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Chapter 4

How Arbitrary Are Arbitrary
Public Announcements?

Chapter Summary. In this chapter we look at the arbitrary public an-
nouncement operator ♦ from Arbitrary Public Announcement Logic (APAL). In
particular we check whether ♦ is a faithful representation of an arbitrary public
announcement.

If ♦ would be a faithful representation of an arbitrary public announcement
then ♦ϕ would hold whenever there is some ψ such that 〈ψ〉ϕ. In that case
〈ψ〉ϕ → ♦ϕ would be valid for every ψ and ϕ. In this chapter I show that this
is not the case: there are ψ,ϕ such that 6|= 〈ψ〉ϕ→ ♦ϕ.

There are however interesting limited cases where ♦ does faithfully represent an
arbitrary public announcement. If (i) we only consider finite models or (ii) we
only consider finitely branching models and ϕ is ♦-free then 〈ψ〉ϕ→ ♦ϕ is valid
for all ψ.

4.1 Introduction

In epistemic logic we can reason about basic facts (represented by propositional vari-
ables) and about knowledge of different agents (represented by one operator Ka per
agent). A commonly used example in epistemic logic is that of a simple card game.
Suppose two agents a and b are playing a game where they each hold one card, and
they know their own card but not the other’s card. Then if a holds a queen (and we
use the propositional variable q to represent this basic fact) the formulas (i) Kaq, (ii)
q∧¬Kbq and (iii) Ka¬Kbq represent the (true) statements (i) “a knows that she holds
a queen”, (ii) “a holds a queen but b does not know this”, and (iii) “a knows that b
does not know that she holds a queen”.

In such a basic epistemic logic we cannot express information change though. For
example, we cannot reason about what would happen if a were to show her card to
b in basic epistemic logic. If we want to reason about information change we need to
use a dynamic epistemic logic. There are many different kinds of dynamic epistemic
logic, see for example [van Ditmarsch et al., 2007] for an overview. One of the most

This chapter is based on the paper “How Arbitrary are Arbitrary Public Announcements”[Kuijer,
2014a] that appeared in Pristine Perspectives on Logic, Language and Computation, a collection of
papers that were presented at ESSLLI 2012 and ESSLLI 2013.
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54 CHAPTER 4. ARBITRARY PUBLIC ANNOUNCEMENTS

common ways to turn a (static) epistemic logic into a dynamic epistemic logic is to
add public announcements [Plaza, 1989, Baltag et al., 1998] to the logic. A public
announcement is a binary operator of the form 〈ψ〉ϕ. The formula 〈ψ〉ϕ is true if ϕ
will hold after ψ is announced truthfully and publicly.1

Using public announcements we can reason about what would happen if a were to
show her card to b; the showing of a card can be considered an announcement of the
card that a holds. The statement “after a shows her card, b knows what card a holds”
is therefore represented by the (true) formula 〈q〉Kbq. One thing to note about the
formula 〈q〉Kbq is that after q is announced, agent b knows that q, so the announcing
of q is a way for b to get to know q.

However, not all formulas can be learned in such a way. Consider the formula
q ∧ ¬Kbq, representing a holding a queen and b not knowing this. This formula is a
variant on a sentence that was introduced by [Moore, 1993] and [Fitch, 1963] as an
example of something that can never be known by b even if it is true. Since q ∧¬Kbq
can never be known by b there is also no announcement such that b will know q∧¬Kbq
after the announcement. So not only is it impossible for b to get to know the truth of
q∧¬Kbq by announcing q∧¬Kbq,

2 there is no formula ψ such that 〈ψ〉Kb(q∧¬Kbq).
This last property, whether for a given ϕ there exists a ψ such that 〈ψ〉Kbϕ,

requires us to quantify over all formulas. We can of course do this quantification
meta-logically, but epistemic logic with public announcements does not allow us to
perform this quantification inside the logic. This is unfortunate, as this means we
cannot use public announcements to reason about whether it is possible to get to
know something. A solution proposed in [van Benthem, 2004] and [Balbiani et al.,
2007, 2008] is to add quantification over announced formulas to the logic. Here we
follow [Balbiani et al., 2007, 2008] and use an operator ♦ to represent an arbitrary
public announcement, with the intuitive meaning that ♦ϕ if and only if ∃ψ : 〈ψ〉ϕ.

Such arbitrary public announcements can be useful when considering problems of
knowability, but also in more practical scenarios such as in cryptography where it is
important to know whether it is possible to make a public statement such that agent
b learns the content p of a message but another agent e does not, that is, whether
♦(Kbp ∧ ¬Kep).

We would like to define a logic LAPAL with an operator ♦ that represents an entirely
arbitrary announcement, in the sense that ♦ϕ holds if and only if there is some formula
ψ of LAPAL such that 〈ψ〉ϕ holds.3 There is a technical problem with this kind of
definition, however. If we allow the announcement ψ to be any formula of LAPAL

the evaluation of ♦ϕ would become circular. After all, in order to know whether ♦ϕ
holds we would have to check whether 〈♦ϕ〉ϕ holds. But in order to know whether
〈♦ϕ〉ϕ holds we would among other things have to know whether ♦ϕ is a truthful
announcement, so whether ♦ϕ holds.

