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4 W. Romeijnders et al.

1 Introduction

Let ϕ be a real-valued, periodic function, and let ω denote a continuously distributed
random variable with probability density function (pdf) f of bounded variation. We
consider the expected value E f [ϕ(ω)]. Usually, it is not possible to obtain a closed
form expression for this expectation. That is why we will derive lower and upper
bounds for E f [ϕ(ω)], both depending on the total variation of f .

Periodic functions arise naturally in real life. Consider for example the motion of
the tides, household voltage, or the blood flow through an artery. Also in mathematics
and physics, periodic functions such as the trigonometric functions play an important
role. Motivating the current research, such functions may also arise as a result of
rounding: the difference function �x� − x , x ∈ R, is periodic.

In [27] we show that the error of a class of convex approximations of totally uni-
modular (TU) integer recourse models can be bounded by the expectation of a periodic
function ϕ. By deriving bounds on E f [ϕ(ω)] in terms of the total variation of f , we
obtain a uniform error bound for this class of approximations. However, for this appli-
cation the analysis is restricted to a special class of two-valued piecewise constant
periodic functions.

In this paper we derive bounds for E f [ϕ(ω)] that hold for all periodic functions
ϕ. These bounds are the result of a worst-case analysis, where for every B ∈ R with
B > 0, we consider

M(ϕ, B) := sup
f ∈F

{
E f [ϕ(ω)] : |Δ| f ≤ B

}
,

and

N (ϕ, B) := inf
f ∈F

{
E f [ϕ(ω)] : |Δ| f ≤ B

}
,

with F denoting the set of density functions of bounded variation and |Δ| f the total
variation of f , both defined in Sect. 2. Surprisingly, it is possible to derive closed
form expressions for M(ϕ, B) and N (ϕ, B) when ϕ is periodically monotone. In all
other cases we obtain an upper and lower bound, respectively, yielding Proposition 1
in Sect. 2.

Although the results are valid for one-dimensional periodic functions only, it is
possible to apply them in a higher dimensional setting. Using additional analysis we
are able to derive error bounds for convex approximations of TU integer recourse
models. We introduce a new convex approximation, improving the best known error
bound of [27] by a factor 2, and prove that this approximation has the best worst-case
error bound possible. Moreover, we show that the same analysis can be used to obtain
error bounds for so-called discrete approximations of continuous recourse models,
providing a link between two seemingly unrelated areas of research. Furthermore, we
derive a tractable Lipschitz constant for the expected value function of pure integer
recourse models.

The remainder of this paper is organized as follows. In Sect. 1.1 we first discuss
properties of M(ϕ, B) and N (ϕ, B). Next, in Sect. 2 we introduce the concepts of total
variation and packed densities, and we derive an upper and lower bound on M(ϕ, B)
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Total variation bounds on the expectation of periodic functions 5

and N (ϕ, B), respectively. Section 3 introduces lemmas on the flattening of density
functions, which are used to derive exact expressions for M(ϕ, B) and N (ϕ, B) in
case ϕ is periodically monotone. Finally, in Sect. 4 we derive the indicated results on
approximations of recoursemodels, and in Sect. 5we give a summary and conclusions.
Readers only interested in the results on approximations of recourse models, and not
on their derivation, may skip Sects. 1–3 and proceed directly to Sect. 4.

1.1 Properties of M(ϕ, B) and N (ϕ, B)

In this subsection we discuss properties of M(ϕ, B) and N (ϕ, B). We collect them
here for easy reference, as they are used frequently in the remainder of this paper. The
first set of properties deals with shifting and scaling of periodic functions ϕ.

Lemma 1 Let ϕ : R �→ R be a periodic function with period p and finite mean value
ν := p−1

∫ p
0 ϕ(x)dx. Then, for every B ∈ R with B > 0,

(i) M(ϕ, B) = −N (−ϕ, B) and N (ϕ, B) = −M(−ϕ, B).
(ii) for every r > 0,

M(rϕ, B) = rM(ϕ, B) and N (rϕ, B) = r N (ϕ, B).

(iii) if ϕ̄r (x) := ϕ(x/r), x ∈ R, for some r > 0, then

M(ϕ̄r , B) = M(ϕ, r B) and N (ϕ̄r , B) = N (ϕ, r B).

(iv) if ϕ̂(x) := ϕ(−x), x ∈ R, then

M(ϕ̂, B) = M(ϕ, B) and N (ϕ̂, B) = N (ϕ, B).

(V) if ϕ̃β(x) := ϕ(x − β), x ∈ R, for some β ∈ R, then

M(ϕ̃β, B) = M(ϕ, B) and N (ϕ̃β, B) = N (ϕ, B).

Proof See the Appendix. �	
The next lemma shows convexity properties of M(ϕ, B) and N (ϕ, B). These prop-
erties hold because M(ϕ, B) and N (ϕ, B) can be considered as convex optimization
problems. The results are presented here for periodic functions ϕ, but hold, in fact, for
a much more general class of functions.

Lemma 2 Let ϕ : R �→ R be a periodic function with period p and finite mean value
ν := p−1

∫ p
0 ϕ(x)dx. Then,

(i) M(ϕ, B) is concave in B, and
(ii) N (ϕ, B) is convex in B.

Proof See the Appendix. �	
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6 W. Romeijnders et al.

2 Packed densities and total variation

Before we derive bounds on E f [ϕ(ω)], we first introduce some notation. Let p ∈ R

with p > 0 denote the period of ϕ and νϕ := p−1
∫ p
0 ϕ(x)dx its mean value over

any interval of length p. It is assumed throughout that this mean value νϕ exists and
is finite. We drop the index ϕ in case it can easily be deduced from the context. Thus,
the function ϕν : R �→ R defined as

ϕν(x) = ϕ(x) − ν, x ∈ R,

has the same shape and period as ϕ, but its mean equals zero.
Throughout this paper we only consider pdf f of bounded variation, and we let

F denote the set containing these functions. Note that for practical purposes this
definition of F is not very restrictive.

Definition 1 A function f : R �→ R is of bounded variation if and only if there exist
bounded monotone non-decreasing functions f1 and f2 such that f = f1 − f2.

Remark 1 Equivalently, we say that f is of bounded variation if and only if the total
variation of f , to be defined in Definition 4, is finite [29].

Definition 2 Let F denote the set of one-dimensional probability density functions
f of bounded variation.

Since ϕ is periodic with period p, for our purposes it is possible to summarize
all relevant information of a pdf f in a so-called packed density f p with support
contained in [0, p]. This packed density is defined such that E f p [ϕ(ω)] = E f [ϕ(ω)],
see Lemma 3.

Definition 3 For every f ∈ F and p ∈ R with p > 0, we define the packed density
f p : R �→ R of f with support contained in [0, p] as

f p(x):=
{∑

k∈Z f (x + pk), x ∈ [0, p];
0, otherwise.

Remark 2 Note that we define packed densities f p on [0, p] instead of [0, p) so that
f p(p) = f p(0). This choice is more convenient in Lemma 4, where we compare the
total variations of f p and f , and it does not change the expectation E f p [ϕ(ω)].
Lemma 3 For every f ∈ F and periodic function ϕ with period p,

E f p [ϕ(ω)] = E f [ϕ(ω)].

Proof By definition of f p and using the periodicity of ϕ, we have

E f p [ϕ(ω)] =
∫ p

0
ϕ(x)

∑
k∈Z

f (x + pk)dx =
∫ p

0

∑
k∈Z

ϕ(x + pk) f (x + pk)dx .
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Total variation bounds on the expectation of periodic functions 7

Moreover, by interchanging summation and integration we obtain

E f p [ϕ(ω)] =
∑
k∈Z

∫ p

0
ϕ(x + pk) f (x + pk)dx =

∫ ∞

−∞
ϕ(x) f (x)dx = E f [ϕ(ω)].

�	
Lemma3 implies that knowledge of f p is sufficient to computeE f [ϕ(ω)]. However,

obtaining a useful closed-form expression for f p may actually be as difficult as finding
such an expression for E f [ϕ(ω)]. That is why it is interesting to observe that the total
variation of f p on [0, p] can be bounded by the total variation of f .

Definition 4 Let f : R �→ R be a real-valued function, and let I ⊂ R be an interval.
LetΠ(I ) denote the set of all finite ordered sets P = {x1, . . . , xN+1}with x1 < · · · <

xN+1 in I . Then, the total variation of f on I , denoted |Δ| f (I ), is defined as

|Δ| f (I ) = sup
P∈Π(I )

V f (P),

where

V f (P) =
N∑
i=1

| f (xi+1) − f (xi )|.

We will write |Δ| f := |Δ| f (R).

Lemma 4 For every f ∈ F and p ∈ R with p > 0, the corresponding packed density
f p of f with support contained in [0, p] satisfies

|Δ| f p([0, p]) ≤ |Δ| f.

Proof Let f ∈ F be given. We will show that for every ε > 0 and P ∈ Π([0, p])
there exists P̄ ∈ Π(R) such that V fp (P) ≤ V f (P̄) + ε. Then,

|Δ| f p([0, p]) = sup
P∈Π([0,p])

V fp (P) ≤ sup
P̄∈Π(R)

V f (P̄) + ε = |Δ| f + ε (1)

for every ε > 0, and thus |Δ| f p([0, p]) ≤ |Δ| f .
In order to prove (1) let ε > 0 be given. For every P ∈ Π([0, p]) corresponding to

f p we will construct P̄ ∈ Π(R) corresponding to f by repeating P on any interval
[kp, (k + 1)p], k ∈ Z. So let P = {x1, . . . , xN+1} ∈ Π([0, p]) be given. We assume
without loss of generality that x1 = 0 and xN+1 = p. Since f ∈ F it follows that
f p(xi ) := ∑

k∈Z f (xi + pk) is finite for all i = 1, . . . , N , and thus there exists K ∈ N

such that

∣∣∣∣∣ f p(xi ) −
K∑

k=−K

f (xi + pk)

∣∣∣∣∣ <
ε

2N
for all i = 1, . . . , N + 1. (2)
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8 W. Romeijnders et al.

Conveniently writing γi := ∑K
k=−K f (xi + pk) for i = 1, . . . , N + 1, we have

V fp (P) =
N∑
i=1

∣∣∣ f p(xi+1) − f p(xi )
∣∣∣

=
N∑
i=1

∣∣∣ f p(xi+1) − γi+1 + γi+1 − γi + γi − f p(xi )
∣∣∣.

By applying the triangle inequality and using (2) we have

V fp (P) ≤ ε

2
+

N∑
i=1

|γi+1 − γi | + ε

2

= ε +
N∑
i=1

∣∣∣∣∣
K∑

k=−K

(
f (xi+1 + pk) − f (xi + pk)

)∣∣∣∣∣ .

Once more applying the triangle inequality and interchanging summations we obtain

V fp (P) ≤ ε +
K∑

k=−K

N∑
i=1

∣∣∣ f (xi+1 + pk) − f (xi + pk)
∣∣∣.

Now define P̄ as the ordered set containing all elements in P + p{−K , . . . , K } and
observe that P̄ ∈ Π(R). Moreover, since xN+1+ pk = x1+ p(k+1) for every k ∈ Z

it follows that

V f (P̄) =
K∑

k=−K

N∑
i=1

∣∣∣ f (xi+1 + pk) − f (xi + pk)
∣∣∣,

and thus V fp (P) ≤ V f (P̄) + ε, which completes the proof. �	
Now we are ready to prove one of our main results.

Proposition 1 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν := p−1

∫ p
0 ϕ(x)dx. Then,

M(ϕ, B):= sup
f ∈F

{
E f [ϕ(ω)] : |Δ| f ≤ B

}
≤ ν + B

4

∫ p

0
|ϕν(x)|dx, (3)

and

N (ϕ, B):= inf
f ∈F

{
E f [ϕ(ω)] : |Δ| f ≤ B

}
≥ ν − B

4

∫ p

0
|ϕν(x)|dx, (4)

where ϕν(x):=ϕ(x) − ν, as before.
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Total variation bounds on the expectation of periodic functions 9

Proof It follows immediately fromLemmas 3 and 4 that for every f ∈ F with |Δ| f ≤
B its packed density f p satisfies |Δ| f p([0, p]) ≤ B and E f p [ϕ(ω)] = E f [ϕ(ω)].
Define fp := sup{ f p(x) : x ∈ [0, p]} and f

p
:= inf{ f p(x) : x ∈ [0, p]}. Since

f p(0) = f p(p) and |Δ| f p([0, p]) ≤ B, it follows that fp − f
p

≤ B/2. Moreover,

for all x ∈ R we have

ϕ(x) f p(x) = ν f p(x) + (ϕ(x) − ν)+ f p(x) − (ϕ(x) − ν)− f p(x)

≤ ν f p(x) + (ϕν(x))
+ fp − (ϕν(x))

− f
p
.

