7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Control of Discrete Event Systems
Smedinga, Rein

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1989

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R. (1989). Control of Discrete Event Systems. [S.n.].

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/8aeff2a0-9f14-4b75-bac8-75ac61b09d6b

Rijksuniversiteit Groningen

Control of Discrete Events

Proefschrift
ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen
op gezag van de
Rector Magnificus Dr. L.J. Engels
in het openbaar te verdedigen op
vrijdag 20 januari 1989
des namiddags tc 2.45 uur precics

door

Reinder Smedinga

geboren op 9 november 1957
tc Harlingen

Eerste promotor: prof.dr.ir. J.C. Willems
Tweede promotor: prof.dr.ir. J.L.A. van de Snepscheut

Printed by Krips Repro, Meppel.

We don’t need no education

We don’t need no thought control

No dark sarcasm. in the classroom,
Teachers leave the kids alone

Hey teachers leave us kids alone

All in all it’s just another brick in the wall

Another brick in the wall, part two — The Wall

Aan mijn ouders

Acknowledgements

All alone, or in twos

The ones who really love you

Walk up and down outside the wall

Some hand in hand

Some gathered together in bands

The bleeding hearts and the artists

Make their stand

And when they’ve given you their all

Some stagger and fall, after all it’s not easy
Banging your heart against some mad buggers
Wall

Outside the wall — The wall

This thesis could not be written if I did not have the opportunity to meet Jan Willems
(who interested me in system theory) and Jan van de Snepscheut (who interested me in
trace theory). T owe both Jans a lot of thanks for their help, advise, and encouragement.

Also, I thank the members of the committee to approve this thesis, Roland Back-
house, Coen Bron, and Geert-Jan Olsder, for their careful reading of the manuscript.

Moreover 1 wish to thank everyone who contributed in the accomplishment of this
thesis, especially Lenie and Agnes, for their moral support during the last stage of this
work and Henderika, for being a “paranimf.”

The quotations at the beginning of each chapter are songtexts from the popgroup
Pink Floyd.! Below each quotation a reference is found to the corresponding song and
album. The quotation of chapter 7 is from an individual project of Roger Waters. The
front cover is a design of my own. The text is typeset using the work of Donald Knuth
made more usable by Leslie Lamport: ETRX.

LAll gquotations ©Pink Floyd Music publ. Ltd. / Chappell Music Ltd.

1

2

Inhoudsopgave

1 Trace theory 8
1.1 Trace structures 0 ot e e e e e e e e e e e 8
1.1.1 Relation to general dynamical systems 9

1.2 Alphabet restriction e 10
1.3 Connection of trace structures oL 10
1.3.1 Weaving e e e e e 11

1.3.2 Blending. e 11

1.4 Ordering of trace structures oL 12
1.5 Other operators on trace structures 14
1.6 State graph representation, 17
1.6.1 State graph diagram Lo oL oL 20

1.7 Regular expressionso 20
Discrete processes 22
2.1 Discrete processeso i e e e e e e e e e e 22
2.1.1 Completed tasks 23
2.1.2 Non-empty processes v v v it e e e e e 24
2.1.3 Effect on state graphs 24
2.1.4 Control of discrete processes oo 24

2.2 Connections e e e e e e e e 25
2.2.1 Total connection e 25
2.2.2 Multi-connections e e 26

2.3 Other operators on discrete processes 27
2.3.1 Joint behaviour L 27
2.3.2 Concatenation of discrete processes 28
2.3.3 Setoperators e e 28
2.3.4 Ordering of discrete processes 28

24 Ashop. e e e 29
2.5 Acontrolproblem 29
Control of discrete processes 30
3.1 Solution for CODE e 31
3.1.1 Afirstatternpt Lo 31
3.1.2 A second (and successful) attempt 32
3.1.3 Outline of the algorithm 33

3.2 Proof of the algorithm 00
3.3 Some properties of the deCODEr
3.4 Observability e
3.4.1 Relation to conventional system theory
3.4.2 CODE for observable processes
3.5 A more general setting for CODE
Regular discrete processes
4.1 Regular processeso
4.2 Combining finite state graphs Lo L oL
4.3 Ashiplock e
Related problems
5.1 Regulation. L
5.2 The extended control problem
5.3 Supervisory control Lo
Deadlock
6.1 Definition of deadlock
6.2 Detecting deadlock L
6.3 Single task and repeating task processes
6.4 Deadlock-free controllers e
6.5 Deadlock-free connections
6.6 Solving DFCODE.
6.6.1 Effect onstate graphs L L.
6.7 Deadlock in multi-connections
6.7.1 Dectecting dcadlock in multi-connections L.
6.7.2 The dining philosopherso o oo
Input and output
7.1 Splitting up the alphabet 0 oo
7.2 Effect on state graphs Lo o
7.3 Connections e e e e e e
7.3.1 Multi-connections L Lo e
7.4 Other operationson IOEDPs
7.5 CODEfor IOEDPs e
7.6 Delayed communication
7.7 Weak deadlock
7.8 Dectecting weak deadlock . . . o o oL oo oo
7.9 Weak deadlock free controllers
Determinism
8.1 Non-determinismin CCS
8.2 Deterministic discrete processes e e e e e e

8.3 Determinism and deadlock o .

45
45
46
49

52
52
56
60

65

67
70
72
74
7
78
78
79
80

84
84
85
86
87
87
87
88
90
91
93

9 Distributed control

9.1 Problem formulation
9.2 Some observations

9.3 Alternating bit protocol
9.4 Solving the ABP-problem

9.5 Non-trivial solution
9.6 The S?", S5-problem

9.7 The S7*, S5*-subproblem
9.8 A solution for DICODE

9.9 ADBP reconsidered
9.10 Tables of results

Index

Control of Discrete Events

Introduction

Down and oul

It can’t be helped but there’s a lot of it about
With, without

And who’ll deny it’s what the fighting’s all about
Out of the way it’s a busy day

Ive got things on my mind

Us and them — Dark side of the moon

This thesis is concerned with discrete systems. Instead of continuous systems in which
variables are used that take numerical values, in discrete systems we use variables that
have some logical or symbolic meaning. Discrete systems play a role in manufacturing,
communication protocols, and (more in general) in all situations in which the occurrence
of events, and especially the order in which events occur, is of importance.

World views

In discrete event systems we have to deal with discrete, asynchronous, and possibly non-
deterministic actions. Discrete event systems appear in many different constitutions:

sequential processes (doing a number of things in a row),
concurrent processes (doing things concurrently, i.e., at the same time),
operating systems (doing different things semi-parallel, i.e., via some form of inter-
leaving),
e communication networks.

Different criteria can be considered for discussion. These criteria can be divided in two:

e quantitative criteria (mostly performance measures like throughput, cycle time, and
so on),
e qualitative criteria (absence of deadlock, no infinite loops, fairness).

For quantitative criteria networks of queues, (timed) Petri nets and alike can be used.
We mention:

e pertubation analysis of queueing networks (developed by Y.C.Ho, see for example
[YCH1], [YCH2], and [YCH3]),
e linear systems in the max algebra (see [CDQV1] and [CDQV2]).

Here, we are concerned with the qualitative criteria, i.e., to ensure some orderly flow of
events. Modelling this flow of events can be done by:

5

Control of Discrete Events

e finite automata and formal languages (e.g., the supervisory control theory of Won-
ham, see [CDFV], [InVa], [Rama], [RaWo], [WoRal], see also chapter 5),

o Petri Nets (see [JLP]),

e process algebra (e.g., the calculus of communicating systems (CCS) of Milner, see
[Mil], or the theory of communicating sequential processes (CSP), see [Hoal),

e temporal logic (see [ThWol),

e trace theory.

Petri Nets can only be used to model a system, not to control it or to compute a
controller. Both in CCS and CSP discrete processes are defined in a way very similar to
the one in this thesis. However, both lack some formalism to control a discrete process.
In chapter 8 we discuss some more aspects of CCS. Temporal logic is (merely) very
difficult. No results have yet been found in the direction of control of discrete events.
Supervisory control theory comes closest to what we have done here. It is discussed
more thoroughly in chapter 5.

In this thesis discrete systems are defined using trace structures. Every symbol in a
trace denotes an event, i.e., the occurrence of a discrete action. Although trace theory
was developed in the context of concurrent programs and found useful in modelling
electronic components (see [JvdS] and [JTU]), it seems to be the natural setting to
model discrete events in general. Special attention will be given to the control of these
systems. In order to be able to control a discrete process we will split its set of symbols
in two classes: one class representing the events that should be controlled (and cannot
be influenced directly from outside the system) and one class representing the events
that are used to control (and can be influenced from outside the system).

Control of a discrete system is done by adding a second discrete system (the con-
troller) and connecting both systems. This connecting mechanism can be defined using
standard operators from trace theory. Special attention will be given to regular trace
structures and, equivalently, the finite state machines. The notions deadlock, determin-
ism, and distributed control will be considered in great detail.

Overview

In chapter 1 we give an overview of trace theory as it is needed in the sequel. We
introduce state graphs in order to display trace structures graphically and we define
regularity of trace structures. In chapter 2 we introduce our formalisation of discrete
processes using trace structures. We define connection, joint behaviour, and concatena-
tion of such processes and show a first outline of a (our) control problem. The given
control problem is solved in chapter 3 using a number of tools. Chapter 4 deals with reg-
ular discrete processes and the relation to finite state machines. The control algorithm
is reformulated in terms of finite state machines. Some related problems are discussed in
chapter 5. Supervisory control theory of Wonham and Ramadge is compared with our
control theory. In chapter 6 we discuss deadlock. We give a definition of deadlock and
provide a method to find a deadlock-free controller solving the control problem. The
cvents arc given a dircction in chapter 7, i.c., we make a distinction between generating
an event and receiving one. We introduce inputs and outputs. A new kind of deadlock
is introduced this way. In chapter 8 we discuss determinism and find conditions such
that controllers are deadlock free. In chapter 9 we investigate distributed control and
give some sufficient and some necessary conditions for our distributed control problem
to be solvable.

Notation

Throughout this paper the following notation, not common to everyone, will be used:

(Vz : B(z) : C(x)) is true if C(z) holds for every z satisfying B(z), e.g.,
(Vx:z € N:z>0)

(Fz : B(z) : C(x)) is true if there exists an z satisfying B(z) for which C'(x) holds, e.g.,
(Fx:zxeN:z>10 A z < 20)

(3z : B(z) : C(x)) is true if there exists exactly one such an z, e.g.,
(Flz:2z € N:z=10)

{z: B(z) : y(x)} is the set constructor and denotes the set of all elements y(x) con-
structed using elements x satisfying B(z), e.g.,
{n:n € N:a"b"} = {¢,ab,aabb, aaabbb, ...}

For equations (in proofs) we use the following notation:?
A

& [hint why A < B |
B

= [hint why B = C'|
C

In the above sequence we have in fact written down the following:
(A B)A(B=0C))=(A=0C)

If no hint is given, simple calculus is assumed.

A lot of operators will be used. A glossary is added in which all operators are
explained and a page number is added referring to the page where the operator is defined.
The binding power of the operators can be found in the glossary also.

% Adapted from [EWD2].

1

Trace theory

Relaz, I'll need some information first
Just the basic facts
Can you show me where it hurts

Comfortably Numb — The Wall

In this chapter we give the basic notions on which the material in the sequel is based,
i.e., we discuss some of the aspects of trace theory.

We explain trace structures by using it as a way to model electronical components.
In following chapters we make clear that trace structures can as well be used to model
more general discrete event systems.

1.1 Trace structures

We consider components as being connected by means of channels. Think of a channel
as some kind of wire to send messages along it. Components can communicate with each
other by sending messages along those channels. At this stage, we are not concerned
with the contents of such a message, just with the sending (and receiving) itself. Of great
importance is the order in which messages arc scnt. We assumce that sending a message
and receiving a message is in fact one action without any direction, i.e., a channel either
contains or docs not contain a message.

Each channel is represented by a symbol. The set of all channels connected to that
component is called the alphabet of that component. The behaviour of the component is
modelled by giving all possible finite sequences of symbols. Such a sequence is called a
trace and a (possibly infinite) set of traces is called the trace set. Consider a component
with two channcls, say a and b, then a possible behaviour could be abab, mecaning that
communication is performed along channel a, channel b, channel a, and channel b in that
order.

The pair consisting of the alphabet A and the trace set S is called a trace structure
and denoted by

T = (S, A)

Trace theory

Example 1.1 With

T = ({n:neN:(ab)"},{a,b})
= ({e,ab,abab,ababab, ...}, {a,b})

we denote a trace structure with channels a and b and possible behaviour given by (ab)*.
Here, ab denotes concatenation: first a, next b, and * (the Kleene-star) denotes finite
repetition (zero or more times). The notation e stands for the empty string (representing
the nothing-has-happened-behaviour).

T can be considered as a one place bufler, with a the event put an element in the buffer
and b the event get an element from the buffer. Notice that the number of occurrences
of b is at most the number of occurrences of a, so no element is taken from the buffer if
an element is not first put into it.

(end of example)

We introduce two operators in order to obtain the alphabet and the trace set of some

given trace structure:

Definition 1.2 For trace structure T = (S, A) the operators t and a are defined by:
aT = A tr==5

Example 1.3 In the previous example we have:

al = {a,b}
tI' = {n:neNN:(ab)"}

(end of example)

1.1.1 Relation to general dynamical systems
In [JCW] a general definition is given of a dynamical system ¥ = (T, W, B) with

T time axis (normally T C R or T' C Z)
W signal alphabet (some abstract set)
B CWT the behaviour

This definition is (to quote Jan Willems) “hopelessly general but nevertheless it captures
rather well the crucial features of the notion of a dynamical system.” For example, an
n-dimensional continuous system can be modeled this way with W C R™ and B C (R™)T
a set of n-dimensional functions of ¢ satisfying some (physical) laws and describing the
system.

A trace structure S is a special kind of a dynamical system ¥ with!

T = N
W = asu{O)
B = {w:(Fe:te e N:wl[0.l,) €tS N (Vi:t>1,:w(t) =0)): w}

The blanks (d) are needed for cosmetic reasons: B contains only infinite strings, while
tS contains only finite strings, which have to be completed by adding blanks at the end
to fit the definition.

The time index ¢ is interpreted here as logic time (i.e., it parametrizes the order of
events) and not as clocktime, which is the usual case in conventional system theory.

Lw[0..t.) stands for the string w[0]w[1] ... w[te — 1].

10

Control of Discrete Events

1.2 Alphabet restriction

We are not always interested in the communication along all the channels. In that case,
it is possible to restrict a trace ¢ to some subalphabet A, denoted by ¢[A.

Definition 1.4 Alphabet restriction | is defined on a trace by:

e[A = ¢
(ta)[A = t[A ifadg A
= (t[A)a ifa€c A

and on trace structures by:

T[A={t:tetT: t[A},aT N A)
We write ta[A instead of (ta)[A to save parentheses.
Example 1.5

({abct, {a,b,ch)[{b, c} ({bct, {b,c})
({ababab}, {a,b})[{c} = ({e},9)
{{abc,achb}, {a,b,c})[{a,b} = ({ab},{a,b})

(end of example)

1.3 Connection of trace structures
A finite number of trace structures can be connected. First, we explain connection using
an example; next, we give a formal definition.
Example 1.6 Let T and U be as follows:
T = ({abcd}, {a,b,c,d}) U = ({eace},{a,c,e})
The connection of T" and U results in the following trace structure S:
S = ({eabcde, eabeced}, {a, b, c,d, e})

If we look at the traces of the connection S and delete all events, that do not belong to
T, all these traces should belong to T. Also deleting all events not belonging to U leads
to traccs belonging to U, i.c.,

eabcde[aT = abed N abed € tT eabede[alU = eace N eace € tU
and also:
eabcde[aT = abed N abed € tT eabede[alU = eace N eace € tU

So the connection of 7" and U contains all traces with the property that, if we restrict
those traces to the alphabet of one of the trace structures, we get traces that belong to
that structure.

(end of example)

Connection in this sense is in fact a shuflling, where identical communications occur
simultaneously. This kind of operation is called weaving and is defined formally in section
1.3.1. If communications that take place in the connection are no longer important, we

Trace theory 11

can omit them. In that case our previous example ends in ebde or ebed. This kind of
connection is called blending and is explained in section 1.3.2.

1.3.1 Weaving
Definition 1.7 The weaving w of two trace structures T and S is defined by

TwS
({z:z e (aT'ualS)* A z[aT € tT A z[aS € tS:z},aT UaS)

Example 1.8 Consider

T = ({¢,a,ab}, {a,b}) S = ({ec,cb},{b,c})

Then T w S = ({¢,a,c,ac, ca, ach, cab},{a,b,c}), e.g., acb[al = ab and ab € tT and
also acb[aS = ac and ac € tS, hence ach € t(T'w §).
(end of example)

The operator w defines a binary operation on the set of trace structures. It has some
nice properties, which are listed below:

Property 1.9 For general trace structures T', U, and S, the following hold:

(1) weaving is symmetric:
TwS=5wT

(2) the structure ({e}, D) is the unit element:
Tw {{e},0)="T

(3) the structure (D, D) is the zero elemenit:
Tw (D,0) =(0,0)

(4) weaving is idempotent:
TwT=T

(5) weaving is associative:
(TwS)ywU=Tw(SwU)

1.3.2 Blending

Sometimes, we are only interested in those communications that are not common, i.e.,
belong to only one of the trace structures. Then we use blending.

Definition 1.10 The blending b of two trace structures T and S is defined by

Tbkq
({z:z e (aT'ualS)* A z[aT e tT A z[aS € tS:z[(aTl +aS)}, aT + aS)

The operator + stands for symmetric set difference, i.e.,

A+B=(AUB)\ (AN B)

12

Control of Discrete Events

Example 1.11 Reconsider T" and S from example 1.8, then:
T'b S = ({e,a,c,ac,cat,{a,c})
(end of example)

Also the operator b is a binary operator on the set of trace structures. Some properties
of the blend are listed below:

Property 1.12 For general trace structures T', U, and S, the following hold:

(1) blending is symmetric:
TbS=SbT

(2) the structure ({e}, D) is the unit element:
Tb ({e},0)=T

(3) the structure (D, D) is the zero element:
Tb (D,0)=(0,0)

(4) blending is not idempotent:
tT#0 = TbT = ({e},0)

Blending is not associative. However, we have:

Property 1.13 Blending is associative if every symbol occurs in at most two of the
alphabets.

Next, we list a few properties that are needed further on:

Property 1.14 For trace structures T' and S with aS C a¥l', the following properties
hold:

(1) TwS = ({z:zetlT A z[aSetS:z},al)
(2) TbS ({z:zctT A z[]aS ctS:z[(al \ aS)},aT \ aS)
3) TbS = ({z:zectl[(alT\aS)A
By:yetT A ylaS etS:y[(aTl \ aS) =x)
cx}
,aT\ aS
)
= ({z:zetT[(al\aS) A
By:yctl A y[(alT'\aS)=z:y[aS ctS)
cx}
,al'\ aS
)

1.4 Ordering of trace structures

In the sequel we use the following partial ordering:
Definition 1.15 For two trace structures T' and S, the ordering T C S is defined by:
al’=aS A tT CtS

We define T to be af most S if the trace set of T' is at most the trace set of S and if
T and S have equal alphabets. We do not define any ordering on trace structures with
unequal alphabets.

Trace theory 13

Property 1.16 For trace structures T, Si, and Sy with aS; C aT (for i = 1,2), we
have:

(1) S1C 8= (T'bS)C(TbS)
(2) 5’1§52:>(TW5’1)Q(TW5’2)

The following lemma, plays a role in finding a suitable controller in chapter 3.

Lemma 1.17 For trace structures T and S with aS C aT and S C T'[aS, the following
holds:

Th(TbS)DS

proof: Use A = aT \ aS, then

t(T'b S)
[see proposition 1.14 (2) |
{z:ze€tT N z[]aS etS:z[A}

Furthermore:

x[aS etS Az etT
= [take y = z |
By:yetT A ylaS etS:y[A=x[A)

Hence:

t(Tb(T'bS))
[see proposition 1.14 (2) |
{z:zetT N z[A€t(TbS):z[aS}
= [equality above |
{z:zetT N By:yetlT A ylaSetS:y[A=x[A): z[aS}
2 [implication above |
{z:z€tT A z[aS € tS: z[aS}
= [SCTlaS |
tS

(end of proof)

In general, it is not true that T'b (T'b S) = S as the following example shows.

14

Control of Discrete Events

Example 1.18

T = ({ac,ad}, {a,c,d})
S={ch{c,d})

Then we have:
t(Tb(T'bS))
t(T b ({a},{a}))
{c,d}
tS
The inequality is due to the fact that we can find z and y (both € tT) with:
z[(aT \ aS) = y[(aT \ aS) A y[aS €tS A z[aS & tS

Here z = ad and y = ac.

(end of example)

1.5 Other operators on trace structures

We use set operators on trace structures as well, using the following definition:

Definition 1.19 Gliven two trace structures T' and S, then we define the union of T
and Q, denoted T U S (pronounce “T or S”), by

(tTUtS,aT UasS)

and if aT = a8, then we define the intersection of T and S, denoted T NS (pronounce
“T and S7), by

(tTNtS,aT)

and the exclusion of T and S, denoted T'\ S (pronounce “T without S”), by

(t7'\ tS,aT)

Intersection and exclusion can also be defined in case the alphabets are not equal, but
the definitions as given here are all we need further on. We conclude this section with a
number of properties.

Trace theory 15

Property 1.20 For trace structures T' and S, we have:

(1) aTr=aS = (TwS)=TnS§S
(2) aSCaTl = (TwS)[aS=(T[aS)Nn S

proof: Part (1): see property 1.20 in [JvdS].
Part (2):

z € t(T[asS N 8)

x€etT[aS A z €tS
& [definition of []
FBy:yetT:y[aS=2x) A z €tS

(Fy:yetlT A ylaSetS:z=ylaS)
& [definition of w |
Fy:yet(TwS):z=ylaS)
& [definition of []
x € (T wS)[aS

(end of proof)

Property 1.21 For trace structures T and U and alphabet A, we have:

(1) (TwU)[A C T[AwU[A
(2) (TbU)A C T[AbUJA
3) aTnaUCA = (ITwU)[A=T[AwUJ[A
(4) aTnalUCA = (ITbU)[A=U[AbUJA

proof: See properties 1.15, 1.16, and 1.31 in [JvdS].

Corrollary 1.22
(T1 A%\ TQ) [aTl g T1

proof:

(T1 W TQ) [aTl
[property 1.21 (1)]
T1 [aTl W T2 [aTl
= [property 1.20 (1) |
TNy [aTl

N

N

T\

(end of proof)

16

Control of Discrete Events

Property 1.23 For trace structures 1", S, and U, with al' = a5, we have:

(1) Uw(@Tus) = (UwT)u (U wT)

(2) Uw((TnS) = UwT)Nn({U wT)

3) Ub(TuS) = (UbT)U(UDbS)

4 Ub(TnNnS) C (UbT)Nn(UDbS)

(5) Uw((T\S) = (UwT)\({UwS)

(6) Ub(T\S) = (UbT)\(UbS)

proof: Parts (1) to (4): see properties 1.21 and 1.34 in [JvdS].
Part (5):

Uw (T\S)

= [definition of \ and a7 = a¥' |
Uw (tT\ tS,aT)
= [definition of w |
({z:zc(aTual)* A z[aU c tU A z[aTl c tT\tS: z}
,al'ual
)
= [aT =aS |
({z:ze(@Tual)* A z[aU € tU A z[aT € tT : z}\
{z:ze(@TUual)* A z[aU € tU A z[aS € tS: x}
,al'ual
)
= [definition of \ and a7 = a¥' |
({z:ze(@Tual)* A z[aU e tU A z[aTl € tT : z},aT Ual)\
({z:ze(@Tual)* A z[aU e tU A z[aS € tS:z},aSual)
= [definition of \ |
UwT)\(UwS)

Part (6) is similar.
(end of proof)

Property 1.24 For trace structures T and U and alphabet A, we have:

(1) (T[H\ U4 c (T\U)[A
(2) (TuU)[A c (TTA)U(U]A)
(3) (TnU)[A c (TTA)NUTA)

proof: Part (1):

z € t((TTA)\ (UA))
& [definition of \ and [|
By:yetT:y[A=2x) N Vy:yetU :y[A+#x)
=4
By:yetlT:y[A=z) AN Vy:y[A==z:y¢tU)
=
Fy:yetl ANydtU:y[A=ux)
& [definition of \ and [|
zet(T\U)[A

Trace theory

Part (2):
ret(TUU)A
& [definition of []
Fy:yet(TUU) :y[A=1)
= [definition of U]
Fy:yetT:y[A=xz) V Fy:yetU:y[A=nuz)
& [definition of U and []

z € t(T[A) U (T[A)

Part (3) is similar.
(end of proof)

We do not have equality:
Example 1.25 Consider A = {a} and

T = ({ab,ac},{a,b,c}) U = ({ab,bc},{a,b,c})
then

TTA = ({a},{a})

UlA = ({a},{a})

(T\U)[A = ({ac}, {a, b, c})[A = ({a}; {a})
(TTA)\ (UTA) = (D,{a})

(end of example)

1.6 State graph representation

In conventional system theory a dynamical system can be described in a state space
form. A number of internal variables are used to serve as a memory for the system. We
can do the same with trace structures, which leads to state graphs.?