This circularity is removed in [Balbiani et al., 2007, 2008] by restricting ψ to
formulas that do not themselves contain ♦ operators. So ♦ϕ holds if and only if there is
a ♦-free formula ψ such that 〈ψ〉ϕ. Unfortunately this means that the announcements
in an arbitrary public announcement operator are not in fact entirely arbitrary. But

1Usually public announcements are defined by an operator [ψ] instead of its dual 〈ψ〉 as we do
here. Our reason for using 〈ψ〉 in this chapter is that it is notationally convenient to do so.

2In fact, we not only have ¬ 〈q ∧ ¬Kbq〉Kb(q ∧ ¬Kbq) but also ¬ 〈q ∧ ¬Kbq〉 (q ∧ ¬Kbq). Such
an update 〈ϕ〉 for which ¬ 〈ϕ〉ϕ holds is sometimes called an unsuccessful update, see for example
[van Ditmarsch, 2000, Chapter 6] and [Gerbrandy, 1999, Chapter 7].

3So by “entirely arbitrary” we mean that the announcement could be any formula of our logic,
not that it could be a formula of a different logic or, say, a cucumber.
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while the definition of ♦ cannot allow completely arbitrary announcements, it might be
possible to get entirely arbitrary announcements as an “emergent property”. Suppose
that whenever there is a ψ containing ♦ such that 〈ψ〉ϕ there would always also be a
ψ′ that is ♦-free such that 〈ψ′〉ϕ. Then 〈ψ〉ϕ would imply ♦ϕ, even if ψ happens to
contain a ♦.

A different way of phrasing this is to ask whether 〈ψ〉ϕ → ♦ϕ is valid for every
ψ. It was shown in [Balbiani et al., 2007] that the implication is valid if there is only
a single agent. In this chapter we show that if there are multiple agents, the validity
of the implication depends on the class of models we use to evaluate the logic on and
on ϕ. If we use only finite models, then 〈ψ〉ϕ → ♦ϕ is valid. If we allow finitely
branching infinite models, then 〈ψ〉ϕ → ♦ϕ is valid for every ψ and every ♦-free ϕ.
But if we allow models that are infinitely branching or if we do not restrict to ♦-free
ϕ, then there are ϕ and ψ such that 〈ψ〉ϕ→ ♦ϕ is not valid.

In Section 4.2, we give some definitions needed to formulate and prove the results.
Then in Section 4.3, we show that for finite models 〈ψ〉ϕ → ♦ϕ is valid. In Section
4.4.1, we prove that for finitely branching models 〈ψ〉ϕ → ♦ϕ is valid if ϕ is ♦-free.
In Section 4.4.2, we construct ψ and ♦-free ϕ such that 〈ψ〉ϕ → ♦ϕ is not valid on
infinitely branching models. Finally, in Section 4.4.3, we construct ϕ and ψ containing
♦ such that 〈ψ〉ϕ→ ♦ϕ is not valid on finitely branching models.

4.2 Definitions

Let us start by defining arbitrary public announcement logic LAPAL and the ♦-free
fragment public announcement logic LPAL of LAPAL. Let us fix a countably infinite
set P of propositional variables and a finite set A of agents. The language of LAPAL

is then defined as follows.

Definition 4.1 (Formulas of LAPAL). The formulas of LAPAL are given by

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | 〈ϕ〉ϕ | ♦ϕ

where p ranges over P and a ranges over A.

Definition 4.2 (Fragment LPAL). The logic LPAL is the ♦-free fragment of LAPAL.

Parentheses are omitted where this should not cause confusion and ∧,→,↔,
∨

and∧
are used in the usual way as abbreviations. Furthermore, K̂a, [ϕ] and � are used as

abbreviations for ¬Ka¬, ¬ 〈ϕ〉 ¬ and ¬♦¬ respectively. Integer superscripts are used
to indicate multiple copies of an operator, so K3

a stands for KaKaKa. Finally, if B
is a set of agents then KB stands for

∧
a∈BKa and K̂B for

∨
a∈BKa. The intended

reading of the non-boolean operators is as follows:

• Kaϕ is read as “agent a knows that ϕ”,

• 〈ψ〉ϕ is read as “ψ is true and, after it is publicly announced that ψ is the case,
ϕ holds”,

• ♦ϕ is read as “there is a ♦-free announcement ψ such that 〈ψ〉ϕ holds”.