Hence,

E f [ϕ(ω)] = E f p [ϕ(ω)]
=
∫ p

0
ϕ(x) f p(x)dx

≤
∫ p

0
ν f p(x)dx +

∫ p

0
(ϕν(x))

+ fpdx −
∫ p

0
(ϕν(x))

− f
p
dx

= ν + ( fp − f
p
)

∫ p

0
(ϕν(x))

+dx (5)

≤ ν + B

4

∫ p

0
|ϕν(x)|dx . (6)

Here, the equality in (5) holds since

∫ p

0
(ϕν(x))

+dx −
∫ p

0
(ϕν(x))

−dx =
∫ p

0
(ϕν(x))dx = 0

by definition of ν, and (6) follows from the fact that fp − f
p

≤ B/2 and

∫ p

0
(ϕν(x))

+dx =
∫ p

0
(ϕν(x))

−dx = 1

2

∫ p

0
|ϕν(x)|dx . (7)

Since the above holds for every pdf f ∈ F with |Δ| f ≤ B, we conclude that (3) holds.
The bound for N (ϕ, B) follows from the observations that N (ϕ, B) = −M(−ϕ, B)

by Lemma 1 (i), and that ν−ϕ = −νϕ is the mean value of −ϕ. �	
Theorem 1 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν := p−1

∫ p
0 ϕ(x)dx. Then, for every f ∈ F ,

∣∣∣E f [ϕ(ω)] − ν

∣∣∣ ≤ |Δ| f
4

∫ p

0
|ϕν(x)|dx .

Proof This result follows directly from Proposition 1, using the observation that
every f ∈ F is a feasible solution of the optimization problem in M(ϕ, |Δ| f ) and
N (ϕ, |Δ| f ). �	
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10 W. Romeijnders et al.

It follows from Theorem 1 that if the total variation of f is small then the expected
value E f [ϕ(ω)] will be close to ν. For unimodal density functions such as the normal
density function, the total variation decreases as the variance of the corresponding
random variable ω increases. Hence, for normal random variables ω with a large
variance, E f [ϕ(ω)] will be close to ν.

Clearly, the difference between E f [ϕ(ω)] and ν depends on both the pdf f and
the periodic function ϕ. In the bound of Theorem 1 both factors are separated which
shows that for every periodic function ϕ the expectation E f [ϕ(ω)] will be arbitrarily
close to ν for pdf f with sufficiently small total variation.

In case ϕ is Lipschitz continuous on [0, p) we can bound
∫ p
0 |ϕν(x)|dx , yielding

bounds for E f [ϕ(ω)] not involving this possibly intractable integral:

Corollary 1 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν := p−1

∫ p
0 ϕ(x)dx such that ϕ is Lipschitz continuous with Lipschitz constant

L on (0, p). Then, for every random variable ω with pdf f ∈ F ,

|E f [ϕ(ω)] − ν| ≤ Lp2

16
|Δ| f.

The proof of Corollary 1 is based on the following lemma.

Lemma 5 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν := p−1

∫ p
0 ϕ(x)dx, and absolute deviation δ := ∫ p

0 |ϕν(x)|dx, such that ϕ is
Lipschitz continuous with Lipschitz constant L on (0, p). Then, there exists a function
ψ : R �→ R with the same properties, and such that ψ is monotone non-decreasing
on (0, p).

Proof of Lemma 5 Basically, we construct ψ as a ‘sorted version’ of ϕ: on (0, p), and
similarly on (kp, (k + 1)p) for k ∈ Z, the function values of ϕ are rearranged, from
small to large. Themain building block in this construction is the function H : R �→ R

defined as

H(y) := L
(
S(y)

)
, y ∈ R,

where L denotes the Lebesgue measure, and

S(y) = {u ∈ (0, p) : ϕ(u) ≤ y}, y ∈ R.

Defining y := supu∈(0,p) ϕ(u) and y := infu∈(0,p) ϕ(u), the function H can be con-
sidered as a cdf of a random variable on [y, y] with total probability mass p, since

(i) H is non-decreasing
(ii) H(y) = 0 for y < y, and H(y) = p for y ≥ y
(iii) H is right-continuous
(iv) H has a jump of size d > 0 at y if and only if L({u ∈ (0, p) : ϕ(u) = y}) = d
(v) if y < y, then H is strictly increasing on [y, y]
(vi) if y < y, then the right-derivative H ′+(y) exists and satisfies H ′+(y) ≥ 1/L for

y ∈ [y, y)
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Total variation bounds on the expectation of periodic functions 11

We do not give a proof of these properties, since they can be verified easily.
The function H specifies a distribution on the function values of ϕ, and thus it can

be used to derive properties of ϕ. For example,

∫ ∞

−∞
ydH(y) =

∫ p

0
ϕ(x)dx = ν,

and

∫ ∞

−∞
|y − ν|dH(y) =

∫ p

0
|ϕ(x) − ν|dx .

Using the ordering of the function values of ϕ, given in H , we derive a sorted version
ψ of ϕ:

ψ(x):=H−1(x) := inf{y ∈ R : H(y) ≥ x}, x ∈ (0, p).

Using (i)–(vi) it is not hard to verify that ψ satisfies the desired properties.

Proof of Corollary 1 By applying Theorem 1 it suffices to show that

∫ p

0
|ϕν(x)|dx ≤ 1

4
Lp2.

Considerψ : R �→ R that is periodicwith period p, mean value ν and
∫ p
0 |ψν(x)|dx =∫ p

0 |ϕν(x)|dx , and assume that ψ is also Lipschitz continuous with Lipschitz constant
L andmonotone non-decreasing on (0, p). Such a function exists by Lemma 5. More-
over, since ψ satisfies these properties there exists y ∈ (0, p) such that ψν(y) = 0,
and ψν(x) ≤ L(x − y) for x ≥ y and ψν(x) ≥ L(x − y) for x ≤ y, so that

∫ p

0
(ψν(x))

+dx ≤ L
∫ p

y
(x − y)dx = 1

2
L(p − y)2, (8)

and ∫ p

0
(ψν(x))

−dx ≤ −L
∫ y

0
(x − y)dx = 1

2
Ly2. (9)

Combining (8) and (9) with (7) yields

∫ p

0
|ψν(x)|dx ≤ min

{
L(p − y)2, Ly2

}
≤ 1

4
Lp2.

The claim follows since
∫ p
0 |ψν(x)|dx = ∫ p

0 |ϕν(x)|dx . �	
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12 W. Romeijnders et al.

3 Periodically monotone functions

In this section we restrict our attention to functions ϕ that are periodically monotone.

Definition 5 Let ϕ : R �→ R be a periodic function with period p. Then, ϕ is
periodically monotone if there exists β ∈ R such that ϕ is either non-increasing
or non-decreasing on (β, β + p). We say that ϕ is periodically non-increasing, or
periodically non-decreasing, respectively.

Under this additional assumption we are able to derive exact expressions for M(ϕ, B)

and N (ϕ, B), and thus tighter bounds on E f [ϕ(ω)] than (3) and (4). In order to derive
these expressions we use the concept of flattening of density functions, first introduced
in [27]. Observing that a constant function has lower total variation than a varying
one, we can restrict the optimization in M(ϕ, B) and N (ϕ, B) to piecewise constant
density functions, allowing to find sharp bounds.

In Sect. 3.1 we first discuss two alternative ways to flatten bounded monotone non-
decreasing functions. The results will be used to flatten density functions in Sect. 3.2.
We derive exact expressions for M(ϕ, B) and N (ϕ, B) in Sect. 3.3, and we discuss
an extension of these results in Sect. 3.4, which is used to derive error bounds for
recourse approximations in Sect. 4.

3.1 Flattening of monotone functions

In this subsection we only consider bounded non-decreasing functions, bearing in
mind that every pdf f ∈ F can be written as the difference of such functions. We
show two alternative ways to flatten non-decreasing functions in Lemmas 6 and 7,
respectively.

Lemma 6 Let f : R �→ R be a bounded monotone non-decreasing function, and let
I ⊂ R denote a bounded interval of positive length. Define the function g : R �→ R

as

g(x) =
{
f (x), x /∈ I,
KI , x ∈ I,

(10)

with KI := |I |−1
∫
I f (u)du. Then,

(i)
∫
I g(x)dx = ∫

I f (x)dx,
(ii) g is a bounded monotone non-decreasing function, and
(iii) |Δ|g = |Δ| f .
Proof Equation (i) follows from the definition of KI . Moreover, it is obvious that g
is bounded since f is bounded. To show that g is non-decreasing, let x1, x2 ∈ R with
x1 < x2 be given. Then, using that f is non-decreasing,

(1) if x1 /∈ I and x2 /∈ I , then g(x1) = f (x1) ≤ f (x2) = g(x2).
(2) if x1 /∈ I and x2 ∈ I , then x1 < y for all y ∈ I so that

g(x1) = f (x1) = |I |−1
∫

I
f (x1)dy ≤ |I |−1

∫

I
f (y)dy = KI = g(x2).
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Total variation bounds on the expectation of periodic functions 13

(3) if x1 ∈ I and x2 /∈ I , then x2 > y for all y ∈ I so that

g(x1) = KI = |I |−1
∫

I
f (y)dy ≤ |I |−1

∫

I
f (x2)dy = f (x2) = g(x2).

(4) if x1 ∈ I and x2 ∈ I , then g(x1) = KI = g(x2).

Thus, (ii) g is a bounded monotone non-decreasing function. Hence,

|Δ|g = sup g(R) − inf g(R),

and since sup g(R) = sup f (R) and inf g(R) = inf f (R), we conclude that (iii)
|Δ|g = |Δ| f . �	
Lemma 7 Let f : R �→ R be a bounded monotone non-decreasing function, and let
I ⊂ R denote a bounded interval of positive length. Write f I := sup{ f (x) : x ∈ I }
and f

I
:= inf{ f (x) : x ∈ I }. Then, there exists z ∈ I such that the function

gz : R → R defined as

gz(x) =
⎧⎨
⎩

f (x), x /∈ I,
f I , x ∈ I and x ≥ z,
f
I
, x ∈ I and x < z,

satisfies

(i)
∫
I gz(x)dx = ∫

I f (x)dx,
(ii) gz is a bounded monotone non-decreasing function, and
(iii) |Δ|gz = |Δ| f .
In fact, for all z ∈ I both (ii) and (iii) hold.

Proof It is easy to observe that gz is bounded for every z ∈ I . Moreover, for every
x1, x2 ∈ R with x1 < x2 and for every z ∈ R we have

(1) if x1 /∈ I and x2 /∈ I , then gz(x1) = f (x1) ≤ f (x2) = gz(x2).
(2) if x1 /∈ I and x2 ∈ I , then x1 < y for all y ∈ I so that

gz(x1) = f (x1) ≤ inf{ f (y) : y ∈ I } = f
I

≤ gz(x2).

(3) if x1 ∈ I and x2 /∈ I , then x2 > y for all y ∈ I so that

gz(x1) ≤ f I = sup{ f (y) : y ∈ I } ≤ f (x2) = gz(x2).

(4) if x1 ∈ I and x2 ∈ I , then gz(x1) ≤ gz(x2) since gz is non-decreasing on I .

Thus, for every z ∈ I , the proof of (ii) is complete, and using similar arguments as in
the proof of Lemma 6, (iii) is true, too.

123



14 W. Romeijnders et al.

In order to show (i), define D(z) = ∫
I gz(x)dx for every z ∈ I , and observe that D

is linear hence continuous on I . Moreover, inf D(I ) = |I | f
I
and sup D(I ) = |I | f I .

Since

|I | f
I

=
∫

I
f
I
dx ≤

∫

I
f (x)dx ≤

∫

I
f I dx = |I | f I , (11)

it follows from the intermediate value theorem that if both inequalities in (11) are
strict, then there exists z∗ ∈ I such that

D(z∗) =
∫

I
f (x)dx,

and thus gz∗ satisfies (i)–(iii). It is not difficult to verify that this conclusion also holds
if at least one inequality in (11) is an equality. �	

3.2 Flattening of density functions

Since every pdf f ∈ F can bewritten as the difference of two bounded non-decreasing
functions f1 and f2, the results in Lemmas 6 and 7 can be used to flatten density
functions as well. For example, applying Lemma 6 to both f1 and f2 yields Lemma 1
in [27]. This lemma is stated here without proof.

Lemma 8 Let f ∈ F be given and let I ⊂ R denote a bounded interval with positive
length. Define g ∈ F as

g(x) =
{
f (x), x /∈ I
KI , x ∈ I,

(12)

with KI := |I |−1
∫
I f (u)du. Then, |Δ|g ≤ |Δ| f . �	

The next lemma is derived with expectations E f [ϕ(ω)] of periodically non-
increasing functions ϕ in mind. It is used to show that for such functions ϕ, the
optimization in M(ϕ, B) can be restricted to piecewise constant density functions.
The main idea is that given any feasible f ∈ F , which can be written as f = f1 − f2,
we apply Lemma 6 to f1 yielding g1 and Lemma 7 to f2 yielding g2 so that g ∈ F
defined as g := g1 − g2 is feasible in M(ϕ, B) and has an objective value at least as
large as f . Similar results can be obtained independently for non-decreasing functions,
but we will derive them directly from the non-increasing case instead.