To do so, we need the notion prefiz closure and a equivalence relation E on trace
structures.

Definition 1.26 The prefix closure of a trace set S is defined by:
pref(S)={z:(3z 222 € S5):z}

and the prefix closure of a trace structure T by:
pref(T) = (pref(tT),aT)

The binary relation E : (aT)* x (aT)* — bool induced by T on two traces is defined by:
rEy<e (Vz:ze(@l)*: (zz € tT) = (yz € tT))

We have pref(tT) = t(pref(T)). For cosmetic reasons we prefer to write pref(tT). If
z E y, then x and y have the same continuations.

Property 1.27 The binary relation E is an equivalence relation on (aT)*.

2State graphs as defined here correspond to the so-called evolution laws (a special kind of a dynamical
system in state space form as defined in [JCW]).

17

18

Control of Discrete Events

Definition 1.28 The equivalence classes corresponding to the relation B induced by
T are denoted by

[zlr ={y:xEy:y}

When there is no confusion we simply write [z].

The equivalence classes of T are called the states of T. The set of all equivalence
classes of T' will be denoted by E(T). It should be clear that every trace structure T
with non-empty trace set has a state [¢]. This state is called the initial state of T

All traces that do not belong to the trace set of T belong to the same equivalence
class. This equivalence class is denoted by [@] and called the error state induced by T

Definition 1.29 The error state induced by the trace structure T is denoted by [O]r
and defined by

Dy ={z:z ¢ tT:x}
When there is no confusion we write [D].

If tT =), we have that [Q] = [¢]. If tT = (aT)*, we have [0] = @ and [¢] = tT. In

all other cases a trace structure has at least two states: [¢] and [D].

Definition 1.30 The final states induced by a trace structure T are denoted by F(T)
and defined by

F(T)={p:pcET) AN Bzx:zcp:zectl):p}
Example 1.31 Reconsider:
T={{n:neN: (ab)"},{a,b})
T induces three equivalence classes. We have:
] = {n:ncN:(ab)"} E(T)={[e],[d],[O]}
[a] = {n:neN:(ab)"a} F(T) =[]}
0] = (aT)*\ ([Ua])
[€] is the initial state of T as well as the only final state. The states [a] and [@] are no
final states. The error state is never a final state and [a| is not a final state because

(Ve :x € [a] : z € tT).
(end of example)

The states of T’ (i.e., E(T')) can be seen as cells in which some information is held: just
knowing the present state of T' gives enough information about the past (i.e., about all
communication done thus far) to be able to tell what communication is allowed to occur
next according to the corresponding trace structure. The states of T' therefore serve as
a memory to 7.

The states of a trace structure, as defined above, have the property that occurrence
of a comrmunication in some state brings the trace structure in one (new) unique state:

Property 1.32
(Va,p:acal AN peBE(T):(Tq:qe E(T): Vz:xz €p:xzac€q)))

A trace of T can be seen as a path through the states of T. We therefore introduce a
state transition function ¢ describing such a path.

Trace theory

Definition 1.33 For p,q € E(T), and a € aT, the state transition function 0 is the
function 6 : E(T) x aT — E(T) defined by:

é(p,a) =q
=
Az,y:xz€p AN y€q:xa=1y)

This is indeed a definition, because from property 1.32 we know that ¢ = §(p,a) is a
unique state.

As a consequence of the definition of the binary relation E on (aT')* the transition
function 0 is a totally defined function.

Example 1.34 In example 1.31 § equals:

([e],a) = [a] 4([a],a) = [O] (D], a) = [0]
5([e],b) = [@] 4([al,0) =[] 6([O],0) = [0]

(end of example)

From the state transition function 6 we can derive a path z from p to ¢ if ¢ = 6*(p, x),
with 0 the closure of § defined by:

Definition 1.35 For x,y € (aT)*, and a € aT, the closure of the transition function
0 is the function §* : B(T) x (aT)* — E(T) defined by:

*(p,e) = p
F(p.x) = 6*(6(p,a)y) ifx=ay

Normally the closure of the transition function is simply also denoted by 4.

A string z from (aT)* is called an accepting string if §([e], z) € F(T'). The accepting
strings are exactly the traces of T'.

With the above definitions we have introduced a state graph for a trace structure.

Definition 1.36 A state graph M s defined by:
M= (A7Q7d7QO7F)

with:
A the alphabet (a finite set of symbols)
Q the states of the graph
d:Q xA— Q the state transition function
g0 € Q the initial stale
FCQ the final states

Formally the following analogue between trace structures and state graphs exists:
With a tracc structurc T’ corresponds a statc graph given by:

sg(T) = (T, B(T), ,[e], F(T))

with E and F as given above and § such that
(Va,z:a €al A z € (aT)" : 6([z],a) = [za])

With each state graph M corresponds the trace structure given by:
ts(M) = (A, {z :z € A* A d*(qv,z) € F})

19

20

Control of Discrete Events

©

initial state final state transition d(p1,a) = po

Figuur 1.1: Representation of a state graph

©—0 b
N A ©=0

o

Figuur 1.2: State graph diagram of T (left) and with omitted error state (right)

In general, more state graphs may correspond to the same trace structure. Such state
graphs are considered to be equivalent.

Definition 1.37 A state g € (Q of a state graph is called unreachable if no path starting
in the initial state ends in q.

Unreachable states (and all edges leaving this state) can be omitted without changing
the meaning of the graph, i.e., it still accepts the same strings.

1.6.1 State graph diagram

State graphs can be displayed graphically. In figure 1.1 the graphical representation of
initial state, final state, and transition is displayed.

In general, error states and all edges going to it are not drawn. So in a diagram
all omitted edges are supposed to go to the error state. In figure 1.2 the corresponding
state diagram of the trace structure of example 1.1 is drawn. At the left as it should be
drawn, at the right as it is drawn.

1.7 Regular expressions

It is well known that if the number of equivalence classes of some trace structure is finite,
the trace structure is regular. In that case the trace set can be displayed graphically by
means of a finite state machine. Notice that our state graphs are finite state machines if
Q is a finite set. According to property 1.32 they are also deterministic (see chapter 4).

It is also possible to describe a regular trace structure by means of regular expressions.
First, we explain how a regular expression is defined (recursively).

Trace theory

Definition 1.38 The empty siring (¢) and every single symbol is a regular expression
and if x and y are regular expressions, then also:

zy concalenation first x, then y

zly union T ory

¥ repetition zero or more concalenations of x
() binding to overrule operator precedence
z,y weaving® shuffling of x and y

The corresponding trace structures are:

ts) = ({e},9)

({a},{a})

({t,u:t € t(ts(z)) A u € t{ts(y)) : tu},a(ts(z)) Ua(ts(y)))
ts(z) U ts(y)

ts(z*) = ({t:tet(ts(z)): ¥}, ats(z)))

ts(z,y) = ts(z) w ts(y)

o o~
wn wn
8 82
&~
~—

I

[l
wn
N TN AN N N
8
N
~—
Il

We assume the following order in binding power of the operators: repetition has the
greatest binding power, then concatenation, then weaving, and at least union. So
(zy*, z|v) should be read as (((xz(y)*),z)|v). In addition to the Kleene star we also
have the notation zT, denoting zz*. A more detailed introduction to this notation and
terminology can be found in [JvdS]. In the sequel we use regular expressions to denote
trace sets rather than trace structures.*

Example 1.39 Consider

T = ((ab)*,{a,b}) U = ((bc)*,{b,c})

We have:
TwU = ({((ablach)*c)*,{a,b,c})
= {((ab)*, (b¢)*),{a, b, c})
TbU = {(alac)*c)*, {a,c})

TUU = {(ab)*|(bc)*,{a,b,c})

In T b U the number of occurrences of a and ¢ differ at most two and the number
of occurrences of a is at least that of ¢. So 7" b U models a two-place buffer and is
constructed using two one-place buffers from example 1.1. Notice the difference between
TUUand TwU.

(end of example)

3In [JvdS] it has been proven that the class of regular trace structures is closed under weaving and
blending. The comma opcerator can thus be considered as an operator in a regular cxpression.

4This choice becomes clear in the next chapter where the symbols get different meanings and it is not
clear from the expression which meaning a symbol has. Moreover a trace structure may contain more
events than are used in the expression.

21

2

Discrete processes

All you create, all you destroy
All that you do, oll that you say

All that is now, all that is gone

All that’s to come

And everything under the sun is in tune
But the sun is eclipsed by the moon

Eclipse — Dark side of the moon

In this chapter we show that trace structures can be used to model discrete processes. We
do not consider time, i.e., we do not consider that events occur at fixed time instances,
but we are only interested in the sequence in which the events occur.

2.1 Discrete processes

In order to be able to introduce control of discrete processes we split the alphabet while
considering two kinds of events:

L exogenous1 events

e communication? events

The exogenous events are used to model actions introduced by the process’s own dy-
namics. This means that exogenous events do not appear in other processes.®> The
communication events are used to model actions of a process, that may be common to
other processes. This kind of event is of interest in communication with other processes
and will be used to control the exogenous cvents.

Assume that £ and C are finite sets of events, such that

EnC=0

lexogenous (adj.) — growing or originating from outside (here used in the sense of not having to do

with communication).

2communication (adj.) - to do with the exchange of thoughts, messages, etc.

30ne can argue about the name ezogenous. Endogenous events would perhaps be more convenient
(endogenous means growing or originating from within). However it turns out that exogenous events are
retained in a connection while communication events disappear. So communication events are internal
and cxogenous events are external with respect to connection. Morcover, cxogenous is a standard term
in system theory, although it is used in a slightly different setting here.

22

Discrete processes

Counsider a trace structure T = (S, F U C). Such a trace structure is called a discrete
process and denoted by

P =(S,E,C)

where S is the trace set of the process (the set of all possible sequences of occurring
events), F the set of exogenous events, and C the set of communication events.

Once again we have operators to get the trace set, the exogenous alphabet, and the
communication alphabet of a discrete process:

Definition 2.1 For a discrete process P = (S, E,C) we define the operators:
tP=S5 eP=F cP=C aP=FuUu(C

Furthermore, with P we associate a trace structure denoted by ts(P) and defined by:
(tP,aP)

We have defined the operators t and a on trace structures as well as discrete processes
Nnow.

In the sequel we sometimes use the operators b and w (blend and weave) on
discrete processes. Formally, we use the following extension of these operators:

Definition 2.2 The operators w and b are defined on discrete processes P and R
by:
PbR
PwR

ts(P) b ts(R)
ts(P) w ts(R)

The blend and weave of two discrete processes results in a trace structure.

We are not concerned with how the communication is actually performed, i.e., which
process generates the event and which process receives it. In other words, we do not
make any distinction between input and output events here.

If we restrict our attention to the exogenous events, we have what is called the
exogenous behaviour tP[eP. If we restrict our attention to the communications, we
have the communication behaviour tP[cP.

Example 2.3 Consider the following doctor-process:

P = ((acd)*, {e}, {a,d})

with a meaning arrival of a patient in the doctor’s office, e meaning treat a patient, and d
meaning departure of a patient. The arrival and departure of patients are communication
events (a patient can only arrive if the environment (i.e., some other process) “supplies”
one; also, a patient can only depart if the environment can accept one). The treatment
of the patient, however, is done by the doctor process P itself. It cannot be influenced
by the environment. Notice that e* is the exogenous behaviour of P and (ad)* is the
communication behaviour of P.

(end of example)

2.1.1 Completed tasks

A trace from the trace set of a discrete process represents a completed task of that
process. Each prefix of that trace represents an uncompleted task, unless that prefix is
a trace itself in which case it is a completed task that can be continued.

24

Control of Discrete Events

With |z| we denote the length of the string z, i.e., the number of symbols in trace z.

Example 2.4 Consider
P = ((ablabclac),{a, c}, {b})
Then:

a is an uncompleted task

ab is a completed task that can be continued
abc is a completed task

ac 18 a completed task

we have: |ab| =2 and |[¢| =0
(end of example)

2.1.2 Non-empty processes

If the trace set of some discrete process is emply, we say that the process is empty. The
process has no behaviour at all (i.e., not even ¢, the nothing-has-happened behaviour).
Because empty processes are of no use, we assume that all discrete processes are non-
empty.

Furthermore, if € € tP, we call the process legally idle: the empty trace is also a
completed task, i.e., the process may end without doing anything.

Notice that P, and P, with t Py =) and t P = {e} are completely different processes:
Py has no behaviour at all: it cannot do anything, while the (only) behaviour of P; is
doing nothing. The difference becomes clear when such processes are connected with
other processes (see for example property 2.6).

2.1.3 Effect on state graphs

A discrete process has a lot of similarity with a trace structure. The only difference (at
this moment) is found in the alphabets. Describing the behaviour of a discrete process
can also be done using state graphs. To put all the information about a discrete process
in a state graph, we denote communication events in a somewhat different way, while
cxogenous cvents will be displayed in the normal way: in a state graph an cdge labeled
with a denotes the occurrence of an exogenous event a and an edge labeled with @ denotes
the occurrence of a communication event a.*

2.1.4 Control of discrete processes

Because a process can only communicate with the environment by means of the commu-
nication events, control of discrete processes can thus be described as using the commu-
nication events to establish some predefined behaviour. In general, we will use (part of)
the communication events to control the exogenous behaviour of the process. Therefore
we investigate:

e the (uncontrolled) behaviour tP or the (uncontrolled) exogenous behaviour: tP[eP,
e a second discrete process (the controller R) communicating with P by means of the
communication events cR C cP,

‘However we are unable to express the situation that a process has an event that does not occur in
its behaviour. We have to mention such an event explicitly.

Discrete processes

e the resulting controlled behaviour t(P b R) or the controlled exogenous behaviour:
t(P b R)[eP (where b denotes the connection of the two discrete processes and
will be defined below).

In order to be able to discuss control of processes, we have to define what is meant by
connection of discrete processes first.

2.2 Connections

In this section we define the notion connection of discrete processes.

Definition 2.5 Given two discrete processes P and R with ePNaR = @ and eRNaP =
@, then the connection of P and R is defined by:

PbR

(t(Pb R),ePUeR,cP =+ cR)

The behaviour is defined using the blend on the corresponding trace structures (tP,aP)
and (tR,aR). Notice that all exogenous events of P and R are now exogenous events of
the conncction. From the communication cvents thosce that belong to only onc process
are left. This guarantees that

a(Pb R)=aP +aR

so that ts(P b R) = ts(P) b ts(R).
In the sequel we assume that writing P b R automatically means that the connection
is possible, i.e., that the conditions eP NaRk = ¢ and eRNaP = @ are fulfilled.

Property 2.6 For the connection b the following properties hold:

() PbR=RbP
(2) Pb({e},0,0)=P
(3) Pb{0,0,0)=(0,0,0)

The discrete process ({e}, D, D) is the unit element of the operator b . (D, 0, D) is the
zero element of b.
2.2.1 Total connection

Sometimes, we are interested in the total behaviour of the connected system. Therefore
we introduce the overall or total connection w as well.

Definition 2.7 Given two discrete processes P and R with ePNaR = O and eRNaP =
@, then the total connection of P and R is defined by:

PwR

(t(Pw R),ePUeRU (cPNcR),cP = cR)

We have put all common communication events of P and R in the exogenous event set of
the total connection. This guarantees that a(P w R) = aP U aR and that these events

25

26

Control of Discrete Events

can not be used for other communications as well.®

We use the total connection only to make the internal communication between the
two processes visible in the connection. Again we have ts(P w R) = ts(P) w ts(R).

Example 2.8 Reconsider the doctor example, but with two doctors:

P = ((aed)*, {6}7 {a'vd}> Py = <(dgb)*7 {g}v {bv d}>

e and g have the meaning of treating a patient, a arrival of a patient, b departure of a
patient, and d has the meaning of sending a patient from the first to the second doctor.
Connecting P; with P leads to

Py w P, = ((aed((ae, gb)d)* gb)*, {e, g,d}, {a,b})
PbP= ((ae(ae,gb)*gb)*, {679}7 {a'v b}>

From which we derive that t(P; b P,)[(ePyUeP;) = (e(e,g)*g)* so at each time at most
two patients are being treated.

(end of example)

2.2.2 Multi-connections

More than two discrete processes can be connected as well. We assume that in such
multi-connections all exogenous events are unique, i.e., appear in only one of the dis-
crete processes, and communication events are used in at most one connection, i.e., no
communication event occurs in more than two of the alphabets. So, if we connect P, R,
and S, we demand that

ePNn(aRuaS)=0 cPNcRNcS=0
eRN(aPuaS)=0
eSNn(aPUaR)=0

Under these conditions the connections (P b R) b S and P b (R b S) are both defined
correctly. We even have:

Property 2.9

(1) (PbR)bS = Pb(RbS)
(2) (PwR)wS = Pw(RwS)

Notice that for trace structures blending is only associative if no symbol occurs in more
than two of the alphabets, which is established here through the above conditions.

Multi-connections are denoted using the continuous weave and continuous blend from
trace theory.

®Note the assumption here that we use communication events for communication between exactly
two discrete processes.

Discrete processes

Definition 2.10 If(Py,...,P,) is a finite set of discrete processes, with no communica-
tion event occurring in more than two of the alphabets and no exogenous event occurring
in more than one of the alphabels, then the multi-connection of the processes P, is
denoted by

(Bi:1<i<n:P)
and defined by

Bi:1<i<0:P) {{e},0,0)
Bi:1<i<n:P) = (Bi:1<i<n—1:P)bP,

and the multi-total-connection ¢s denoted by
(Wi:l<i<n:P)
and defined by

(Wi:1<i<0:P) = ({},0,0)
Wi:l<i<n:P) = Wi:l<i<n-1:F)wbPh,

2.3 Other operators on discrete processes

2.3.1 Joint behaviour

Modelling a system is normally done by modelling parts of the system first which are
afterwards joined together. Joining a number of discrete processes to create one new
discrete process in this sense does not mean connecting the discrete processes; they do
not communicate with each other, they only behave such as to obey each individual
bchaviour given in the trace scts.

Therefore, the operator w is of no use here and we introduce a similar operator s
called the shuffle operator.

Definition 2.11 The joint behaviour of two discrete processes P and R is defined by

PsR

(t(Pw R),ePUeR,cP UcR)

Notice that common communication cvents arc not removed nor placed in the resulting
exogenous alphabet.

Example 2.12 With P and R given by
P = {(ab)*, {a}, {b})) R = ((be)", {c}, {b})

we have:

PbR = ((a(ac)0)* {a,c},0)

PwR = ((ablach)*c)*,{a,b,c}, 0)

PsR = ((ablach)*c)*,{a,c},{b})
)

(end of example

28

Control of Discrete Events

Property 2.13 For the shuffle s, the following properties hold:

(1) PsR=RsP

(2) Ps({e},0,0)=P

(3) P§<@7@7@> = <@7@7@>
(4) (PsR)sS=Ps(RsS)

The multi-shuffle (P s R) s S is always defined, while the multi-connection (P w R) w S
is not.

2.3.2 Concatenation of discrete processes
As with regular expressions it is also possible to concatenate discrete processes.
Definition 2.14 The concatenation of two discrete processes P and R is defined by
PR
{z,y:x€tP AN yetR:zy},eP UeR,cP UcR)

A concatenation of two discrete processes behaves like the first process until that process
completes a task (performs a completed trace). Then the behaviour is continued accord-
ing to the behaviour of the second process. Because the processes do not communicate
with cach other, again no restrictions arc nceded on their alphabets.

Example 2.15 With P and R as in example 2.12, we have:
P;R= <(ab)*(bc)*7 {a7 C}7 {b}>

(end of example)

2.3.3 Set operators

As for trace structures, the operators N, U, and \ are also defined on discrete processes
in the usual way:

Definition 2.16 Given two discrete processes P and R with eP = eR and ¢P = cR,
then the union, intersection and exclusion of P and R are defined by:

PUR = (tPUtR,eP,cP)
PNR = (tPNtR,eP,cP)
P\R = (tP\tR,eP,cP)
2.3.4 Ordering of discrete processes

Ordering of discrete processes is defined using the ordering of trace structures, i.e.,

Definition 2.17 For two discrete processes P and R, the ordering P C R is defined by

cP=cR NeP=eR N tP CtR

Again, ordering is only defined on discrete processes with equal alphabets in the sence
that P is at most R if the corresponding trace set of P is at most the trace set of R.

Discrete processes

2.4 A shop

Before we give a precise description of our control problem we give an illustrative example
first.

Suppose a shop sells two kinds of articles and in order to get an article one has to
pay for it. Paying for an article is supposed to be a communication action. So we have
as events:

a; sell article 1

as sell article 2

p1 pay for article 1

po pay for article 2

The complete process becomes

P = (((p1a1)|(p2a2))*,{a1, a2}, {p1,p2})

The behaviour of P is a repetitive choice of paying for article 1 and buying it and paying
for article 2 and buying it. For example pia1piaiprazpiay is a legal trace of P.
A customer can now be described as “pay for every article wanted,” for example:

R = {((p1p1),p2), D, {p1,p2})

if the customer wants to have two articles number 1 and one article number 2. Connecting
these two processes results in:

P h R = (((alal),ag), {al,ag}, @>

Notice that the uncontrolled behaviour of the shop P equals tP[eP = (ay|ag)*, while
the controlled behaviour is t(P b R) = (a1a1),a2. So we have: P b R C P[eP. The
customer has in fact controlled the exogenous behaviour of the shop.

2.5 A control problem

As mentioned before, we wish to use (part of) the communication events to control the
exogenous events. We wish to construct, given a discrete process P, a second discrete
process, the controller R, with as possible events (part of) the communication events of
P, such that the resulting exogenous behaviour of the connection of P and R is within
some lower and upper limits given by L and Ly, i-C.,

Lmin g (P h R) g Lmaac

This problem is called control of discrete events (CODE for short). In the following
chapter we give a formal outline of CODE and an algorithm to solve CODE (which is
called a deCODEr).

3

Control of discrete processes

Is everyone in?
Are you having a nice time?
Now the final solution can be applied

The fletcher memorial home — The final cut

In this chapter we discuss the following control problem:
Given are a discrete process P = (tP,eP, cP) and two discrete processes Lyyin and Lyaq
with

el in =eP cLypin =0
el .. =eP cLyor =0
Lmin g Lmax

Lynin and Ly, specify the range of resulting exogenous traces that are acceptable.
The problem is to find, if possible, a discrete process R with:

R = (tR,0,cR) with: ¢cR CcP
such that
Lmin g (P h R) [eP g Lmax

This last condition is called the minmaz condition.

The restriction of the alphabet of L,,,, being equal to eP is needed because we can
only give restrictions on the existing exogenous events. Without loss of generality we
assume:

Lmin g Lmax g P[eP

(so we give restrictions to existing exogenous traces only). Of course, L., can be
extended with traces not in P[eP, but (P b R)[eP C P[eP, so if (P b R)[eP C Ly,
with Ly,e, € PleP, then also (P b R)[eP C Lyyuz U Legtrg for all Legyrg € PleP.

In the sequel this problem is referred to as CODE.

!This condition is adapted from a similar condition from supervisory control theory (see [RaWo]).
See also chapter 5.

30

Control of discrete processes

Example 3.1 A possible control problem could be:
Given

P = ((aclad|ag|be|cg), {d, e, g}, {a, b, c})
Lpin = ((6)7 {d7679}7@>
Linaz = <(6|g), {dv 6,9},@)

find a controller R with ¢R = {a,b} such that L,,;, C (P b R)[{d,e,g} C Lys-

(end of example)

Example 3.2 Reconsider the shop example of section 2.4. A possible problem could
be to buy at most two articles of kind 2 and always one more of kind 1. The desired
Lin and Ly, then are

Linin = <(a'1)7 {a17a2}7@>
Linaz = <(a'1|(a'1a17a?)l(alalalana'?))v {alva'?}?@)

(end of example)

In conventional system theory a system is controlled using the outputs as obscrvations
and computing new inputs for the system in order to get a desired behaviour (for example
to make the system stable or decouple disturbances). In fact, the basic idea here is the
same: we use the communication events® to establish some predefined behaviour. The
main difference is of course that our desired behaviour has to do with order of events,
not with behaviour in time.

3.1 Solution for CODE

In the sequel we deal (without loss of generality)? only with the situation that cR = cP.
So we use all communication events to control the process.

3.1.1 A first attempt

Notice that P and L (for some L satisfying Ly, C L C Lye,) have events in common.
These events are exogenous events, so connecting P with L is not allowed. However,
suppose we interchange the meaning of communication and exogenous events for a mo-
ment and indeed perform a connection between P and L. The result of this (pseudo)
connection is a discrete process with communication events only. Perhaps this process
is the controller process we are looking for.

To do things formally, we use the blend b instead of the connecting operator b
here, because b is not allowed between P and L. So we try tR = t(P b L) for some L
satisfying Lpin € L C Lpgg-

Notice that P b Ly, € P b L,,.,.. Furthermore, reconsider lemma 1.17 which gives
P b (P b Lyin) D ts(Lyin). Combining these facts, we may conclude that Ly, is a
candidate for L. This leads to:

2 At this point no distinction is made between inputs and outputs. See chapter 7.
3In the last section of this chapter we discuss more general settings of CODE.