Since LAPAL and LPAL are epistemic logics they are usually considered over the
class of S5 models. We will follow this tradition, but it should be noted that none of
the proofs in this chapter depend on the special properties of S5 models. So all the
results presented here also hold over the class of K models.
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Definition 4.3 (Models of LAPAL). A model M is a triple (W,R, v) where W is a set
of worlds, R : A → ℘(W ×W ) assigns to each agent an equivalence relation on W and
v : P → ℘(W ) is a valuation function that assigns an extension to each propositional
variable.

A modelM = (W,R, v) is said to be finitely branching if for each w ∈W and each
a ∈ A the set {w′ | (w,w′) ∈ R(a)} is finite. A model M = (W,R, v) is said to be
finite if W is a finite set.

The semantics for most operators of LAPAL are as usual. For the only unusual
operator ♦, it should be noted that it quantifies over the formulas of LPAL, instead of
over the formulas of LAPAL.

Definition 4.4 (Semantics of LAPAL). Given a model M = (W,R, v), a world w of
M and ϕ,ψ formulas of LAPAL the satisfaction relation |= is given by

M, w |= p ⇔ w ∈ v(p)
M, w |= ¬ϕ ⇔ M, w 6|= ϕ
M, w |= ϕ ∨ ψ ⇔ M, w |= ϕ or M, w |= ψ
M, w |= Kaϕ ⇔ M, w′ |= ϕ for all w′ ∈W such that (w,w′) ∈ R(a)
M, w |= 〈ϕ〉ψ ⇔ M, w |= ϕ and Mϕ, w |= ψ
M, w |= ♦ϕ ⇔ there is an LPAL formula ψ such that M, w |= 〈ψ〉ϕ

with Mϕ = (Wϕ, Rϕ, vϕ) where Wϕ = {w ∈ W | M, w |= ϕ} and Rϕ and vϕ are the
restrictions of R and v to Wϕ.

We write M |= ϕ if M, w |= ϕ for every w ∈ W and |= ϕ if M |= ϕ for every
model M. Furthermore, we write |=br ϕ if M |= ϕ for every finitely branching model
M and |=fin ϕ if M |= ϕ for every finite model M.

4.3 APAL on Finite Models

With the definitions out of the way, we can show that |=fin 〈ψ〉ϕ→ ♦ϕ for all LAPAL

formulas ψ. This is not a very surprising result; in a finite model we can replace any ♦
operator by the announcement of a disjunction of LPAL formulas, one for each world
where the ♦ is replaced by the “chosen announcement” for that world.

Lemma 4.1. Let M = (W,R, v) be a finite model and ϕ an LAPAL formula. Then
there is an LPAL formula ψ such that M |= ϕ↔ ψ.

Proof. By induction on the construction of ϕ. The lemma trivially holds if ϕ is atomic.
Suppose then as induction hypothesis that ϕ is not atomic, and that the lemma holds
for all finite models and all subformulas of ϕ. The formula ϕ is not atomic, so it is of
one of the following forms:

1. ϕ = ¬ϕ′,

2. ϕ = ϕ′ ∨ ϕ′′,

3. ϕ = Kaϕ
′,

4. ϕ = 〈ϕ′′〉ϕ′ or

5. ϕ = ♦ϕ′.
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By the induction hypothesis, there is an LPAL formula ψ′ such that M |= ϕ′ ↔ ψ′

and, if applicable, an LPAL formula ψ′′ such that M |= ϕ′′ ↔ ψ′′. So if we take ψ to
be ¬ψ′, ψ′ ∨ψ′′ or Kaψ

′, then we haveM |= ϕ↔ ψ in the first, second or third case,
respectively.

Let us then consider fourth case. By the induction hypothesis there are LPAL

formulas ψ′′ such thatM |= ϕ′′ ↔ ψ′′ and ψ′ such thatMϕ′′ |= ϕ′ ↔ ψ′. This implies
that M |= ϕ↔ 〈ψ′′〉ψ′.

Let us then consider the fifth case, ϕ = ♦ϕ′. Let W ′ be the extension of ϕ, so
W ′ := {w ∈ W | M, w |= ♦ϕ′}. For each wi ∈ W ′ we have M, wi |= ♦ϕ′, so there is
an LPAL formula ϕ′′i such that M, wi |= 〈ϕ′′i 〉ϕ′. By the induction hypothesis there is
an LPAL formula ψ′i such that Mϕ′′i

|= ψ′i ↔ ϕ′. We therefore have M |= 〈ϕ′′i 〉ψ′i ↔
〈ϕ′′i 〉ϕ′.

Now let ψ :=
∨
wi∈W ′ 〈ϕ

′′
i 〉ψ′i. This is an LPAL formula, since all its subformulas

are LPAL formulas and W ′ is a finite set. Furthermore, for each wi ∈ W ′ we have
M, wi |= ψ.