Lemma 9 Let I ⊂ R be a bounded interval of positive length, and let ϕ : R �→ R be
a real-valued function that is non-increasing on I . Then, for every f ∈ F there exists
g ∈ F such that

(i) g is non-increasing piecewise constant and at most two-valued on I ,
(ii)

∫
I g(x)dx = ∫

I f (x)dx,
(iii) |Δ|g ≤ |Δ| f , and
(iv) Eg[ϕ(ω)] ≥ E f [ϕ(ω)].
Proof Let f ∈ F be given. Since f is a pdf of bounded variation, there exist bounded
monotone non-decreasing functions f1 and f2 such that f = f1 − f2 and |Δ| f1 =
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Total variation bounds on the expectation of periodic functions 15

|Δ| f2 = 1
2 |Δ| f . Apply Lemma 6 to f1 and Lemma 7 to f2 to obtain g1 and g2,

respectively, defined for every x ∈ R as

g1(x) =
{
f1(x), x /∈ I
K 1

I , x ∈ I,

with K 1
I := |I |−1

∫
I f1(u)du, and

g2(x) =

⎧⎪⎨
⎪⎩

f2(x), x /∈ I,

f
2
I , x ∈ I and x ≥ z,

f 2
I
, x ∈ I and x < z,

where f
2
I := sup{ f2(x) : x ∈ I }, f 2

I
:= inf{ f2(x) : x ∈ I }, and z ∈ I is chosen such

that
∫
I g2(x)dx = ∫

I f2(x)dx . We will show that g := g1 − g2 satisfies (i)–(iv).
First of all observe that Lemmas 6 and 7 imply that for j = 1, 2, g j is a bounded

non-decreasing function with |Δ|g j = |Δ| f j and
∫
I g j (x)dx = ∫

I f j (x)dx . Since g
is the difference of two bounded monotone non-decreasing functions it follows that g
is of bounded variation. Moreover, since

(i i i)
∫

I
g(x)dx =

∫

I
g1(x)dx −

∫

I
g2(x)dx =

∫

I
f1(x)dx −

∫

I
f2(x)dx =

∫

I
f (x)dx,

holds for all bounded I and
∫∞
−∞ g(x)dx = ∫∞

−∞ f (x)dx = 1, we have g ∈ F .

Furthermore, since |Δ|g1 = 1
2 |Δ| f and |Δ|g2 = 1

2 |Δ| f , we conclude that (ii) |Δ|g ≤
|Δ|g1 + |Δ|g2 = |Δ| f , and by definition of g1 and g2 it follows immediately that (i)
g is non-increasing piecewise constant and at most two-valued on I . Finally, we will
show that

∫
I ϕ(x)g1(x)dx ≥ ∫

I ϕ(x) f1(x)dx and
∫
I ϕ(x)g2(x)dx ≤ ∫

I ϕ(x) f2(x)dx
so that

∫
I ϕ(x)g(x)dx ≥ ∫

I ϕ(x) f (x)dx . Then, (iv) Eg[ϕ(ω)] ≥ E f [ϕ(ω)] follows
from the above and the observation that g(x) = f (x) for x /∈ I .

First consider g1 and f1. Observing that f1 is non-decreasing on I , g1 is constant
on I and

∫
I g1(x)dx = ∫

I f1(x)dx [by Lemma 6 (i)], it follows that there exists y ∈ I
such that for every x ∈ I ,

(A) g1(x) ≥ f1(x) and ϕ(x) ≥ ϕ(y) if x < y, and
(B) g1(x) ≤ f1(x) and ϕ(x) ≤ ϕ(y) if x > y.

Here we use that ϕ is non-increasing on I , too. The inequalities in (A) and (B) imply
that

(
ϕ(x) − ϕ(y)

)(
g1(x) − f1(x)

)
≥ 0 for all x ∈ I.

Hence,

∫

I

(
ϕ(x) − ϕ(y)

)(
g1(x) − f1(x)

)
dx ≥ 0,
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16 W. Romeijnders et al.

and
∫
I ϕ(x)g1(x)dx ≥ ∫

I ϕ(x) f1(x)dx follows immediately since ϕ(y)
∫
I (g1(x) −

f1(x))dx = 0 by Lemma 6 (i).
Next consider g2 and f2. By definition of g2 and since ϕ is non-increasing on I , it

follows that for all x ∈ I , and with z as defined above,

(A) g2(x) ≤ f2(x) and ϕ(x) ≥ ϕ(z) if x < z, and
(B) g2(x) ≥ f2(x) and ϕ(x) ≤ ϕ(z) if x > z.

Hence,

(
ϕ(x) − ϕ(z)

)(
g2(x) − f2(x)

)
≤ 0 for all x ∈ I.

This implies that

∫

I

(
ϕ(x) − ϕ(z)

)(
g2(x) − f2(x)

)
dx ≤ 0,

and thus
∫
I ϕ(x)g2(x)dx ≤ ∫

I ϕ(x) f2(x)dx , completing the proof. �	
Remark 3 Conversely, applyingLemmas 7 to f1 andLemma6 to f2 yields a pdf g ∈ F
that is non-decreasing piecewise constant and at most two-valued on I , satisfying (ii)
and (iii), and (iv) with the reverse inequality sign.

3.3 Exact worst-case bounds for periodically monotone functions

We first restrict the analysis to the upper bound M(ϕ, B) for functions ϕ that are
periodically non-increasing, as in Sect. 3.2. Results for the lower bound N (ϕ, B)

and periodically non-decreasing ϕ can easily be derived from this single case, see
Corollary 2. Building on Lemma 9 we show that it suffices to consider a class of
two-valued piecewise constant packed densities in the optimization of M(ϕ, B), so
that the remaining optimization problem is straightforward to solve.

Lemma 10 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν := p−1

∫ p
0 ϕ(x)dx. Assume that ϕ is non-increasing on (0, p). Then, for every

f ∈ F there exists a packed density gp ∈ F such that

(i) gp is non-increasing piecewise constant and at most two-valued on (0, p),
(ii) |Δ|gp([0, p]) ≤ |Δ| f , and
(iii) Egp [ϕ(ω)] ≥ E f [ϕ(ω)].
Proof Let f ∈ F be given and consider the packed density f p of f with support
contained in [0, p]. From Lemma 4 it follows that |Δ| f p([0, p]) ≤ |Δ| f , so that
f p ∈ F , and from Lemma 3 it follows that E f p [ϕ(ω)] = E f [ϕ(ω)]. Now apply
Lemma9 to f p with I = (0, p)yielding gp, satisfying (i) by construction and (iii) since
Egp [ϕ(ω)] ≥ E f p [ϕ(ω)] = E f [ϕ(ω)]. It remains to prove (ii) using |Δ|gp ≤ |Δ| f p,
which holds by Lemma 9 (iii). The inequality in (ii) does not follow immediately
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Total variation bounds on the expectation of periodic functions 17

since |Δ| f p may actually be much larger than |Δ| f , but it holds since for any packed
density h p we have

|Δ|h p = |Δ|h p((−∞, 0]) + |Δ|h p([0, p]) + |Δ|h p([p,∞))

= h p(0) + |Δ|h p([0, p]) + h p(p),

and moreover, by construction gp(0) = f p(0) = gp(p) = f p(p) so that

(i i) |Δ|gp([0, p]) = |Δ|gp − gp(0) − gp(p)

≤ |Δ| f p − f p(0) − f p(p)

= |Δ| f p([0, p])
≤ |Δ| f.

�	
Now we are ready to prove an exact expression for M(ϕ, B) for periodically non-

increasing functions ϕ.

Proposition 2 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν = p−1

∫ p
0 ϕ(x)dx. Assume that ϕ is non-increasing on (β, β + p) for some

β ∈ R. Then, for every B > 0,

M(ϕ, B) = ν + B

2

∫ β+min{p,2/B}

β

(ϕν(x))
+dx . (13)

Proof We will derive an expression for M(ϕ̂, B) for ϕ̂ : R �→ R defined as ϕ̂(x) =
ϕ(x − β), x ∈ R, so that ϕ̂ is non-increasing on (0, p). Since M(ϕ, B) = M(ϕ̂, B)

by Lemma 1 (v), the desired result for M(ϕ, B) follows by straightforward transfor-
mation.

Due to Lemma 10 we can restrict the optimization in M(ϕ̂, B) to packed densities
gp of the form

gp(x) =

⎧⎪⎪⎨
⎪⎪⎩

g0, x = 0 or x = p
g+, 0 < x < z,
g−, z ≤ x < p,
0, otherwise,

for some z ∈ (0, p) with g+ ≥ g− ≥ 0. By definition of ν it follows immediately that∫ p
z ϕ̂ν(x)dx = − ∫ z

0 ϕ̂ν(x)dx , and thus

Egp [ϕ̂(ω)] = ν +
∫ p

0
(ϕ̂(x) − ν)gp(x)dx

= ν + g+
∫ z

0
(ϕ̂(x) − ν)dx + g−

∫ p

z
(ϕ̂(x) − ν)dx

= ν + (g+ − g−)

∫ z

0
ϕ̂ν(x)dx .
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18 W. Romeijnders et al.

Moreover, since

|Δ|gp([0, p]) = |g+ − g0| + (g+ − g−) + |g− − g0|,

it follows that

min
g0∈R+

|Δ|gp([0, p]) = 2(g+ − g−)

where the minimum is attained by any g0 ∈ [g−, g+]. Since the variable g0 does only
occur in the expression for |Δ|gp([0, p]), we assume without loss that g0 attains such
a minimizing value. Hence, the optimization problem that we have to solve reads

M(ϕ, B) = ν + sup
g+,g−,z

(g+ − g−)

∫ z

0
ϕ̂ν(x)dx

s.t. zg+ + (p − z)g− = 1 (14)

g+ − g− ≤ B/2 (15)

g+ ≥ g− ≥ 0,

where g+ ≥ 0, g− ≥ 0, and (14) guarantee that gp is a pdf and (15) captures the
bound on |Δ|gp[0, p].

In order to solve this problem, first fix z ∈ (0, p), and consider the resulting
optimization problem with optimal value denoted by Mz(ϕ̂, B). Note that any feasible
solution with g+ − g− = B/2 is optimal yielding Mz(ϕ̂, B) = ν + B/2

∫ z
0 ϕ̂ν(x)dx .

Such a feasible solution exists if (14) holds, so if z ≤ 2/B. At the same time, since
(14) can be rewritten as g+ − g− = (1 − pg−)/z and by substituting this equality
in the objective, the solution g− = 0 and g+ = 1/z is optimal with Mz(ϕ̂, B) =
ν + z−1

∫ z
0 ϕ̂ν(x)dx if it is feasible. This is the case if (15) holds, that is, if z ≥ 2/B.

Hence, for every z ∈ (0, p),

Mz(ϕ̂, B) =

⎧⎪⎪⎨
⎪⎪⎩

ν + B

2

∫ z

0
ϕ̂ν(x)dx, z ≤ 2

B
,

ν + 1

z

∫ z

0
ϕ̂ν(x)dx, z ≥ 2

B
,

(16)

where for z = 2/B both formulas give the same result, of course. Now we will
calculate

M(ϕ̂, B) = sup
z

{
Mz(ϕ̂, B) : z ∈ (0, p)

}
. (17)

First consider the second case in (16). Since ϕ̂, and thus ϕ̂ν , is non-increasing on (0, p),
it follows that the mean value 1/z

∫ z
0 ϕ̂ν(x)dx of ϕ̂ν over (0, z) is non-increasing in z

on (0, p), so that z∗ ≤ 2/B, where z∗ is the optimal solution in (17). So, without loss
wemay restrict ourselves to the first case in (16). Its objective is concave in z on [0, p],
non-decreasing for small values of z and non-increasing for large values of z, since its
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Total variation bounds on the expectation of periodic functions 19

right derivative is B
2 ϕ̂ν(z) which is non-increasing with mean value

∫ p
0 ϕ̂ν(z)dz = 0.

Hence,

z∗ = min{x0, 2/B},

where x0 is any global (i.e. on (0, p)) maximizer of the objective in the first case,
characterized by ϕ̂ν(x) ≥ 0 for x ∈ (0, x0) and ϕ̂ν(x) ≤ 0 for x ∈ (x0, p). We
conclude that

M(ϕ̂, B) = Mz∗(ϕ̂, B) = ν + B

2

∫ min{x0,2/B}

0
ϕ̂ν(x)dx

= ν + B

2

∫ min{p,2/B}

0
(ϕ̂ν(x))

+dx,

where the last equality is true since

(ϕ̂ν(x))
+ =

{
ϕ̂ν(x), 0 < x < x0,
0, x0 < x < p.