32

Control of Discrete Events

Lemma 3.3

Pb (P b Lmin) g tS(Lmam)
=
CODE is solvable

Example 3.4 Given is:
P = {(ae|ad|be), {d, e}, {a, b})
If t Ly = tLipes = {e} then:
t(Pb (Pb L))

t(P b ((alb),{a,b}, D))

{d, e}

thaa:

The lemma does not lead to a solution for CODE, although there is one. Take R = {b},
then t(P b R) = {e} = tL4,- We may conclude that CODE can indeed have a solution
even if the condition in the above lemma is not fulfilled.

This example shows that P b (P b L) may lead to a control trace set that is too
large. This is due to the fact that the trace set t(P b L) may become too large, because
it contains traces that lead to undesired results (not satisfying the minmax condition)
as well: in the example we have t(P b Ly,;,) = (a|b) in which the trace a is undesirable.
P b ({a},{a,b}, D) leads to (d|e) that contains the undesired trace d. If we omit the
illegal control trace a from P b I we find a suitable controller. This idea is used in the
algorithm bclow.

(end of example)

3.1.2 A second (and successful) attempt

In this section we give an algorithm to construct a solution for CODE, which also can
be used to investigate if CODE has a solution at all. For the algorithm we need two
functions:

Definition 3.5 With the CODE problem we associate the following discrete processes:
F(P,L)=(t(PbL)\(Pb(P[eP\L)),D,cP)

called the friend? of L, and
G(P,L)=Pb F(P, L)

called the guardian® of L.

F(P, L) describes a possible candidate for solving the CODE-problem. The correspond-
ing exogenous behaviour using this controller is given by G(P, L).

‘friend (n.) -~ Sympathizer, helper, helpful thing. The term friend is adapted from [Wonh].
*guardian (n.) — One having custody of person or property.

Control of discrete processes 33

When it is clear from the context which process P is considered, we write F(L) and
G(L) for short.
In most cases, we only need the trace set of F'(L) and G(L) so we introduce:

f(L)=tF(L)
9(L) = tG(L)
Notice that:

ef'(L)=0 cF(L)=cP
eG(L)=eP cG(L)=0

The algorithm (called the deCODE¥) is described as follows:
Algorithm 3.6

for all L such that L,,;, CL C L. :
if Lmin - G(L) C Lmaac
then F(L) is a solution

Of course, it is not immediately clear that this algorithm works. In the next section we
try to make it plausible. In the section thereafter we give a proof of the algorithm and,
more importantly, give a necessary and sufficient condition for the CODE-problem to be
solvable.

3.1.3 Outline of the algorithm
First let us try
f(Ly=t(PbL)

So, if G'(L) (with ¢'(L) = t(P b F'(L)) = t(P b (P b L))) satisfies the minmax
condition, then R = F'(L) should be a solution.

However, starting with an L such that L., C L C Ly, docs not guarantee that
Lin € G'(L) C Lz See example 3.4 which results (with L = Ly, in:

f'(L) =t(P b L) = (alb)
g'(L) = (P b F'(L)) = (dle) # tL = (e}
In f'(L) the trace a does not lead to the desired solution because it also allows exogenous

behaviour d to occur while d does not satisfy the minmax condition. Therefore, we repeat
our computation, this time not using L itself but its complement in P, i.e., we compute

J'(L) =t(Pb~L)

with =L = (P[eP) \ L (i.e., all exogenous traces in P that do not belong to L).

In our example t(—=L) = (d), so we get f"(L) = (a). f"(L) now gives all communi-
cation traces that may lead to undesired results. If we use f(L) = f'(L)\ f"(L) now,
we find exactly those control traces that lead to the desired results. Here f(L) = b.
Summarizing:

e First, compute P b L to get all possible control traces,
e Ncxt, compute P b =L to get all control traces that give undesired results,
e Finally, take (P b L) \ (P b —L) to find exactly the right control traces.

Control of Discrete Events

This is precisely, what F'(L) does:
f(L) =+((Pb L)\ (Pb (P[eP\ L)))
———’ ——_———

possible =L
controls

“

v

undesired controls

desired controls

3.2 Proof of the algorithm

First, a number of properties of the friend and the guardian are listed.

Lemma 3.7 The friend and the guardian of L salisfy:

f(L) = {z:2€tP[cP AN Vr:z€tP A z[cP=z:z[ePctl): z}
{r:z€tP N Vy:y€tP A y[cP =z[cP:y[eP € tL): z[eP}

2
b.

S—
Il

proof: We have:

t(P b (PleP\ L))

= [property 1.14 (3) |

{z:2€tP[cP AN 3z:x€tP A z[cP=z:z[eP ct(PleP\L)):z}
[z]eP € tP[eP |

{z:2€tP[cP N Bz:x€tP A z[cP=~z:x2[eP gtL): z}

Hence:

7(5)

= [definition of F'(P, L)]
t((Pb L)\ (P b (PleP\ L)))

= [definition of \, property 1.14 (2), and previous equation]
{z:2€tP[cP N Bz:x€tP A z[cP=2z:z[eP ctl): z}\
{z:2€tP[cP AN Bzx:z€tP A z[cP=~z:x[eP ¢gtL): z}

{z:2z€tP[cP AN (Jz:z€tP A z[cP=z:z[eP €tL) A
—(Jz:x €tP A z[cP =z:z[eP ¢ tL)
Dz}
= [z]eP € tP[eP |
{z:2€tP[cP N Vx:2z €tP A z[cP=2z:x[eP €tL): z}

Furthermore:

9(L)
[definition of G(P, L) |
t(P b F(L))
[definition of b]
{r:z€tP A z[cP € f(L): z[eP}
[expression of f(L) |
{z:z€tP AN Vy:ye€tP A y[cP =z[cP:y[eP €tL): z[cP}

(end of proof)

Control of discrete processes

Lemma 3.8
F(L) C PlcP
proof: Trivial.

Lemma 3.9
G(L)CL

proof:

z € g(L)
& [definition of the guardian |
z €t(P b F(L))
& [definition of b |
Bx:z€tP A z[cP € f(L):xz[eP = z)
= [lemma 3.7: x € tP A z[cP € f(L) = z[eP € tL |
z € tL

(end of proof)

Lemma 3.9 implies that by choosing L = L., (the largest possible choice) the solution
found by the deCODEr still satisfies the right part of the minmax condition of CODE.
Notice that G(L) = L does not hold in general.

Lemma 3.10
RCP[cP AN PbRCL = RCF(L)

proof:

z€tR
=~ [RCP[ePANPbRCL]

z€tP[cP AN Vz:z€tP A z[cP=2z:z[eP €tl)
= [lemma 3.7 |

z € f(L)
(end of proof)

Lemma 3.10 implies that (take L = L4,) every solution of CODE that is contained in
PJcP is contained in Ryqp = F(Lpgs)- Using lemma 3.9 we see that Ry, therefore is
the greatest possible solution of CODE and can be constructed using the algorithm.®

Example 3.11 Reconsider:
P = ((aelad|be), {d, e},{a,b}) L =((e),{d, e}, O)

Take R = ((alb), D, {a,b}), then we have R C P[cP and t(P b R) = (dle) (so: L C
P b R), but f(L) = (b) (see section 3.1.3) so F(L) € R. We conclude that we cannot
prove:

RCP[ePANLCPbR = F(L)CR

SNotice that it is always possible to add t0 Rmaes traces that have no influence when they are blended
with P. So it is only possible to find a greatest solution that is contained in P[cP.

35

36

Control of Discrete Events

and therefore, we cannot find in general a smallest possible solution. In other words,
as we shall see, if a solution exists, the solution constructed via Li,,; is a most liberal
solution. There may or may not be a most conservative one.

(end of example)

Lemma 3.12

L1 QLQ = F(Ll) QF(LQ)

proof:

y € f(L1)
=3 [lemma 3.7 |

(Fz:zetP[cP AN (Vx:xz €tP A x[cP =2:z[eP € tlLy))
= [x[ePGtLlix[ePEtLQ]

(Fz:z€tP[cP AN (Vx:z €tP A z[cP =2z:x[eP € tly))
& [lemma 3.7 |

y € f(L2)

(end of proof)

Lemma 3.13
Ly C Ly = G(Ly) CG(Ly)

proof:
Ly C Ly
= [lemma 3.12 |
F(L1) C F(Ly)
= [property 1.21 (2) |
Pb F(L) CPbF(Ly)
& [definition of G(P, L) |

G(L1) C G(L2)
(end of proof)

This lemma states that an increasing set of choices of L leads to an increasing set of
resulting exogenous traces P b F(L) of the CODE problem (monotonicity).
We are able now to prove the following useful result:

Theorem 3.14

CODE is solvable
=
Lmin g G(Lmax)

proof: Suppose CODE has a solution, say R, then write
R= Rint U Rezt
with:

Rin; = P[cPN R
Rezt =R \ Rint

Control of discrete processes

(which gives Pb R = P b Rjy;).
Then we have:

true

& [R is asolution and Pb R;,; = Pb R |
P h R7m‘ C Lm,(m:

= [lemma 3.10 with R;,; C P[cP]

Rint g F(Lmam)
Which gives:
Lmin
[R is a solution: Ly, Ct(PbR)=t(P bR |
p hRint

[above implication |

N

N

P b F(Lmaz)
G(Lmam)

Next, suppose CODE has no solution:

(VR:PhRngax:LmingPhR)

= [choose R = F(Lpqz) (such an R exists, see lemma 3.9) |
Lnin Z Pb F(Lmax)
& [definition of G(P, L) |

Lmin Z G (Lmax)

(end of proof)
This theorem, together with previous lemmas, implies that if

Lmin - G(L)

for some L, satisfying Ly, C L C Lygs, the process F(L) is a solution of CODE. If
even for L = L,,,, this condition is not fulfilled, no solution exists.

3.3 Some properties of the deCODEr

The following lemmas give some properties of solutions of CODE, as constructed using
the friend and the guardian.

Lemma 3.15
F(L)UF(Lg) = F(Ly U L)

proof: From lemma 3.7 we easily obtain: f(L1)U f(Ly) = f(L1 U Lo).

37

38

Control of Discrete Events

Lemma 3.16

(Lmin g G(Ll) g Lmam) A (Lmin g G(LQ) g Lmax)
=
Lmin g G(Ll U LQ) g Lmax

proof: trivial, using:

G(L1 U L2)

= [definition of G(P, L) |
Pb F(LU Ly))

= [lemma 3.15 |
Pb (F(L1) U F(Ly))

= [property 1.23 (3) |
(Pb P(L1)) U (P b F(L,))

= [definition of G(P, L) |
G(L1) UG(Ly)

(end of proof)

This lemma states that if Ry and Ry are both solutions of CODE (and of the form F'(L)
for some L), then also R; U Ry is a solution. This lemma implies that a greatest solution
(contained in P[cP) exists.

In genceral, however, Ry N Ry and Ry w Ry need not be solutions, which prevents the
existence of a minimal solution, as is shown in the following example.

Example 3.17 Consider

P = <(ebc|bea), {6}, {a7 bv C}> Rl = <(bc)7 @7 {a’v b? C}>
Ry = <(ba')7 ®7 {CL, b7 C}
then t(P b R1) = (e) and t(P b Ry) = (e) (so both Ry and Ry are solutions of CODE),

but t(P b (R1 N Ry)) =D 2 tL,y, (hence Ry N Ry is no solution of CODE).
This is due to the fact that (according to property 1.23):

Pb(RiNRy) C(PbRi)N(PbRy)

In general, cquality docs not hold.

(end of example)

Next, we would like to investigate whether every solution of CODE can be written in
terms of a friend of some L satisfying the minmax condition. Because every solution of
CODE can be extended with traces that have no influence on the result (take Rpey =
RU Reyy for an Ry with t(P b Rey) = @, then R,y is also a solution), we can only
hope that every solution R with R C P[cP can be written in terms of a certain friend.
Suppose R is a solution of CODE with R C P[cP, then P b R satisfies the minmax
condition. From lemma 3.10 we have:

RCF(PbR)

In general, we have no equality here, as is shown in the following example.

Control of discrete processes

Example 3.18 Consider

P = ((adbeladae), {d, e}, {a,b})

Linin = Limas = ((de), {d, e}, D)
then 1 = adbe leads to x1[cP = ab and z;[eP = de and 25 = adae leads to z2[cP = aa
and zz[eP = de. We know that R = ({aa}, O, {a,b}) is a solution of CODE, because
t(P b R) = {de}, but no L satisfying the minmax condition can be found so that
f(Ly = tR. The only possible L, namely L = Ly, leads to f(L) = {ab,aa} # tR.

In this case there are more communication traces y € tP[cP that lead to the same
exogenous trace (y = aa as well as y = ab leads to the exogenous trace de). To find a
solution not all these communication traces arc needed. Just one will do, but using the
deCODEr all possible communication traces are given.

(end of example)

3.4 Observability

It is easily seen that if in P all exogenous traces can be found by applying a unique
communication trace only, all solutions of CODE can be found by applying the deCODEr
(i.e., are of the form F'(L)). A process P with this property is called observable.

Definition 3.19 P is observable, notation observable(P), if
(Vz,y:x €tP AN y€tP:xz[eP =yleP = x[cP = y[cP)

Example 3.20 The processes P in the examples 3.11 and 3.18 are not observable, for
example for

P = ((aelad|be), {d, e}, {a, b})
we have that © = ae and y = be both satisfy z[eP = y[eP but z[cP # y[cP. However
P' = ((adlbe), {d, e}, {a,b}) P" = {(aclad),{d, e}, {a,b})

are both observable. P” has no solution for CODE with t L, = tLpme: = (€). P’ has
precisely one solution, namely R with tR = (b).

(end of example)
Lemma 3.21

observable(P)
=
(VR : R is a solution of CODE N RC P[cP: F(PbR)=R)

proof: We only have to prove that R 2 F(P b R):

2€ f(PbR)
= [lemma 3.7 |

z€tP[cP AN Vz:z€tP A z[cP=2z:z[eP € t(P b R))
= [property 1.14 (3) |

39

40

Control of Discrete Events

=
z€tPlcP AN Vz:z€tP A z[cP =2
:(Jy:yetP A y[cP €tR: y[eP = z[eP))
= [assumption implies z[cP = y[cP |
z€tP[cP AN (Vx:z€tP A z[cP =z:z[cP € tR)
=
z€tR

(end of proof)

3.4.1 Relation to conventional system theory

In [JCW] observability on a dynamical system X = (T, W, B), with W = W; x Wy and
B C By x By, with B; = Py, (B) the projection on W;, is defined by:

woy : T — Wy is observable from w; : T' — W if there exists a function
F : By — By with ((wl,wg) € B) = (w2 = F(wl))

Translating this to our definition of discrete systems leads to:

z € P|eP is observable from y € P[cP if there is some function
F:PlcP — PleP with 3z :z € tP:z[eP =2 A z[cP =vy) & (z = F(y))

If we define F as
Fly)y={z:z€tP A z]cP =y :z[eP}

we see that F' is a function if and only if P is observable according to our definition.
We conclude that our definition of observability meets the general meaning of the
notion in system theory.

3.4.2 CODE for observable processes

From lemma 3.21 it is clear that every solution of CODE for an observable discrete
process P has the form F(L). In that case, the deCODEr gives all possible solutions.
From lemma 3.12 we see that
=
F(me) - F(L)

holds for every L satisfying the minmax condition. If P is observable, all solutions are of
the form F'(L). We conclude that for an observable P the solution F'(L,;,) is minimal:

Theorem 3.22 [f CODE has a solution, then F(Lya.) is the largest solution contained
in P[cP. If in addition P is observable, then F (L) is the least solution contained in
PJcP.

proof: Combination of previous results.

If P is observable, we also have that G(P b R) = P b R. This property, however, holds
for every P and every solution R:

Control of discrete processes 41

Lemma 3.23 For every solution R C P[cP of CODE, we have:
G(PbR)=PbR

proof: From lemma 3.9 we have (take L = P b R) that G(P b R) C P b R. So it
remains to prove G(P b R) D P b R. We have:

x[cP € tR
= [take u =y |

My:yetP A yl[eP=z[cP:(Fu:u€tP A u[cP € tR:y[eP = ul[eP))
& [definition of b]

(My:y €tP A y[cP =z[cP :y[eP € t(P b R))

Hence:
z € t(P b R)
& [definition of b]
(Fx:z€tP A z[cP €tR:z=x[eP)
= [above implication |
Fx:zetP AN Vy:yetP A yleP =xz[cP :y[eP €t(PbR)):z=x]eP)
& [lemma 3.7 |
z € g(P b R)

(end of proof)
We conclude this section with a summary of the results found:

Theorem 3.24 In the CODE-problem we can draw the following conclusions:

e If CODE has a solution, we can find one by constructing R = F(L), with L satisfying:
Liyin €L C Lyya, and L sufficiently large.
If not even R = F (L) leads to a solution, no solution of CODE exists.
If CODE has a solution and P is observable, all solutions are of the form R = F(L),
with L satisfying: Lyn € L C Lygs

3.5 A more general setting for CODE

So far, we have only considered CODE in the special case in which exactly all communi-
cations of P are used to control exactly all exogenous events of P. However, it is possible
to define CODE in a more general setting:

1) the controller R may also have exogenous events,’

2) R may have a set of communication events that is larger than P,

3) R may have a set of communication events that is smaller than P,

4) Lyin and Ly, may be subsets of only part of the exogenous behaviour of P.

The first two cases are of no interest: Extra exogenous or communication events in R do
not contribute to the control of the exogenous events of P. The last two cases, however,
are of interest. If R has a smaller set of communication events than P, we have to try
to control the exogenous behaviour of P using only part of the communication events.
If L,in and Ly, are subsets of a partial exogenous behaviour of P, we only have to
control a subset of all exogenous events of P.

"These events do not appear in eP.

42

Control of Discrete Events

We extend the formulation of CODE in such a way that these possibilities are in-
cluded also. We find the following more general setting of CODE:
Given

P = (tP,eP,cP)

E CeP

Lmin - Lmax - tP [E

Find

R = (tR,0,cR) with ¢cR C cP
Such that

Liin Ct(P b R)[E C Lyag

It is possible (as will be shown) to transform this extended CODE problem to the
original one, find a solution, and retransform this solution to become a solution of the
extended CODE problem.

We first deal with the case that ¢R C cP. If we may use only fewer communication
events than are present in P, we (temporarily) use another discrete process P’ in which
c¢P’ = ¢R and the remaining communication events are considered as exogenous events:

P' = (tP,ePU(cP \ cR),cR)

We have enlarged the set of exogenous events and have to solve CODE in the case that
not all exogenous events have to be controlled.

It turns out that it is satisfactory to consider only the case in which not all exogenous
events have to be controlled and ¢P = cR (if not so, first do the transformation as
prescribed above).

So consider:

P = (tP,eP,cP)
Limin C Lmaz € P[E with E C eP

and try to find R = (t R,), cP) such that:
Lmin - (P h R) [E - Lmax

To find a solution for this problem, we extend L,,;, and L., to become subsets of
PJleP as follows:

; = Lyin 8 P[eP

Lt .. = Lngy s PleP
We have arranged that Lf, and L

min mar
behaviour of events from FE is still prescribed by L, and Lf ..
so arranged is denoted by CODEE.
We will prove that finding a solution for CODEF€ leads directly to the solution for
the original CODE-problem, i.e., if R = (tR, D, cP) is a solution for CODE®, then it is
a solution for CODE.

Therefore, it remains to prove that (with LS, C L C L¢, .):
L¢,, CG(L)C L

min maxr

arc subscts of P[eP and that the desired
The CODE problem

=
Lmin g G(L) [E g Lmam

Control of discrete processes

First notice:
fmﬁn [E
= [definition of LS, |
(Lpmin 8 PleP)[E
= [property 1.21 (3), note: aLy, Na(PleP)=E CE |
Lyin|E s PleP[E
= [PleP[E = P[FE and property 1.20 (1) |
Lpin N P[E

Lmin

and, similarly:

Lo E = Linae
We have:
Liin € G(L) € Ly
= [[is monotonic]
min|E € G(L)[E C L5, [E

~
Lmin g G(L) [E g Lmam

So, in general, each solution of CODEF is a solution of CODE.

It turns out that control of only part of the exogenous events means that we do not
give any constraint for the uncontrolled exogenous events. All possibilities of occurrence
of this uncontrolled behaviour (as is possible in P) are simply copied to the constraints
Lyin and Ly, by means of the shuflle operator.

In the sequel we always consider the CODE-problem as formulated in the beginning
of this chapter. In examples we sometimes use the more general CODE-problem and
solve the corresponding CODE®-problem.

Example 3.25 Reconsider example 3.1:

P = ((aeladlaglbelcg), {d, e, g}, {a,b, c})

thm =€
tLipar = (6|g)
cR = {a,b}

Applying the above construction yields:

P' = ((aelad|ag|be|cg), {d, e, g,c},{a,b})
E={d,e,qg}
Lfﬂm = Lpin 8 P[eP = <€, {d,e,g,c},@)

Lfnam = Lmal‘ s P[eP = <(€|g|Cg), {d7e7g7c}7 @>
This leads to

t(_‘Lfnax) = d
f(P' LY0n) = ((P'b L7,,) \ (P b ~L7,,,))
(alble) \ (a)
= (ble)
g(P', L) = (eleg)

43

44

Control of Discrete Events

The controller R = ((ble), D, {a,b}) has the property
t(P b R)[{d,e, g} = (¢leg)[{d; e, g} = (¢lg)

so satisfies the minmax condition.

The occurrence of the behaviour ¢g in P b R is due to the fact that ¢ does not
contribute in the connection of P and R. If we do not want ¢g, it can be removed by
connecting a second controller Ry to P b R with Ry = (¢,0, {c}).

(end of example)

4

Regular discrete processes

What shall we use to fill the empty spaces
Where we used to talk

How shall I fill the final places

How shall I complete the wall

Empty places — The Wall

In this chapter we deal with a special kind of discrete process, namely the regular discrete
process. Regular processes can be represented using finite state graphs, so part of this
chapter treats finite state graphs in more detail. It turns out that for regular processes
the deCODEr algorithm can be performed using finite state graphs. For regular discrete
processes we therefore can check effectively whether the CODE-problem has a solution
and if so, we can construct a controller effectively , i.e., by using only a finite number of
steps.

4.1 Regular processes

In the first chapter a definition is given for regular trace structures. Because of the
similarity between trace structures and discrete processes it is not surprising that the
following definition specifies a regular discrete process:

Definition 4.1 A discrete process P is called regular if the corresponding trace struc-
ture ts(P) is reqular.

As a consequence, a regular discrete process can be represented as a finite state graph or,
equivalently, its behaviour consists of a regular expression (as we have frequently used in
the previous chapters). The class of regular discrete processes over a certain alphabet A
(being the union of the exogenous and the communication events) is denoted by R(A).

Lemma 4.2 The class of regular discrete processes is closed under connections, total
connections, joining, and concalenations, i.e., if P and R are regular, then P b R,
PwR, PsR, and P ; R are regular.

proof: Immediately from the fact that the class of regular trace structures is closed
under weaving and blending (see chapter 3 of [JvdS]).
(end of proof)

45

46

Control of Discrete Events

Moreover we have:

Lemma 4.3
(VP: PeR(aP): L e R(eP)= F(L) € R(cP))

proof: Follows directly from the fact that F(L) is defined using connection and set
exclusion and these operators preserve the notion of regularity (see [HoUl]).
(end of proof)

4.2 Combining finite state graphs

In case of regular discrete processes it is possible to construct a controller using the state
graphs directly. Because these graphs have a finite number of states, it is then possible
to construct this controller using an algorithm that contains only a finite number of
steps. In this section we give a translation of the deCODEr for finite state graphs.

For using the deCODEr directly on finite state graphs, we have to translate the
operations b, [, and \ (blending, alphabet restriction, and exclusion)' in algorithms
for finite state graphs.

In the sequel we assume that every finite state graph is complete (or completely
specified), i.e., the transition map ¢ is defined for every pair (p,a) with p € Q and a € A.
Every finite state graph M that is not complete can easily be made complete: we then
construct a complete graph M, out of M that is equivalent with M (in the sense that
M and M, accepts the same strings) by introducing one extra state [(J], called the error
state (i.e., Q. = Q U {[D]}), and constructing a new transition function . as follows:

dc(p,a) = 6(p,a) if §(p,a) is defined,
de(p,a) = [D] if 6(p, a) is not defined,
3:([D],a) =[] for every a € A.

For a discrete process P the graph sg(P) is complete by definition.

In the sequel we write §(p,a) = ¢ if a transition labeled a from state p to state ¢
exists and use §(p, ¢) as another notation for p (to ease notation in definition 4.5).

If we use alphabet restriction (directly or when computing a blend), we derive a
non-deterministic graph, i.e., all transitions labeled with an event not in the alphabet
are replaced by a transition labeled with e.

In general, a non-deterministic state graph is a state graph with the transition func-
tion d replaced by a mapping into 2%, i.e., it is possible that from state p a transition
labeled a to state g exists and also a transition labeled a to state ¢’ with ¢ # ¢'. Also
e-transitions are possible in a non-deterministic state graph. In definition 4.5 we only
have non-deterministic state graphs containing e-transitions. Formally, the definition of
a non-deterministic graph is:

'In fact we have to translate connection, total connection, and exclusion on discrete processes in
algorithms for finite state graphs. However the essential calculations of for example the connection is the
blend between two trace sets, so we restrict our attention on trace structures here and use the results
on discrete processes.

Regular discrete processes 47

Definition 4.4 A non-deterministic state graph M,,4 is defined by:

Mg = (A7Q7d7 QO7F)nd

with:
A the alphabet
Q the states of the graph
d:Qx (AU{e}) =29 the state transition map
go € Q the initial state
FCQ the final states

We always have (by definition) p € d(p,€).