Suppose now towards a contradiction that for some w′ ∈W \W ′ we haveM, w′ |=
ψ. Then one of the disjuncts of ψ holds in w′, so for some wi ∈W ′ we have M, w′ |=
〈ϕ′′i 〉ψ′i. Then we also have M, w′ |= 〈ϕ′′i 〉ϕ′, since M |= 〈ϕ′′i 〉ψ′i ↔ 〈ϕ′′i 〉ϕ′. But ϕ′′i
is an LPAL formula so this implies that M, w′ |= ♦ϕ′. This contradicts w′ being an
element of W \W ′, so we must have M, w′ 6|= ψ.

This shows thatM |= ϕ↔ ψ, which completes the induction step and thereby the
proof.

It now follows immediately that |=fin 〈ψ〉ϕ→ ♦ϕ.

Theorem 4.1. For every LAPAL formulas ϕ and χ we have |=fin 〈ϕ〉χ→ ♦χ.

Proof. Fix any LAPAL formulas ϕ and χ, and any finite modelM. Then by Lemma 4.1
there is an LPAL formula ψ such that M |= ϕ↔ ψ. This implies that M |= 〈ϕ〉χ↔
〈ψ〉χ. But ψ is an LPAL formula so |= 〈ψ〉χ → ♦χ and therefore M |= 〈ϕ〉χ → ♦χ.
Since this is true for any finite model M, this implies that |=fin 〈ϕ〉χ→ ♦χ.

4.4 APAL on Infinite Models

On infinite models we cannot use the method that worked for finite models, since∨
wi∈W ′ 〈ϕ

′′
i 〉ψ′i is in general not a formula on infinite models because W ′ may be

infinite. Here we show that no other method can work; there are infinite models M,
worlds w of M and LAPAL formulas ϕ and ψ such that M, w |= 〈ψ〉ϕ ∧ ¬♦ϕ.

Like the result for the finite case this should not surprise us. What is somewhat
surprising, however, is that the result extends to finitely branching models; there are
ϕ and ψ such that 6|=br 〈ψ〉ϕ→ ♦ϕ. To see why it is unexpected that 6|=br 〈ψ〉ϕ→ ♦ϕ
consider the following. Fix any finitely branching model M and any world w of M.
We cannot guarantee the existence of an LPAL formula ψ′ such that M |= ψ ↔ ψ′,
but since M is finitely branching we can for any n ∈ N guarantee the existence of
an LPAL formula ψ′′ such that M, w′ |= ψ ↔ ψ′′ for every world w′ that is reachable
within n steps from w.

The language of LAPAL does not contain common knowledge, so it would at first
glance seem like such a ψ′′ that is equivalent to ψ up to a given distance might be
sufficient to make ϕ have the same value after both announcements. If ϕ does not
contain any ♦ operators then this does indeed work, for any LAPAL formula ψ and any
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LPAL formula ϕ we have |=br 〈ψ〉ϕ→ ♦ϕ. But a ♦ operator (or more precisely: a �
operator) can make a formula depend on worlds that are arbitrarily far away in such
a way that in certain models no finite approximation ψ′′ of ψ will suffice.

Let us first show that for ♦-free ϕ we have |=br 〈ψ〉ϕ → ♦ϕ, then that there are
ψ and ♦-free ϕ such that 6|= 〈ψ〉ϕ → ♦ϕ and finally that for some ϕ that do contain
♦ we have 6|=br 〈ψ〉ϕ → ♦ϕ. This order of proofs is chosen for reasons of clarity of
exposition; the proof that 6|=br 〈ψ〉ϕ→ ♦ϕ uses more complicated variants of some of
the same techniques that are used in the proof of 6|= 〈ψ〉ϕ→ ♦ϕ.

4.4.1 Validity of 〈ψ〉ϕ→ ♦ϕ for ♦-free ϕ

Before proving that |=br 〈ψ〉ϕ→ ♦ϕ, we need one auxiliary lemma.

Lemma 4.2. Let M be any finitely branching model and w1, w2 two worlds of M.
Then there is an LAPAL formula that distinguishes between M, w1 and M, w2 if and
only if there is an LPAL formula that distinguishes between them.

Proof. If there is an LPAL formula ψ′ that distinguishes between two worlds, then
there is also an LAPAL formula ψ that distinguishes between the two worlds, namely
ψ = ψ′. Left to show is that if LAPAL can distinguish between two worlds then so can
LPAL.

The formulas of LAPAL are invariant under bisimulation (see [Balbiani et al., 2008]),
so if an LAPAL formula distinguishes between M, w1 and M, w2, then M, w1 and
M, w2 are not bisimilar. On finitely branching models, worlds are bisimilar if and only
if they are indistinguishable by basic modal logic (see for example [van Ditmarsch et al.,
2007, p. 219]). So sinceM, w1 andM, w2 are not bisimilar, they can be distinguished
by an LPAL formula.

Lemma 4.2 also holds for models that are not finitely branching, but that requires
a more complicated proof and we only need the result for finitely branching models.4

Lemma 4.3. Let ψ be any LAPAL formula and let ϕ be any LPAL formula. Then
|=br 〈ψ〉ϕ→ ♦ϕ.