�	
Corollary 2 Let ϕ : R �→ R be a periodic function with period p and finite mean
value ν := p−1

∫ p
0 ϕ(x)dx. Then,

(i) if ϕ is non-increasing on (β, β + p) for some β ∈ R, then

M(ϕ, B) = ν + B

2

∫ β+min{p,2/B}

β

(ϕν(x))
+dx, (18)

and

N (ϕ, B) = ν − B

2

∫ β+p

β+p−min{p,2/B}
(ϕν(x))

−dx . (19)

(ii) if ϕ is non-decreasing on (β, β + p) for some β ∈ R, then

M(ϕ, B) = ν + B

2

∫ β+p

β+p−min{p,2/B}
(ϕν(x))

+dx, (20)

and

N (ϕ, B) = ν − B

2

∫ β+min{p,2/B}

β

(ϕν(x))
−dx . (21)

Proof For completeness (18) repeats Proposition 2. Next, continuing the analysis of
M(ϕ, B), suppose that ϕ is non-decreasing on (β, β + p). Then, ϕ̄ : R �→ R defined
as ϕ̄(x) = ϕ(−x) is periodic with period p and mean value νϕ̄ = νϕ , and ϕ̄ is
non-increasing on (−β, p − β). Thus, using (18) we have

M(ϕ̄, B) = ν + B

2

∫ −β+min{p,2/B}

−β

(ϕ̄ν(x))
+dx .
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20 W. Romeijnders et al.

Since M(ϕ, B) = M(ϕ̄, B) by Lemma 1 (iv), simple computation using ϕ̄(x) =
ϕ(−x) yields (20).

The expressions for N (ϕ, B) in (19) and (21) are obtained using N (ϕ, B) =
−M(ϕ, B), which holds by Lemma 1 (i), and the observation that if ϕ is non-
increasing (non-decreasing) on (β, β+p), then−ϕ is non-decreasing (non-increasing)
on (β, β + p). Hence, (19) and (21) can be obtained by applying (20) and (18) to
−M(−ϕ, B), respectively. �	

Belowwe give two examples of periodicallymonotone functions ϕ and correspond-
ing expressions for M(ϕ, B) and N (ϕ, B). Both examples will be used in Sect. 4 to
derive error bounds for approximations of recourse models.

Example 1 Let α, β ∈ R be given, and consider the function ϕα,β : R �→ R defined
as ϕα,β(x) = �x�α − �x�β := �x − α� + α − �x − β� − β, x ∈ R, (22)

see also Fig. 1. This class of functions has been studied in [27] to derive a uniform
error bound for a class of convex approximations of TU integer recourse models. In
Lemma 4 of this reference we show that for every α, β ∈ R,

(i) ϕα,β is periodic with period p = 1 and mean value ν = 0.
(ii) If α − β ∈ Z, then ϕα,β ≡ 0.
(iii) If α − β /∈ Z, then ϕα,β is two-valued piecewise constant with

ϕα,β(x) =
{

γα,β, x ∈ ∪l∈Z(α + l, �α�β + l],
γα,β − 1, x ∈ ∪l∈Z(�α�β + l, α + l + 1],

with γα,β := α + 1 − �α�β ∈ (0, 1).

Fig. 1 The periodic function ϕα,β defined in (22)
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Total variation bounds on the expectation of periodic functions 21

Since ϕα,β is non-increasing on (α, α + 1), using (18) in Corollary 2 gives

M(ϕα,β, B) = B

2

∫ α+min{1,2/B}

α

(ϕα,β(x))+dx .

After some calculations it follows that

M(ϕα,β, B) = min
{
γα,β, γα,β(1 − γα,β)

B

2

}
, (23)

and

N (ϕα,β, B) = −min
{
1 − γα,β, γα,β(1 − γα,β)

B

2

}
.

Furthermore, M(ϕα,β, B) and N (ϕα,β, B) can be maximized and minimized, respec-
tively, over α, β ∈ R for every B > 0, yielding

sup
α,β

M(ϕα,β, B) = − inf
α,β

N (ϕα,β, B) = h(B), (24)

where h : R++ �→ R is defined as

h(x) =
{
x/8, 0 < x ≤ 4,
1 − 2/x, x ≥ 4.

(25)

Example 2 Let α ∈ R be given, and consider the function ϕ̄α : R �→ R defined as

ϕ̄α(x) := x + 1/2 − �x�α = x + 1/2 − �x − α� − α, x ∈ R. (26)

For every α ∈ R, this function is periodic with period p = 1 and mean value
ν = 0, see also Fig. 2. Moreover, ϕ̄α(R) = [−1/2, 1/2), and ϕ̄α is non-decreasing on
(α, α + 1). Since

Fig. 2 The periodic function ϕ̄α defined in (26)
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∫ α+1

α+1−y

(
ϕ̄α(x)

)+
dx =

{
1
2 y(1 − y), 0 ≤ y ≤ 1/2,
1
8 , 1/2 ≤ y ≤ 1,

it follows from (20) in Corollary 2, and using y = min{1, 2/B}, that

M(ϕ̄α, B) = 1

2
h(B) =

{
B/16, 0 < B ≤ 4,

1/2 − 1/B, B ≥ 4.
(27)

By symmetry we have N (ϕ̄α, B) = −M(ϕ̄α, B).

3.4 Periodic functions with monotone amplitude

In this subsectionwe consider an extension of the results obtained so far. This extension
is necessary to derive error bounds of recourse approximations in Sect. 4. Instead
of considering E f [ϕ(ω)], we consider E f [λ(ω)ϕ(ω)], where λ : R �→ R is a non-
negative boundedmonotone function. The function λϕ can be interpreted as a function
that is periodic in shape but has non-decreasing or non-increasing amplitude.

We show in Proposition 3 that for periodic functions with zero mean value ν, we
can derive bounds forE f [λ(ω)ϕ(ω)] by rounding λ to its supremum, denoted λ∗. This
is not a trivial result since ϕ attains both positive and negative values.

Proposition 3 Let λ : R �→ R be a real-valued monotone function such that 0 ≤
λ(x) ≤ λ∗ for all x ∈ R, and let ϕ : R �→ R be a bounded periodic function with
period p and finite mean value ν := p−1

∫ p
0 ϕ(x)dx. Then, for every f ∈ F ,

λ∗N (ϕν, |Δ| f ) ≤ E f [λ(ω)ϕν(w)] ≤ λ∗M(ϕν, |Δ| f ). (28)

Proof First suppose thatλ ismonotonenon-decreasing anddefine L := ∫∞
−∞ λ(x) f (x)

dx . Then, 0 ≤ L ≤ λ∗. If L = 0, then E f [λ(ω)ϕν(ω)] = 0, and (28) holds trivially.
If L > 0, then define g : R �→ R as g := L−1λ f . Observe that g is non-negative
since both λ and f are non-negative, and that g integrates to 1 by definition of L , so
that g is a pdf. Moreover,

E f [λ(ω)ϕν(ω)] =
∫ ∞

−∞
λ(x)ϕν(x) f (x)dx

= L
∫ ∞

−∞
ϕν(x)g(x)dx

= LEg[ϕν(ω)].

Since f ∈ F , there exist bounded non-negative monotone non-decreasing functions
f1 and f2 such that f = f1 − f2, |Δ| f1 = |Δ| f2 = 1

2 |Δ| f , and

lim
x↓−∞ f1(x) = lim

x↓−∞ f2(x) = 0.
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Then, g1 := L−1λ f1 and g2 := L−1λ f2 are both bounded monotone non-decreasing
with |Δ|g1 = |Δ|g2 ≤ 1

2 L
−1λ∗|Δ| f , so that for g = g1 − g2, we have |Δ|g ≤

L−1λ∗|Δ| f . We conclude that g ∈ F , and

LN (ϕν, L
−1λ∗|Δ| f ) ≤ E f [λ(ω)ϕν(ω)] ≤ LM(ϕν, L

−1λ∗|Δ| f ). (29)

SinceM(ϕ, B) is concave in B by Lemma 2, and limB↓0 M(ϕν, B) = 0, it follows that
M(ϕν, t |Δ| f ) as a function of t lies below the line through (0, 0) and (1, M(ϕ, |Δ| f ))
for t ≥ 1. That is, for t ≥ 1 we have M(ϕν, t |Δ| f ) ≤ tM(ϕν, |Δ| f ). Similarly, using
the convexity of N (ϕ, B) we can show that t N (ϕν, |Δ| f ) ≤ N (ϕν, t |Δ| f ) for t ≥ 1.
Substituting these inequalities into (29)with t = L−1λ∗ ≥ 1yields the desired bounds.

If λ is monotone non-increasing, then the result can be obtained from the non-
decreasing case since λ̂(x) := λ(−x) is non-decreasing and f̂ (x) := f (−x) satisfies
|Δ| f̂ = |Δ| f . �	
Remark 4 The bounds in (29) are actually tighter than the bounds in (28). However,
in order to derive error bounds for recourse approximations in Sect. 4 we will use the
bounds in (28) since we are not able to compute L in that setting.

4 Approximations of two-stage recourse models

In previous sections we derived total variation bounds for the expectation of periodic
functions. The results can be applied in problems involving both uncertainty and
periodicity. Here, we apply the total variation bounds to approximation of two-stage
recourse models. The presence of uncertainty is inherent in these models, whereas
periodicity will appear as a result of rounding.

Recourse models can be used for many practical problems that deal with decision
making under uncertainty, including problems in energy, logistics, and finance (see,
e.g., [12,35]). We consider the two-stage recourse model with random right-hand side
(only) defined as

min
x

{
cx + Q(z) : Ax ≥ b, z = T x, x ∈ R

n1+
}
,

where z ∈ R
m are so-called tender variables, and

Q(z) = Eω[v(ω − z)], z ∈ R
m,

with

v(s) = min
y

{
qy : Wy ≥ s, y ∈ Y ⊂ R

n2+
}
, s ∈ R

m .

Here, Q and v are called the (expected) recourse function and second-stage value
function, respectively. We assume that the distribution of the random vector ω is
known.
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In this model, the first-stage decisions x have to be made here-and-now before the
realization of the random vector ω is observed. After the realization of ω is revealed,
we are allowed to take so-called recourse actions y to compensate for possible infeasi-
bilities of the random constraint T x ≥ ω. The second-stage value function v specifies
the possible recourse actions and their cost. The objective (and challenge) is to find fea-
sible first-stage decisions x as to minimize the costs cx incurred now and the expected
recourse costs Q(z).

In general, it is very hard to solve two-stage recourse models, since Y ⊂ R
n2+ may

impose integrality restrictions on the recourse actions y, and since the random vector
ω may be continuously distributed so that evaluating Q(z) is equivalent to computing
a multi-dimensional integral. However, in order to model many practical problems
realistically, we have to be able to deal with these two difficulties.

A typical approach to overcome these difficulties is to approximate the recourse
function Q with a recourse function Q̂ such that the approximating model can be
solved within reasonable time limits. For example, for continuous recourse functions
Q̂ (with Y = R

n2+ ) with a discretely distributed random vector ω, efficient solution
methods are available, most of them based on the L-shaped method of [34]. In this
section, we consider several approximations Q̂ dealing with the above mentioned
difficulties, and, in particular, we derive error bounds for these approximations which
are necessary to guarantee the quality of the resulting approximating solutions.

To solve continuous recourse models with continuous random variables typically
discrete approximations are used, that is, the continuous random variables in themodel
are approximated by discrete ones. We discuss two types of discrete approximations
in Sect. 4.3, one of them a lower bound of Q discussed in e.g. [16], and we derive
error bounds for these approximations showing that the approximations are good as
long as the total variations of the densities of the random variables in the model are
small enough.

Themain difficulty solving integer recoursemodels (withY = Z
n2+ ) is that generally

the integer recourse function is non-convex [26]. Several algorithms are available for
mixed-integer and pure integer recourse models (see [20,21,31] for an overview),
but these algorithms are restricted to special cases or have difficulties solving very
large real-life problem instances. An alternative approach to obtain good first-stage
decisions x is to use convex approximations of Q. For example, for totally unimodular
(TU) integer recourse models convex approximations are derived in [33], building on
earlier work in [19], and in [27] we derive a uniform error bound for this class of
convex approximations. In Sect. 4.4 we show that this error bound can be obtained
using the results in Corollary 2 of Sect. 3.3. Moreover, we construct a new convex
approximation improving the error bound of [27] by a factor 2, and we show that this
convex approximation has the best worst-case error bound possible.

In Sect. 4.5 we use the total variation bounds of Sect. 3.3 to derive a tractable
Lipschitz constant for pure integer recourse models.

Throughout the remainder of this paper we assume that

(A1) the recourse is complete, i.e. v(s) < +∞ for all s ∈ R
m ,

(A2) the recourse is sufficiently expensive, i.e. v(s) > −∞ for all s ∈ R
m , and

(A3) Eω[|ωi |] < +∞, i = 1, . . . ,m.
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As a consequence the recourse function Q is finite for all z ∈ R
m .

4.1 Dual representations

For continuous recourse models with Y = R
n2+ , a common approach is to use strong

LP-duality to rewrite the second-stage value function v, see e.g. [2] or [32]. We have
for every s ∈ R

m ,

v(s) = min{qy : Wy ≥ s, y ∈ R
n2+ }

= max{λs : λW ≤ q, λ ∈ R
m+}.

Assumptions (A1) and (A2) imply that the dual feasible region � := {λ ∈ R
m :

λW ≤ q} is non-empty and bounded, so that it is spanned by finitely many extreme
points denoted λ1, . . . , λK . Since v attains its optimum in one of these extreme points,
we have

v(s) = max
k=1,...,K

λks, s ∈ R
m .

