7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

The reflection operator in discrete event systems
Smedinga, Rein

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1992

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R. (1992). The reflection operator in discrete event systems.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/2db1c981-0dea-4df2-ac33-1f6a111a4fdd

The reflection operator in discrete event systems

Rein Smedinga
department of computing science
University of Groningen
p.o.box 800
9700 AV Groningen, the Netherlands
tel. +31 50 633937
E-mail: rein@cs.rug.nl

Februari 1992

Abstract

HE reflection operator [T.V91] can be defined on discrete event systems to yield
a structure outside the normal scope of such systems, but nevertheless very useful
in design problems.
Here we define the operator for a discrete event system (DES), being a generalization
of trace structures [Sne85]. We construct controllers using the reflection operator for
which we, temporarily, go beyond the normal scope of a DES. These controllers can be

computed effectively, using corresponding (finite) graphs.

1
Control of a DES

N this chapter we define a control problem for discrete event systems and give a
solution using the reflection operator.

1.1 Introduction

We define a discrete event system (DES) to be a triple [Sme90]
P = (aP,bP,tP)
with:

aPbP the alphabet (some finite set of symbols, the events)
bP C (aP)* the behaviour set
tP C (aP)* the task set

We assume the behaviour set of a DES P to be prefix-closed:
bP = pref(bP)

(if some string of events is a behaviour of P then so should be all prefixes of that string).
The task set denotes the completed behaviour of P. Of course, each completed task
should also be a behaviour:

tP CbP

For any z € tP we assume that, after z, P may stop without performing another event,
while after z € bP\t P the system will eventually perform another event or it deadlocks.
Two DESs will be given a special name:

empty(4d) = (4,0,0)
skip(4) = (4,{e},{e})

We will also need systems P in which the properties bP = pref(bP) and tP C bP
are not met. We call these systems generalized discrete event systems (GDESs). Such
a system may have for example a behaviour set that is by no means prefix-closed or a
task that is no behaviour! A GDES goes beyond our scope of a discrete event system.
Nevertheless, it will play a crucial role in the remainder of this paper.

Control of a DES 3

For GDESs P and R we define the interaction by [Sme90]:

(aPUaR,
{r:ze(aPUaR)* A z[aP €¢bP A z[aR€DbR: z},
{z:z€e(aPUaR)* A z[aP €tP A z[aR € tR: z})

where [stands for alphabet restriction. The interaction of P and R will be denoted by

P|| R (pronounce “P parallel R”). It can be viewed as a simultaneous weaving of the

trace structures (aP,bP) with (aR,bR) and (aP,tP) with (aR,tR) [Sne85]. Because

the weaving of prefix-closed structures is again prefix-closed and weaving is C-monotonic,

we immediately have the property that the interaction of two DESs is again a DES.
We assume the following partial ordering on GDESs:

PCR =aP=aR N bPCbR AN tPCtR

We say P is a subsystem of R. Given some alphabet A we can find a greatest system,
namely (A, A*, A*) and a smallest one, namely empty(A4). Moreover, each set of systems
P; with equal alphabet has a greatest upper bound, namely the union of all those systems:
(aP, Uz va]‘ Uz tPZ>

For interactions of systems the common events can be seen as internal events. Such
events need no longer be visible outside the interaction. Therefore, we introduce a second
interaction operator that deletes the common events:

PIIR=(P|R)[(aP +aR)

The operator || (pronounce “blend”) is like the blend in trace theory [Sne85]. It is
monotonic with respect to C and associative if no event occurs in more than two of the
alphabets.

1.2 The reflection operator

From [T.V90] and [T.V91] we have the following definition of the reflection of some
GDES:

Definition 1.1 The refleclion of a GDES P is defined by

~P = (aP, (aP)*\bP, (aP)*\tP)

O
Notice that, if P is a DES, ~P is not.! This is why we need GDESs as well.
Property 1.2
() PCR = ~RC~P
(c) ~skip(d) = empty(Q)
(d) P||~P = empty(aP)
(e) Pl[~P = empty(QD) 0

Except for empty (@) and skip(@), see property 1.2.

Control of a DES 4

1.3 A control problem

Assume systems P, Lpyn, and Ly, are given with Ly, € Lipgz. Our control problem
is finding a system R such that

Lmin g P—”R g Lma:z:

In this formulation L., and L,..; describe minimal and maximal wanted behaviours
of the interaction. Mostly, L., describes the minimal acceptable behaviour and Liq.
the legal or admissable behaviour. Sometimes (see [LL91]), Ly is used to denote
the desired behaviour and L,,,; to denote the tolerated behaviour in case the desired
behaviour cannot be reached. Notice that al.,,;, = al;.: and R should be such that
all =aP +al,;,.

Earlier versions of this control problem (formulated using trace structures instead of
DESs) can be found in [Sme89]. The control problem can also be viewed as a design
problem: P is a first design guess, R is needed to complete the design.

We claim that the following GDES leads to a solution of the control problem.

F(P,L) = ~(P|[~L)
First, we need two properties concerning the reflection.

Property 1.3
PCR = P|[~R=empty(?)
proof: [T.V90]

PCR
= [definition of C]
aP=aRkR N bPCbR AN tPCtR
[set theory |
aP=aR A bPN((aR)*\bR)=0 A tPN((aR)*\tR) =0
[definition of ~ |
aP=a(~R) A bPNb(~R)=0 A tPNt(~R)=0
= [definition of][]
Pl[~R=(D,0,0)

Property 1.4
PJ[RCS = PCF(R,S)
proof: [T.V90]

PIIRCS

[property 1.3 and definition of C]
(PI[R)|[~S = empty(d) A aP+aR=aS
= [aPnaRnNaS =0 =][is associative |
P|[(R][~S) =empty(@) A aP+aR=aSl

[property 1.2 (b) and set theory |
Pl[~~(R][~S)=empty(d) A aP =aR +aS
= [property 1.3 and definition of C]

P C ~(R[~S8)