Proof. Fix any finitely branching model M and any world w of M. It was shown
in [Plaza, 1989] that every LPAL formula is equivalent to an LPAL formula that does
not contain any public announcements. Let ϕ′ be the announcement-free formula
equivalent to ϕ, and let n be the maximum nesting depth of K operators in ϕ′. Then
the truth of ϕ′—and therefore also ϕ—onM, w does not depend on changes to worlds
that are not reachable from w in at most n steps.

Let W ′ be the set of worlds that are reachable from w in at most n steps, and let
W1 := {w′ ∈ W ′ | M, w′ |= ψ} and W2 := W ′ \W1. Then for each wi ∈ W1 and
wj ∈W2 the formula ψ distinguishesM, wi fromM, wj , so by Lemma 4.2 there is also
an LPAL formula that distinguishes the two worlds. Let ψ′i,j be this distinguishing LPAL

formula and assume without loss of generality that M, wi |= ψ′i,j and M, wj 6|= ψ′i,j .
For wi ∈ W1 let ψ′i :=

∧
wj∈W2

ψ′i,j . Then M, wi |= ψ′i and M, wj 6|= ψ′i for each

wj ∈W2. Finally, let ψ′ :=
∨
wi∈W1

ψ′i. This ψ′ satisfiesM, wi |= ψ′ for each wi ∈W1

and M, wj 6|= ψ′ for each wj ∈W2.

4For an idea of why Lemma 4.2 also holds for infinitely branching models, consider the case
where M, w |= ♦ϕ and M, w′ 6|= ♦ϕ. Then there is a ψ such that M, w |= 〈ψ〉ϕ and in particular
M, w′ 6|= 〈ψ〉ϕ, so the formula 〈ψ〉ϕ distinguishes the two worlds as well. This can be extended to
any formula containing a ♦ operator.
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As such, the models Mψ and Mψ′ only differ in worlds that are not reachable
from w within n steps, so M, w |= 〈ψ〉ϕ ↔ 〈ψ′〉ϕ. Because ψ′ is an LPAL formula,
this implies thatM, w |= 〈ψ〉ϕ→ ♦ϕ. The modelM and world w were chosen as any
finitely branching model and any world of that model, so we have |=br 〈ψ〉ϕ→ ♦ϕ.

4.4.2 Invalidity of 〈ψ〉ϕ→ ♦ϕ on Infinitely Branching
Models

If we do not restrict ourselves to finite or finitely branching models, there are ϕ and
ψ such that 〈ψ〉ϕ→ ♦ϕ is not valid. Let

ϕ1 := K̂cp ∧Kc(r → K̂d¬r) ∧Kc((p ∧ ¬r)→ K̂er),

ϕ2 := Kc(¬q → (K̂f (¬K̂cq ∧Kap) ∧ K̂f¬Kap)),

ϕ := ϕ1 ∧ ϕ2

ψ := p ∨ q ∨Ka¬♦(K̂bKap ∧ K̂b¬Kap).

Furthermore, let M be the model shown in Figure 4.1 and let Mn for n ∈ N be the
submodels indicated in Figure 4.1.

We want to show that M, w 6|= 〈ψ〉ϕ → ♦ϕ. This requires us to show that
M, w |= 〈ψ〉ϕ and that M, w 6|= ♦ϕ. In order to prove that M, w 6|= ♦ϕ, we have to
demonstrate that if M, w |= 〈ψ′〉ϕ, then ψ′ contains a ♦ operator. The subformula
ϕ1 is constructed in such a way that ifM, w |= 〈ψ′〉ϕ then the update 〈ψ′〉 retains an
infinite number of worlds. The subformula ϕ2 guarantees that if M, w |= 〈ψ′〉ϕ and
〈ψ′〉 retains an infinite number of worlds, then ψ′ must perform an infinite number of
different updates, which cannot be done without a ♦ operator. But before looking at
the details of the proof that M, w 6|= ♦ϕ, let us start by proving the simpler part of
the statement, namely that M, w |= 〈ψ〉ϕ.

Lemma 4.4. We have M, w |= 〈ψ〉ϕ.

Proof. To show is that Mψ |= ϕ, so let us look at which worlds are retained by 〈ψ〉.
The disjuncts p and q of ψ guarantee that any world in the leftmost three columns is
retained.

The worlds in the fourth column from the left satisfy neither p nor q though, so they
are retained only if they satisfy Ka¬♦(K̂bKap ∧ K̂b¬Kap). These worlds themselves
always satisfy ¬♦(K̂bKap ∧ K̂b¬Kap); there is no update that would let them satisfy
K̂bKap because every b-reachable world satisfies ¬p.

So the worlds in the fourth column are retained if and only if the p world to the
left of them (which they are a-connected with) satisfies ¬♦(K̂bKap ∧ K̂b¬Kap).