For totally unimodular (TU) integer recourse models with Y = Z
n2+ and TU recourse

matrix W we can obtain a similar dual representation for v. Since W is TU, and thus
integral, we have

v(s) = min{qy : Wy ≥ �s� , y ∈ Z
n2+ }

= min{qy : Wy ≥ �s� , y ∈ R
n2+ }.

Again using strong LP-duality we find in this case that

v(s) = max
k=1,...,K

λk �s�, s ∈ R
m .

Using these expressions we also obtain dual representations for the expected recourse
function Q. For continuous recourse models we have

Q(z) = Eω

[
max

k=1,...,K
λk(ω − z)

]
, z ∈ R

m, (30)

and for TU integer recourse

Q(z) = Eω

[
max

k=1,...,K
λk �ω − z�

]
, z ∈ R

m . (31)

4.2 Extending total variation bounds to a multi-dimensional setting

From the dual representation of Q in (30) and (31) it is still unclear howwe can use our
one-dimensional results to derive error bounds for approximations of Q. One of the
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difficulties is the maximum operator, since different dual vertices λk may be optimal
for different values of ω. Nevertheless, by analyzing properties of the function

λ(s) ∈ argmax
k=1,...,K

λks, s ∈ R
m,

in Lemma 11, we are able to prove Theorem 2, the main result of this subsection.
It allows to derive error bounds for discrete approximations of continuous recourse
models in Sect. 4.3 and for convex approximations of TU integer recourse models in
Sect. 4.4.

Lemma 11 Let λ1, . . . , λK ∈ R
m+ be given, and let H : Rm �→ R

m be a separable
function defined as

H(x) = (H1(x1), . . . , Hm(xm)),

where each Hi is non-decreasing. Then, there exists a function λ : Rm �→ R
m such

that

(i) λ(x) ∈ argmaxk=1,...,Kλk H(x) for all x ∈ R
m, and

(ii) λi (·|x(i)) : R �→ R defined as λi (xi |x(i)) = λi (x) is non-decreasing for every
i = 1, . . . ,m, and x(i) ∈ R

m−1.

Here, x(i) denotes x without its i -th component.

Proof Obviously, there exists λ : Rm �→ R
m such that (i) holds. However, such λ

is not necessarily unique because for some x ∈ R
m , the set argmaxk=1,...,Kλk H(x)

may contain more than one element. Note that in order to prove that there exists λ

satisfying both (i) and (ii) it is of no restriction to assume, as we do, that λ(x1) = λ(x2)
if H(x1) = H(x2).

Now suppose for contradiction that for every λ satisfying (i) there exists i =
1, . . . ,m, and x(i) ∈ R

m−1 such that λi (·|x(i)) is not non-decreasing. That is, there
exist x1, x2 ∈ R

m with x1(i) = x2(i) and x1i < x2i such that λi (x1) > λi (x2). Note that

λi (x1) > λi (x2) implies that Hi (x1i ) �= Hi (x2i ) and thus Hi (x1i ) < Hi (x2i ) since Hi

is non-decreasing.
Since λ satisfies (i), we have

λ(x1)H(x1) ≥ λ(x2)H(x1) (32)

and
λ(x2)H(x2) ≥ λ(x1)H(x2). (33)

By adding the inequalities in (32) and (33) it follows that

[
λ(x1) − λ(x2)

] [
H(x1) − H(x2)

]
≥ 0,

and since x1(i) = x2(i), implying Hj (x1j ) = Hj (x2j ) for j �= i , we have

[
λi (x

1) − λi (x
2)
] [

Hi (x
1
i ) − Hi (x

2
i )
]

≥ 0.

This contradicts the assertion that λi (x1) > λi (x2) and Hi (x1i ) < Hi (x2i ). �	
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Nowwe are almost ready to prove the main result of this subsection. First, however,
we need to define a sufficiently rich set Hm of ‘nice’ m-dimensional joint density
functions.

Definition 6 LetHm denote the set of allm-dimensional joint pdf f whose conditional
density functions fi (·|x(i)) are of bounded variation. That is, fi (·|x(i)) ∈ F for all
i = 1, . . . ,m, and x(i) ∈ R

m−1.

An example of such a joint density function is the multivariate normal joint pdf
f since its conditional density functions fi (·|x(i)) are (one-dimensional) normal pdf
as well, and thus of bounded variation. Moreover, a joint pdf f belongs to Hm if f
corresponds to a continuous random vector with independent components ωi , whose
density functions fi are of bounded variation.

Theorem 2 Let ω be a random vector with joint pdf f ∈ Hm, and let λ1, . . . , λK be
a collection of vectors in Rm+. Define

Q j := Eω

[
max

k=1,...,K
λk H j (ω)

]
, j = 1, 2,

where H1, H2 : R
m �→ R

m are separable functions defined as H j (x) =
(H j

1 (x1), . . . , H
j
m(xm)) with H j

i non-decreasing for j = 1, 2, and i = 1, . . . ,m.
Assume that ϕi (xi ) := H1

i (xi ) − H2
i (xi ), xi ∈ R, is a periodic function with period

pi and finite mean value νi = p−1
i

∫ pi
0 ϕi (u)du = 0 for every i = 1, . . . ,m. Then,

m∑
i=1

λ∗
i Eω(i)

[
N
(
ϕi , |Δ| fi (·|ω(i))

)]
≤ Q1 − Q2 ≤

m∑
i=1

λ∗
i Eω(i)

[
M
(
ϕi , |Δ| fi (·|ω(i))

)]
,

(34)
where λ∗

i := maxk=1,...,K λki .

Proof Since H1 is separable and its components are non-decreasing there exists a
function λ : R �→ R satisfying (i) and (ii) of Lemma 11. For this function λ, we have
Q1 = Eω[λ(ω)H1(ω)] and Q2 ≥ Eω[λ(ω)H2(ω)]. Thus,

Q1 − Q2 ≤ Eω

[
λ(ω)

(
H1(ω) − H2(ω)

)]

=
m∑
i=1

Eω[λi (ω)ϕi (ωi )]

=
m∑
i=1

∫

Rm
λi (x)ϕi (xi ) f (x)dx .

For every i = 1, . . . ,m, we condition on x(i) ∈ R
m−1 to obtain

Q1 − Q2 ≤
m∑
i=1

∫

Rm−1

{∫

R

λi (xi |x(i))ϕi (xi ) fi (xi |x(i))dxi

}
f(i)(x(i))dx(i).
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Observe that the inner integral can be bounded using Proposition 3, since ϕi is a
periodic function with period pi and mean value νi = 0, fi (·|x(i)) ∈ F , and λi (·|x(i))

is a non-decreasing function such that 0 ≤ λi (xi |x(i)) ≤ λ∗
i for all xi ∈ R. Hence, the

second inequality in (34) follows from

Q1 − Q2 ≤
m∑
i=1

∫

Rm−1
λ∗
i M

(
ϕi , |Δ| fi (·|x(i))

)
f(i)(x(i))dx(i)

=
m∑
i=1

λ∗
i Eω(i)

[
M
(
ϕi , |Δ| fi (·|ω(i))

)]
.

The first inequality in (34) holds since by symmetry

Q2 − Q1 ≤
m∑
i=1

λ∗
i Eω(i)

[
M
(

− ϕi , |Δ| fi (·|ω(i))
)]

,

and since M
(

− ϕi , |Δ| fi (·|ω(i))
)

= −N
(
ϕi , |Δ| fi (·|ω(i))

)
by Lemma 1 (i). �	

Corollary 3 Consider the same setting as in Theorem 2. Then,

|Q1 − Q2| ≤ 1

4

m∑
i=1

λ∗
i Eω(i)

[
|Δ| fi (·|ω(i))

] ∫ pi

0
|ϕi (x)|dx, (35)

where λ∗
i := maxk=1,...,K λki .

Proof The inequality in (35) follows immediately from applying Proposition 1 to (34).
�	

In the following sections we will rely on Theorem 2 to prove a variety of approxi-
mation results.

4.3 Discrete approximations for continuous recourse models

Consider the continuous recourse function

Q(z) = E f

[
min{qy : Wy ≥ ω − z, y ∈ R

n2+ }
]
, z ∈ R

m, (36)

where ω is a continuous random vector with joint pdf f ∈ Hm . Solving the corre-
sponding recoursemodel is difficult, since evaluation of Q requires the computation of
a multi-dimensional integral. This is why the continuous random vector ω is typically
approximated by a discrete random vector ξ . The approximating model can be solved
efficiently using existing methods, most of them inspired by the L-shaped method of
[34].
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There has been a vast amount of work in the literature on how to select a discrete
random vector ξ and how to guarantee the quality of the approximating solutions. The
construction of approximating distributions goes back to Jensen [15] and Edmundson-
Madansky [9,23]. Examples of sampling methods are the sample average approxima-
tion, discussed in e.g. [32], and stochastic decomposition [14]. Scenario generation
for multistage recourse problems is surveyed in [6], see also [25], and scenario reduc-
tion techniques, based on stability results (see e.g. [28]), are discussed in e.g. [13]
and [7]. In this section, we do not provide a detailed (numerical) comparison with
these existing methods but merely show initial results and indicate why they might
be useful.

We consider two types of discrete approximations and derive error bounds for
both, showing that the approximations are good as long as the total variations of the
densities in the model are small enough. The first so-called mid-point approximation,
is rather simple but an error bound can be derived directly from Theorem 2. The
second discrete approximation, the lower bound denoted as the Jensen approximation
[15], is more sophisticated so that deriving an error bound is not straightforward.
Nevertheless, we do so by comparing the Jensen approximation with the mid-point
approximation.

The obvious advantage of an error bound for the Jensen approximation is that it
obviates the need for an upper bound for Q to guarantee the quality of the approxi-
mation, as is often the case in approximation schemes (see e.g. [4]) where iteratively
better lower and upper bounds are calculated until the gap is sufficiently small. This
might considerably speed up computations, especially in case this error bound is
small, since computing a tight upper bound is usually much more demanding than
computing a lower bound. Precisely this latter observation motivated several studies
deriving tight upper bounds within reasonable time limits. For example, Frauendorfer
[10], Kall [17], Gassmann and Ziemba [11], Edirisinghe and Ziemba [8], and Birge
and Wets [5] use moment problems with varying conditions to derive such upper
bounds, Birge and Wallace [3] construct a separable piecewise linear upper bound
that requires a polynomial number of iterations in the number of random variables,
and Birge [1] derives bounds for aggregating scenarios and time stages in multistage
problems.

4.3.1 Mid-point approximation

The mid-point approximation can be interpreted as follows. Partition Rm into equally
sized hyperrectangles Cl(α, ρ), defined as

Cl(α, ρ) :=
m∏
i=1

ρi

(
αi + li − 1, αi + li

]
, l ∈ Z

m .

Here, ρ ∈ R
m with ρ > 0 represents the size of the hyperrectangles and α ∈ R

m is a
shift parameter. Let ζ l(α, ρ) denote the mid-point of Cl(α, ρ) defined as
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ζ l(α, ρ) := P
(
α + l − 1

2
em
)
, l ∈ Z

m,

with P = diag{ρ1, . . . , ρm} and em the all-one vector. Then, themid-point approxima-
tion is obtained by concentrating all probability mass corresponding to ω on Cl(α, ρ)

in its mid-point ζ l(α, ρ) for every l ∈ Z
m .

Definition 7 For every α ∈ R
m and ρ ∈ R

m with ρ > 0, let the ρ-size mid-point
approximation Q̂ρ

α of the continuous recourse function Q be defined as

Q̂ρ
α(z) :=E f

[
min{qy : Wy ≥ ξ(ω;α, ρ) − z, y ∈ R

n2+ }
]
, z ∈ R

m, (37)

where ξ(ω;α, ρ):=P
(⌈
P−1ω

⌉
α

− 1/2em
)
, with P = diag{ρ1, . . . , ρm}, is a discrete

random vector with support contained in {ζ l(α, ρ) : l ∈ Z
m} such that

P

{
ξ(ω;α, ρ) = ζ l(α, ρ)

}
= P

{
ω ∈ Cl(α, ρ)

}
, for all l ∈ Z

m .

Intuitively, it is clear that if the components of ρ are small enough, and thus the size
of the hyperrectangles is small, then Q̂ρ

α will be a good approximation of Q. The shift
parameter α does not influence the worst-case error bound for the ρ-size mid-point
approximation.

Theorem 3 Consider the continuous recourse function

Q(z) = E f

[
min{qy : Wy ≥ ω − z, y ∈ R

n2+ }
]
, z ∈ R

m,

where ω is a continuous random vector with joint pdf f ∈ Hm, and consider its
ρ-size mid-point approximation with shift parameter α ∈ R

m, defined (according to
Definition 7) as

Q̂ρ
α(z) := E f

[
min

{
qy : Wy ≥ P

(⌈
P−1ω

⌉
α

− 1/2em
)

− z, y ∈ R
n2+
}]

, z ∈ R
m .

Then,

‖Q − Q̂ρ
α‖∞ ≤ 1

2

m∑
i=1

ρiλ
∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
,

where λ∗
i := maxk=1,...,K λki and h is defined in (25).