It is known (see [HoUl]) that every non-deterministic finite state graph can be made
deterministic, such that it still accepts the same language.

If M,,q is a non-deterministic finite state graph, we denote by

det (Mnd)

its deterministic equivalent. See [HoUl] for an algorithm to derive this deterministic
graph.

Definition 4.5 Let My = (A1, Q1,01,q01, F1) and My = (As, Q2, 62,902, F2), then we
define:

(@) My w My = (A1 U A, Q1 x Q2,6,(q01,902), F1 X Fy)
with: (Vp,q,a :p€ Q1 AN g€ Qs N a € Aj U Ag
1 0((p,q), @) = (1(p,a[A1), d2(q, a[A2)))
(b) M b My =det(A; + Az, Q1 X Q2,6,(qo1,902), F1 X F2)pg
with: (Vp,q,a :p€Q1 AN g€ Qs N a € Ay U Ay
(a € A1+ A = 6((p,g),a) = {(61(p, a[A1), 62(q,a[A2))}) A
(a € A1 N Ay = (61(p,a[A1), 02(g,a[A2)) € 6((p,q). €))

and in case Ay = Ay, = A:

(c) MiUM;=(4,Q1 X Q2,6 (qo1,902), F)
with: (Vp,q,a :p€@Q1 N g€EQy N a€ A
: 5((]97 Q),G) = (51(]97 a’)752(Q7a)))
and: F={p,q:pc€ Fy V q€ Fy:(p,q)}
(d) MinNMy=(A,Q1 % Q2,6 (qo1,q02), F1 X Fy)
with 6 as in (c)
(e) Mi\ M= (A,Q1 x Q2,0,(qo1,902), F)
with 6 as in (c)
and: F={p,q:p€F1 N q¢ F>:(p,q)}
(f) —~My = (A1,Q1,61,901,Q1 \ F1}
(9) pref(Mi) = (Aq, Q1,01,q01, Q1)

and for AC A;:
(h') Ml [A = (A7Q1767QO17F1)
with: (Vp,a:p€ Q1 A a € Ay
: (a €A= 5(p7 a’) = {(51(}), CL)}) A
(a & A= &1(p,a) € d(p,¢)))

Once again we repeat that the above definitions are only valid if used on complete state

48

Control of Discrete Events

graphs. Incomplete state graphs give weird results.

Lemma 4.6 If My and Ms are finite stale graphs, then we have:

(a) ts(My) wts(My) = ts(M; w Ms)
(b) tS(Ml) b tS(MQ) = tS(Ml b MQ)

If the graph alphabels are the same, we also have:

() ts(My)Uts(My) = ts(M;U M)
(d) tS(Ml) M tS(MQ) = tS(Ml M MQ)
(6) tS(Ml) \tS(MQ) = tS(Ml \ MQ)

Furthermore, if A is the alphabet of graph M, then

(f) (A, A)\ts(M)) = ts(-M)
(9) pref(ts(M)) = ts(pref(M))

If in addition A; C A, then
(h) ts(M)[A; =ts(M[A)
proof: obvious.

We are now able to express the calculation of F(L) in terms of the above operators:

Lemma 4.7
sg(F (L)) = (sg(P) b sg(L)) \ (sg(P) b —sg(L))
proof: Trivial. Notice that
f(Ly={z:z€tP[eP N Vz:z€tP A z[cP=z:z[eP€tL): z}

and
t(Pb L)

{z:2z€tP[eP AN Bx:2€tP A z[cP=2z:z[eP €tl):z}
so that

S(L)

t(PbL)\{z:2€tP[eP AN (z:z€tP A z[cP==z:z[eP ¢tL): z}
from which the above algorithm to compute sg(F(L)) follows.
(end of proof)
Furthermore, the condition Ly, € G(P, Line) can easily be checked using
M = (sg(P) b sg(F(Lmaz))) \ s&(Lmin)

If M results in an empty state graph, i.e., its initial state equals [@], the condition is
fulfilled and sg(F(Lmay)) represents a controller solving CODE. Otherwise no solution
is possible.

If for some L between L,,;n and L,,,» we have that

M = (sg(P) b sg(F(L))) \ sg(Lmin)
is an empty graph, then sg(F (L)) is a representation for a controller solving CODE.

Regular discrete processes

Figuur 4.1: A ship lock

‘ event ‘ meaning |

P1 a ship passes through door 1
Pa a ship passes through door 2
01 open door 1
02 open door 2
c1 close door 1
Co close door 2

Tabel 4.1: Meaning of the events of the lock

It is not difficult to make a computer program to compute sg(F (L)) from sg(P)
and sg(L) according to this lemma. Such a program is used in this thesis to do the
computations in the examples.

4.3 A ship lock

As an example of the use of the deCODEr we look at the following situation. Consider
a ship lock with two doors in which ships can pass from west to east (see figure 4.1).
The lock is given by:

P =<tP,eP,cP >
with

eP = {p1,p2}
chP = {01702701702}

The behaviour is given in figure 4.2. The meaning of the events is given in table 4.1.
The lock can contain one ship at the time. The desired behaviour therefore is:

49

50

P2

- D1
O-+0O==
D2

b P

N

=

1

Figuur 4.2: Behaviour of the lock

—

1)

/

©O*+-0*+~0*0

Figuur 4.3: Controller for the lock

2

/
©O©+-0+~0>0

|

| o b

O e O o1 O‘é@

02

Figuur 4.4: Pb L

Lmin

= Lpgr = L =< (ppo)*,eP,@ >

Control of Discrete Events

Using the deCODEr? we find the controller as in figure 4.3. This controller does precisely
what we expected it should do: first, let a ship in by opening and closing door 1; next,

let the ship go out by opening and closing door 2.

In figure 4.4 we have given P b L. Just computing P b L in general does not give
the right controller: in P b L, for example the behaviour 0102¢1¢s is possible. This may

2We have used a computer program here, so no calculations have been given.

Regular discrete processes

lcad to pip2, but also pip; is possible and this last exogenous behaviour is certainly not
desired.
It can easily be verified that the exogenous behaviour of the connection equals:

t(P b R) = (p1p2)*
and the total behaviour:

t(P w R) = (01p1c102p2¢2)"

51

3]
Related problems

Finally I understand

The feelings of the few
Ashes and diamonds

Foe and friend

We were all equal in the end

Two suns in the sunset — The final cut

In this chapter we discuss some problems that are closely related to the CODE problem
and can be transformed to CODE or use the deCODEr to find a solution. First, we deal
with the problem of regqulation. Next, we discuss the extended control problem, which
has some analogy to supervisory control theory of Ramadge and Wonham (see [RaWol).
Special attention will be given to the relation between CODE and supervisory control
theory.

5.1 Regulation

Regulation of a discrete process P means finding a controller R, such that the connection
of P with R results in some desired exogenous behaviour after some steps. The notion
after some steps can be interpreted in at least two ways:

1) after at most a finite number of occurrences of (exogenous) events,
2) after occurrence of some behaviour that is given beforehand.

Example 5.1 Consider the process

P = (((ae)*(bg)"), {e, g}, {a, b})

P can be regulated to behave according to

L={g",{g},9)

after (for example) at most 2 occurrences of exogenous events if we use
R = (((¢|alaa)b™), D,{a, b})

However, the process

S = ((ae* (bg)*)7 {679}7 {a'v b}>

52

Related problems

cannot be regulated in that sense: it cannot be controlled how many occurrences of e
precede the desired behaviour g*. P can, however, be regulated in the other sense:

R = {((ab"),?,{a,b})
regulates P such that P b R behaves according to g* after behaviour e*.

(end of example)

First, we define what we mean by “behaviour after some other behaviour.”

Definition 5.2 For L and L, with eL, = eL and cL, = cL, we define the behaviour
of L after L, (denoted by L|L, and pronounced “L after L,”) by:

LIL,=({t:(3z,u:z€tlL AN u€etl,:z=ul):t},el,cL)

Formally, we can now define the above problem by:
Given

P = (tP,eP,cP)
L. C pref(PleP)
L;nzn g L;nax g (P[eP)JLPTe

find, if possible, a controller
R = (tR,0,cP)

such that

win © (P R)|Lyre C L

i o (the min'max’condition)

This problem is called regulation of discrete events (RODE for short). If we only want
a maximum of N exogenous events to occur before reaching the desired behaviour, we
can use

Lyre = ({z : 2 € pref(tP[eP) A |z| < N:z},eP,0)
First, we list a number of properties of the operator |:
Property 5.3 !

L,Cpref(L) = LCL,;L|L,

Example 5.4 Consider L and L, with tL = (bab|cac) and tL, = (b|c), then we have:

t(L|L,) = (ablac)
t(L, ; L|L,) = (blc)(ablac) = (bab|bac|cab|cac)

80, in general, L # L, ; L|L,.
(end of example)

'Notice that L, ; L|L, should be evaluated as L, ; (L|L,).

53

54

Control of Discrete Events

Property 5.5

(V:L’l,xg X € tLp N 29 C tLp : [xl]L = [.CL'Q]L) A Lp - pref(L)
=
L=1L,;L|L,

proof: Notice

uctl, N\ wetl,

= [assumption |
[ule = [w]L
=3 [definition of equivalence classes |

(Vz:ze€ (al)* :uz € tL =wz € tL)
Hence:

z € t(Ly; L|L,)

=3 [definition of ; |

(Fu,t:uectl, N tet(L|Ly):z=ut)
=3 [definition of | |

(Fu,t:uectly, N By,w:yetL AN wetl,:y=wt):z=ut)
=~

(Fu,t,y,w:u€tly, NyctL ANwetl,:y=wt A z=ul)
= [above implication and y € tL |

z€etl

(end of proof)

The assumption says that all traces of L, belong to the same equivalence class of L, i.e.,
L, is a prefix of L with all paths ending in the same state in L.

Property 5.6
LiCLy = LlJLp - L2JLp

We are able now to reformulate the min’max’condition in our original minmax condition
of the CODE problem, thus relating RODE to CODE.
Let

Lmin = Lpre ; L, Loz = Lpre 5 L,

min mazx

From property 5.3 we have Lyipn | Lpre 2 L. From property 5.5 we have Liygg | Lpre =
L if

maxr
(Vxl,xg 1z € tLpre N x9 € tLpre : [xl]LmM = [LEQ]LmM)
hence:

Lyin CP b RC Ly
= [property 5.6]

Lmsz Lpre C (P b R)JLPTE C LmaJ:J Lpre
& [see above |

Related problems 55

;m‘n g (P hR)JLPTB g L;nax

= [LiCLy=L1;LCLy; L]
Lpre ; L, - Lpre 5 (PhR)JLpre - Lpre ; L,

~
Lmin - Lpre 3 (P b R)JLpre - Lmax
= [see below |

The last implication is only true if (according to property 5.5):

(V1,29 : 21 € Lpre N 22 € Lpre : [Z1]Pb R = [22]Pb R)

We find:
Lemma 5.7 With L = Ly ; L}, we have
LI”"@ i L;nin - G(LPTE) L;nam) A

(V:L’l,xg X € tLpre N 29 € tLpre : [.CL'l]L = [.’L'Q]L)
=
RODE is solvable

mam)’

A possible controller then is F(Lyye ; L

Lemma 5.8 With R= F(Ly.; L,

mam)

and S = P b R, we have:
Lpr@) L;mn Z G(LPTE ; L;naar) A
(Vxl,xg X € Lme N 9 € Lme : [1’1]5 = [.Z’Q]S)

=
RODE is not solvable

Example 5.9 Reconsider

P = ({(ae)*(bg)*), {€, 9}, {a, b})
;77771 = L;na”r = <(g*)7 {e,g},@)
N=2

then we have

Lyre = ((ggleglee), {c, g}, D)
Lyre 5 Lingy = ((elelee)g®), {e, g}, D)

. e
e, in Lyre ; Lo
Ll

Notice that in Lyg: = Lyre 3 L]

after at most 2 occurrences of events the behaviour is according to
the condition of lemma 5.7 is met. Computing

mazx* max
J(Lpre ; Lipg,) results in

(€|alaa)b*
and indeed G(Lpre ;5 Lipar) = Lpre 5 Lipgs SO

R = (f(Lpre ; L;nax)v @7 {a’v b}>

is our desired controller.

(end of example)

Control of Discrete Events

’Q 7 @ 7 Q‘
agp al‘ GQ\ f_'2

OO0

Figuur 5.1: Behaviour of the elevator

Example 5.10 Consider an elevator in some building with 3 floors. The corresponding
discrete process P equals (tP,{ag,a1,a2}, {fo, f1, f2}) with tP given in figure 5.1 and
the meaning of the events as follows:

a; elevator has arrived at floor ¢
fi elevator is sent to floor ¢

Suppose a person at floor 2 wants to go to floor 1. Initially, the elevator is at floor 0.
The desired behaviour is tL' = (asa;). However, it takes a number of steps before the
elevator reaches floor 2: at most one action is allowed, so we take

tLye = {z:z¢€pref(tPleP) A |z|] <1:z}
= (elar)
We usc L = Ly, ; L' and computec R = F(L). We find f(L) = (f1f2f1|f2/1) and indeced
t(P b R) = (a1a2a1|aza1). However, t((P b R)|Lye) = (a1a2a1]a2a1). The condition
in lemma 5.7 is not met: [e];, # [a1]r (cspecially: L|Lype # L').

This problem can be solved if we use tLye = a1 (i.c. cxactly onc action is allowed
before the behaviour should be as desired). Then we find f(L) = f1fof1 and indeed
t(P b R) = ajaza; and t((P b R)|Lyre) = aza;.

(end of example)

5.2 The extended control problem

Instead of looking at L, € P b R C Ly, one might consider looking at
Lmin g P§R g Lmaa:

which has some similarity in supervisory control theory of Wonham and Ramadge (see
[RaWo]). First, we give a definition and solution for this new problem. Next, we compare
this problem (and CODE itself) with supervisory control.

In this section we discuss the following problem:
Given a discrete process P and two discrete processes Ly, and Ly, with

Lmin = <thin7 ePa CP>

Loz = <thaxaeP7 CP>
Lm7n g Lm,(m:

Related problems

Find, if possible, a controller discrete process R = (tR, D, cP) such that
Lmin g P§R g Lmaa:

This problem is called the eztended control problem or ECODE for short. Notice that
the minmax condition restricts the total behaviour here. Without loss of generality we
assume that

(for the same reason as before with CODE: we cannot create traces in P s R that are
not in P).

As we shall see, the solution of this problem is very much like the solution of CODE
itself: we use the same friend of L, but have to subtract some extra traces from its
behaviour to get the right controller.

To solve the problem, we need the following functions on discrete processes.
Definition 5.11 With the ECODE problem we associate the discrete processes:
E(P,L)=F(P,LleP)\ (P\L)[cP
called the extended friend of L, and
H(P,L)=Ps E(P,L)
called the host? of L.

F(P, L[eP) is a possible candidate for solving CODE. E(P, L) is a possible candidate
for solving ECODE (created by using F'(P, L[eP) and deleting all communicating traces
that are not desired in ECODE); H(P, L) is like the guardian in CODE: it gives the
resulting behaviour using the extended friend.

When it is clear from the context we write E(L) and H(L) for short. Notice that for
L[eP C P we have:

eF(L[eP) = cF(L[eP) =
(L) % (L) cP
H(L) = eP H(L) =cP

The following theorem will not come as a surprise.

Theorem 5.12

ECODE is solvable
=
Lmin g H(Lmam)

and in case ECODE is solvable a solution is E(Lyay)-

To prove the theorem, we need the following lemmas:

host (n.) - One who receives or entertains another as guest.

57

58

Control of Discrete Events

Lemma 5.13
tE(L)={z:2€tP[cP N Vz:z€tP AN z[cP=z:2z€tL):z}

proof:

tE(L)
[definition of E(L) and of \]
tF(L[eP)\ t(P\ L)[cP
[lemma 3.7 and definition of | |
{z:z2€tP[cP AN (Vx:x €tP A z[cP=z:z[eP ctL[eP): z}\
{z:(Fz:z€tP Nzx¢tL:x[cP=2):2z}

{z:z€tP[cP N Vz:z€tP AN z[cP=2z:z[ePctL[eP AN x €tL):z}
= [z €tlL = z[eP ctL[eP]
{z:2€tP[cP N Vz:x€tP AN z[cP=2z:xz€tL):z}

(end of proof)

Lemma 5.14

RCP[ecP AN PsRCL = RCE(L)

proof:

z€tR
= [RCP[cP ANPsRCL]

z€tP[cP AN (Vx:z€tP A z[cP=2z:2 €tL)
= [lemma 5.13 |

z € tE(L)

(end of proof)

Lemma 5.15
H(L)C L

proof:

y € tH(L)
& [definition of H(L) |
y € t(Ps E(L))
& [definition of s |
y €tP A y[cP € tE(L)
=3 [lemma 5.13 |
yetP AN Vz:ze€tP A z[cP=y[cP:xz€tl)
= [take z =y |
z € tL

(end of proof)

Related problems

Figuur 5.2: Behaviour of the elevator

proof: (of theorem 5.12)
First, suppose R is a solution for ECODE, write R = R;,; U Ry with:

Rint = P[cPNR
Rezt =R \ Rint

(which gives P s R = P s Rjp:), then we have:

Lm,in

[R is a solution: Ly, C P s R C Ly |
P s Rint

[lemma 5.14 (with R replaced by Rin:) |
P s E(Lpaz)
= [definition of H(L) |

H(Lmaﬁ)

N

N

Next, suppose ECODE has no solution:

(VR:P§Rngam:LminZP§R)

= [take R = E(Lpqz), such an R exists, see below |
Lmin Z Ps E(Lmax)
=3 [definition of H(L) |

Lmin Z H(Lmam)

The existence of an R = E(L,,;) in the last part of this proof follows from lemma 5.15
with L = Ly, because H(Lpaz) C Linas we know that P s E(Lnaz) € LDinaz-

(end of proof)

60

Control of Discrete Events

Example 5.16 Consider the following model of an elevator P, as given in figure 5.2,
with events:

m clevator going up onc floor
m_ elevator going down one floor
f; elevator needs to go to floor ¢
a; elevator arrives at floor 7

We suppose eP = {m,,m_} and ¢P = {ag, a1, as, fo, f1, 2}

A person want to go from floor 1 to floor 2. Exogenous behaviour mm. , however,
is not enough to guarantee that the person can use the elevator. It should stop at floor 1
also. Therefore, we use the ECODE formulation here, i.e., we want to have the desired
behaviour

tL = agfimayfomaz

Computations give:

tL[eP = Mmymay
[(P,L[eP) = (agfia1f2a2la0f2a2)
tE(P,L) = agfia1feaz

and indeed H(P, L) = L.
(end of example)

5.3 Supervisory control

In this section we discuss the supervisory control theory of Ramadge and Wonham (see
[RaWo]).? In this theory a discrete process is viewed as a sequential process that, in
fact, is equal to a (possibly infinite) state graph. Each label in such a graph represents
the occurrence of some event. The labels may be controlled in which case they can
be enabled or disabled. A supervisor is a second graph that observes the behaviour of
the first one and enables or disables the controlled events in order to get a predefined

4

behaviour. Formally the definitions* are as follows:

Definition 5.17 A sequential process is a tuple G = (Q, %, 8, qo, Qm) with

Q set of states (need not be finite)
by finite setl of events

go € Q initial state

QnCQ marker states

0:Q XX —Q (partial) transition function

We are also given a subset X. C X, denoting the set of controlled events and ¥, = ¥\ X,
denoting the set of uncontrolled events.

A set of control patterns is I' = {y : (v : ¥ — {true,false}) A v(X,) : v} and we say
o € X is enabled if v(o) and is disabled if —y(o).

A controlled sequential process is a tuple G = (G,T).

3In fact, we are inspired by the work of Ramadge and Wonham and have adapted their problem
formulation in this thesis.

4The following definitions do not appear in the glossary, because they are needed in this section only.
Moreover, they are slightly modified to become more readable.

Related problems

a /) c _a /Da, b,c
=0 ©=0+0
4o q1 Zo z1 T2

—y(b) v(b) v(b)

Figuur 5.3: Sequential process G (left) and supervisor S (right).

An extended control grammar is G, = (Q,I' x ¥, 3., qp, Qm) with®

60(%(770)) = 5((]70) if 7(0)
= 1 if —y(o)

G is in fact a state graph representation of a trace structure with trace set equal to the
set of all paths in G starting in ¢y and ending in a marker state. The only difference
with state graphs is that 0 need not be complete in G. It is straightforward, however,
to create a complete graph out of G: the symbol | represents the error state if we add:

6(J—70) =1 5C(J—777U) =1

G. represents the behaviour of G under the control pattern T (i.e., all disabled events
are removed from the graph G to get the graph G.). G, is in fact again a state graph
where transitions labeled with events that are disabled are removed (i.e., replaced by a
transition to the error state).

Definition 5.18 A supervisor is a tuple S = (S, ¢) with

S=(X,%,§ 29, X)) another sequential process
¢: X =T the state feedback map

The closed loop supervised process can then be defined as
Slg = aC(X X Q7 271/)7 (x07QO)7Xm X Qm)
with
Pz, q,0) = (&(z,0),4(q,0)) if ¢(x)(o) A &(w,0)# L A dlg,0)# L

= 1 otherwise

and ac meaning: the reachable part of the sequential process (graph) only.

S|G is the cartesian product of S and G with properly defined transition function and
consisting of the accessible (reachable) part only. In fact, S|G is the weave of the graphs
of S and G, where enabling and disabling of events in G depends on the corresponding
state of S.

Example 5.19 Consider the sequential process G and the supervisor S as given in
figure 5.3. We have

G= ({C]o, Q1}7 {a7 b, C}v 57 q0, {CJO})

5 stands for undefined.

61

62

Control of Discrete Events

o © O O
N
a Q Q—C.(bc

To I T2

Figuur 5.4: Corresponding closed loop supervised process for figure 5.3

with 6(qo,a) = ¢1, 6(q1,b) = qo, 6(g1,¢) = ¢1, and all other ¢’s undefined. Moreover,
Y. = {b}, denoted by b : 7 in the graph. The supervisor is given by

S = ({zo, 21,22}, {a,b,¢}, & xo, {20})

with & according to the graph and state feedback map given by ¢(z¢) = {—y(b)}, ¢(z1) =
{7(b)}, and ¢(x3) = {~(b)}, i.e., b is disabled if the supervisor is in state 2¢ and enabled
if it is in state 27 or zo.

According to the above definitions, we find the closed loop supervised process S|G
as in figure 5.4. For example ¥(x1,q1,b) = (£(x1,b),8(q1,b)) = (0, qo), because in x;
we have v(b). If we had —y(b) in z1, we should have ¥(z1,q1,b) = L.

If we choose —y(b) in z2 of S, we disable b although we could observe it. S is overdone
here: we are able to observe an event that is at that moment disabled. If we choose not
to have the occurrence of b in state z9 of S but leave y(b) there, we enable b but are
unable to observe it. S is not complete: it cannot observe at every point every event that
can occur. If § is not overdone nor incomplete, we call S proper. We only investigate
proper supervisors in this section.

(end of example)

These definitions have a lot in common with our definitions of a discrete process. A
sequential process is defined here as a (generator) state graph with transitions that may
be blocked (i.e., disabled). Each path through the graph gives a trace of the process.
If such a path ends in a marker state, the corresponding trace represents a completed
task. Marker states can therefore be identified with final states in the state graph
corresponding with a discrete process.

A supervisor is an (observer) state graph with all events enabled. The task of the
supervisor is to follow the behaviour of the sequential process and compute (after each
occurrence of an event) a new control pattern so as to enable or disable future events.
However, the behaviour of plant (sequential process) and controller (supervisor) are
not the same. The plant is a passive generator (it generates events, but is unable to
control) while the supervisor is an active observer (it cannot generate events on its own,
it can only enable and disable events). Enabling an event does not mean that this event
actually occurs; it is possible that another event that is also enabled actually occurs.

It turns out that this kind of control is in fact a passive kind of control: a process
is not forced to do anything, only certain actions may temporarily be disabled. In

Related problems

CODE an active kind of control is developed (which becomes more clear when inputs
and outputs are introduced, as will be seen in later chapters).

The different interpretation of plant and supervisor in supervisory control makes it
hard to give a more general definition of connection of processes for example to connect
morc than two processes or to supervise a supervisor. Indeed, nothing is said about the
behaviour of a number of processes if they can influence each other and the observational
behaviour of the supervisor cannot be influenced either.

Last, but not least, a sequential process with state graphs seems suitable but is not.
As long as the graphs are finite (i.e., as long as the corresponding behaviour is regular),
it is always possible to draw such a graph, but how can one draw an infinite graph?
In CODE the behaviour is given in language-like terms directly and a solution is given
that is independent of the properties of that behaviour. The only restriction is that one
should be able to compute the necessary blends and weaves.

In supervisory theory a number of languages is defined also:

Definition 5.20 In addition to a sequential process G and a supervisor S, we define:

L., (G) = {s:5€X" A (qo,8) € Qm : 8}
L(S|G) = {s:se€X* A ¢(x0,q0,5) # L : s}
L(SIG) = L(S|9) N L (G)

Lin(8lG) = {s:s€X" A (x0,q0,8) € Xm X Qm}

Example 5.21 In example 5.19 we have:

L (G) = (ac*b)*
L(S|9) = (ac*b)*
L.(S|G) = (ac*b)*
Lm(S|G) = (ab)*

(end of example)

The main control problem in supervisory control is formulated as: given a sequential
process GG, minimal acceptable behaviour L, and a legal behaviour L, find a supervisor
S such that:

Lo C Le(S1G) C Ly
called the Supervisory control problem (SCP), or
La € Lin(S|G) C Ly

called the Supervisory marker problem (SMP).