Now we reach the difference between the rows of a submodel Mn. Consider the p
world in the bottom row ofMn for any n. The only world b-reachable from this world
is itself, so there is no update that can make the world satisfy K̂bKap ∧ K̂b¬Kap. So
the p world in the bottom row satisfies ¬♦(K̂bKap ∧ K̂b¬Kap).

Now consider one of the p worlds in the top two rows ofMn. These two worlds can
be distinguished from each other because their “tails” are of different lengths. This
allows us to create an update χn that removes the ¬p world adjacent to the top p
world but not the one adjacent to the second row p world. The formula χn := ¬p →
K̂n−1
{a,b}K

n−1
{a,b}¬p for example does this.
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The specific formula χn that works for a submodel Mn depends on n, but in
every case it is a PAL formula, so for every n the top two p worlds of Mn satisfy
♦(K̂bKap ∧ K̂b¬Kap).

This means that the worlds in the fourth column are retained by 〈ψ〉 if and only if
they are in the third row of any submodelMn. The modelMψ is therefore as shown
in Figure 4.2. It is straightforward to verify that w satisfies ϕ in that model.

Now to show that there is no PAL formula ψ′ that satisfiesM, w |= 〈ψ′〉ϕ. Recall
that the two parts of ϕ = ϕ1 ∧ ϕ2 have different purposes. The part ϕ1 is designed
in such a way that if M, w |= 〈ψ′〉ϕ, then the update 〈ψ′〉 retains an infinite number
of worlds. The part ϕ2 is designed in such a way that different updates have to be
performed in all but finitely many of the infinite number of worlds that 〈ψ′〉 retains.
But that cannot be done without a ♦ operator.

Lemma 4.5. For every LPAL formula ψ′, we have M, w 6|= 〈ψ′〉ϕ.

Proof. Suppose towards a contradiction that there is an LPAL formula ψ′ such that
M, w |= 〈ψ′〉ϕ. Then we have M, w |= 〈ψ′〉ϕ1 and M, w |= 〈ψ′〉ϕ2.

Consider M, w |= 〈ψ′〉ϕ1. The conjunct K̂cp guarantees that 〈ψ′〉 retains at least
one of the p worlds that are accessible from w, so at least one of the worlds in the
second column.

The worlds in the second column alternate between r and ¬r, and the arrows
between those worlds alternate between d and e. As a result, the conjunct Kc(r →
K̂d¬r) implies that if ψ′ retains an r world in the second column, then it also retains
the ¬r world below it. Likewise, the conjunct Kc((p ∧ ¬r) → K̂er) implies that if ψ′

retains a ¬r world in the second column, then it also retains the r world below it.
So the three conjuncts of ϕ1 together imply that ψ′ retains at least one of the

worlds in the second column as well as all worlds below it.
Consider then M, w |= 〈ψ′〉ϕ2. The formula ϕ2 says something about all c-

reachable worlds that do not satisfy q, so all worlds in the second column (that are
retained by 〈ψ′〉). Of these worlds it says that they can reach two worlds by using f ,
one world satisfying ¬K̂cq ∧Kap and one satisfying ¬Kap.

The worlds in the first two columns all satisfy K̂cq and Kap, so these two f -
reachable worlds must be in the third column. If the n-th world of the second column
is retained by 〈ψ′〉 there must therefore be two p worlds retained inMn. Furthermore,
one of those worlds in Mn must be adjacent to a ¬p world that is retained while the
other must not be adjacent to a retained ¬p world.

One of the ¬p worlds in the second column of Mn (so the fourth column of M)
must be retained and one must not be retained, so in particular ψ′ must distinguish
between two of those worlds. But the only way to distinguish between those worlds
is to use the fact that one “tail” is shorter than the others, and doing this requires a
formula with K-depth at least 2n− 2.

The K-depth of ψ′ is fixed and finite, so there is some N ∈ N such that for every
n ≥ N the formula ψ′ cannot distinguish between the worlds in the second column of
Mn. Putting all of the above together, we get that ψ′:

• must retain all worlds in the second column below a certain point,

• must distinguish between two worlds in the second column of Mn if the n-th
world of the second column is retained and
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• cannot distinguish between the worlds in the second column of Mn for all n
greater than some number N .

This is a contradiction, so our initial assumption that such a ψ′ exists must be false,
which proves the lemma.

The theorem now follows easily.

Theorem 4.2. There are an LPAL formula ϕ and an LAPAL formula ψ such that
6|= 〈ψ〉ϕ→ ♦ϕ.

Proof. Let M, w, ϕ and ψ be as defined above. Then M, w |= 〈ψ〉ϕ by Lemma 4.4.
Furthermore, by Lemma 4.5 we know that M, w 6|= 〈ψ′〉ϕ for every LPAL formula
ψ′ so we have M, w 6|= ♦ϕ. This implies that M, w 6|= 〈ψ〉ϕ → ♦ϕ and so that
6|= 〈ψ〉ϕ→ ♦ϕ.