Proof Using the dual representation for continuous recourse models in (30) we can
write

Q(z) = E f

[
max

k=1,...,K
λk(ω − z)

]
, z ∈ R

m,
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and

Q̂ρ
α(z) = E f

[
max

k=1,...,K
λk
(
P
(⌈

P−1ω
⌉

α
− 1/2em

)
− z

)]
, z ∈ R

m .

For every z ∈ R
m , we define H1(ω) = ω−z and H2(ω) = P(

⌈
P−1ω

⌉
α
−1/2em)−z,

and observe that H1 and H2 are separable functions, the latter since P is a diagonal
matrix.Moreover, the components of H1 and H2 are non-decreasing, and the functions

ϕi (xi ) = H1
i (xi ) − H2

i (xi ) = xi + ρi/2 − ρi �xi/ρi�αi
, xi ∈ R,

are periodic with period pi = ρi and mean value νi = 0. Thus, all conditions of
Theorem 2 are satisfied, and since the functions ϕi do not depend on z, we conclude
from (34) that

sup
z∈Rm

{
Q(z) − Q̂ρ

α(z)
}

≤
m∑
i=1

λ∗
i Eω(i)

[
M(ϕi , |Δ| fi (·|ω(i)))

]
,

and

sup
z∈Rm

{
Q̂ρ

α(z) − Q(z)
}

≤ −
m∑
i=1

λ∗
i Eω(i)

[
N (ϕi , |Δ| fi (·|ω(i)))

]
.

We can compute these upper bounds using special properties of the functions ϕi
involved. In fact, the ϕi are scaled versions of the function ϕ̄α in (26) in Example 2 of
Sect. 3.3, since ϕi (xi ) = ρi ϕ̄αi (xi/ρi ) for all xi ∈ R and all i = 1, . . . ,m. Hence we
will conclude the proof by showing that

M(ϕi , B) = ρi M(ϕ̄αi , ρi B) = ρi

2
h(ρi B), (38)

and
N (ϕi , B) = ρi N (ϕ̄αi , ρi B) = −ρi

2
h(ρi B). (39)

In both (38) and (39) the first equality follows from Lemma 1 (ii) and (iii), and the
second one from Example 2. �	

Theorem3 shows that the error of the ρ-sizedmid-point approximation decreases as
either the components of ρ or the total variations of the conditional densities decrease.
The first is common for discrete approximations since finer discretizations generally
reduce the ‘distance’ between the probability distributions ofω and ξ(ω;α, ρ) (see e.g.
Römisch [28] for a formal definition), leading to better approximations. The second,
however, does not follow from a reduction in the distance between probability distri-
butions, since in Example 3 we show that the total variations may decrease whereas
the distance between the probability distribution and its approximation remains the
same. The example illustrates the unique nature of the error bound in Theorem 3,
which is not just obtained by comparing probability distributions but by exploiting
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both the direct relation between ω and ξ(ω;α, ρ) and the structure of the underlying
second-stage value function v. Indeed, e.g. Kaut and Wallace [18] advocate the use of
scenario generation methods taking the latter into account.

Example 3 Consider the continuous recourse function Q and its ρ-sized mid-point
approximation Q̂ρ

α with ρ = em andα = 0, as defined in (36) and (37), respectively. For
every n ∈ N, let the continuous random vector ωn be uniformly distributed on [0, n]m ,
so that its components ωn

i are independent and have pdf f ni defined as f ni (x) = 1/n
if x ∈ [0, n] and f ni (x) = 0, otherwise. Since |Δ| f ni = 2/n for every i = 1, . . . ,m,
it follows from Theorem 3 that for ω := ωn ,

‖Q − Q̂ρ
α‖∞ ≤ (8n)−1

m∑
i=1

λ∗
i ,

which converges to zero as n → ∞.
Interestingly, the Kantorovich distance between the probability distributions of ωn

and its discrete approximation ξ(ωn;α, ρ) = �ωn� − 1/2 is constant for all n ∈ N,
implying that the analysis of e.g. Römisch [28] cannot be used to derive the conver-
gence result above.

4.3.2 Jensen approximation

The Jensen approximation is more sophisticated than the mid-point approximation:
instead of concentrating all probability mass of ω on a hyperrectangle Cl(α, ρ) in its
mid-point ζ l(α, ρ), the Jensen approximation puts it in its conditional mean μl(α, ρ)

defined as

μl(α, ρ) :=E f

[
ω|ω ∈ Cl(α, ρ)

]
, l ∈ Z

m .

Although the Jensen approximation can be defined using any partition of Rm , we use
equally sized hyperrectanglesCl(α, ρ) to be able to compare the Jensen approximation
with the mid-point approximation.

Definition 8 For every α ∈ R
m and ρ ∈ R

m with ρ > 0, let the ρ-size Jensen
approximation Q̃ρ

α of the continuous recourse function Q be defined as

Q̃ρ
α(z) := Eω

[
min{qy : Wy ≥ ξ f (ω;α, ρ) − z, y ∈ R

n2+ }
]
, z ∈ R

m,

where ξ f : R
m �→ R

m is defined as ξ f (x;α, ρ) := μl(α, ρ) for x ∈ Cl(α, ρ),

l ∈ Z
m , and thus ξ f (ω;α, ρ) is a discrete random vector with

P

{
ξ f (ω;α, ρ) = μl(α, ρ)

}
= P

{
ω ∈ Cl(α, ρ)

}
, l ∈ Z

m .

We will derive an upper bound for ‖Q − Q̃ρ
α‖∞ by comparing the Jensen approxi-

mation Q̃ρ
α and the mid-point approximation Q̂ρ

α . In fact, the main purpose is to find
an upper bound for
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sup
z∈Rm

Q̂ρ
α(z) − Q̃ρ

α(z).

Indeed, this bound yields an upper bound for Q(z) − Q̃ρ
α(z) = Q(z) − Q̂ρ

α(z) +
Q̂ρ

α(z) − Q̃ρ
α(z) for all z ∈ R

m , since ‖Q − Q̂ρ
α‖∞ is bounded by Theorem 3. Since

the Jensen approximation is a lower bound for Q, it holds Q(z)− Q̃ρ
α(z) ≥ 0, z ∈ R

m .
The difference Q̂ρ

α(z) − Q̃ρ
α(z) can not be bounded using Theorem 2, since the

underlying difference function is not periodic. Moreover, this function will depend
on the pdf f , since the conditional means μl(α, ρ) depend on f . Nevertheless, we
are able to find a uniform upper bound for the one-sided difference Q̂ρ

α(z) − Q̃ρ
α(z)

using additional analysis. The key observation is that for f constant on Cl(α, ρ), the
conditional mean μl(α, ρ) coincides with the mid-point ζ l(α, ρ) of Cl(α, ρ).

Proposition 4 Let α ∈ R
m and ρ ∈ R

m be given. Consider the ρ-size mid-point
approximation Q̂ρ

α and the ρ-size Jensen approximation Q̃ρ
α . Then, for every z ∈ R

m,

Q̂ρ
α(z) − Q̃ρ

α(z) ≤ 1

2

m∑
i=1

ρiλ
∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
,

where λ∗
i := maxk=1,...,K λki and h is defined in (25).

Proof Let z ∈ R
m be given and consider the dual representations of Q̂ρ

α(z) and Q̃ρ
α(z)

given by

Q̂ρ
α(z) = E f

[
max

k=1,...,K
λk
(
P

(⌈
P−1ω

⌉
α

− 1

2
em

)
− z

)]
,

and

Q̃ρ
α(z) = E f

[
max

k=1,...,K
λk
(
ξ f (ω;α, ρ) − z

)]
,

respectively. Observe that for every l ∈ Z
m , both P

(⌈
P−1ω

⌉
α

− 1
2em

) − z and
ξ f (ω;α, ρ) − z are constant for ω ∈ Cl(α, ρ). Because of the first, there exists
λz : Rm �→ R

m such that λz is constant on Cl(α, ρ) for every l ∈ Z
m , and

λz(x) ∈ argmax
k=1,...,K

λk
(
P

(⌈
P−1x

⌉
α

− 1

2
em

)
− z

)
, x ∈ R

m .

Thus,

Q̂ρ
α(z) − Q̃ρ

α(z) ≤ E f

[
λz(ω)

(
P

(⌈
P−1ω

⌉
α

− 1

2
em

)
− ξ f (ω;α, ρ)

)]
.
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We can rewrite this expression as

Q̂ρ
α(z) − Q̃ρ

α(z) ≤
m∑
i=1

E f

[
λz
i (ω)

(
ρi (�ωi/ρi�αi

− 1/2) − ξ
f
i (ω;α, ρ)

)]

=
m∑
i=1

∫

Rm
λz
i (x)

(
ρi (�xi/ρi�αi

− 1/2) − ξ
f
i (x;α, ρ)

)
f (x)dx

=
m∑
i=1

∑
l∈Zm

∫

Cl (α,ρ)

λz
i (x)

(
ρi (�xi/ρi�αi

− 1/2) − ξ
f
i (x;α, ρ)

)
f (x)dx .

Observing that the integrand is constant in x on Cl(α, ρ) and writing it as
λz
i (l)(ζ

l
i (α, ρ) − μl

i (α, ρ)), it follows that

Q̂ρ
α(z) − Q̃ρ

α(z) ≤
m∑
i=1

θ
f
i (α, ρ), (40)

where θ
f
i (α, ρ) is defined for every i = 1, . . . ,m as

θ
f
i (α, ρ) :=

∑
l∈Zm

λz
i (l)

(
ζ li (α, ρ) − μl

i (α, ρ)
) ∫

Cl (α,ρ)

f (x)dx .

Consider first the special case that ζ li (α, ρ) ≥ μl
i (α, ρ) for all l ∈ Z

m for some
i = 1, . . . ,m. Then,

θ
f
i (α, ρ) ≤ λ∗

i

∑
l∈Zm

(
ζ li (α, ρ) − μl

i (α, ρ)
) ∫

Cl (α,ρ)

f (x)dx

= λ∗
i

∫

Rm
(ρi (�xi/ρi�αi

− 1/2) − xi ) f (x)dx,

since for every l ∈ Z
m ,

μl
i (α, ρ) := E f

[
ωi |ω ∈ Cl(α, ρ)

]
=
∫
Cl (α,ρ)

xi f (x)dx∫
Cl (α,ρ)

f (x)dx

and thus

∑
l∈Zm

μl
i (α, ρ)

∫

Cl (α,ρ)

f (x)dx =
∫

Rm
xi f (x)dx .
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Sinceρi (�xi/ρi�αi
−1/2)−xi = −ρi ϕ̄αi (xi/ρi )with ϕ̄αi the periodic function defined

in (26) of Example 2, proceeding as before to obtain

−
∫

Rm
ρi ϕ̄αi (xi/ρi ) f (x)dxi = −

∫

Rm−1

∫

R

ρi ϕ̄αi (xi/ρi ) fi (xi )dxi f(i)(x(i))dx(i)

≤
∫

Rm−1

1

2
ρi h

(
ρi |Δ| fi (·|x(i))

)
f(i)(x(i))dx(i)

= 1

2
ρiEω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
,

with h defined in (25), it follows that

θ
f
i (α, ρ) ≤ 1

2
ρiλ

∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
. (41)

Hence, if indeed ζ li (α, ρ) ≥ μl
i (α, ρ) holds for every i = 1, . . . ,m, and l ∈ Z

m , then

Q̂ρ
α(z) − Q̃ρ

α(z) ≤ 1

2

m∑
i=1

ρiλ
∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
.

Nowconsider the general case for somefixed i ∈ {1, . . . ,m}. Obviously, ζ li (α, ρ) ≥
μl
i (α, ρ) does not hold for every l ∈ Z

m and f ∈ Hm . We will show that nevertheless
(41) is also true in this case, by constructing a pdf g for which the above condition
holds together with θ

f
i (α, ρ) ≤ θ

g
i (α, ρ) and |Δ|gi (·|x(i)) ≤ |Δ| fi (·|x(i)) for every

x(i) ∈ R
m−1, so that

θ
f
i (α, ρ) ≤ θ

g
i (α, ρ) ≤ 1

2
ρiλ

∗
i Eω(i)

[
h
(
ρi |Δ|gi (·|ω(i))

)]

≤ 1

2
ρiλ

∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
. (42)

This pdf g is obtained by flattening the i th conditional densities of f , and is defined
as

g(x) = gi (xi |x(i))g(i)(x(i)), for all x ∈ R
m,

where g(i)(x(i)) := f(i)(x(i)) for all x(i) ∈ R
m−1, and for every l ∈ Z

m and x ∈
Cl(α, ρ) we define

gi (xi |x(i)) =
{
fi (xi |x(i)), if ζ li (α, ρ) ≥ μl

i (α, ρ),

Kl
i (x(i);α, ρ), otherwise,

with

Kl
i (x(i);α, ρ) := |Cl

i (α, ρ)|−1
∫

Cl
i (α,ρ)

fi (xi |x(i))dxi = ρ−1
i

∫

Cl
i (α,ρ)

fi (xi |x(i))dxi .
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Here, Cl
i (α, ρ) ⊂ R is defined as Cl

i (α, ρ) := ρi (αi + li − 1, αi + li ], and similarly,
we define Cl

(i)(α, ρ) ⊂ R
m−1 as Cl

(i)(α, ρ) := ∏
j �=i C

l
j (α, ρ). In order to prove (42),

we will show that the pdf g satisfies the properties

(i) g(i)(x(i)) = f(i)(x(i)) for all x(i) ∈ R
m−1,

(ii)
∫
Cl
i (α,ρ)

gi (xi |x(i))dxi=
∫
Cl
i (α,ρ)

fi (xi |x(i))dxi for all l ∈ Z
m and x(i)∈ Cl

(i)(α, ρ),

(iii)
∫
Cl (α,ρ)

f (x)dx = ∫
Cl (α,ρ)

g(x)dx for every l ∈ Z
m ,

(iv) gi (·|x(i)) ∈ F and |Δ|gi (·|x(i)) ≤ |Δ| fi (·|x(i)) for all x(i) ∈ R
m−1,

(v) the conditional means μ̂l
i (α, ρ) corresponding to g satisfy ζ li (α, ρ) ≥ μ̂l

i (α, ρ)

for all l ∈ Z
m ,

(vi) μ̂l
i (α, ρ) ≤ μl

i (α, ρ) for all l ∈ Z
m .