For SCP we need the enabling and disabling of events, for SMP it is enough to find
a supervisor that (in every state) enables every event, that can be accepted (i.e., the
supervisors should be complete with respect to G.). This last problem is very similar to
ECODE.

For proper supervisors we can in fact identify L,,(S|G) with P s R, where P is the
discrete process corresponding to G and R is the controller corresponding to S, i.e.,

P = <Lm(G)7@7E>
R = (Ln(5),0,%)

which gives: t(P s R) = L,,(S|G) so that we can rewrite SMP as L, C Ps R C L,
(ECODE).

63

64

Control of Discrete Events

The other way round, a ECODE-problem can be written as a SMP only if the
exogenous alphabet of the process to be controlled is empty. If eP = () we can rewrite
ECODE in SMP:

La, = Lm,in
Lg = Lmax
L,(S|G) =t(Ps R)

However, if eP # (), we have that aR = c¢P, so aR # aP. We control P with only
part of its events observable (and thus controllable) by R. In supervisory control this
phenomenon (partial control) is treated by using masks, i.e., every event in P is mapped
onto zero or one event of R (see [CDFV]).

It turns out that the theory presented in this thesis has some overlap with supervisory
control: SMP is equal to ECODE (with eP =). In general, however, supervisory
control uses another approach of controlling events (by enabling and disabling). In
CODE a number of events control the other events. CODE seems more general because
it allows partial control as well as marker control without using any cxtra mathcmatical
equipment.

6
Deadlock

We all have a dark side
to say the least

and dealing in death

is the nature of the beast

The dogs of war — A momentary lapse of reason

In this chapter we discuss the possibility of deadlock: the situation that a number of
processes in a connection cannot continue while no task is completed. An algorithm is
presented that determines whether deadlock may occur.

Deadlock is defined on the joint behaviour of discrete processes. Because it is of no
importance here whether an event is an exogenous event or a communication event we
restrict our attention to trace structures and use the results on discrete processes.

6.1 Definition of deadlock

To define the notion of deadlock we need the following definition:

Definition 6.1 The set of ending traces of P is denoted by end(P) and defined by

{r:z€tP AN (Va:a€aP:zxa¢ pref(tP)): z}

The ending traces in a connection of P and R are denoted by end(P, R) and defined by

{z : z[aP € end(P) A z[aR € end(R) : z}

65

66

Control of Discrete Events

Property 6.2

(1) end(P,R) =end(R, P)

(2) end(P) CtP

(3) end(P)={z:z€tP AN Vy:y€ (aP)* :zy ¢ tP): z}
(4) end(P,R) Cend(P w R)

proof: Parts (1), (2), and (3) are trivial. For part (4) notice that (property 1.18 in
[JvdS]): pref(P w R) C pref(P) w pref(R), so:

z € end(P, R)

=3 [definition of end |
zlaP € tP A z[aR €tR A (Va:a € aP: za[aP ¢ pref(tP)) A
(Va:a € aR: zalaR ¢ pref(tR))

= [definition of w and above inclusion |

ret(PwR) AN (Va:a€aPUaR: za ¢ pref(t(P w R)))

x € end(P w R)

(end of proof)

Example 6.3 Consider P = ((a),{a}) and R = ((alaa), {a}), then
end(P) = {a} end(R) ={aa} end(P,R)=0 end(PwR)=/{a}

So in part (4) of property 6.2 equality does not hold.
(end of example)

First, we define the possibility of deadlock in one connection, i.e., between two processes.
Further on, we define deadlock in multi-connections.

Consider two discrete processes P and R. If it is possible to reach a state that is not
an endpoint from which no further events are possible, we speak of deadlock.! Formally:

Definition 6.4 Two discrete processes P and R may (in connection) end in deadlock,
notation deadlock(P, R), if:

(3z : z ¢ end(P,R) A z[aP € pref(tP) A z[aR € pref(tR)
:(Va:a€caPUaR
:zalaP ¢ pref(tP) V zalaR ¢ pref(tR)))

Property 6.5
deadlock(P, R) & deadlock(R, P)

The traces z € end(P, R) are omitted because completed tasks can never deadlock (but
only finish) the connection.

Our definition of a discrete process makes it impossible for one discrete process to be
in deadlock by itself (i.e., ~deadlock(P, P)): this should be considered as termination of
the process. We only consider tP as behaviour, i.e., we only consider completed traces.
The following lemma. illustrates this:

!When we have defined the notions input and output we will encounter another possibility of deadlock,
called weak deadlock. The kind of deadlock defined here will then be called strong deadlock.

Deadlock

Lemma 6.6

z € pref(tP) A z ¢ end(P)

=
(Ja:a € aP : za € pref(tP))
proof:
z ¢ end(P) A z € pref(tP)
& [definition of end |
(x¢tP V (3a:a € aP:zac€ pref(tP)) N (z € pref(tP))
=4
(x ¢ tP A z € pref(tP)) Vv
(z € pref(tP) A (Ja:a € aP : za € pref(tP))
=

(Ja:a € aP: za € pref(tP))
(end of proof)

Some examples to illustrate deadlock are given below.

Example 6.7 Consider
P = ((dcb)*,{b,c,d}) R =((ecc)",{b,c,e})

Take z = edec, then z[aP € pref(tP) and z[aR € pref(tR), but neither one of xb,
xc, xd, or xe belongs (restricted to the corresponding alphabet) to both pref(tP) and
pref(tR). So after x no common event is possible.

(end of example)

Example 6.8 Consider
P ={(ad[b),{a,b,d}) R =(((ad)*|b),{a,b,d})
then x = ad has the properties:
z €end(P) A z ¢ end(R) A z € pref(tP) A z € pref(tR)

and neither one of ada, adb, and add belongs to both pref(tP) and pref(tR). So we
have deadlock. Here, we have the situation that P completes its task after ad and cannot
continue, while R may continue.

(end of example)

6.2 Detecting deadlock

In this section we give (in case P and R are regular) a method to detect deadlock.
Therefore we need the corresponding finite state graphs for P and R and construct
a product automaton dr(sg(P),sg(R)) in which deadlock can be detected. First, the
construction of dr(sg(P),sg(R)) is given in the next definition.

Definition 6.9 Given are two completely defined and deterministic state graphs:

Mp = (Ap,Qp,dp,qp, Fp)
Mg = (Ag,QRr,0r.qr, Fr)

67

68

Control of Discrete Events

then we define the state graph My = (Ap U Ag,Qp X QRr, 04,94, Fp X Fg) with qq =
(gp,qr) and 84 defined by:

a < AP N a ¢ AR : 6d((p17p2)7a) = (6P(p17a)7p2)
a¢ Ap N a€ Ar: 64((p1,p2),a) = (p1,0p(p2,0))
a€ ApNApg: da((p1,p2),a) = ((6p(p1, a), 0r(p2, a))

where we define (p1,[D)r) and ([Q)p,p2) to be equal to [y for all p1 and po.
Nezt, we define the deadlock recognizer dr(Mp, Mg) as equal to the state graph My
but with all unreachable states (and corresponding transitions) deleted:

dr(MP7 MR)

(ApU AR, (Qp X Qr) \ Qu:8dl(Qpx0r\Qu»>9d: (FP X FR) \ Qu)
with
Qu ={p1,p2 : =(3z : dp(qp,z[aP) = p1 A dr(qr,z[aR) =p2): (p1,p2)}
(the set of unreachable states).
Property 6.10
ts(Mp w Mg) = ts(dr(Mp, Mr))

proof: It is obvious from the definition of the deadlock recognizer that it accepts pre-
cisely the same language as the weave of the state graphs as defined in definition 4.5.
(end of proof)

To be able to use dr(sg(P),sg(R)) for detecting deadlock, we need the following defini-
tions as well:

Definition 6.11 A state p of sg(P) is called an end state if:
pEF(P) AN Va:a€aP:dp,a)=[0]q)

The set of all end states of sg(P) is denoted by Ep.
A state (p1,p2) of dr(sg(P),sg(R)) is called a deadlock state if:

(p1,p2) Z[Dla A (11 ¢ Ep V p2 ¢ Eg) A
(Va:a € ApU AR : 64((p1,p2),0) = [D]a)

Property 6.12

(1) z € end(P) & [z]lp € Ep
(2) zecend(P,R) & |[z|aP]p € Ep A [z|aR|g € Egr

A deadlock ending state in dr(sg(P),sg(R)) can be recognized as a state with no out-
going edges (except for those leading to the error state) and

e 1ot being a final state or
e Dbeing a final state (p1,p2) with the property that from p; in sg(P) or from ps in
sg(R) at least one outgoing edge does not lead to the error state.

The last possibility is difficult to recognize. Further on we give a method in which this
situation cannot arise.
We derive the next theorem:

Deadlock

Theorem 6.13

deadlock(P, R)
=~
dr(sg(P),sg(R)) has at least one deadlock state

proof:

(p1,p2) is a deadlock state of dr(sg(P),sg(R))
& [by definition |
(p1,p2) # [Dla N (p1 & Ep V p2 & Eg) A
(Va:a€aPUaR: §((p1,p2),a) = [D]a)
& [(pp2) =[0la) & (p=[9]p V ¢=[0]r)]
(p1,p2) #[Dla N (p1 ¢ Ep V p2 & Eg) A
(Vo :a€caPUaR
:(acaP A a¢daR = dp(p1,a)=[9]p) A
(a¢aP A a€aR = 6r(ps,a) =[0]g) A
(acaPnaR = dp(p1,a) =[D]p V dr(p2,a) =[D]r))
=3 [all states in dr(sg(P),sg(R)) are reachable |
(Fz :xz[aP € p1 A z[aR € py
t(p1yp2) #[Ola A (p1 ¢ Ep V p2 & Eg) A
(Vo :a€caPUaR
:(acaP A a¢daR = dp(p1,a)=[9]p) A
(a¢aP A a€aR = 6r(ps,a) =[0]g) A
(a €aPNnaR = dp(p1,a) =[D]p V dr(p2,a) =[D]r))
& [see property 6.12 and note below |
(3z : z[aP € pref(tP) A z]aR € pref(tR) A z ¢ end(P, R)
:(Va:a€aPUaR: zalaP ¢ pref(tP) A za|aR ¢ pref(tR)))

deadlock(P, R)

Notice that, because sg(P) and sg(R) are minimal (by definition), we have:

(z]laP €p A p#[Q]p) & (z]aP € pref(tP)) and
(z[aP € g A q #[D]g) & (z[aR € pref(tR))

(end of proof)

Example 6.14 Reconsider example 6.7. Then the constructed deadlock recognizer
dr(sg(P),sg(R)) is as in figure 6.1. State 4 is a deadlock state: no edge leaves from
state 4 (except for edges to the error state which are not drawn here).

(end of example)

Example 6.15 The deadlock recognizer for P and R from example 6.8 is drawn in
figure 6.2. State 3 is a deadlock state. Although it is a final state in the corresponding
state in the graph of R an event is possible (namely event a) so state 3 is not an end
state. State 4 is no deadlock state: it is an endstate.

(end of example)

69

70

Control of Discrete Events

Z@d@—c’@

A
®

Figuur 6.1: Deadlock recognizer for example 6.7

%ﬁa@d

Figuur 6.2: Deadlock recognizer for example 6.8

6.3 Single task and repeating task processes

If we look at discrete processes more carefully, we can divide them into the following
classes:

e single task processes: processes that perform exactly one completed task, after which
they are unable to continue,

e repeating task processes: processes that are always able to continue after a comple-
tion of a task,

e mixed task processes: all other processes.

Notice that the set of all single task and repeating task processes is smaller than the set of
all discrete processes. A discrete process can be neither a single task nor a repeating task
process, in which case it is a mixed task process: sometimes it performs a completed task
and is able to continue, another time it performs a completed task and cannot continue.

In terms of state graphs a single task process only contains final states from which
all outgoing edges are leading to the error state. A repeating task process contains only
final states from which at least one edge leaves that does not lead to the error state. A
mixed task process contains both kinds of final states (or none at all).

Example 6.16 Consider
P = {(eb)*c,{b,c,e})
This P is a single task process. Its trace set is infinite. Notice that

R = {(eb)*, {b,c,e})

is a repeating task process and that

Deadlock 71

S = (((eb)*c)l(eb)*, {b,c,e})

is a mixed task process.

(end of example)

We can give the following formal definition of a repeating task process and of a single
task process:

Definition 6.17 A discrete process P is called a single task process if
end(P) =tP
and o repeating task process if

end(P) = @

Example 6.18 Reconsider P, R, and S from example 6.16, then:

end(P) = ((eb)*c)
end(R) = O
end(S) = ((eb)*c)

(end of example)

In the rest of this chapter we only consider repeating task processes. For such processes
the set of ending traces is empty, so the definition of deadlock reduces to a simpler form
(i.e., we can omit = ¢ end(P, R)).

Property 6.19 If P and R are repeating task processes, we have:

deadlock(P, R)
=
(3x : z[aP € pref(tP) A z[aR € pref(tR)
:(Va:a€aPUaR
:zalaP ¢ pref(tP) V zalaR ¢ pref(tR)))

If the process is not a repeating task process, we can make it a repeating task process
by concatenating the single task part of the process with the so called finishing process

stop = (O*, {O})

The event O (called the finishing event) denotes that the process has finished, i.e., has
completed a task and will not ever continue.

Definition 6.20 For a discrele process P the associated repeating task process is de-
noted by Po and defined by

Ps = ({(end(P),aP) ; stop) U (tP \ end(P),aP)

72

Control of Discrete Events

?a@d
@ De

Figuur 6.3: Deadlock recognizer for example 6.8

Example 6.21 Reconsider the process P, R, and S from example 6.16. It is easily
seen that S = P U R, where P is the single task part and R is the repeating task part
of S. According to the above construction we find:

Sn = (P;stop)UR

= ((eb)*c", {b, c,e,0}) U ((eb)*, {b, c}, {e})
= ((eb)*cO*|(eb)*,{b,c,e,O})

(end of example)

Considering only repeating task processes makes it easier to detect deadlock using a
deadlock recognizer. The situation of a final state in the recognizer without outgoing
edges and still not being a deadlock state is omitted. If we consider only repeating task
processes, all states without outgoing edges (being a final state or not) are deadlock
states.

Example 6.22 Reconsider P and R from example 6.8. P and R are not repeating task
processes, so we use Po and Rp instead. So we have:

Pq = {(ad|b)O*, {a,b,dO}) Ro = ((ad)*|b0*, {a,b,d,O})

Computing dr(sg(P),sg(R)) leads to the recognizer as in figure 6.3. We now immedi-
ately see that state 3 is a deadlock state and state 4 is not.
(end of example)

6.4 Deadlock-free controllers

Using the deCODEr, we may arrive at a controller such that in the connection deadlock
is possible.

Example 6.23 Reconsider the ship lock example of figure 4.2. If we add to this
process observer-events z; and zo with the meaning of a ship has passed through door 1
(door 2 respectively) as in figure 6.4 and apply the deCODEr again, we get the (at first
unexpected) solution given in figure 6.5. Unfortunately we have deadlock. For example
the control trace

01X102X9C2C1

Deadlock

Q%QEQQ
[&) %] [\]

Figuur 6.4: The modified ship lock

may result in deadlock: if after ojz109 P results in the occurrence of p; (instead of po),
event x1 occurs next, while R expects event x9 only.

The resulting controller indeed leads to the desired behaviour L, due to the fact that
the blend deletes all traces as described above: P b R = L as desired.

(end of example)

The question is how to prevent this deadlock, i.e., how to construct an R such that
P b R = L (or in general: satisfying the minmax condition) but without having
deadlock(P, R).

The problem of solving CODE with the added restriction that the connection of P
with the constructed controller R does not deadlock is called deadlock-free control of
discrete events (DFCODE for short).

We claim that the following solution works:

[—

Use the deCODEr to solve the problem first, i.e., compute F(L).
Check if deadlock(P, F(L)). If so, continue.
Delete from F(L) all traces from which a prefix may lead to deadlock (this gives R).

\&)

= W
NP e N

If this newly constructed controller still satisfies the minmax condition, then R is
a solution for DFCODE, otherwise if this method fails even for F(L;,4.), then no
deadlock-free controller can be found.

Before we give a formal description of this algorithm (especially step 3) and prove its
correctness, we consider more general deadlock-free connections.

73

74

Control of Discrete Events

01 a 175 a
- O O=%0
Cc2
03 ci 02 3 01
O O70O+0O450O
xo 01 1 C1
- | &
Co 2

Figuur 6.5: The resulting controller

6.5 Deadlock-free connections

We claim that if the repeating task processes P and R have the possibility of deadlock,
we can construct another process, say S, such that ~deadlock(P, R w S). Therefore,
we need the following notions:

Definition 6.24 The deadlock-ending trace set of the connection of P and R is defined
by

d(P, R)

{z :z ¢ end(P,R) A z[aP € pref(tP) A z[aR € pref(tR) A

(Va:acaPUaR: zalaP ¢ pref(tP) V za|aR ¢ pref(tR))
cx}

The deadlock-ending process of R with respect to P is defined by
dlp(R) = (d(P,R))[aR,eR,cR)
The extended process of P is defined by
ext(P) = ({z:(3y:ycpref(z):yctP):z},eP,cP)
d(P, R) denotes all deadlock ending traces of the connection of P and R. Therefore:
Property 6.25
~deadlock(P, R) & (d(P,R) = O)

dlp(R) denotes the discrete process containing all deadlock ending traces that are pos-
sible in the connection of R with P. We have:

Deadlock 75

Property 6.26
dip(R) C pref(R)

When there is no confusion, we write d1(R) for short.

The operator ext(P) defines a discrete process of which all traces have some prefix
that is in P. It extends P by adding to all traces of P all finite sequences over the
alphabet of P. The following property gives two alternative definitions of ext:

Property 6.27

(1) ext(P)={z:(3y,z:y€tP A z€ (aP)*: z =yz):z},eP,cP)
(2) ext(P)=P;{(aP)*,eP,cP)

Our claim is that R\ ext(dlp(R)) is the greatest process contained in R for which the
connection with P is deadlock-free. We prove this result for repeating task processes
only. The result can also be used on non-repeating task processes after performing the
construction of adding finishing events as described in example 6.22.

Lemma 6.28 For repeating task processes P and R, we have:
~deadlock(P, R\ ext(dlp(R)))

proof: From

z € t(R\ ext(dlp(R)))
=3 [definitions of \, ext, dlp(R), and | |

r€tR AN Vy:y €pref(z): (Vz:2z€d(P,R): z[aR # y))
=~

z€tR N (Vz:z€d(P,R): z[aR ¢ pref(z))

we conclude that all traces from which a prefix may lead to deadlock with P have been
removed.

(end of proof)

Lemma 6.29 For repeating task processes P, R, and S, we have:

—deadlock(P,S) A SCR
=
S C R\ ext(dlp(R))

proof:

y € d(P, R)
= [P and R are repeating task processes so end(P, R) = O |
ylaP € pref(tP) A y[aR € pref(tR) A
(Va:acaPUaR:ya[aP ¢ pref(tP) V ya|aR ¢ pref(tR))
= [S C R = pref(S) C pref(R) |
ylaP € pref(tP) A y[aR € pref(tR) A
(Va:a€aPUaR:ya[aP ¢ pref(tP) V ya|aR ¢ pref(tS))

Control of Discrete Events

Also, we have (from —deadlock(P, S), see property 6.25) d(P,S) = O, so:

y ¢ d(P,S)
& [end(P,S)=0]
ylaP ¢ pref(tP) V y[aR ¢ pref(tS) v
~(Va:a € aPUaR : ya[aP ¢ pref(tP) V yalaR ¢ pref(tS))

Together this leads to:

y € d(P, R)
~
y € d(P,R) N y ¢ d(P,S)
=
ylaP € pref(tP) A y[aR € pref(tR) A y[aR ¢ pref(tS)) A
(Va:acaPUaR:ya[aP ¢ pref(tP) V ya|aR ¢ pref(tR))
=
ylaR ¢ pref(tS) A y[aR € pref(tR)

Hence:

z € t(dlp(R))
=~

(Jy:y €d(P,R) :y[laR = x)
= [see above |

3y : ylaR ¢ pref(tS) : y[aR = z)
=~

z ¢ pref(tS)

This leads to:
y € t(ext(dlp(R)))

& [definition of ext |
(3x : z € pref(y) : z € t(dlp(R)))
= [z € t(dlp(R)) = = ¢ pref(tS) |

(3x : z € pref(y) : z ¢ pref(tS))
=
y¢tS

So: y € tS = y ¢ t(ext(dlp(R)))
From § C R, we also have y € t5 = y € t R, which leads to:

y€tS
=

y € tR A y ¢ tlext(dlp(R)))
=

y € t(R\ ext(dlp(R)))

(end of proof)

This lemma implies that for repeating task processes PP and R:

1) If deadlock(P, R), we can construct a process B = R\ ext(dlp(R)) such that
—deadlock(P, R').
2) This R’ is the largest R’ C R with ~deadlock(P, R').

Deadlock 77

Theorem 6.30

(VP,R:end(P) =0 A end(R) =0 : (35 :: ~deadlock(P, R w 5)))
proof: According to lemma 6.29, choose

S = R\ ext(dl(R))

Then we have:

RwS&S

R w (R)\ ext(dl(R)))
= [property 1.20 (1)]

RN (R\ ext(dlp(R)))
= [R\ ext(dlp(R))

R\ ext(dl(R))

So deadlock(P,R w S) < deadlock(P, R\ (dlp(R))) and the theorem follows using
lemma 6.28.

CR]

(end of proof)

6.6 Solving DFCODE

For solving DFCODE, we need the following additional processes:
Definition 6.31 Associated with DFCODE, we define:
D(P,L) = ext(dlp(F (P, L)))
called the deadlock-ending communication process and
C(P,L)=F(P,L)\ D(P,L)
called the clean friend of L.

When it is clear from the context we write D(L) and C(L) for short. According to
lemma. 6.29 we have

Property 6.32 For repeating task processes P, R, and L, we have:

~deadlock(P,R) A R C F(L)
=
RCC(L)

which leads to:
Theorem 6.33

DFCODE is solvable for repeating task processes
=
Lmin C P h C(Lmam)

proof: Property 6.32 states that C(L) is the largest possible deadlock-free controller
using L. From C(L) C F(L) we know that P b C(L) C Ljgs, so C(L) is a good

78

Control of Discrete Events

controller if P b C(L) D Ly, which is exactly as stated in the theorem.
(end of proof)

6.6.1 Effect on state graphs

For CODE we have developed an algorithm on state graphs. We can do the same for
DFCODE. The problem is how to compute D(L). The following algorithm does it:

1) Construct the deadlock recognizer dr(sg(P),sg(F(L))).
2) Detect all deadlock states in this state graph.

3) Change all final states of the recognizer in non-final states and all deadlock states in
final states.
(The graph now represents all deadlock ending traces, i.e., it represents the discrete
process (d(P, F(L)),eP,cP)).

4) Perform the construction on this graph to get the restriction to ¢P, i.e., find the
state graph corresponding to dlp(F (P, L)).

5) Change all final states in this graph in final states with all outgoing edges returning
directly to that state.? In this way we have constructed a graph representation for
D(L).

6) It remains to compute F'(L) \ D(L), which can be done in the usual way.

7) Check if the solution found still satisfies the minmax condition. If so, a deadlock-
free solution is found, otherwise, if the minmax condition is not even fulfilled with
L = L4z, no deadlock-free solution exists.

The operator ext has in fact a very simple effect on state graphs, which is due to
the simple form of sg(dlp(F(P, L))). In this state graph all final states are end stales,
i.e., all edges leaving these final states are leading to the error state. The operator has
a much less trivial effect on general state graphs. The operator ext is needed in the
above construction, because a deadlock situation occurs on prefixes, i.e., in order to get
a deadlock-free controller, from R those traces have to be removed from which a prefiz
may result in deadlock.

6.7 Deadlock in multi-connections

So far, we have only considered the possibility of deadlock in exactly one connection. In
this scction we investigate how deadlock can occur in multi-connections and how it can
be detected. We define the possibility of deadlock in a multi-connection as the possibility
that no process can continue while no task is completed:

Definition 6.34 A number of processes Py, ..., P, have the possibility to end in dead-
lock, notation deadlock(P,..., P,), if:

%instead of leading to the error state. These final states are in fact the former deadlock states, i.e.,
all leaving edges first led to the error state.

Deadlock 79

Fz:zeUi:1<i<n:aP)*
(Fi:1<i<n:z[aP, ¢ end(F)) A
(Vi:1<i<n:z[aP; € pref(tF)) A
NVa:a€cUi:1<i<n:aP)

:(Fi:1<i<n:zalaP; ¢ pref(tF))))

This definition is a precise generalisation from earlier definitions.

We do not define deadlock on more processes as the possibility that two of these
processes may have deadlock as in done in [Kal]. If we did define it this way we would
not be able to prevent deadlock by connccting an cxtra process.

