valued functions onM, called contact Hamiltoni-

ans, which are identically zero on L, and U denotes
the space of inputs functions uj . The dynamics is
then given by the differential equation:

d

dt
(x0, x, p) = XK0

+

m
∑

j=1

uj XKj
. (1)

This system may be interpreted in the context of
physical system’ modelling as follows. Firstly the
differential equation (1) defines a control contact

system in a very similar way to control Hamil-
tonian systems (R.W.Brockett, 1977) (van der
Schaft, 1989). It is defined by an internal contact
Hamiltonian K0 generating the drift dynamics
XK0

and by interaction contact Hamiltonians Kj
defining the external action on the system by the
control vector fields XKj

. It is interesting to note
that, for physical systems, the contact Hamiltoni-

ans have the dimension of power and that they
are defined by the law of fluxes of the system
(heat conduction, chemical reaction kinetics or
diffusion).
However the system is also defined by a second ob-
jet: the Legendre submanifold L which represents
the Thermodynamic properties of the system.
Practically this Legendre submanifold is gener-
ated by a potential energy function (for instance,
the internal energy or free energy of a thermody-
namic system, the kinetic and potential energy of
a mechanical system). The contact Hamiltonians
have to satisfy the compatibility conditions, i.e.

Ki|L ≡ 0, which are essential as they express the
first principle of Thermodynamics. In other words
the conservative control contact system leaves in-
variant the Legendre submanifold. More precisely
these conditions follow from the following result
(R. Mrugala and Salamon, 1991).

Theorem 2. Let (M, E) be a strictly contact man-
ifold and denote θ its contact form. Let L denote
a Legendre submanifold. Then Xf is tangent to L
if and only if f is identically zero on L.

Finally note that actually only the restriction of
the conservative contact system to the Legendre
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submanifold (where the first principle is satisfied)
is relevant for the description of the dynamics of
the system.

Example 1. (Lift of a dissipative Hamiltonian sys-
tem) This example has been treated in details in
(Eberard et al., 2005b). Consider an autonomous
dissipative Hamiltonian system defined on N by
the equation

ẋ = (J(x)−D(x))
∂H0

∂x
(x) , (2)

where D is the symmetric positive definite matrix
of friction. Notice that the tensor J −D defines a
Leibniz bracket (Ortega and Planas-Bielsa, 2004).
It has been shown that it may be embedded into
a contact vector field considering:

• the extended base manifold Ne = R × N ,
and its associated extended thermodynamic
phase space Te = R×T ∗Ne + (x0, x, S, p, pS)

• the Legendre submanifold generated by He:
He(x, S) = H0(x) + T0S
• the contact Hamiltonian function

Ke = −〈p, ẋ〉+
pS
T0

∂H0

∂x

t

D(x)
∂H0

∂x
. (3)

3. INTERCONNECTION OF PORT
CONTACT SYSTEMS

In this section, the definition of port outputs con-
jugated to the control inputs is recalled (Eberard
et al., 2005c) (Eberard et al., 2005b). The compo-
sition of port contact systems is then defined us-
ing a power continuous interconnection structure
which is not necessarily a Dirac structure, gener-
alizing hence the result in (Eberard et al., 2005c).
This latter result is illustrated on the example of a
gas under in a cylinder under a piston undergoing
some irreversible processes.

3.1 Port contact systems and losslessness

Consider a differentiable real-valued function f on
M and its variation with respect to a conserva-
tive control contact system (of definition 1). A
straightforward calculation, given below in canon-
ical coordinates 4 , leads to the following balance
equation :

df

dt
=

m
∑

j=1

yjf + sf , (4)

4 Recall that the Jacobi bracket {·, ·} of functions on M

is defined as {f, g} = i([Xf , Xg])θ , where θ is the contact

form defining E, and [·, ·] denotes the Lie bracket.

where yjf denotes the f -conjugated output variable

associated with the input uj :

yjf = {Kj , f}+ f
∂Kj
∂x0

, (5)

and sf denotes the source term defined by:

sf = {K0, f}+ f
∂K0

∂x0
. (6)

For a conserved quantity, the source term is ex-
pected to be zero. However, as has been shown
in (Eberard et al., 2005c) there is no reason to
require it on the entire state space but rather
only on the Legendre submanifold. This lead to
the following definition of a conserved quantity.

Definition 3. A conserved quantity of a conserva-
tive control contact system is a real-valued func-
tion f defined onM such that

sf |L = 0 . (7)

Definition 4. ((Eberard et al., 2005c)). A port con-

tact system is a control contact system with the
additional condition that there exists a generat-
ing function U of a Legendre submanifold that
is a conserved quantity, completed with the U -
conjugated output yjU defined as in (5).