Note that (i) holds by definition of g(i), (ii) holds either trivially or

∫

Cl
i (α,ρ)

gi (xi |x(i))dxi =
∫

Cl
i (α,ρ)

Kl
i (x(i);α, ρ)dxi =

∫

Cl
i (α,ρ)

fi (xi |x(i))dxi ,

and (iii) follows from (i) and (ii) by construction of g. Property (iv) holds since for
every x(i) ∈ R

m−1, g(·|x(i)) is a flattened version of f (·|x(i)) obtained by apply-
ing Lemma 8 repeatedly. Moreover, if for some l ∈ Z

m , ζ li (α, ρ) ≥ μl
i (α, ρ),

then gi (xi |x(i)) = f (xi |x(i)) for x ∈ Cl(α, ρ) so that μ̂l
i (α, ρ) = μl

i (α, ρ), and if
ζ li (α, ρ) < μl

i (α, ρ), then gi (·|·) is constant on Cl(α, ρ) so that the conditional mean
μ̂i (α, ρ) coincides with the midpoint ζ li (α, ρ). From these observations (v) and (vi)
follow.

Combining (iii) and (vi) we immediately have

θ
f
i (α, ρ) :=

∑
l∈Zm

λz
i (l)

(
ζ li (α, ρ) − μl

i (α, ρ)
) ∫

Cl (α,ρ)

f (x)dx

≤
∑
l∈Zm

λz
i (l)

(
ζ li (α, ρ) − μ̂l

i (α, ρ)
) ∫

Cl (α,ρ)

g(x)dx

= θ
g
i (α, ρ).

Moreover, since ζ li (α, ρ) ≥ μ̂l
i (α, ρ) for every l ∈ Z

m by (v), the inequality in (41)
holds for g, yielding

θ
g
i (α, ρ) ≤ 1

2
ρiλ

∗
i Eω(i)

[
h
(
ρi |Δ|gi (·|ω(i))

)]
.

Since h is non-decreasing, it now follows from (iv) that

1

2
ρiλ

∗
i Eω(i)

[
h
(
ρi |Δ|gi (·|ω(i))

)]
≤ 1

2
ρiλ

∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
,
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and we conclude that (42) holds, indeed. Hence, for every z ∈ R
m , (40) yields

Q̂ρ
α(z) − Q̃ρ

α(z) ≤ 1

2

m∑
i=1

ρiλ
∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
.

�	
Using this proposition we derive an error bound for the Jensen approximation.

Theorem 4 Consider the continuous recourse function

Q(z) = E f

[
min{qy : Wy ≥ ω − z, y ∈ R

n2+ }
]
, z ∈ R

m,

where ω is a continuous random vector with joint pdf f ∈ Hm, and its ρ-size Jensen
approximation Q̃ρ

α with shift parameter α defined in Definition 8. Then,

sup
z∈Rm

|Q(z) − Q̃ρ
α(z)| ≤

m∑
i=1

ρiλ
∗
i Eω(i)

[
h
(
ρi |Δ| fi (·|ω(i))

)]
,

where λ∗
i := maxk=1,...,K λki and h is defined in (25).

Proof Since every Jensen approximation is a lower bound for Q, we have Q(z) −
Q̃ρ

α(z) ≥ 0 for every z ∈ R
m . The claim follows from combining Theorem 3 and

Proposition 4. �	
Remark 5 The value of the error bound for the Jensen approximation is precisely
twice the value of the bound for the corresponding mid-point approximation in The-
orem 3. We suspect that the first bound is not tight, leaving room for improvement.
However, to our knowledge it is the first non-trivial a priori error bound for the Jensen
approximation.

4.4 Convex approximations for totally unimodular integer recourse models

In this subsection we consider the totally unimodular integer recourse function

Q(z) :=E f

[
min{qy : Wy ≥ ω − z, y ∈ Z

n2+ }
]
, z ∈ R

m, (43)

whereω is a continuous randomvectorwith joint pdf f ∈ Hm andW is a TUmatrix. In
general, Q is a non-convex function. We discuss two types of convex approximations
for Q. The first type of so-called α-approximations has been developed by van der
Vlerk [33], and in [27] we derived a uniform error bound for these approximations.
The second type is a new convex approximation for which we can derive an error
bound using Theorem 2, improving on α-approximations by a factor 2. Interestingly,
the underlying periodic functions in the derivation of this error bound are the same as
for the mid-point approximation of the previous subsection, providing a connection

123



38 W. Romeijnders et al.

between two seemingly unrelated research areas. Another interesting observation is
that the α-approximations can be obtained by applying the mid-point approximation
to the new convex approximation. We conclude this subsection by showing that the
new convex approximation has the best worst-case error bound possible.

The α-approximations of [33] are defined for every α ∈ R
m as

Q̄α(z) := E f

[
min{qy : Wy ≥ �ω�α − z, y ∈ R

n1+ }
]
, z ∈ R

m, (44)

where �ω�α := �ω − α� + α is a discrete random vector with support contained in
α + Z

m . Since Q̄α is the recourse function of a continuous recourse model, it is
convex, and efficient solution methods are available to solve such models. Moreover,
we can use Theorem 2 to derive the same uniform error bound as in [27].

Theorem 5 Consider the totally unimodular integer recourse function Q defined in
(43) with ω a continuous random vector with joint pdf f ∈ Hm, and let Q̄α denote its
α-approximation defined in (44). Then, for every α ∈ R

m,

sup
z∈Rm

|Q(z) − Q̄α(z)| ≤
m∑
i=1

λ∗
i Eω(i)

[
h
(
|Δ| fi (·|ω(i))

)]
,

where λ∗
i :=maxk=1,...,K λki and h is defined in (25).

Proof Since Q̄α is a continuous recourse function we can use the dual representation
in (30) to obtain for every α ∈ R

m ,

Q̄α(z) = E f

[
max

k=1,...,K
λk(�ω�α − z)

]
, z ∈ R

m .

The dual representation of Q is given in (31). For every z ∈ R
m , we define H1(ω) =

�ω�α − z and H2(ω) = �ω − z� so that both H1 and H2 are separable and have
non-decreasing components. Moreover, for every i = 1, . . . ,m, the function

ϕi (xi ) = H1
i (xi ) − H2

i (xi ) = �xi�αi − �xi�zi , xi ∈ R,

is the same asϕα,β in (22) in Example 1withα = αi andβ = zi , and thusϕi is periodic
with period pi = 1 and mean value νi = 0. Since all conditions of Theorem 2 are
satisfied, we conclude from (34), and from (24) in Example 1, that for every α ∈ R

m

and z ∈ R
m ,

|Q(z) − Q̄α(z)| ≤
m∑
i=1

λ∗
i Eω(i)

[
h
(
|Δ| fi (·|ω(i))

)]
.

�	
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Next, we consider a new convex approximation which we denote as the shifted LP-
relaxation approximation. This approximation is obtained by shifting the right-hand
side in the LP-relaxation of Q by 1

2em , and its error bound, which we will derive using
Theorem 2, yields an improvement over α-approximations by a factor 2.

Definition 9 Let the shifted LP-relaxation approximation Q̃ of the TU integer
recourse function Q be defined as

Q̃(z) := E f

[
min

{
qy : Wy ≥ ω + 1

2
em − z, y ∈ R

n2+
}]

, z ∈ R
m . (45)

Theorem 6 Consider the totally unimodular integer recourse function

Q(z) := E f

[
min{qy : Wy ≥ ω − z, y ∈ Z

n2+ }
]
, z ∈ R

m,

whereω is a continuous random vector with joint pdf f ∈ Hm, and consider its shifted
LP-relaxation approximation Q̃ defined in (45). Then,

sup
z∈Rm

|Q(z) − Q̃(z)| ≤ 1

2

m∑
i=1

λ∗
i Eω(i)

[
h
(
|Δ| fi (·|ω(i))

)]
,

where λ∗
i := maxk=1,...,K λki and h is defined in (25).

Proof Using the dual representation

Q̃(z) = E f

[
max

k=1,...,K
λk(ω + 1

2
em − z)

]
, z ∈ R

m,

for Q̃, and (31) for Q, we can apply Theorem 2 for every z ∈ R
m with H1(ω) =

ω + 1
2em − z and H2(ω) = �ω − z� yielding

ϕi (xi ) = H1
i (xi ) − H2

i (xi ) = xi + 1/2 − �xi�zi , xi ∈ R,

for every i = 1, . . . ,m. The functions ϕi are the same as ϕ̄α in (26) of Example 2 with
α := zi , so that using (27) and N (ϕ̄α, B) = −N (ϕ̄α, B) it follows immediately that
for every z ∈ R

m ,

|Q(z) − Q̃(z)| ≤ 1

2

m∑
i=1

λ∗
i Eω(i)

[
h
(
|Δ| fi (·|ω(i))

)]
.

�	
Although the error bound of Q̃ is a factor 2 better than that of Q̄α , we do not necessarily
prefer Q̃ to Q̄α . Both being continuous recourse functions, Q̃ involves continuous
random variables whereas those of Q̄α are discrete. Indeed, this implies that solving
the approximating problem with Q̃ is much more demanding than that with Q̄α . In
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order to solve the former problem, discrete approximations of the distribution are
required (except in special cases).

Surprisingly, Q̄α may also be obtained by applying theρ-sizemid-point approxima-
tion of Sect. 4.3.1 to Q̃ with ρ = em and α ∈ R

m . Hence, half of the (worst-case) error
bound of the α-approximations can be contributed to approximating a non-convex TU
integer recourse model by a convex continuous recourse model and the remainder to
applying a discrete approximation to a continuous distribution.

Note that it is also possible to apply amore refined discrete approximation to Q̃, such
as the ρ-size mid-point approximation where the components of ρ are small, or the
Jensen approximation, yielding a better approximation than Q̄α . Based on a tradeoff
between available computation time and required quality of the approximation one
may decide which discrete approximation to use.

4.4.1 Shifted LP-relaxation: best worst-case error bound

In Theorem 7 we show for the special case of (one-dimensional) simple integer
recourse, i.e., for the case W = Im as introduced in [22], that surprisingly the error
bound of the shifted LP-relaxation approximation is the best worst-case bound pos-
sible for any convex approximation. This result can easily be generalized to the m-
dimensional simple integer case (similar to the proof of Corollary 2 in [27], where we
show that the error bound of α-approximations in Theorem 5 is tight in the simple
integer recourse case) showing that indeed the shifted LP-relaxation approximation is
the best convex approximation in a worst-case sense.

Theorem 7 Let Q : R �→ R denote the simple integer recourse function defined as
Q(z) = E f [�ω − z�+], z ∈ R. Then, for every B ∈ R with B > 0, there exists f ∈ F
with |Δ| f = B such that

sup
z∈R

|Q(z) − Q̂(z)| ≥ 1

2
h(B) (46)

for every convex function Q̂ : R �→ R, where h is defined in (25). Thus, the shifted
LP-relaxation approximation gives the best worst-case error bound in simple integer
recourse.

Proof Let Q̂ : R �→ R be a convex function. Since the simple integer recourse
function Q restricted to Z is convex (see Lemma 3.1 in [19]) with Q(z)− Q(z− 1) ∈
[−1, 0] for every z ∈ Z, it follows immediately that ‖Q − Q̂‖∞ = +∞ unless the
right-derivative Q̂′+(z) of Q̂ is contained in [−1, 0] for every z ∈ R, which we assume
without loss. Under this condition we will construct for every B > 0 a pdf f ∈ F
with |Δ| f = B such that there exists z ∈ R with |Q(z) − Q̂(z)| ≥ 1

2h(B). We will
consider the cases B ≤ 4 and B ≥ 4 separately.

