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Abstract

HE reflection operator [T.V91] can be defined on discrete event systems to yield
a structure outside the normal scope of such systems, but nevertheless very useful
in design problems.
Here we define the operator for a discrete event system (DES), being a generalization
of trace structures [Sne85]. We construct controllers using the reflection operator for
which we, temporarily, go beyond the normal scope of a DES. These controllers can be

computed effectively, using corresponding (finite) graphs.



1
Control of a DES

N this chapter we define a control problem for discrete event systems and give a
solution using the reflection operator.

1.1 Introduction

We define a discrete event system (DES) to be a triple [Sme90]
P = (aP,bP,tP)
with:

aPbP the alphabet (some finite set of symbols, the events)
bP C (aP)* the behaviour set
tP C (aP)* the task set

We assume the behaviour set of a DES P to be prefix-closed:
bP = pref(bP)

(if some string of events is a behaviour of P then so should be all prefixes of that string).
The task set denotes the completed behaviour of P. Of course, each completed task
should also be a behaviour:

tP CbP

For any z € tP we assume that, after z, P may stop without performing another event,
while after z € bP\t P the system will eventually perform another event or it deadlocks.
Two DESs will be given a special name:

empty(4d) = (4,0,0)
skip(4) = (4,{e},{e})

We will also need systems P in which the properties bP = pref(bP) and tP C bP
are not met. We call these systems generalized discrete event systems (GDESs). Such
a system may have for example a behaviour set that is by no means prefix-closed or a
task that is no behaviour! A GDES goes beyond our scope of a discrete event system.
Nevertheless, it will play a crucial role in the remainder of this paper.
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For GDESs P and R we define the interaction by [Sme90]:

(aPUaR,
{r:ze(aPUaR)* A z[aP €¢bP A z[aR€DbR: z},
{z:z€e(aPUaR)* A z[aP €tP A z[aR € tR: z})

where [ stands for alphabet restriction. The interaction of P and R will be denoted by

P|| R (pronounce “P parallel R”). It can be viewed as a simultaneous weaving of the

trace structures (aP,bP) with (aR,bR) and (aP,tP) with (aR,tR) [Sne85]. Because

the weaving of prefix-closed structures is again prefix-closed and weaving is C-monotonic,

we immediately have the property that the interaction of two DESs is again a DES.
We assume the following partial ordering on GDESs:

PCR =aP=aR N bPCbR AN tPCtR

We say P is a subsystem of R. Given some alphabet A we can find a greatest system,
namely (A, A*, A*) and a smallest one, namely empty(A4). Moreover, each set of systems
P; with equal alphabet has a greatest upper bound, namely the union of all those systems:
(aP, Uz va]‘ Uz tPZ>

For interactions of systems the common events can be seen as internal events. Such
events need no longer be visible outside the interaction. Therefore, we introduce a second
interaction operator that deletes the common events:

PIIR=(P|R)[(aP +aR)

The operator || (pronounce “blend”) is like the blend in trace theory [Sne85]. It is
monotonic with respect to C and associative if no event occurs in more than two of the
alphabets.

1.2 The reflection operator

From [T.V90] and [T.V91] we have the following definition of the reflection of some
GDES:

Definition 1.1 The refleclion of a GDES P is defined by

~P = (aP, (aP)*\bP, (aP)*\tP)

O
Notice that, if P is a DES, ~P is not.! This is why we need GDESs as well.
Property 1.2
() PCR = ~RC~P
(c) ~skip(d) = empty(Q)
(d) P||~P = empty(aP)
(e) Pl[~P = empty(QD) 0

Except for empty (@) and skip(@), see property 1.2.
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1.3 A control problem

Assume systems P, Lpyn, and Ly, are given with Ly, € Lipgz. Our control problem
is finding a system R such that

Lmin g P—”R g Lma:z:

In this formulation L., and L,..; describe minimal and maximal wanted behaviours
of the interaction. Mostly, L., describes the minimal acceptable behaviour and Liq.
the legal or admissable behaviour. Sometimes (see [LL91]), Ly is used to denote
the desired behaviour and L,,,; to denote the tolerated behaviour in case the desired
behaviour cannot be reached. Notice that al.,,;, = al;.: and R should be such that
all =aP +al,;,.

Earlier versions of this control problem (formulated using trace structures instead of
DESs) can be found in [Sme89]. The control problem can also be viewed as a design
problem: P is a first design guess, R is needed to complete the design.

We claim that the following GDES leads to a solution of the control problem.

F(P,L) = ~(P|[~L)
First, we need two properties concerning the reflection.

Property 1.3
PCR = P|[~R=empty(?)
proof: [T.V90]

PCR
= [ definition of C ]
aP=aRkR N bPCbR AN tPCtR
[ set theory |
aP=aR A bPN((aR)*\bR)=0 A tPN((aR)*\tR) =0
[ definition of ~ |
aP=a(~R) A bPNb(~R)=0 A tPNt(~R)=0
= [ definition of ][]
Pl[~R=(D,0,0)

Property 1.4
PJ[RCS = PCF(R,S)
proof: [T.V90]

PIIRCS

[ property 1.3 and definition of C ]
(PI[R)|[~S = empty(d) A aP+aR=aS
= [aPnaRnNaS =0 =][is associative |
P|[(R][~S) =empty(@) A aP+aR=aSl

[ property 1.2 (b) and set theory |
Pl[~~(R][~S)=empty(d) A aP =aR +aS
= [ property 1.3 and definition of C ]

P C ~(R[~S8)




























