Example 6.35 Consider

P = {(a|bc|ca), {a, b, c})
R = ((aad), {a,d})
S = {(ed),{b,c,d})

which gives:

—~deadlock(P, S) deadlock(P, R) d(P,R) = {abc}
~deadlock(P, R)
~deadlock(P, R, S)

which disproves deadlock(P, R) = deadlock(P, R, S).

(end of example)

Example 6.36 Consider

P = {((a(ec|db)),{a,b,c,d, e})
R = {(ac),{a,b,c})
S = {(alc|d)), {a,b,c})

which gives t(P w R) = aec and t(R w S) = ac. We see:

—~deadlock(P, S) deadlock(P, R) d(P, R) = {ad}
~deadlock(R, S) deadlock(P,Rw S) d(P,Rw S) = {ad}
—deadlock(P w R, S)

which disproves: deadlock(P, R w S) < deadlock(P w R, S).
(end of example)

6.7.1 Detecting deadlock in multi-connections
It is straightforward to see that
Property 6.37

dr(Mp,dr(Mg, Ms)) = dr(dr(Mp, Mg), Mg)

proof: The essential part of being equal is that both state graphs have the same tran-
sition function. If 6p (0 and dg) is the transition function of Mp (Mg and Mg respec-
tively) we have the symmetric form of the transition function § of dr(Mp, (dr(Mp.Mg))
as given in table 6.1.

Control of Discrete Events

o((p1,p2,p3),a) = ...

— &

m Mo momm om0
o
n

b
=

(0p(p1,a),p2,p3)
(p1,9r(p2, a), p3)
(p1,p2,95(p3,0a))

(6p(p1,a), 6r(p2, a).ps)
(5P(p17a)7p2765(p27a))
(p1,0r(P2,a),05(p3,a))
(5P(p17a')75R(p27a)755(p37a))
With (Pl,Pz,Pz) = []

if pr =[0] V p2 =[0] V p3 =[0]

MAEM M AR M
m m M A M RN R

Tabel 6.1: transition function for de(Mp, (dr(M,, Ms))

Deleting unreachable states is of no essence to the transition function and the possible
paths, nor of the graph having deadlock states.
(end of proof)

Because of this lemma we simply write dr(Mp, Mg, Mg), or more general
dr(My,..., M,)

Without proof we mention:

Lemma 6.38 For repeating task processes Py, ..., P,, we have:

deadlock(Py,..., FP,)
=4
dr(sg(Py),...,sg(P,))) has at least one deadlock state

where a deadlock state (p1,...,pn) in dr(sg(P1),...,sg(P,)) is defined by

(P, Pa) Z[O) A (Fi:1<i<n:p; ¢ Ep) A
Va:ae(Ui:1<i<mn:aPB):0((pi,...,pn),a) =[D])

6.7.2 The dining philosophers

In this section we illustrate by means of an example® how deadlock can be prevented by
adding an cxtra proccss to the connection.

Consider a number of philosophers (say k) sitting around a round table. Each of
them in turn eats and thinks. In order to eat each philosopher needs two forks, one to
the left and one to the right of his plate. Between each plate only one fork is present,
so each fork has to be shared between two philosophers, but only one philosopher at the
time can use it.

The philosophers can be modelled as follows:

Py =< (s8; gl; grs € Ui Iri 1), {gli, gri, Uiy Uy, €4, 8}, {s:} >
i=1,... .k

The interpretation of the events is given in table 6.2. To be able to model the sharing

3The example of the dining philosophers appears in literature many times. Originally it is from
E.W. Dijkstra who first published the problem in [EWD1].

Deadlock

‘ event ‘ meaning |

8 (get permission to) sit

gl; | grab fork on the left

gr; | grab fork on the right

€; eat

I lay down fork on the left
Ir; | lay down fork on the right
t; think

Tabel 6.2: Meaning of the events of P;

of the forks we have:?

Fy =< ((gli U)[(griey lriw1))*s {90, s, griwt, lrig1 }, O >
i=1,... .k

Process F; describes the behaviour of the left fork for philosopher P; that is at the same
time the right fork for philosopher Pjgq. The behaviour expresses that grabbing a fork
should first be followed by laying down that fork by the same philosopher before it can
be grabbed again.

The total behaviour we would like to investigate is:

T=(Wi:1<i<k:P)s(Wi:1<i<k:F)

Suppose that all philosophers have got permission to eat. Then the following sequence
of events is possible (take k = 3):

83 81 82 gl3 gly glo

Now, all forks are in use, but no philosopher is able to eat. We have deadlock.
Because the events e; and t; are not important to us at this moment, we omit these
from P;. So we use:

Py =< (s; gl; grs U Iri)*, {gli, gri, Ui, lri}, {s:} >
i=1,... .k

and consider
T=PslI
with

P=(Wi:1<i<k:P)
F=(Wi:1<i<k:F)

It turns out that the generalised deadlock recognizer

M = dr(sg(Py),...,sg(Py),sg(F1),...,sg(F;))

contains a deadlock state.

We can prevent the total connection from ending in deadlock using the deCODEr
in the following way: from property 6.10 we know that M accepts the same language
as sg(T), i.e., ts(M) = ts(T). Now add to T all deadlock-ending traces by making the
deadlock state in M a final state and use F' as desired exogenous behaviour of T' (notice

4 denotes addition modulo k here.

82

Control of Discrete Events

Figuur 6.6: First butler

that all events of F' are exogenous events in 1" and only the events s; are communication
events). We have extended the behaviour of the philosophers with the deadlock-ending
traces and use the deCODEr to be sure this behaviour cannot be reached (by omitting
it in the desired behaviour).

The deCODEr gives us the controller (a butler in this case) (for k = 3 this butler is
displayed in figure 6.6). The butler can only prevent the total process to end in deadlock
by forbidding one (randomly chosen) philosopher ever to eat. The controller is not fair.
This is not what we want. The resulting controller is unable to notice that a philosopher
is done with eating and therefore the controller can not use the fact that this philosopher
does not need the forks any more.

To be able to find a nicer controller, we add to P; an extra event g;, meaning that
philosopher P; asks the butler if he may sit down. The butler then may give him
permission to sit down by letting event s; occur. So we have:

P; =< (a; s; gl; gri U; lry)*, {gls, gri, Us, Ir;}, {ag, si} >
i=1,... .k

If we perform the same computation as before and use the deCODEr again, we find
(for k = 3) the butler as in figure 6.7. This butler behaves precisely as we should think
he should. He gives permission to at most two philosophers to start eating. A third
demand is retained until one of the philosophers asks again (and thereby letting the
butler know that he has finished eating).

This example shows that the deCODEr can also be used to prevent deadlock in those
cases, where a number of processes are connected and communication events are left to

control the whole. If the deCODEr f{ails no controller exists to make the connection
deadlock-free.

Deadlock
a3
O—=—0O—_=0
as "
53
81‘ \071 81‘ \071 51‘ \ai
@
O—0O—=
- -
3 S
a a S
2 3 &
a1 a1 i1
<83
©——0—0
CL3 —
53
s s)
$1 >

as| |2

-—
B —
ai

G2 |52

a9 S

as
-—
O—0O0—=—0==0
ai as —
83

2 az2(|52

81 a_é
-— —
S ai as >
al S3

Figuur 6.7: Second butler

83

7
Input and output

Who needs information

When you’re living in constant fear
Just give me confirmation

There’s some way out of here

Who needs information — Radio Kaos (RW)

In this chapter input and output are defined. In the previous chapters we considered two
kinds of events, the exogenous events (to be controlled) and the communicating events
(the controls). We did not make any assumption of which process “generated” an event
and which process “accepted” an cvent. We will do so in this chapter. We will distinguish
between events that are generated by a process and events that are accepted by that
process. Generated events will be called oulputs and accepted events inputs. When we
connect two processes with inputs and outputs we assume that events generated by one
process are accepted by the other process. This means that inputs of one process are
outputs of another (and vice versa).

7.1 Splitting up the alphabet

Assume that C;, C,, F;, and E, are pairwise disjoint finite set of events. Consider the
trace structure

T:<S,CZ'UCOUE1'UE0>

Such a trace structure is called a discrete process with inputs and outputs (IODP for
short) and denoted by P = (S, E;, E,, C;, C,), with S is the behaviour, E; the exogenous
input events, F, the exogenous output events, C; the communication input events, and
C\, the communication output events.

Accepting an input event is only possible if that event has been generated by another
process. Generating an output event is always possible (as far as the behaviour of the
process allows it, of course). A process with inputs and outputs (IODP) therefore behaves
differently than an ordinary discrete process (DP). This difference will become clear when
we reconsider deadlock. Tt turns out that with IODPs more deadlock-cases are possible,
for example when one process can generate an event that cannot be accepted by the
other process. In ordinary DPs an event only occurs when it can occur in both processes
simultaneously. The only possibility of deadlock then is the situation that the processes

84

Input and output

have, at a certain point, no event in common, but both are involved in a communication
event.

In the sequel we will not make any distinction between exogenous input events (F;)
and exogenous output events (E,) but only consider F; U E,. We will, however, distin-
guish between communication input events (C;) and communication output events (C,).
As an abbreviation we call E; U E, (say F) the exogenous events, C; the inputs, and C,
the outputs. This leads to the following definition.

Definition 7.1 A discrete process with inputs, outputs, and exogenous events (IOEDP)
is defined by:

P = <57E7 Ci700>

with S the trace set, E the exogenous alphabet, C; the input alphabet, and C, the oulput
alphabet. Associated with such a P, we introduce:

tP = S behaviour of the process

iP = G inpuls

ol = (C, outputs

eP = FE exogenous inputs and exogenous outputs
cP = C;UC, communication events

aP = C;,UC,UE all events

An IOEDP P is only well defined if:
C;NnCo,=C,NE=C,NE=0

We have defined the operators a and t on trace structures, discrete processes, and
IOEDDPs! now, and ¢ on discrete processes as well as IOEDDs.

Furthermore, with an IOEDP P we sometimes associate a discrete process dp(P),
defined by

dp(P) = (tP,eP,cP)
and sometimes even a simple trace structure ts(P), defined by
ts(P) = (tP,aP)

It should not be surprising that all properties for trace structures and discrete processes
also hold for ts(P) and dp(P) respectively if P is an IOEDP.

Moreover, we extend all operators and functions defined in earlier chapters and use
them on IOEDPs as well. Formally, if op is such an operator, we write opP instead of
op(dp(P)) and if fun is such a function, we write fun(P) instead of fun(dp(P)).

7.2 Effect on state graphs

An TIOEDP can also be displayed by a state graph:

sg(P) = sg(dp(P))

'We use the abbreviation IOEDP instead of “discrete process with inputs, outputs and exogenous
events.”

85

86

Control of Discrete Events

In order to be able to distinguish between input and output cvents we display these
events in a graph by postfixing them with ? and ! respectively. So in a state graph a
denotes a exogenous event, a? an input event, and a! an output event.?

7.3 Connections

Definition 7.2 Given two IOEDPs P and R with:

ePNnaR=0 eRNaP=0
iPNiR=0¢ oPNoR=0

then the connection of P and R is defined by:

PbR

(t(Pb R)

,ePUeR

,(iP\ oR)N (iR \ oP)
,(oP\iR)N (oR\ iP)
)

Again, we have that e(P b R) = eP U eR. Furthermore, we have:
¢(PbR)
(iP\oR)N(iR\ oP)) U ((oP \iR) N (oR\ iP))
cP +cR
which guarantces that:
ts(P) b ts(R) = ts(P b R)

The connection is realized by “connecting” inputs of one process to outputs of the
other process (just as one should expect). Notice that from the inputs of P and R in the
connection only those events are left that are not used in the communication (and similar
for the outputs). These remaining inputs and outputs can be used in other connections.

Again, we have the same property as in chapter 2 (see property 2.6):
Property 7.3 For the connection b of two IOEDPs, the following hold:

(1) PbR=RbP
(2) P 2 <{€}7®7®7®> =r
(3) P 2 <@7@7@7@> = <@7@7@7@>

The total connection is redefined as follows:

2However, events that do not appear in any trace of P cannot be denoted. They have to be mentioned
explicitly.

Input and output 87

Definition 7.4 Given two IOEDPs P and R with:

ePNaR=¢ eRNaP =0
iPNiR=¢) oPNoR=0

then the total connection of P and R is defined by:
PwR

(t(PbR)

,ePUeRU (iP ~oR) U (iR + oP)
,(iP\oR)N (iR \ oP)

;(oP \iR) N (oR\ iP)

Property 7.5 For the total connection w , the following properties hold:

(1) PwR=RwP
(2) Pg<{€}7®7@7®> =P
(3) Pg<@7@7@7@> = <@7@7@7@>

7.3.1 Multi-connections

More than two IOEDPs can be connected as well. We assume that no exogenous event
appears in more than one of the alphabets, no input or output appears in more than two
of the alphabets, and if such an event appears in two alphabets, it should be an input
event in one of the processes and an output event in the other.

Under these restrictions we have:

Property 7.6

(1) (PbR)bS =
2) (PwR)wS =

(R
(R

5)

P
P S)

[E:Rli=a
€ [i=x

7.4 Other operations on IOEDPs

Also, the shuffle and the concatenation of IOEDPs can be defined (we denote them by
s and ; respectively). The definitions are similar to those given in chapter 2. We do not
repeat them here.

IOEDPs can also be ordered. We use the same ordering as before:

Definition 7.7 For two IOEDPs P and R, the ordering P C R is defined by:
iP=iR AN oP=0R N eP=eR AN tP CtR

P is at most R if all the subalphabets of P and R are the same and the trace set of P
is at most the trace set of R.

7.5 CODE for IOEDPs

The CODE-problem for IOEDPs can be redefined as follows:

88

Control of Discrete Events

Given are the IOEDPs P = (tP,eP,iP,0P), Lyin, and Ly, with Ly,
PleP, find, if possible, an IOEDP R with R = (tR,?,iR,0R) with iR
ol CiP such that Ly, C Pb R C Lpy,.

The solution for this problem is analogous to chapter 3. Take

Lmax g
oP and

N 1N

R={f(L),0,0P,iP)

with f(L) the friend® of some L satisfying Lyin C L C Lyjee. With cR = iR UoR all
properties found in the previous chapters are still valid.

The CODE-problem is similar for discrete processes and for IOEDPs. As mentioned
before a difference occurs when we regard deadlock.

7.6 Delayed communication

Thus far, we have considered communication in the sense that “sending” and “receiving”
occur at the same time, i.e., if a is an input event in P? and an output event in R, then
in the connection event a occurs in P and in R at the very same time.

Example 7.8 Consider

P = (abd, {d},{a},{b}) R = (cbe,{e},{d,c}, D)

The connection results in
P b R = ((acde|aced|cade|caed), {d, e}, {a,c},)

However, suppose some delay (slack) is possible between output by P and input by R.
Then it is also possible to get the behaviour adce in the connection: first P receives a,
then it sends b, and, in the delay between sending b by P and receiving b by R, events
d and ¢ may occur (for example in the order dc).

The sending of b and the receiving of b are in fact two different events (denoted by
bl and b?) with the property that the number of occurrences of b7 is at most that of the
number of occurrences of bl.

(end of example)

In trace theory an operator exists, that performs connection in the sense as mentioned
in the previous example. This operator is called agglutinate and the connection (in case
of trace structures) is denoted by P g R. The agglutinate can be defined using a
special class of trace structures, named del, and a function mapping an alphabet onto
an IOEDP, denoted by H. del(b,c) is a class of trace structures in which, at any time in
the behaviour, at least as many b’s as ¢’s have occurred. H(A) denotes an TOEDP that
describes a possibly delayed transmission of elements of A via a transmission line with
infinite capacity, i.e., each event in A may have a delay between sending and receiving.
del and H are formally defined by:

Definition 7.9 For two events b and c, the class of trace structures denoted by del is

defined by:

3To be formal: f(L) = tF(dp(P), L).

Input and output 89

del(b,c) = ({z:xz € {b,c}* N (Vy,z:z=1yz:yNb> yNc): x}
;{b,c}

where yINb means the number of occurrences of event b in trace y.
The function H mapping an alphabet onto an IOEDP is defined by:

H(0) = ({€},0,0,0)
H(Au{b}) = H(A) b (t(del(d!,b7)),D,{bl},{b?})

Furthermore, with
P4, Ay)

we denote the IOEDP P with all symbols b € aP N A; replaced by b7 and all symbols
beaPnA, replaced by b!.

Notice that all symbols in the IOEDPs that are connected in H are different so b
may as well be replaced by w . Further notice that in H all output events are put in
the input alphabet and all input events are put in the output alphabet. This can be
explained if we think of H as an intermediate that accepts the outputs of some process
(so these events are inputs with respect to H) and (probably with some delay) sends
that event as the corresponding input event of some other process (so this event is an
output with respect to H).

Definition 7.10 The agglutinate of P and R is defined if:

ePNnaR=90 eRNaP =0
iPNiR=0 oPNoR=0

by:
PgR

P2(iPNoR,0P NiR) b H(aPNaR) b RN(iRNoP,oRNiP)

The agglutinate of P and R is in fact a connection of P, R, and the intermediate H,
where events that play a role in the connection between P and R are directed through
H, where they may be delayed.

We illustrate this complicated definition in the following example:

Example 7.11 Computing the agglutinate of P and R from example 7.8 is done as
follows:

PGP NoR,0PNiR) = P(0,{b})
= (abld,{d},{a},{b!})
= p7
RVM(RNoP,0RNiP) = RN({b},0)
= (cb?e,{e}, {c, b7}, D)
= R
H(aPnaR) = H({b})

= (tdel(bl.b7), 0, {bl}, [b7})
{(eb!]B1B7|DIBY|BIB2BY BIBP0IB?] . .), @, LB}, {67}

90

Control of Discrete Events

which results in:

P?tb H({b})
PM"b H({b}) b R?!

{(ad|ab?d|adb?), {d},{a}, D)
((aced|acde|caed|cadeladce), {d, e}, {a,c}, D)

as was given in the example.

(end of example)

Agglutination is similar to blending, but it expresses unbounded finite delay and overta-
king.* The operator g however is much more difficult than the blend. In [JvdS] and
[JTU] restrictions have been developed under which composition of structures is delay
insensitive and it is sufficient to use the blend instead of the agglutination.

Because the agglutination is expressed in terms of the blend, and no symbol occurs
in more than two of the alphabets, all essential properties for the blend also hold for
the agglutination. Howcever, because the del-process is not regular, it can be shown,

that the agglutination of two regular processes need not result in a regular process (see
[JvdS]).?

It is straightforward to translate the CODE problem in terms of the agglutination:
simply replace every b with a g . However, because agglutination does not preserve
regularity, we are unable to use the methods using state graphs to compute solutions of
the corresponding CODE-problem.

Trying to take into account the notion of delay results in an operator, the agglutinate,
that is impractical for normal usage. Trace theory and hence CODE are unable to
formalise the notion of control of discrete processes with delayed transmission.

7.7 Weak deadlock

Introducing inputs and outputs creates another kind of deadlock, which we will call weak
deadlock. Deadlock as defined earlier will be referred to as strong deadlock.

We consider two IOEDPs, given by:

P = (tP,eP,iP,oP)
R = (tR,eR,iR,0R)
P w R is defined

The behaviour of P and R in this total connection is according to P w R. If at
a certain point in communication (i.e., some z € pref(t(P w R))), that is not an
endpoint (z ¢ end(P, R)), it is possible for one process to generate an event that cannot
be accepted by the other process, we speak of weak deadlock. Formally:

4i.e., the order in time between signals is not preserved by their transmission: it is a direct consequence

of the independence of delays.

®Intuitively, this can be seen as follows: the del-process acts as some kind of buffer, an unbounded
buffer to be precise, so we need an unbounded number of states to collect all the elements of the buffer
and therefore the process need not be regular anymore.

Input and output 91

b!

TN
O-=+0O=0

O—+0O=0O
N

c!

Figuur 7.1: Example of weak deadlock between P (above) and R (below)

Definition 7.12 Two IOEDPs P and R may (in connection) end in weak deadlock,
notation weakdeadlock(P, R), if:

(3z : z ¢ end(P,R) A z[aP € pref(tP) A z[aR € t(prefR)
:(Ja:a € 0P A za|aP € pref(tP): zalaP ¢ t(prefR)) v
(3a:a € oR A zalaR € pref(tR) : za|aP ¢ pref(tP)))

We explicitly omit the situation that x € end(P, R). Such a trace x is a completed task
and it is not satisfactory to call a completed task deadlocked.

Example 7.13 We give a very simple example to illustrate the definition with (see
figure 7.1):

P = ((ach)*,{a},{c}, {b}) R = ((dcbldcc)*,{d}, {b},{c})
Take = = adc, then:

z[aP = ac € pref(tP) zc[aR € pref(tR) A c€ oR
xlaR =dc € pref(tR) xzc[aP ¢ pref(tP)

We have weak deadlock: R may output event c¢ instead of waiting to receive event b.
If the inputs and outputs of P and R are interchanged, weak deadlock will occur at
another point.

(end of example)

Example 7.14 Consider P = (a*,0,{a},0) and R = (a,?,0,{a}), then we have
deadlock(P, R), e.g., for x = a we find z ¢ end(P,R) A za ¢ pref(tR)), but
-weakdeadlock(P, R), e.g., for x = a we have za ¢ pref(tR), but also a ¢ oP
(I.e., a process waiting for an input is not considered deadlocked). So in general
deadlock(P, R) # weakdeadlock(P, R).

(end of example)

7.8 Detecting weak deadlock

In this section we give a method to detect weak deadlock in case P and R are regular.
We have already found a method to detect strong deadlock and we will use a similar
method to detect weak deadlock.

Control of Discrete Events

O OO
\/

Figuur 7.2: Corresponding deadlock recognizer for example 7.13

Again, we need the corresponding state graphs for P and R and construct the dead-
lock recognizer dr(sg(P),sg(R)) in which deadlock can be detected.

Example 7.15 If we reconsider the example from figure 7.1 and construct the corre-
sponding dr(sg(P),sg(R)) (see figure 7.2), we see that no deadlock state exists.

The connection has no strong deadlock. Howcver, as shown it has wcak dcadlock.
We have to do some extra work to detect weak deadlock.
(end of example)

To use dr(sg(P),sg(R)) to detect weak deadlock we need the following definition:
Definition 7.16 A state (p1,p2) from dr(sg(P),sg(R)) is called a trouble state if:

(Ja:a € 0P : (dy(p1,a) =[Dlp A Sr(p2,a) # [D]r) V
(Ja:a € oR: (6p(p1,a) # [D]lp A dr(p2,a) = [D]r)

If we identify the states in dr(sg(P),sg(R)) in a way, corresponding to the states in
sg(P) and sg(R), i.e., denote the states with (p1,p2) where p; is a state in sg(P) and
po is a state in sg(R), we can use dr(sg(P),sg(R)) to detect weak deadlock as well:

Theorem 7.17

weakdeadlock(P, R)
~
dr(sg(P),sg(R)) has a trouble state

proof: obvious (similar to the proof of theorem 6.13)
(end of proof)

Example 7.18 Reconsider the last example. If we add the additional information to
the diagram in figure 7.2 we derive figure 7.3. If we denote by A(p) the active set of
state p, i.e.,

Alp) ={a:d(p,a) #[D] : a}

we derive table 7.1. Trouble states can be found by comparing A(p), A(q) and A(p, q). If
A(p) contains an output event (of P) that is not in A(p, q) or if A(q) contains an output
event (of R) that is not in A(p, q), we have a trouble state (p,q).

In the table we detect two trouble states, namely (1,2) and (3,3). In (1,2) we have
weak deadlock if R outputs event ¢ before in P event a has occurred. In (3,3) we have
weak deadlock if R decides to output event ¢ (P can only accept b at this point).

Input and output

/ b
Z@d@T@
A
@

Figuur 7.3: Extended deadlock recognizer for example 7.13

| (p,q) € dr(sg(P),sg(R)) | Alp) | Alg) | Alp,q) | remarks |

1,1 a d a,d

2,1 c d d c¢ oP
1,2 a c a cEoR
2,2 c c c

3,3 b b,c b c€oR

Tabel 7.1: Table for detecting weak deadlock

If we interchange inputs and outputs in this example we get one trouble state (namely

(2,1)).

(end of example)

7.9 Weak deadlock free controllers

Again, we are able to construct controllers for the CODE-problem that are free of weak
deadlock. We use the same method as in chapter 6. The only change we have to make
before we can use that method is to redefine d(P, R) in

d(P,R)

{z :z ¢ end(P,R) A z[aP € pref(tP) A z[aR € pref(tR)
:(Ja:a € 0P A zalaP € pref(tP): zalaR ¢ pref(tR)) V
(Ja:a € oR A za|aR € pref(tR) : za[aP ¢ pref(tP))
With this new d(P, R), which denotes all traces that are candidates for weak deadlock,

we can follow exactly the same construction as mentioned in chapter 6. Because it is
obvious, we do not display it again.

93

8

Determinism

There is no dark side of the moon
really
as a matter of fact it’s all dark

Dark side of the moon (epilogue)

In this chapter we deal with the notion determinism. First, we explain a kind of de-
terminism as introduced in [Mil]. Next, we introduce our kind of determinism and the
connection to deadlock.