4.4.3 Invalidity of 〈ψ〉ϕ→ ♦ϕ on Finitely Branching Models

Now to show that 6|=br 〈ψ〉ϕ→ ♦ϕ. The method used to show this is very similar to
the method used to show that 6|= 〈ψ〉ϕ→ ♦ϕ. We use ϕ to force ψ to retain an infinite
number of worlds in a pointed model (N , w). Additionally we force ψ to distinguish
between infinitely many pairs of worlds, and we let the difference between the two
worlds in a pair get further and further away.

Unfortunately, forcing ψ to retain an infinite number of worlds is much more com-
plicated in a finitely branching frame, so we need more complex formulas and models.
Let N be the model shown in Figure 4.3 and let

ψ := (¬p ∧ K̂b(p ∧ K̂a(q ∨ r)))→ ♦(K̂aKbp ∧ K̂a(p ∧ ¬Kbp)),

ϕ1 := (q ∨ r)→ (K̂aKbp ∧ K̂a(p ∧ ¬Kbp)),

ϕ2 := (q → ¬K̂cK̂aK̂bK̂cr) ∧ (r → ¬K̂cK̂aK̂bK̂cq),

ϕ := 〈ϕ1〉 (K̂aK̂bK̂cq ∧ K̂aK̂bK̂cr ∧ 〈ϕ2〉�¬(K̂aKbp ∧ K̂a(p ∧ ¬Kbp))).

Note the recurring a-triangles with two p worlds in the model and the recurring
subformula K̂aKbp ∧ K̂a(p ∧ ¬Kbp). These subformulas have the property that they
hold in the ¬p world of such a triangle if and only if for one of the p worlds in the
triangle a b-reachable ¬p world is retained but for the other it is not.

Lemma 4.6. We have N , w |= 〈ψ〉ϕ.

Proof. Let us consider the update 〈ψ〉. It places the condition on ¬p∧K̂b(p∧K̂a(q∨r))
worlds that they must satisfy ♦(K̂aKbp∧ K̂a(p∧¬Kbp)). The ¬p∧ K̂b(p∧ K̂a(q ∨ r))
worlds are exactly those that are in the third line from the bottom in N x

n submodels.
Furthermore, of the two such worlds in a submodel N x

n the left one satisfies ♦(K̂aKbp∧
K̂a(p∧¬Kbp)), and the right one does not.5 The updated submodel N x

n ψ is therefore
as shown in Figure 4.5. (The worlds of N that are not in one of the submodels N x

n

are all retained by the update so nothing changes there.)

5Announcements that make K̂aKbp ∧ K̂a(p ∧ ¬Kbp) true in the leftmost world in the third row
do so by removing one of the ¬p worlds in the fifth row but not the other. This can be done because
there are formulas that differentiate between a “tail” of 2n worlds and a “tail” of 2n − 1 worlds, as
in the infinitely branching case.
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Figure 4.3: The model N . Reflexive arrows are not drawn. The submodels N x
n for

n ∈ N, x ∈ {q, r} are shown in Figure 4.4.
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Figure 4.4: The submodel N x
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connects it to N is the world satisfying x.
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Figure 4.5: The submodel N x
n ψ for x ∈ {q, r} and n ∈ N>0.

After the update 〈ψ〉, the formula K̂aKbp ∧ K̂a(p ∧ ¬Kbp) therefore holds in the
origin world of each submodel N x

n . Since q and r only hold in the origin worlds of
these submodels the update 〈ϕ1〉 = 〈(q∨ r)→ (K̂aKbp∧ K̂a(p∧¬Kbp))〉 does nothing
if executed immediately after 〈ψ〉. We therefore have N , w |= 〈ψ〉 〈ϕ1〉 (K̂aK̂bK̂cq ∧
K̂aK̂bK̂cr).

Finally consider the third update 〈ϕ2〉. It places conditions on q ∨ r worlds; q
worlds must satisfy ¬K̂cK̂aK̂bK̂cr and r worlds must satisfy ¬K̂cK̂aK̂bK̂cq. After the
other updates, there are no q or r worlds that satisfy this condition.

As such the result of applying the three updates 〈ψ〉 〈ϕ1〉 〈ϕ2〉 removes the origin
worlds of all N x

n submodels. In the resulting model the two p worlds that are a-
reachable from w are indistinguishable, so we have N , w |= 〈ψ〉 〈ϕ1〉 〈ϕ2〉�¬(K̂aKbp
∧ K̂a(p ∧ ¬Kbp)). Together with the previous result N , w |= 〈ψ〉 〈ϕ1〉 (K̂aK̂bK̂cq ∧
K̂aK̂bK̂cr), this shows that N , w |= 〈ψ〉ϕ.

Lemma 4.7. For every LPAL formula ψ′ we have N , w 6|= 〈ψ′〉ϕ.