Example 2. Consider a port Hamiltonian sys-
tem defined on a manifold N endowed with
the pseudo-Poisson tensor Λ, the Hamiltonian
H0(x) ∈ C∞(N ), an input vector u(t) =
(u1, . . . , um)

T function of t, m input vector fields
g1, . . . , gm on N , and the equations :










ẋ = Λ#(dxH0(x)) +
m
∑

i=1

ui(t) gi(x)

y jp = Lgj .H0(x)

(8)

Its lift on the thermodynamic phase space T =
R× T ∗N with canonical coordinates (ε, x, p), is a
port contact system with internal contact Hamil-
tonian K0 = Λ(p, dH0), the internal contact in-
teraction contact Hamiltonian are Kj = 〈dH0 −
p, gj〉. The port conjugated output variables de-
fined in (5) becomes

yjH0
=

∂H0

∂x

T

gj = LgjH0 . (9)

It is remarkable that they correspond precisely to
the outputs called port outputs defined in (8).

3.2 Interconnection of two port contact systems

In this section we consider the interconnection or
composition of port contact systems.
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Consider now two differential manifolds Ni of
dimension ni with coordinates xi = (x1i , . . . , x

ni
i ),

for i = 1, 2. Each 1-jet space T i over Ni is
endowed with a canonical contact structure whose
contact form is denoted by θi. We now construct
the composed state space in the same way. Denote
byN the whole product base spaceN1×N2. Then,
the 1-jet bundle T over N is also endowed with a
canonical contact form θ whose local expression is

θ = dx0 −
n1+n2
∑

j=1

pj dx
j , (10)

where xj = xj1 and pj = p1j if 1 ≤ j ≤ n1, else

xj = xj−n12 and pj = p2j−n1 if n1+1 ≤ j ≤ n1+n2.

According to definition 4, consider two port con-
tact systems (Ni, Ui,K

i
j) on T i with contact

Hamiltonian Ki defined as

Ki = Ki0 +

ni
∑

j=1

uij K
i
j , (11)

satisfying the invariance condition with respect to
the conserved quantity Ui, i = 1, 2. We define
the new (conserved) generating function U of the
Legendre submanifold of the composed state space
as U1 + U2.

Denote by m the number of input variables in-
volved in the interconnection (m ≤ min(m1,m2)).
Without loss of generality we may suppose that
the first m variables are involved in the intercon-
nection. Denote u = (u1j , u

2
j ) and y = (yj1, y

j
2),

j = 1, . . . ,m.

Proposition 5. The composition of two port con-
tact systems (Ni, Ui,K

i
j)i=1,2 with respect to a

power continuous interconnection relation

u = Φ(y) together with Φ(y)T y = 0 , (12)

is the port contact system on the Thermo-
dynamical Phase Space R × T ∗ (N1 ×N2) de-
fined with respect to the Legendre LU1+U2 and
the contact Hamiltonian K(x, p,Φ(y)), where
K(x, p, u1, u2) = K1 +K2.

It is obvious to see that the invariance condition
is satisfied by K on LU . We now show that U is a
conserved quantity of the interconnected system
thus obtained, when restricted to the Legendre
submanifold LU . Indeed, let us compute its time-
derivative

dU

dt |LU

=
m
∑

j=1

[

uj1{K
1
j , U1}+ uj2{K

2
j , U2}

]

|LU

,(13)

which is zero by (12) and (5).

F

U(S,V)

m

Fig. 1. A gas under a piston

The interconnection defined in the proposition 5,
strictly generalize the interconnections defined by
Dirac structures (van der Schaft and Maschke,
1995) (Maschke and van der Schaft, 1997). Indeed
the map Φ in equation (12) defines a power
continuous relation but is not necessarily linear
hence does not define a vector bundle. As an
illustration of this feature we shall present in the
next paragraph an example of such a non-linear
power continuous interconnection.

3.3 A gas in a cylinder under a piston

In this paragraph will shall consider a system com-
posed of a gas in a cylinder closed by a piston sub-
ject to the gravity. In a first instance, we shall con-
sider that this system undergoes reversible trans-
formations. I this case the interconnection struc-
ture defining the interaction between the gas and
the piston is defined by a Dirac structure (as has
been shown in (Jongschaap and Öttinger, 2004)).
In a second instance, we shall consider that the
system undergoes some irreversible transforma-
tions due to mechanical friction or viscosity of the
gas. In this case the interconnection structure is
defined by some map Φ which is non-linear.