8.1 Non-determinism in CCS

Consider the discrete processes

P = ((ablac)*, {a},{b,c}) P' = ((a(blc))",{a},{b,c})

Different interpretations are possible concerning the mechanism generating the behaviour
of this processes. One of them is that in P exogenous event a occurs after which either
b or ¢ is possible, depending on the path chosen. If P “decides” to do path (ab), then
after a only b is possible and if P “decides” to do path (ac), then after a only ¢ is
possible. Here we have some kind of non-determinism: P itself makes its choice between
path (ab) and (ac) and the environment' has no ways to influence this choice. It can
only observe which path has been chosen. If b and ¢ are input events of an IOEDP P,
then choosing one path allows only one of the input evenis to be accepted: the other
one causes deadlock. Problems arise when we use P in connection with other discrete
processes. Consider for example

R = ((bc), 0,{b,c})

If we asume the above non-determinism, then connecting P with R may cause problems:
if P decides to do (ac) first, we have deadlock.

This kind of non-determinism is common in the calculus of communicating processes
(CCS) of Milner (see [Mil]). We shall not adopt it here. In fact, we consider P and P’

!Think of the environment as a second discrete process that is connected to P and can control the
communication events of P.

94

Determinism

=0 AN
| J¢ ©

~ 0
O N

Figuur 8.1: Possible graphs for P (left) and P’ (right)

to be equivalent. i.e., we postulate that possible choices in the paths are postponed as
much as possible. Notice that the trace sets of P and P’ are the same, viz.

{€, ab, ac, abab, abac, acab, . ..}

In terms of state graphs we replace every non-deterministic graph (the left graph in
figure 8.1) by a deterministic one (the right graph). As a consequence we consider the
state graphs in figure 8.1 to be equivalent.

Because, by definition, sg(P) = sg(P’) (both equal to the right graph of figure 8.1)
we cannot tell any difference between P and P’. In our formalisation this kind of non-
determinism does not occur. The above problems therefore do not occur. However,
another kind of non-determinism is possible and this is discussed in the next section.

8.2 Deterministic discrete processes

Counsider

P = (((eb)|(dc))*, {d, e}, {b,c})

Notice that d and e are exogenous events. The choice between occurrence of d or e
therefore is completely made by P itself. The environment cannot influence this. If we
connect P with R, where R is given by

R = ((bc), 0,{b,c})

then we have the possibility of ending in deadlock if P decides to do d the first time or e
the second time. This time the decision of doing (eb) or (dc) cannot be postponed because
d and e are different events. The occurrence of (eb) or (dc) cannot even be controlled by
the environment. This phenomenon causes non-determinism: the possibility of a process
making decisions that cannot be influenced by the environment.

Before giving a formal definition of determinism we recall the definition given by
Hoare in [Hoal:

A process is deterministic, if, whenever there is more than one event possible, the
choice between them is determined externally by the environment of the process.

Exogenous events are considered to be internal and cannot be controlled by the environ-
ment directly. The above definition can therefore be understood as:

A process is deterministic if, at any point in its behaviour, the possible future

external behaviour is independent of possible choices in internal behaviour.?

2External should be written as communication here and internal as exogenous.

95

96

Control of Discrete Events

According to this definition the above process P is not deterministic: initially, P itself
“decides” to do d or e, which results in a future communication behaviour starting with
event b or ¢ respectively, thus result in different communication behaviour.

Example 8.1 Process P given by
P = ((ealae)*, {e}, {a})

is deterministic. Initially, it can choose between event e or event a. The first choice
leads to the first communication event a, the second choice also leads to a.
(end of example)

Consider some prefix ¢ of the behaviour of a process P. If in state [¢] only communication
events are possible, the environment can observe which of these events is “chosen” by
P. If exactly one exogenous event is possible in [¢], the environment cannot notice its
occurrence. However, we reach a unique next state in P, so again we have a deterministic
progress in the behaviour. This leaves us with the situation that from [¢] more than one
event is possible and at least one of them is an exogenous event. If the choice made
by P at this point may lead to different future communication behaviour, we say that
P is non-deterministic. This results in the following definition of determinism. First,
however, we need one more notion.

Definition 8.2

rest(P,t) ={z:tx ctP:z}

Definition 8.3 A discrete process P is deterministic, notation deterministic(P), if

(Vt,e,a : te € pref(tP) A ta € pref(tP) AN acaP A eceP
: a(rest(P, ta))[cP = e(rest(P,te))[cP)

where we use the notation:

a(rest(P,t)) ={y: (3z: z €rest(P,t) : y = az) : y}

Determinism has to be checked only in those states of P from which more than one
event is possible and at least one of them is an exogenous event. Therefore, in order to
be able to detect determinism in state graphs, we introduce the choice states, the set of
all states in which more than one event is possible, the exo states, the set of all states
in which an exogenous event is possible, and the danger sets, the set of all pairs (p, A),
with p a choice state as well as an exo state and A4 the set of all events that are possible
in p.

Definition 8.4

choicestates(P)

{t :t c pref(tP) A (3ai,a3 :a1 €aP A ag caP A a1 # as
:ta; € pref(tP) A tay € pref(tP))
L[t}

Determinism

exostates(P)

{t :t € pref(tP) A (Je:e € eP: te € pref(tP))
Ul

dangersets(P)

{t,a : [t] € choicestates(P) N exostates(P) A
ACaP A (Va:a € A:ta € pref(tP))

(1], A)}

Property 8.5
dangersets(P)

{t : [t] € choicestates(P) N exostates(P) : ([t], A([¢])}

with A(p) the active set’of state p.

Lemma 8.6

deterministic(P)
=~
(Vt, A : ([t], A) € dangersets(P)
:(Val,ag a1 €EANay €A
s ap(rest(P,tay))[cP = as(rest(P,tas))[cP))

proof: Consider some arbitrary ¢ € pref(tP). If [{] € choicestates(P)Nexostates(P),
determinism follows from the given condition. Suppose

[t] ¢ choicestates(P) N exostates(P)
then we have two possibilities:

1) (Fla:a €eP:tlac pref(tP))
2) (Va:a € aP :ta € pref(tP) : a € cP)

In both cases the condition for being deterministic in the definition reduces to a uniform
quantification with empty domain.

(end of proof)

According to this lemma we only have to check the danger states of P. All paths leaving
such states should lead to the same communication behaviour. We give a number of
examples to illustrate the way determinism can be determined.

3see example 7.18.

97

98

Control of Discrete Events

Example 8.7 Consider

P = {(aelea)(de|c), {e}, {a,c,d})
We find dangersets(P) = {([¢], {a,e})} and

rest(P,a) = e(de|c) ae(de|c)[cP = (d|c)
rest(P, e) = a(de|c) ea(de|c)[cP = (d|c)

so P is deterministic. It is sufficient to look at all paths in the state graph from [¢] to
[ae], because all paths lead to the same state [ae].
(end of example)

Example 8.8

P = ((¢(calde)), {e,d}, {a})
Gives dangersets(P) = {([¢], {e,d})} and

rest(P,ee) =a ea[cP =a
rest(P,ed) = e de[cP =¢

So P is not deterministic.
(end of example)

Example 8.9

P = ((e(aelbd)), {d, e}, {a, b})

Gives dangersets(P) =) (after e only communication events are possible), so P is
deterministic.
(end of example)

If P and R are deterministic, then P b R, P w R and P s R need not be deterministic.
The following examples illustrate this.

Example 8.10

P = <(aec|bgd), {679}7 {a’v b, c, d}> R = ((a’|b)7 Q, {a7 b}>

leads to P b R = ((ec|gd), {e, g}, {c,d}), which is not deterministic (choice of e and ¢
causes non-determinism), and P w R = ((aec|bgd), {a,b,e, g}, {c,d}), which is also not
deterministic (the events a and b have become exogenous events now and the choice
between a and b causes non-determinism).

(end of example)

Example 8.11

P =((db),{d},{b}) R =((ec) {e},{c})

leads to S = P s R = ((dbec|debc|decb|edbe|edcb|ecdb), {d, e}, {b, c}), which is not deter-
ministic, for example:

rest(S,db) = ec (b(rest(S,db)))[cS = be
rest(S,de) = bc|chb (e(rest(S,de)))[cS = bel|cb

(end of example)

Determinism

8.3 Determinism and deadlock

In the previous section we have seen that the connection of two deterministic processes
need not be deterministic. In this section we investigate the connection of a process and
its controller according to some CODE problem.

We wish to develop a condition under which the connection of two processes P and
R with R C P[cP does not lead to deadlock, i.e., when the controller R is said to be
deadlock-free.

Example 8.12 First notice that the condition R C P[cP itself is not enough to have
~deadlock(P, R). Consider
P ={((ceb),{e},{b,c}) R={c,0,{c})
The prefix z = e has the properties:
e¢ end(P) e[cP ¢ end(R)
e € pref(tP) e[cP € pref(tR)
and
ee ¢ pref(tP) eb[cP ¢ pref(tR) ec ¢ pref(tP)
so trace x = e leads to deadlock. Notice that P is not deterministic.

(end of example)

According to this example, we might think that deterministic(P) is enough to guaran-
tee a deadlock-free connection. However, deadlock can also occur when we connect for
cxample deterministic repeating task and deterministic single task processes:

Example 8.13 Consider

P = ((eb|b)o*,{a},{b}) R =(b0,{b})
then we have deterministic(P), and R C P[cP but also deadlock(P, R): the prefix
x = b leads to deadlock:

z ¢ end(P) x¢€end(R) so: z ¢ end(P, R)

z € pref(tP) z[cP € pref(tR)

but (Va:a € aP : za[cP ¢ pref(tR)).

Notice that end(P) = @ and R C P[cP do not imply end(R) = . In this example
we have end(R) = {b}.
(end of example)

However, adding the extra condition end(R) C end(P, R)[cP is enough to guarantee a
deadlock-free connection:

Theorem 8.14

R C P[cP A deterministic(P) A end(R) C end(P, R)[cP
=
~deadlock(P, R)

proof: Choose some z with

x ¢ end(P,R) N z € pref(tP) A z[cP € pref(tR)

99

100

Control of Discrete Events

Then we have three possibilities:

1) (Fle:e€eP:ze € pref(tP))
2) (Ma:a€aP A za € pref(tP):a € cP)
3) (Ja,e:acaP A eceP A a#e:xecpref(tP) A za € pref(tP))

Situation 1) cannot cause deadlock: ze[cP = x[cP € pref(tR) and ze € pref(tP).
Situation 2) cannot cause deadlock if one of these a’s has the property that za[cP €
pref(tR), which is fulfilled because z ¢ end (P, R) and thus z[cP ¢ end(R).

Situation 3) cannot cause deadlock because P is deterministic, so

a(rest(P, za))[cP = e(rest(P, ze))[cP

From z[cP ¢ end(R) we obtain that there is some ¢ € ¢P with zc € pref(tR) C
pref(tP[cP). So a possible event from the set of first communication events after x
is event ¢ and because all sets of first communication events (dependent on the chosen
path) are equal we cannot have deadlock.

(end of proof)

If R is a repeating task process (i.e. end(R) = @), we trivially establish the condition
end(R) C end(P, R)[cP, so:
Corrollary 8.15 CODE leads to deadlock-free controllers if P itself is deterministic

and the controllers are repeating task processes.

4

Moreover, if we consider only repeating task processes,” we have:

Theorem 8.16 CODE leads to deadlock-free controllers if P is deterministic.

4For example by replacing every non-repeating task process by its associated repeating task process
according to section 6.3.

9
Distributed control

When you’re one of the few
To land on your feet

What do you do

To make ends meet?

Teach

One of the few — The final cut

In this chapter we investigate the situation of a number of processes working in cooper-
ation with each other. These processes have to be controlled individually, but in such a
way that their overall behaviour is as desired. First, we give a formal description of this
problem. Next, we give some possible solutions. We use the alternating bit protocol
(ABP) as leading example.

9.1 Problem formulation

Suppose we have two systems,? working in cooperation with each other. We wish to

control each of these systems independently in order to achieve some desired overall
behaviour. Formally:
Given is

P, = (tP,eP,cP) i=1,2
with

eQ) = eP NeP, cooperating events
aP NaP, =e) independency condition

and two discrcte processes describing the minimal and maximal desired behaviour Ly,
and L,,q. with

Lm7n g Lm,(m:
eL,in = €Ly, = ePiUePs
CLmM) = CLm,a,.T, = @

!For a description of the alternating bit protocol, see [BSW].

2In this chapter we only consider the situation of two systems. It is not difficult to extend the problem
to an arbitrary number of systems. Furthermore we resirict ourselves to simple discrete processes, i.e.,
we do not involve input/output systems here.

101

102

Control of Discrete Events

The problem is to find controllers
R; = (tR;,D,ch;) i=1,2
such that
Linin € (Prb Ry) s (P2 b Ry) C Linga

The processes P and P can be seen as components of a system situated at different
locations. The cooperation between these two processes is done via exogenous events.
This assumption needs some explanation: because we want to control each process
independently and do not want to control their cooperation, it is reasonable to suppose
that all the events needed to perform this cooperation are uncontrollable. These events
arc intcrnal with respect to the cooperation, so should be exogenous cvents.

This problem is called distributed control of discrete events (DICODE for short).
Without loss of generality we assume:

Lyin € Liypgs gPl[epl §P2[eP2

(since we cannot reach a resulting exogenous behaviour that is outside the behaviour
Py[eP; s Py|eP, for the same reasons as we cannot find a exogenous behaviour outside
PleP in CODE) and

R1 g P1 [CPl RQ g P2 [CPQ

(since the only communication traces that have effect are those in the behaviour of Py
and P).

9.2 Some observations

We start with a sufficient condition and a necessary condition for DICODE being solv-
able, formulated in the next theorem and lemma.

Theorem 9.1 For L, C Pi[eP; and Ly C Py[ePy with L1 8 Ly C Lya, we have:
LiyinlePy € G(P,L1) N LypnlePy C G(Py, Lo)

=
DICODE is solvable

proof: We prove that F(P;, Ly) and F (P, Ls) are solutions:

Lmin
-

Lmin [ePI -] Lmin [ePQ
C [assumption |

G(Py,L1) s G(Py, L)

(Py b F(P;, L)) s (P» b F(Ps, Ly))

Distributed control

G(Py,L1) s G(Py, L)

C [see lemma 3.9: G(P,L) C L |
Lis Ly

C [assumption on Ly and Lo |
Lm,(l.’l‘

(end of proof)

Lemma 9.2

DICODE is solvable A
(RibRy)s (Pb Ry) = (P s)b (Ris Ry)

=
Lpin C G(Pl S P27Lmam)
proof:
DICODE solvable
=
(3R17R2 2t Lipin C (Pl th) S (P2 hR2) C Lmam)
& [assumption |
(3R1, Ry :: Lypin, € (P18 P5) b (Ri s Ra) C Liyaz)
= [takeR:ngRQ]

(AR 2 Linin € (P18 P2) b R C Lingy)
(end of proof)
The assumption in lemma 9.2:
(Prb Ri)s (P2b Ry) = (P s P2) b(R:1s Rs)
is a very strong one. It is not difficult to find an example where it is not satisfied.

Example 9.3 Choose

Py = {(aet]aes), {e1,e2},{a}) Ry = {(a,D,{a})
Py = ((cer), {e1}, {c}) Ry = (¢, D,{c})

then we have

t((PLbR)s(P2bRy)) = eile
t(PrsP)b(RisRy)) = e

(end of example)

9.3 Alternating bit protocol

Consider two systems, called sender and receiver. The sender sends messages to the
receiver, one at the time. The sender is allowed to send a next message only after the
previous one has been properly received. The receiver acknowledges receiving a message.

Unfortunately, the transmission line between the sender and the receiver is not com-
pletely reliable. Sometimes it mutilates messages. We assume, however, that every
message sent along the line is received (complete or mutilated) at the other end. We

103

104

Control of Discrete Events

Cp, C1 anfevfl

K
e o G0 ds

Figuur 9.1: Configuration for ABP

‘ event ‘ meaning H event ‘ meaning ‘
m mesg to be sent n receiving mesg
o send mesg with O-flag do send ack with 0-flag
1 send mesg with 1-flag dy send ack with 1-flag
a ready for next mesg b ready
€0 0-flag mesg transmitted fo | O-flag mesg received
€e mesg transmitted with error fe error in receiving mesg
e1 1-flag mesg transmitted fi 1-flag mesg received
ho 0-flag ack transmitted g0 0-flag ack received
he | ack transmitted with error Je error in receiving ack
h1 1-flag ack transmitted g1 1-flag ack received
mesg = message ack = acknowledgement

Tabel 9.1: Meaning of the events

assume some algorithm is present that can tell if a received message is mutilated. In
order to be able to send messages along this line, one bit of information is added to the
message before it is sent. It turns out that just one bit of extra information is enough
to guarantee successful transmission. The configuration is shown in figure 9.1. The
meaning of the events is given in table 9.1. In order to be compatible with the model as
introduced in the first section we assume Pg and K7 to be one system (discrete process
Py) and Pg and K5 to be one system (discrete process P). The behaviour of P; and P,
is given in figure 9.2 and figure 9.3.

From the literature (see [BSW]) we know that this way of data transmission can
only be successful if we alternate the value of this extra bit. I.e., we would like to have
the exogenous behaviour Ly, = Lmes as given in figure 9.4.3 It is beyond the scope
of this chapter to explain why the exogenous behaviour of figure 9.4 leads to successful
transmission and simpler behaviour does not. We only remark that tL,.,.[{m,n} =
(mn)* (each message is first completely transmitted and handled before a new message
is transmitted). P, and P, are modelled with as much freedom as possible. Our problem
consists of finding suitable controllers for P and P to establish L,,,,, the desired
exogenous behaviour of the whole system. We emphasize that we do not invent the
alternating bit protocol here, nor prove its correctness, but only try to find suitable
controllers for both sender and receiver, such that the transmissionline as a whole behaves
according to the alternating bit protocol. This problem is referred to as the ABP-
problem.

Recalling the previous section we see that lemma 9.2 will not be of much use here.
Theorem 9.1 gives possibilities. However, using it on the ABP-problem does not directly

3We have drawn just one simple edge with multiple labels in case more events causes the same state
transition.

Distributed control 105

/@\ o P
0O IO ORCE
NoZ No A

Q)

Figuur 9.2: Diagram for process P,

OLO/Q%\@/g de
NoZ Mok

Figuur 9.3: Diagram for process Py

OOOQQ

e, g1 €e, €0

@ @
O=0+-0-0=0

€e, €1 e, 90

Figuur 9.4: Desired exogenous behaviour L, .

106

Control of Discrete Events

0200 0200
ge, g1 €e, €1
91‘ \90 €y ‘ \ 1
€e, €1 Ges 1
O=0—0 ©O=0—0
Gey 9o €e, €

Figuur 9.5: Useful exogenous behaviour for Py (left) and Py (right) to solve the ABP-problem

@QQ O-+-0=0

fe7f0 .
hl‘ \ho fo‘ \f1

OO0 ©—-0+0

e7h0

Figuur 9.6: Resulting controllers Ry (left) and Ro (right) using the behaviours as given in
figure 9.5

lead to success, as is shown in the next section.

9.4 Solving the ABP-problem

It can be shown that for the ABP-problem we have:

Lmam [ePI s Lmam [ePQ = Lmax

so possible candidates to use for solving the ABP-problem are
L, = Lmax [ePI Ly = Lmax [ePQ

However, computing F(Py, L1) and F(P,, Ly) leads to empty controllers, i.e., the ABP-
problem cannot be solved with this L, and Ls.

It is, however, possible to find controllers for Py and P, such that the behaviour is as
described by L,,4.. If we use L1 and Ly as given in figure 9.5, we find L1 8 Lo = Ly
and

F(P,Li)b P =14 F(Py,Ls)b P, =1L

The controllers are given in figure 9.6.

From the ABP-problem and the above solution, we conclude that not all L, and Lo
with Ly 8 Ly = Ly, give solutions. Notice that Ly.[ePr C Ly and Ly [ePs C Lo,
so probably L, and L9 should be as large as possible.

Distributed control

9.5 Non-trivial solution

A necessary and sufficient condition for DICODE to have a solution is given in the next
lemma.

Lemma 9.4 For L7" C Pi[eP; and LY C Py[eP, with LT' 8 LY C Lypg, and
(VLi,Ly : Ly C PilePy A Ly C PylePy A Lis Ly C Ly,
t Ly CLY AN Ly CLY)
we have that:

DICODE 1is solvable
&
Lyin[ePy C G(P,LT") N Lyin[ePy C G(Py, L)

proof: That the condition is sufficient can be found in theorem 9.1. That it is necessary
is proven below:

DICODE is solvable

(3R1, Ry :: Lypin, C(Pr b Ry) s (Py b Ry) C L)

=
(3R1, Ry :: Lyyin[ePr C ((P1 b R1) s (P2 b Ry))[ePr)
= [see corrollary 1.22 |
(3R Ly [€P1 C P1 b Ry)
= [see lemma 3.23 |
(3R :: LyinlePy C G(Py, P b Ry))
= [takelePlthandngPghRQ]
LininlePy € G(Py, L)
= [Ly C LT

Lmin [ePI g G(P17L71n)

Similar for P and Ls.

(end of proof)

This lemma, is useful only if LT and L5 can be found. Therefore, we reduce the problem
to a problem about trace structures and try to solve this one first.

9.6 The ST, Sy"-problem

In this section we try to solve the following problem:

Given:
Ty = (tTy,aTn) Lynin = (¢ Lymin, aTi U aTy)
Ty = <tTQ, aT2> Lar = <tham7 VARG aT2>

Limin C Lyae €T w Ty
find ST* and S5 with:

S{n CTy Ly C 57171 w S§n C Loz
S5 C Ty

107

108

Control of Discrete Events

such that

(V51,82 : 51 CT1 AN Sy CTy A Lpin €St w Sy C Ly
: S C ST A S C ST

We call this problem the S77, §5"-problem. If we can solve it, we know a way to compute
LT and L% of lemma 9.4 and have a way to check if DICODE is solvable. First, a
property that can be derived easily.

Property 9.5

(V51,52 : Lypin CS 1 WwS2 ANS1ICTy NSy CTo
t Lyin[aTi € S1 A Lpn[aTy C So)

This property states that we can find ST and SI* by starting with L,,[aT) and
Lpin[aTy and enlarge these trace structures. Moreover, it states that:

Property 9.6 ST and S5 do not exists if

L [aTI W Lyin [aT2 Z Lpaz

Example 9.7 Consider aT; = a7 (in that case Ty w To = T1 N'T,). Then we consider

Sl = Lmaz S2 - Lmal’

Notice that S1 = Ly €Ty w To C Ty and (similar) Sy C 75, so S; and Sy are possible
candidates for S7* and S§*. Howcver, they arc not large cnough. They can be cnlarged:

Sl - Lmax U (TQ \ Tl) S2 — Lmaa: U (Tl \ T2)

We still have S| w S5 = Laz-

Not all traces of 77 and T5 have been considered yet. We did not look at (17 NT5) \
Lyer. Let

V = (Tl M TQ) \ Lor

Notice that

Lmal-U(Tl\Tg)UV:Tl LmamU(Tg\Tl)UV:TQ

Furthermore, notice that

Distributed control

(Sl U V) w So

(Lmax U (Tl \ Tg) U V) w S
T1 W SQ

Th NSy

N (Lmax U (T2 \Tl))

TN Lo

= Lmax

so S1 UV is a possible candidate for S7*. Also S, UV is a possible candidate for S3°.
However

(Sl UV) W (SQ UV)

Tl W T2

Z
Lm,a,.”/:

All traces in V can be put in Sy, or in S, or partly in S and partly in S5, as long as
S1NV # SNV (ie., no trace in V may be put in S; and Ss).

We see that the S7*, SI*-problem can only be solved if tV = @, which means that
Ligy =T1 wTy and ST" = Liyg, and ST = Lye, (the trivial case).

(end of example)

9.7 The ST*, Sy"-subproblem

From example 9.7 it is clear that in general the ST*, S5’-problem is unsolvable. Returning
to DICODE, we see that lemma 9.4 is of little use. Therefore, we restrict our attention to
finding S7* and S3* as large as possible without having conflicts as in the above example
and finding a formula for the remaining traces that may be put in ST or in S5, but not
in both. We will refer to this problem as the 5§71, $5*-subproblem.

We restrict the problem to:

(a') Lin [aTI W Lyin [aTQ C Lpax
(b) thin 7& %
(€) Lmez CTiwTh

If (a) or (b) are not fulfilled, then no solution is possible and if (c) is not fulfilled, then
a trivial solution is possible.

According to property 9.5 we start with
S1 = Lpin[aTy Sy = Lyin[als

We may add to S7 and Sy all traces that do not contribute to the weave, i.e.,
Si = Lpin[alh URy Sy = Ly [aTy U Ry

with

R =T\ (Th wh)[ali Ry =T\ (11 wTy)[aly

109

110 Control of Discrete Events

We have
51 W SQ

(Lmin[@Ty W Lyin[aT5) U (L [aTy W Ro) U (L [aTe w R1) U Ry w Ry
[see below |

Lyin[aTy W L [Ty

- [restriction (a) |

Lm,a,.”/:

Notice that

tR;
{z:zet(T;\ (Th wTh)[aT;) : =}
{z:z ety N ¢ t(Ty wTy)[al;: x}

{z:zethy N Vy:yet(lhwTs):ylal; #z): x}
from which we derive

Lyin[aTy w Ry = (©,aT) UaTly)
Lin [aTQ w R = <@, VARG aT2>
Ry w Ry = <@,aT1 U aT2>

We will now consider the remaining traces in 77 and Ty given by:
Vi = (T wib)[ali \ Lin[aly Vo = (11 w Ty)[aTs \ Ly [aTy

Notice that T; = S; UV; = Ly, [aT; U R; UV, (for i = 1,2). First, we prove that we
cannot, se

Uy =((Viw S2)\ Linea)[aTt Uz = (Vo w S1) \ Linas) [2T5
to extend S7 and Ss:

z € tU;y
~

S t((Vl w SQ) \ Lmaa:) [aTl
~

By:yct(Vi wS2) A yd tLpg, :ylaly = x)
~

Fy:yet((ViwS2) Aylalt =2 :y ¢ tLmas)

Such an z may cause problems in the weave and leads to traces outside Ly,,..