First, let B ≥ 4 be given, and let ω be uniformly distributed on [0, 2/B] with
density f̂ : R �→ R defined as

f̂ (x) =
{
B/2, 0 < x < 2/B,

0, otherwise,
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with |Δ| f̂ = B. Moreover, simple computation based on this density shows that
Q(0) = 1 and Q(2/B) = 0. Since Q̂′+(z) ∈ [−1, 0] for every z ∈ R, it follows that
Q̂(0) − Q̂(2/B) ∈ [0, 2/B]. Thus,

|Q(0) − Q̂(0)| + |Q̂(2/B) − Q(2/B)|
≥
(
Q(0) − Q(2/B)

)
−
(
Q̂(0) − Q̂(2/B)

)
≥ h(B),

since h(B) = 1−2/B for B ≥ 4, andwe conclude that either |Q(0)− Q̂(0)| ≥ 1
2h(B),

or |Q̂(2/B) − Q(2/B)| ≥ 1
2h(B), or both hold with equality.

Next, consider the case B ≤ 4, and define f̂ : R �→ R as

f̂ (x) =
⎧⎨
⎩

B/2, 1/2 < x ≤ k∗,
c∗, k∗ < x ≤ k∗ + 1
0, otherwise,

where k∗ ∈ Z with k∗ ≥ 1, and 0 ≤ c∗ ≤ B/2 are defined such that

B

2

(
k∗ − 1

2

)
+ c∗ = 1. (47)

Such a k∗ and c∗ exist for every B ≤ 4, with 0 ≤ c∗ ≤ B/2 ensuring that |Δ| f̂ = B
and (47) that f̂ is indeed a pdf. Moreover, straightforward computation based on f̂
shows that Q(−1/2) = μ+1+B/16 and Q(0) = μ+1/2−B/16,whereμ := E f̂ [ω].
Hence, Q(−1/2) − Q(0) = 1/2 + B/8. Since Q̂′+(z) ∈ [−1, 0] for every z ∈ R, it
follows that Q̂(−1/2) − Q̂(0) ∈ [0, 1/2], so that

|Q(−1/2) − Q̂(−1/2)| + |Q̂(0) − Q(0)| ≥
(
Q(−1/2) − Q(0)

)

−
(
Q̂(−1/2) − Q̂(0)

)
≥ h(B),

since h(B) = B/8 for B ≤ 4. Thus, either |Q(−1/2) − Q̂(−1/2)| ≥ 1
2h(B), or

|Q̂(0) − Q(0)| ≥ 1
2h(B), or both hold with equality.

Since the error bound for the shifted LP-relaxation approximation in Theorem 6
reduces to 1

2h(|Δ| f ) for this special case, it follows immediately that this approxima-
tion gives the best worst-case error bound. �	

4.5 Lipschitz constant for pure integer recourse models

Continuity properties of mixed-integer expected value functions Q have been studied
in [30]. By carefully analyzing properties of the underlying mixed-integer value func-
tion Schultz shows that under certain conditions, the recourse function Q is Lipschitz
continuous. However, in the proof it is only shown that a finite-valued Lipschitz con-
stant exists. Here, we derive a Lipschitz constant for the pure integer recourse function
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Q, depending on the underlying second-stage value function v and the total variations
of the marginal densities of f . Once more we rely on the total variation bounds on the
expectation of periodic functions, complemented with subadditivity of v and related
properties.

Lemma 12 Let v be the value function of a pure integer program defined as

v(s) = min{qy : Wy ≥ s, y ∈ Z
n2+ }, s ∈ R

m . (48)

Then,

(i) v(s + t) ≤ v(s) + v(t) for every s, t ∈ R
m,

(ii) v(rs) ≤ rv(s) for every r ∈ Z+ and s ∈ R
m,

(iii) v(
∑N

i=1 ri si ) ≤ ∑N
i=1 riv(si ) for every r1, . . . , rN ∈ Z+ and s1, . . . , sN ∈ R

m.

Proof See Proposition 2.3 in Chapter II.3 of [24] for a proof of (i). Results (ii) and
(iii) follow immediately from (i). �	
Corollary 4 Consider v as defined in (48). Then, for every s, t ∈ Z

m,

v(s) − v(t) ≤
m∑
i=1

(si − ti )
+v(ei ),

where ei denotes the i th unit vector.

Proof Let s, t ∈ Z
m be given. By subadditivity of v in Lemma 12 (i), we have

v(s) ≤ v(t) + v(s − t). (49)

For i = 1, . . . ,m, let ri = si−ti and si = ei if si ≥ ti , and let ri = ti−si and si = −ei
if si < ti . Observe that ri ∈ Z+ for all i = 1, . . . ,m, and that s − t = ∑m

i=1 ri s
i so

that
v(s − t) ≤

m∑
i=1

riv(si ) =
m∑
i=1

(
(si − ti )

+v(ei ) + (ti − si )
+v(−ei )

)
(50)

by Lemma 12 (iii). The claim now follows from substituting (50) into (49) and by
observing that v(−ei ) ≤ 0 for all i = 1, . . . ,m, since y = 0 is a feasible solution in
v(−ei ). �	
Theorem 8 Consider the pure integer recourse function

Q(z):=E f

[
min{qy : Wy ≥ ω − z, y ∈ Z

n2+ }
]
, z ∈ R

m,

where ω is a continuous random vector with joint pdf f ∈ Hm, and assume that
W ∈ Z

m×n2 . Under assumptions (A1) and (A2) it holds for every z1, z2 ∈ R
m that

|Q(z1) − Q(z2)| ≤
m∑
i=1

v(ei )

(
1 + |Δ| fi

2

)
|z1i − z2i |, (51)

and thus |Q(z1) − Q(z2)| ≤ L‖z1 − z2‖1, with Lipschitz constant
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L:= max
i=1,...,m

{
v(ei )

(
1 + |Δ| fi

2

)}
.

Proof First, we show that the inequality (51) holds if we omit the absolute value on
the left-hand side. The claim then follows by symmetry.

Let z1, z2 ∈ R
m be given. Since W ∈ Z

m×n2 , it follows that for all s ∈ R
m ,

v(s) = v(�s�). Thus, by applying Corollary 4 we have

Q(z1) − Q(z2) = E f

[
v
(⌈

ω − z1
⌉)

− v
(⌈

ω − z2
⌉) ]

≤ E f

[
m∑
i=1

(⌈
ωi − z1i

⌉
−
⌈
ωi − z2i

⌉)+
v(ei )

]

=
m∑
i=1

v(ei )E fi

[ (⌈
ωi − z1i

⌉
−
⌈
ωi − z2i

⌉)+ ]
.

Observe that

E fi

[
(
⌈
ωi − z1i

⌉
−
⌈
ωi − z2i

⌉
)+
]

=
{
E fi

[
(
⌈
ωi − z1i

⌉− ⌈
ωi − z2i

⌉
)
]
, z1i ≤ z2i ,

0, z1i ≥ z2i .

Thus, we have

Q(z1) − Q(z2) ≤
m∑
i=1

1{z1i ≤z2i }v(ei )E fi

[(⌈
ωi − z1i

⌉
−
⌈
ωi − z2i

⌉)]
,

where1{z1i ≤z2i } is an indicator function equal to 1 if z
1
i ≤ z2i , and 0 otherwise. It remains

to show thatE fi

[
(
⌈
ωi − z1i

⌉− ⌈
ωi − z2i

⌉
)
] ≤ (1+ |Δ| fi

2 )|z1i −z2i | if z1i ≤ z2i . In order
to do so, observe that E fi

[
(
⌈
ωi − z1i

⌉− ⌈
ωi − z2i

⌉
)
] = E fi

[
ϕα,β(ωi )

]+β −α, with
ϕα,β defined in (22) of Example 1 with α := z1i and β := z2i . It follows from (23) that

E fi

[ (⌈
ωi − z1i

⌉
−
⌈
ωi − z2i

⌉) ]
≤ min

{
γz1i ,z

2
i
, γz1i ,z

2
i
(1 − γz1i ,z

2
i
)
|Δ| fi
2

}
+ z2i − z1i

≤ (1 − γz1i ,z
2
i
)
|Δ| fi
2

+ z2i − z1i ,

where the last inequality is true since γz1i ,z
2
i

:= z1i +1−⌈z1i
⌉
z2i

∈ (0, 1]. Since z1i ≤ z2i ,

1 − γz1i ,z
2
i

=
⌈
z1i

⌉
z2i

− z1i =
⌈
z1i − z2i

⌉
+ z2i − z1i

≤ z2i − z1i ,

123



44 W. Romeijnders et al.

and thus

E fi

[(⌈
ωi − z1i

⌉
−
⌈
ωi − z2i

⌉)]
≤ (z2i − z1i )

|Δ| fi
2

+ z2i − z1i

≤
(
1 + |Δ| fi

2

)
|z1i − z2i |.

�	

5 Summary and conclusions

We use worst-case analysis to derive upper and lower bounds for the expectation
E f [ϕ(ω)] of periodic functionsϕ depending on the total variation |Δ| f of the probabil-
ity density function f of the underlying random variableω. For periodically monotone
functions we obtain exact worst-case bounds. The bounds show that if the total vari-
ation |Δ| f of the pdf f is small, then the expectation E f [ϕ(ω)] will be close to the
mean value ν := p−1

∫ p
0 ϕ(x)dx of the periodic function ϕ with period p. These

results are derived in a general setting so that they can readily be applied in problems
involving both uncertainty and periodicity.

We apply these total variation bounds to approximations of recourse models, using
additional analysis to be able to apply these one-dimensional bounds in a multi-
dimensional setting. Interestingly, the same analysis is used to obtain error bounds
for approximations of both continuous and integer recourse models.

For continuous recourse models with continuous random variables we derive error
bounds for two types of discrete approximations: the so-called mid-point approxima-
tion and the Jensen approximation. In general, the smaller the total variations of the
densities of the random variables in the model are, the smaller the error bounds.

For totally unimodular integer recourse models we introduce the so-called
shifted LP-relaxation approximation. Its error bound improves the bound for α-
approximations of [33]—the best convex approximations known so far—by a factor
2. Moreover, we show that, in a worst-case sense, this shifted LP-relaxation pro-
vides the best convex approximation possible. Interestingly, the α-approximations
can be obtained by applying the mid-point approximation to the shifted LP-relaxation
approximation. This implies that half of the (worst-case) α-approximation error can be
contributed to coping with non-convexity, whereas the other half accounts for approx-
imating continuous distributions by discrete ones.

Finally, we use total variation bounds to derive a tractable Lipschitz constant for
the pure integer recourse function Q.

Extensions to multistage models may be considered for future research. Another
research direction is to assess the actual performance of the approximations (compared
to their error bounds) in a numerical study.

Appendix

In this appendix we give the proofs of Lemmas 1 and 2 of Sect. 1.1.
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Proof of Lemma 1 Properties (i) and (ii) follow trivially from the definition of M and
N .

To show (iii) let r > 0 be given, and consider ϕ̄r (x) := ϕ(x/r), x ∈ R. We will
show that for every f ∈ F with |Δ| f ≤ B, there exists g ∈ F with |Δ|g ≤ r B such
that E f [ϕ̄r (ω)] = Eg[ϕ(ω)], and vice versa, that for every f ∈ F with |Δ| f ≤ r B
there exists g ∈ F with |Δ|g ≤ B such that E f [ϕ(ω)] = Eg[ϕ̄r (ω)]. Together these
results imply that (iii) holds. Observe that for f ∈ F with |Δ| f ≤ B the pdf g defined
as g(x) := r f (r x), x ∈ R satisfies the first conditions and for f ∈ F with |Δ| f ≤ r B
the pdf g defined as g(x) := r−1 f (x/r) satisfies the latter.

Similarly, for ϕ̂(x) := ϕ(−x), x ∈ R, let f ∈ F with |Δ| f ≤ B be given. Then,
g(x) := f (−x), x ∈ R, satisfies g ∈ F with |Δ|g = |Δ| f ≤ B and E f [ϕ̂(ω)] =
Eg[ϕ(ω)], implying

M(ϕ̂, B) ≥ M(ϕ, B) and N (ϕ̂, B) ≤ N (ϕ, B).

Since ϕ(x) = ϕ̂(−x), x ∈ R, the reverse inequalities hold as well, proving (iv).
Finally, property (v) can be proven in a similar way, using that for every f ∈ F with

|Δ| f ≤ B, and β ∈ R, the pdf g(x):= f (x+β), x ∈ R, satisfies |Δ|g = |Δ| f ≤ B.�	
Proof of Lemma 2 Since for every f 0, f 1 ∈ F with |Δ| f 0 ≤ B and |Δ| f 1 ≤ B, and
0 ≤ t ≤ 1, the pdf f := (1 − t) f 0 + t f 1 satisfies

|Δ| f ≤ (1 − t)|Δ| f 0 + t |Δ| f 1 ≤ B,

it follows that the constraint |Δ| f ≤ B in M(ϕ, B) and N (ϕ, B) is convex. Since, in
addition, the objective E f [ϕ(ω)] is linear in f , we conclude that both M(ϕ, B) and
N (ϕ, B) are convex optimization problems with a linear objective. Since M(ϕ, B)

is a maximization problem and N (ϕ, B) is a minimization problem, it follows that
M(ϕ, B) is concave in B, and N (ϕ, B) is convex in B, respectively. �	
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