3.3.1. Reversible transformations gas under a pis-

ton This system may be decomposed in two
elementary subsystems, namely the ideal gas un-
dergoing some mechanical work and a mass (of
the piston) submitted to external forces.
The dynamics of the ideal gas undergoing some
mechanical work may be defined as a conservative
contact system defined on the Thermodynamic
Phase Space Tgas = R × R

6 +
{

x0, xj , pj
}

where
xi denotes the extensive variables and pi the
conjugated intensive variables. Its thermodynamic
properties are given by the Legendre submanifold
LU generated by the internal energy. As the gas is
considered to be in equilibrium in the control vol-
ume, the drift dynamics is of course zero. And the
external mechanical work provided by an external
pressure P e and variation of volume feV leads to
the interaction contact Hamiltonian:

Kigas = (p2 − P ) feV , (14)

with the U -conjugated port output yU = −P .
The dynamics of the piston is given as the lift of a
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standard Hamiltonian systems on the associated
Thermodynamic Phase Space following (Eberard
et al., 2005a):

Tmec = R× R
4 +
{

x0, xpot, xkin, ppot, pkin
}

, (15)

where xpot denotes the altitude of the piston and
xkin its kinetic momentum. The Legendre sub-
manifold Lmec is generated by the total mechani-

cal energy:H0 =
1
2m

xkin
2
+mgxpot, which defines

the two intensive variables, the velocity v of the
piston and the gravity force F :

ppot|Lmec
= F = mg

pkin|Lmec
= v =

xkin

m







. (16)

The drift dynamics of the piston may be rep-
resented by a conservative contact system with
internal contact Hamiltonian

K0
mec = − (ppot, pkin)

(

0 1
−1 0

)(

F
v

)

. (17)

Associated with the external force F e exerted on
the piston is the interaction contact Hamiltonian:

Kimec = (pkin − v) F e , (18)

and the H0-conjugated output: yH0
= v, i.e. the

velocity of the piston. In this first case, following
(Jongschaap and Öttinger, 2004), we consider
that the composed system iis reversible and the
interconnection is given by the linear relation :

(

feV
F e

)

=

(

0 A
−A 0

) (

(−P )
v

)

, (19)

where A denotes the area of the piston and
defining a Dirac structure on the port variables
feV , F

e, (−P ), v.
The dynamics of the gas with piston is then given
as the composed conservative contact system on
the composed Thermodynamic Phase Space:

TGP = R× R
10

+
{

x0, xj , pj , x
pot, xkin, ppot, pkin

}

j=1,..,3
,
(20)

with Legendre submanifold generated by the sum
of the internal energy and the mechanical energy
U(S, V,N)+H0(x

pot, xkin) with contact Hamilto-
nian:

Ktot = K0
mec + (p2 − P ) Av + (pkin − v) AP (21)

It is interesting to notice that the x-component
of the contact field XKtot

restricted to LU+H0
is

precisely the system proposed in (Jongschaap and
Öttinger, 2004).

3.3.2. Irreversible transformations In this sec-
ond case we shall assume that there is some
mechanical friction and that the lost mechanical

energy is converted entirely into a heat flow in the

gas.
Firstly the thermodynamical model of the gas,
LU , is remained unchanged. But its dynamics has
to be changed as follows, as now there might be
a heat flow induced by the mechanical losses. De-
noting by feS = Qe

T
the flow of entropy associated

with the external heat flow Qe, there has to be
an additional interaction contact Hamiltonian to
consider:

KS = (p1 − T ) feS , (22)

with its conjugate port output ysU = T .
Consider that the mechanical losses come from
a viscous friction with coefficient ν. The friction
losses will be generated by an additional interac-
tion Hamiltonian associated with the dissipative
force F d:

Kdmec = (pkin − v) F d , (23)

with conjugated output v.
The dissipation losses will be taken into account as
an additional interconnection relation associated
with the transformation of part of the mechanical
energy in heat. Firstly the friction force is defined
and secondly the power continuity of the intercon-
nection defined as follows :

(F d, feS) = Φ(v, T ) = (νv, (−v/T )νv) (24)

An essential feature of this power continuous in-
terconnection is, that it is not a Dirac structure
on the port variables (F d, feS , v, T ) as the map Φ
in (24) is nonlinear.
The composed system piston and gas is defined
on TGP , defined in (20), with the canonical con-
tact structure. The properties of the systems are
defined precisely as for the reversible case by
the Legendre submanifold LU+H0

. The contact
Hamiltonian is obtained according to the propo-
sition 5

Kirr = Ktot +
(

pkin − (p1/T )v
)

νv . (25)

It is immediately seen that the contact Hamilto-
nian satisfies the invariance condition Kirr|LU+H0

=

0. Note that an analogous expression hold if one
consider that the gas undergoes some irreversible
transformation due to its viscosity.

4. CONCLUSION

In this paper we have suggested a definition of
power continuous interconnection of conservative
contact systems which strictly generalizes the
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Dirac structures which define the interconnection
of port Hamiltonian systems (van der Schaft and
Maschke, 1997) (van der Schaft, 1999). However
the power continuity properties of the intercon-
nection allow to compose conservative contact
systems. We have illustrated this in details on
the example of a gas in a cylinder and submit-
ted to mechanical work by a piston. On this ex-
ample we have considered firstly the reversible
case, according to the example in (Jongschaap
and Öttinger, 2004), and secondly the irreversible
by considering some mechanical friction and the
entropy balance associated with it.
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