Proof. Suppose towards a contradiction that there is an LPAL formula ψ′ such that
N , w |= 〈ψ′〉ϕ. Then after the updates 〈ψ′〉 〈ϕ1〉, the formula K̂aK̂bK̂cq ∧ K̂aK̂bK̂cr
must hold in w. The origin worlds of N q

1 and N r
1 and the paths to those worlds must

therefore be retained by 〈ψ′〉 〈ϕ1〉.
But after those two updates it must also hold in w that 〈ϕ2〉�¬(K̂aKbp ∧ K̂a(p ∧

¬Kbp)), so after the update 〈ϕ2〉 the two worlds that are b-accessible from the p worlds
that are a-accessible from w (so the two ¬p worlds immediately to the right of the two
p worlds) must be indistinguishable. In particular this means that neither the origin
world of N q

1 nor that of N r
1 may be reachable after the update 〈ϕ2〉, because otherwise

K̂cq or K̂cr would distinguish the worlds.
Since the update 〈ϕ2〉 only removes q∨ r worlds this implies that the origin worlds

of N q
1 and N r

1 must satisfy ¬ϕ2 after the first two updates. But then K̂cK̂aK̂bK̂cr

must hold in the origin of N q
1 and K̂cK̂aK̂bK̂cq in the origin of N r

1 .
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But then the origins of N q
2 and N r

2 must be reachable after the first two updates.

But these two origin worlds must also be removed by 〈ϕ2〉, because otherwise K̂aK̂bK̂cq
would distinguish the two worlds that must be indistinguishable. But then the origins
of N q

3 and N r
3 must be retained. Repeating the argument shows that if the origins

of N q
n and N r

n remain reachable, then so do those of N q
n+1 and N r

n+1. Therefore, the
updates 〈ψ′〉 〈ϕ1〉 must leave the origin of every N x

n submodel reachable.
But then consider the update 〈ϕ1〉. This update retains the origin of a N x

n sub-
model if and only if it satisfies K̂aKbp∧K̂a(p∧¬Kbp). This implies that for each n ∈ N
and x ∈ {q, r} the update 〈ψ′〉 must retain one of the worlds on the third row of the
submodel but not the other. However, in N x

n these worlds are indistinguishable up to
depth 2n, so an LPAL formula must contain at least 2n+ 1 iterations of a K-operator
to distinguish them. There is therefore no single formula in LPAL that distinguishes
the two worlds for every submodel. This contradicts the assumption that such a ψ′

exists.

The theorem now follows easily.

Theorem 4.3. There are LAPAL formulas ϕ,ψ such that 6|=br 〈ψ〉ϕ→ ♦ϕ.

Proof. For the LAPAL formulas ϕ,ψ, finitely branching model N and world w of N as
defined above we have N , w |= 〈ψ〉ϕ by Lemma 4.6 and N , w 6|= 〈ψ′〉ϕ for every LPAL

formula ψ′ by Lemma 4.7. This implies that N , w 6|= 〈ψ〉ϕ → ♦ϕ so 6|=br 〈ψ〉ϕ →
♦ϕ.

4.5 Conclusion and further research

We showed that for any LAPAL formula ϕ and ψ we have |=fin 〈ψ〉ϕ → ♦ϕ and
that for any LPAL formula ϕ and any LAPAL formula ψ we also have |=br 〈ψ〉ϕ →
♦ϕ. Additionally, we showed that there are LAPAL formulas ϕ and ψ such that 6|=br

〈ψ〉ϕ→ ♦ϕ and that there are an LPAL formula ϕ and an LAPAL formula ψ such that
6|= 〈ψ〉ϕ→ ♦ϕ.

The operator ♦ therefore only represents a truly arbitrary public announcement on
finite models. There are scenarios that can be modeled in finite models and where ar-
bitrary public announcements are useful, such as the cryptography example mentioned
in the introduction. The message p for which we want to know whether ♦(Kbp∧¬Kep)
is generally taken from a finite set of possible messages which allows for a finite model
to be used.

However, not all interesting scenarios allow for finite modeling, so it seems like an
interesting topic for further research whether semantics for a different arbitrary public
announcement operator � can be found such that for any LPAL+� formulas ϕ,ψ we
have |= 〈ψ〉ϕ → �ϕ. One possibility that might work is an infinite hierarchy of ♦i
operators, where each ♦i quantifies over all formulas that use only ♦j with j < i. I
conjecture that if we then define �ϕ as

∨
i∈N ♦iϕ, we have |= 〈ψ〉ϕ→ �ϕ.

Another interesting subject for further research would be to take the same ques-
tions we asked about LAPAL and apply them to different “arbitrary updates”, such as
Arbitrary Updates of Objective Belief [Seban, 2011], Arbitrary Action Models [Hales,
2013] or Arbitrary Arrow Updates [van Ditmarsch et al., 2014b]. We already know
that Arbitrary Action Models are (trivially) completely arbitrary because [Hales, 2013]
showed that they do not add expressivity. But it would be interesting to determine
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whether the other two operators are truly arbitrary and, if they are not, whether we
can find a truly arbitrary variant.