Next, we prove that we can use
Wy =W \U
to extend Sy, or

Wy = Vo \ Uz

Distributed control 111

to extend S5 as long as we do not use both extensions at the same time.

T € tW,
=~
etV ANz ¢ tUq
=3 [see above |
retVh AN Vy:yet(ViwSy) Aylaly =x:y € tLpg)

Such an z will not cause problems when we weave Wi with Sy (we do not get results
outside Lyqz)-
Howcever, as will be scen in the next example, in general we have

Wi w Wy Z Loz

Example 9.8 Consider
T = <(a|b|a’b|bb)7 {a'v b}>
15 = ((blclbe), {b; c})
Lmin = ((bc)7 {a'v b7 C}>
Linez = {(abelbe), {a, b, c})

According to the previous theory we have:

LminaTh = ((b),{a,b})
Lnin[aTh = {((bc),{b,c})
Ty wTh = {(blablac|calbe|abe), {a, b, c})
(Th wTy)[aTy = ((alblab),{a,b})
(Ty wh)[aly = {((blc|be), {b,c})

which leads to:
Sh = Lupi[alh U (T \ (Th wT3)[aTy) = ((b|bb),{a,b})
Sy = Lpp[al U (T \ (T1 wTh)[aTy) = ((bc),{b,c})
Vi = (Th w Ty)[al1 \ Lyin[aTy = ((alab),{a,b})
Va = (v w Ty)[aly \ Lyin[aT? = {((blc),{b,c})
U, = (Vi w 82)\ Lnaz) [Ty = (0,{a,b})
Us = ((Vaw S1)\ Linae)[aTh = ((b),{a,b})
141 = \U = ((alab),{a,b})
W = W\l = ((c),{b,c})
S, w Wo = (®7{a7b7 C})
Sow Wi = ((abc),{a,b,c})
Wl w WQ = ((ac|ca>, {a7 bv C}>
Sl w Uy = <(b)7{a7b7 C}>
52 w Ul - <®7 {a7 b7 C}>

It is easy to see that S1 w Wy and Sy w W results in trace structures with traces inside
t L0z, while W7 w Wy and 57 w U, result in trace structures with traces outside Ly,
(end of example)

From this cxample we conclude that T{" = S U W) is the best candidate for S7* and
that 75" = So U Wy is the best candidate for S5*. The ST, S5'-problem can only be
solved if tW; = O or tWy = @, in which case T w 19" C L.

112

Control of Discrete Events

9.8 A solution for DICODE

We return to the original DICODE-problem. First, we introduce, for a given Py, P,
Lonin, and Ly, some additional processes.

Definition 9.9 Associated with DICODE we introduce (for i =1,2):

Si = Lmin[eP; U (Pi[eP; \ (Pi[eP s Px[eP;)[eF;)
called the sureties,?

Vi = (Pl [ePl S P2 [ePQ) [ePZ \ Lmzn [ePZ

called the vagues,®

U; = ((Vi88Sig1) \ Limnaz) P

called the unusables,® and

W, =V;\ U,

called the warpers.”

(® stands for addition modulo 2).

When there is confusion about which Py, %, L., and Ly, are involved, we write
Si (Pl, PQ, Lmirw Lmam)a etc.

The surctics contain those traces that surcly arc needed to find LT and L5, The
vagues contain traces that may or may not be used to construct L7 and LJ*. Traces
that cannot be used are in the unusables, traces that may be used are in the warpers.

Notice the analogy between S;, V;, U;, and W; from this definition with S;, V;, U;,
and W; from the previous scction. Using the results from the ST, S5'-subproblem, we
get:

Lemma 9.10 The sureties and warpers associated with DICODE satisfy:

(1) Lmin - Sl s S2 - Lmax
(2) me - (Sl U Wl) S SQ g Lmam

(3) Lmin g Sl s (SQ U W2) g Lmaac

From which we conclude:

Theorem 9.11 Associated with DICODE we have:

Lyin|ePy C G(P1,81) N Lpin[ePy C G(P3,8s)
=
DICODE 1s solvable

surety (n.) — Certainty.
vague (adj.) — Indistinct, not clearly expressed or identified.
unusable (adj.) — Not capable of being used.

4
5
6
"warper (n.) - One who has become crooked or perverted, one who is corrupt.

Distributed control

and

Lyin|ePy £ G(P1,81UW1) A Lyin[ePs € G(P, S U W)
=
DICODE is not solvable

If neither one of the conditions in this theorem is met, we cannot conclude solvability or
unsolvability of DICODE. In that case, we have to do some tedious hand-work and try
to find W{ C Wy and W4 C Wy with t(W] s W3) = O and

Lyin[ePy CG(P,81UW]) A Lyin[ePs C G(P, Sy UW,)

If we have found such W/ and W3, we have solutions for DICODE (namely F(Py, S;UW/)
and F(P,,S, UWJ)). No conditions can be given when such W{ and W can be found.

9.9 ABP reconsidered

If we use the above computations on ABP, we find® S; = Lyn[eP1, Sy = Lpn[ePs,
and W7 and Wy as given in table 9.2 and 9.3 (see end of this chapter).
Computations®

t(S1sWy)=0 t(S2sW;)=0

result in:

as one should expect. Furthermore, if we use W{ and W3 as given in table 9.4 and 9.5
(see end of this chapter), we find:

Wll QWl t(Sl§W2') =0
W5 C Wy t(SesWi)=0
t(WsWj) =0

SO we can use
Ly :SlUW{ LQZSQUWé

L1 and Ls are exactly the same as the processes in figure 9.5 and lead to the con-
trollers as given in figure 9.6.

This example verifies the results found in the last section. However, it remains
unsolved how to find W/ and W3 in general.

9.10 Tables of results

Because the processes of the previous section are very large, we use a table in stead of
a diagram to display the processes. Along the axis of the table the states can be found
(numbered, and the error state omitted). Final states are displayed in boldface letters,
the initial state is always 1. There is a transition from state p; to state po labeled a if
in row p; and column ps symbol a appears.

8Using a computer program.

113

114 Control of Discrete Events

Tabel 9.2: Table of W

Distributed control 115

Tabel 9.3: table of W

116

Control of Discrete Events

1 2 3 45 6 7

8 9 10 11 12 13

14 1516

ey €e .
. - 90 9 g1
gegi - .

epee .

O W= DU WN

13 | ¢1

10 Lo geg1 9o

go
egee

ee €1
- goge .
- go
go9ge

ee€1

€e€l

g1 -
ge
g1 -

Tabel 9.4: table of W/

1 23 4 5 6 8 910 11 121314 15 16 17 18
1 ey e. €1 .
2 n .
3 ge g1
4 geg1
50 .. 90 ge
6 . eg ee €1 ..
7 ecel ey . .o
8 . €g €c €1
9 egee . el
10 n .
11 9o9ge
12 goge -
13 . n
14 n . .o
15 €p€e - . €1
16 . ey € €1 .
17 | o1 : © Ge
18 eo €e€l

Tabel 9.5: Table of W,

Conclusions

Every year is getting shorter
Never seem to find the time
Plants that either come to naught
Or half a page of scribbled lines
Hanging on in quiet desperation

Is the English way

The time is gone, the song is over
Thought I'd something more to say

Time — Dark side of the moon

In this thesis we have made a succesful attempt to define discrete event systems using
trace theory. To be able to control the processes, we have used extended structures, i.e.,
we have split the events in two kinds: exogenous events that are internal to the process
and have to be controlled, and communicating cvents that may be common to other
processes and play the role of controls.

Using trace structures makes it possible to control the order of occurrence of (ex-
ogenous) events. Restricting the processes to regular processes makes it possible to give
algorithms on finite state machines to compute solutions and check whether solutions
cxist. From thesc results a computer program is developed and is used in this thesis to
do the computations.

However, we cannot allow communication delay (see chapter 7), because a possible
operator we should use then (the agglutinate) is very impractical.” In general, timing
aspects are not studied and cannot easily be introduced in trace structures.

Moreover, we do not consider so called internal non-determinism as defined in [Mil],
i.c., we consider all state graphs with cqual accepting language to be cquivalent. We
consider a process to be deterministic if possible choices in exogenous events cannot be
noticed outside the process, i.e., do not lead to different communication behaviour.

Deadlock and (in case we examine inputs and outputs separately) weak deadlock can
easily be checked and a deadlock-free controller can easily be found (if it exist). In case
we deal with repeating task processes, determinism is a sufficient condition for a process
to have deadlock-free controllers.

In the last chapter we studied distributed control. We have found a necessary con-
dition and a sufficient, condition in order to find a solution for the distributed control
problem. Unfortunately, it is not possible to give a single condition that is both neces-
sary and sufficient. Moreover, it is difficult to find the necessary distributed exogenous
behaviours in order to compute the controllers.

9The agglutinate is the only operator known, that describes communication delay. Perhaps other
operators exists that use stronger assumptions about the delay (e.g., only finite delay) and are useful.

117

118 Control of Discrete Events

In the area of discrete event systems a lot of research remains to be done. We
mention distributed control (chapter 9 is just a first attempt), and livelock (how can it
be detected, how can it be prevented).

[ARUI]

[BSW]

[CDFV]

[CDQV1]

[CDQV?]

[Dict]

[EWDI]

[EWD2]

[Fish]

[Hoa]

[HoUl|

Referenties

A.V. Aho and J.D. Ullman (1972)

The theory of parsing, translation and compiling, vol. 1. parsing, vol. 2 com-
piling

Prentice Hall series in automatic computation

K.A. Bartlett, R.A. Scantlebury, P.T. Wilkinson (1969)

A note on reliable full-duplex transmissions over half-duplex links
Cominunications of the ACM 12 (5), pp. 260-261

R. Cieslak, C. Desclaux, A. Fawaz and P. Varaiya (1988)

Supervisory control of discrete event processes with partial observations
IEEE trans. automat. contr. 33, pp. 249-260

G. Cohen, D. Dubois, J.P. Quadrat and M. Viot (1983)

a linear-system-theoretic view of discrete-event processes

Proc. 22nd IEEE conf. decision contr., IEEE-press, Piscataway

G. Cohen, D. Dubois, J.P. Quadrat and M. Viot (1985)

a linear-system-theorelic view of discrete-event processes and ils use for per-

formance evaluation in manufacturing

IEEE trans. automat. contr. 30, pp. 210-220

H.W. Fowler and F.G. Fowler (1982)

The Consise Oxford Dictionary of Current English
Seventh edition, Oxford University Press

E.W. Dijkstra (1971)

Hierarchical ordering of sequentiel processes

Acta Informatica 1, pp. 115 138

E.W. Dijkstra (1982)

Predicate transformers (EWD835)

(lecture notes) Eindhoven university of technology
G.S. Fishman (1978)

Principles of discrete event simulation

Wiley, New York

C.A.R. Hoare (1985)

Communicating sequential processes

Prentice Hall international series in computer science
J.E. Hopcroft and J.D. Ullman (1979)

Introduction to automata theory, languages, and computation

Addison Wesley

119

120

Control of Discrete Events

[InVa]

[JCW]

[TLP]

[JTU]

[JvdS]

[Kal]

[Mi]]

[Over]

[Ramal]

[RaWo]

[Smel]

[Sme2]

[Sme3]

[StWh]

K. Inan and P. Varaiya (1988)

Finitely recursive process models for discrete event systems
TEEE trans. automat. contr. 33, pp. 626-639

J.C. Willems (1988)

Models for dynamicals

report systems and control group University of Groningen

to appear in dynamics reported

J.L. Peterson (1981)

Petri Net theory and the modelling of systems

Prentice-Hall

J.T. Udding (1984)

Classification and composition of delay-insensitive circuils
Ph.D.Thesis, Eindhoven University of Technology

J.L.A. van der Snepscheut (1985)

Trace theory and VLSI design

(Lecture notes in computer science, nr. 200), Springer Verlag
A. Kaldewaij (1987)

A formalism for concurrent processes

Ph.D.Thesis, Eindhoven university of technology

R. Milner (1980)

A calculus for communicating systems

(Lecture notes in computer science, nr. 92), Springer Verlag
R. Overwater (1987)

Processes and interactions

Ph.D.Thesis, Eindhoven university of technology

P.J. Ramadge (1983)

Control and supervision of discrete event processes

Ph.D. Thesis, Dept. of electl. engrg., University of Toronto
P.J. Ramadge and W.M. Wonham (1987)

Supervisory control of a class of discrete event processes
STAM J. on Contr. and optimalisation 25 (1), pp. 206-230
See also: systems control group report 8515, Dept. of electl. engrg., University
of Toronto

R. Smedinga (1987)

Control of discrete events

SION Computer Science in the Netherlands, conference november 1987, pp.
125-142

R. Smedinga (1988)

Using trace theory to model discrete events

In: P. Varaiya and A.B. Kurzhanski (eds.)

Discrete event systems: models and applications

ITASA conference Sopron, Hungary, August 3-7,1987, pp. 81-99
(Lecture notes in control and information science nr. 103), Springer Verlag
R. Smedinga (1988)

Simulatie en Implementatie (in Dutch)

Addison Wesley

W. Strunk jr. and E.B. White (1979)

The elements of style

MacMillan

Distributed control 121

[ThWo]

[Wonh]

[WoRa]

[YCH1]

[YCH2]

[YCHS3]

J.G. Thistle and W.M. Wonham (1986)

Control problems in a temporal logic framework

International Journal on Control 44, pp. 943-976

W.M. Wonham (1979)

Lineair multivariable control: a geometric approach

2nd ed., Springer Verlag, New York

W.M. Wonham and P.J. Ramadge (1987)

On the supremal controllable sublanguage of a given language
Siam J. on contr. and optimalisation 25 (3), pp. 637-659

Y.C. Ho, M.A. Eyler, T.T. Chien (1983)

A new approach to determine parameter sensitivities of transfer lines
Management science 29, pp. 700-714

Y.C. Ho, X.Cao (1983)

Pertubation analysis and oplimization of queueing networks

J. Opt. Th. Appl. 40, pp. 559-582

Y.C. Ho, C.G. Cassandras (1985)

A new approach to the analysis of discrete event dynamic systems
Automatica 19, pp. 149 167

Glossary

All operators and notation, introduced in this thesis, are explained briefly and a page
number is added referring to the page where the operator or notation is defined. To
avoid an overload of parentheses, the following order in binding power is used:

acetio — unary set operators

[]

wbwbwbss,;

nu\ + binary set operators
€¢

=#C¢Z27

- — unary boolean operators
</:\> g A } binary boolean operators

The first row has the highest binding power, the last one the least. Operators on one
line have the same binding power and are evaluated from left to right. Other notation
will be according to commonly accepted rules.

Trace structures

(S, A) trace structure with trace set S over alphabet A 8
tT trace set of T 9
aT alphabet of T’ 9
€ empty trace 9
z[A trace z restricted to alphabet A 10
T[A trace structure 7" restricted to alphabet A 10
TwS weaving of T and S 11
ThbS blending of T" and S 11
TCS ordering: T is at most S 13
TuS TorS 14
TnSs T and S 14
T\S T without behaviour of S 14
pref(S) prefix closure of a trace set S 17
pref(T) prefix closure of a trace structure T 17
|z| length of a string 24

122

glossary 123

State graphs

zEvy equivalence relation on traces 17
[z]1 equivalence class (state) of structure T’ 17
E(T) states of T 17
[e]r initial state of T 17
D] error state induced by T 18
F(T) final states of T 18
d(p, a) state transition function: resulting state if in state p 18
communication ¢ occurs
(A,Q,d,qo, F) state graph with alphabet A, states (), transition func- 19
tion d, initial state qg, and final states F'
(4,Q,d,qo, F)pg non-deterministic state graph with alphabet A4, states 47
(), transition map d, initial state gy, and final states ¥
sg(T) state graph of trace structure T’ 19
ts(M) trace structure corresponding with state graph M 19
det(M) The deterministic equivalent of M 47
M, w My weaving of M, and Ms 47
M b M, blending of M7 and Ms 47
M; U M, union of M and My 47
My N My intersection of M7 and M, 47
M\ M, difference of My and M, 47
-M complement of M 47
pref(M) prefix closure of M 47
M[A restriction of M to alphabet A 48
A(p) active set of state p 92

Regular traces

Ty concatenation of z and y 21
x|y union of z and y 21
¥ repetition of x 21
xT non-empty repetition 21
T,y weaving of z and y 21
ts(z) trace structure corresponding with z 21

Discrete processes

P=(SE,C) discrete process with behaviour S, exogenous events F, 23
and communication events F
tP behaviour of P 23
aP event set of P 23
eP exogenous events of P 23
cP communication events of P 23
ts(P) trace structure corresponding to P 23
PbR blending on discrete processes 23
PwR weaving on discrete processcs 23
PbR connection of P and R 25

PwR total connection of P and R 25

124

Bi:1<i<n:P)
(Wi:l<i<n:P)

PsR

P:R

PUR

PNR

P\ R

PCR
observable(P)
R(A)

Control problems

Lmin

239

s
RIS
=

T
S
S

S

Deadlock

end(P)

end(P, R)
deadlock(P, R)
dI‘(Mp, MR)

By
stop
Pa

d(P, R)
dlp(R)
ext(P)
dl(R)
D(P, L)
C(P, L)
D(L)
C(L)

deadlock(Py,...

, Pn)

weakdeadlock(P, R)

multi-connection of Py,..., P,
multi-total-onnection of Py,..., P,

joint behaviour of P and R

concatenation of P and R

union of P and R

intersection of P and R

P without the behaviour of R

ordering: P is at most R

P is observable

class of regular discrete processes over alphabet A

lower bound for resulting exogenous behaviour of CODE
upper bound for resulting exogenous behaviour of
CODE

friend of L according to P

guardian of L according to P

short notation for F/(P, L)

short notation for G(P, L)

trace set of F(L)

trace set of G(L)

behaviour of L after behaviour Ly,

extended friend of L with respect to P

host of L with respect to P

short notation for the extended friend

short notation for the host

ending traces of P

ending traces of the connection of P and R

connection of P and R may result in deadlock
deadlock recognizer, constructed from state graphs Mp
and M R

set of all end states of P

the finishing process

Associated repeating task process

deadlock-ending trace set of the connection of P and R
deadlock-ending process of R with respect to P
extended process with respect to P

short notation for dlp(R)

the deadlock-ending communication process

the clean friend

short notation for D(P, L)

short notation for C'(P, L)

Possibility of deadlock in a multi-connection

P and R may end in weak deadlock

Control of Discrete Events

27
27
27
28
28
28
28
28
39
45

30
30

32
32
33
33
33
33
53
57
57
57
57

65
65
66
67

68
71
71
74
74
74
75
7
7
7
7
78
91

glossary

TIOEDPs
<S7 E7 Cia Co>

tP

iP

oP
eP
cP
aP
dp(P)
ts(P)
PbR

Determinism

rest(P, 1)

deterministic(P)
choicestates(P)

exostates(P)

dangersets(P)

Distributed control

c=se

2

discrete process with behaviour S, exogenous events F,
inputs I, and outputs O

behaviour of P

inputs of P

outputs of P

exogenous (input and output) events of P
communication events of P

all events of P

discrete process corresponding with P

trace structure corresponding with P

connection of P and R

total connection of P and R

sending event b, i.e., an output event

receiving event b, i.e., an input event

class of trace structures with, at any time in the be-
haviour, at least as many c’s as b’s

an IOEDP denoting delayed transmission of elements of
A via a transmission line with infinite capacity

P with symbols a in A; replaced by a? and symbols b
in A, replaced by b!

agglutinate of P and R

remaining part of a prefix of P

P is deterministic

states of P with choice in possible events

states of P where an exogenous event is able to occur
set of pairs (p, A) with p a choice state as well as an exo
state and A the set of all events that are possible in p

Surety, associated with DICODE
Vague, associated with DICODE
Unusable, associated with DICODE
warper, associated with DICODE

85

85
85
85
85
85
85
85
85
86
87
88
88
88

89

89

89

96
96
97
97
97

112
112
112
112

125

ABP, 101

ABP-problem, 105

accepting, 19

active set, 92

after, 53

agglutinate, 88

alphabet, 8

alphabet restriction, 10

alternating bit protocol, 101, 103
associated repeating task process, 71

behaviour, 8, 9

legal, 63

minimal acceptable, 63
blend, 11

on discrete processes, 23
CCS, 95

clean friend, 77
closed loop supervised process, 61
CODE, 29
CODE?, 42
communication behaviour, 23
communication event, 22
communication input event, 84
communication output event, 84
complete state graph, 46
completed task, 24
concatenation, 28
connection, 25

of IOEDPs, 86
continuous blend, 26
continuous wcave, 26
control of discrete events, 29
control pattern, 60
controlled events, 60

126

Index

controlled sequential process, 60
cooperating event, 101

deadlock, 65, 94
strong, 90
weak, 90
deadlock-ending communication process,

7
deadlock-ending process, 74
deadlock-ending trace set, 74
deadlock-free controller, 99
deadlock-free control, 73
dcadlock rccognizer, 68, 92
deadlock state, 68
deCODEr, 29, 33
determinism, 94
in CCS, 94
DFCODE, 73, 102
dining philosophers, 80
disable event, 60
discrete process, 23
discrete process with inputs and outputs,
84
discrete process, with inputs, outputs,
and exogenous events, 85
distributed control of discrete events, 102
dynamical system, 9, 40

ECODE, 57

cmpty process, 24
enable event, 60

end state, 68

ending trace, 65
endogenous event, 22
environment, 94
error state, 18, 46

Index

cvent, 60
evolution law, 17
exclusion, 28

of trace structures, 14
exogenous behaviour, 23
exogenous event, 22
exogenous input event, 84
exogenous output event, 84
extended control grammar, 60
extended control problem, 57
extended friend, 57
extended process, 74

final state, 18

finishing event, 71
finishing process, 71
finite state machine, 20
friend, 32

guardian, 32
host, 57

independency condition, 101
Initial state, 17, 60
mput, 84, 85
intersection, 28

of trace structures, 14
10DP, 84
IOEDP, 85

joint behaviour, 27
legally idle, 24

marker state, 60

minmax condition, 30
min'max’condition, 53
mixed task processes, 70
multi-connection, 27
multi-total-connection, 27

non-determinism, 94, 95
non-deterministic state graph, 47
non-empty process, 24

observability, 39
ordering, 28
on tracc structurcs, 13
output, 84,85
overall connection, 25

prefix closure, 17

regular discrete process, 45
regular expression, 20

regular trace structure, 20
regulation, 52

regulation of discrete processes, 53
repeating task process, 70

RODE, 53

T, S3*-problem, 108
sequential process, 60
ship lock, 49
shuffle, 27
signal alphabet, 9
single task process, 70
slack, 88
state, 17, 60
state graph, 17, 19
state transition map, 46
supervisor, 60, 61
supervisory control, 60
surety, 112

task, 24
time axis, 9
total connection, 25

of IOEDPs, 86
trace, 8
trace set, 8
trace structure, 8
transition function, 18, 60
trouble state, 92
uncontrolled events, 60
union, 28

of trace structures, 14
unreachable state, 20, 68
unusable, 112

vague, 112

warper, 112
weave, 11
on discrete processes, 23

127

Samenvatting

Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proef-
schrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten
beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed
worden gemodelleerd door gebruik te maken van trace theorie.

Zo'n systeem kan dan worden gemodelleerd als een twee-tuple met als elementen
het alfabet (een eindige verzameling symbolen die de gebeurtenissen voorstellen) en
een gedrag (een mogelijk oneindige verzameling van eindige rijtjes van symbolen uit
het alfabet). Een string (trace) uit het gedrag representeert een mogelijk gedrag: de
opvolging van de symbolen geeft de opvolging van de gebeurtenissen aan.

In dit proefschrift staat het regelen van systemen met discrete gebeurtenissen cen-
traal. Daartoc worden de gebeurtenissen opgedeceld in tweeén: gebeurtenissen, dic door
de eigen dynamica van een systeem plaatsvinden en niet direct van buiten te beinvioeden
zijn: dec cxogence gebeurtenissen, en gebeurtenissen, dic gemeenschappelijk zijn met de
omgeving: de communicatie gebeurtenissen.

Het regelen van zo’n systeem is nu het gebruiken van de communicatie gebeurtenis-
sen (door het aankoppelen van een tweede systeem, het regelsysteem) om de exogene
gebeurtenissen te regelen, dat wil zeggen het exogene gedrag dient zich binnen een twee-
tal limieten te bevinden: er mag niet meer mogelijk zijn dat een maximum gedrag en
er moet een minimaal gedrag mogelijk zijn. Een dergelijk regelprobleem wordt CODE
genoemd: Control Of Discrete Events.

Een groot deel van dit proefschrift bestaat uit het vinden van een oplossing voor
CODE en het geven van nodige en voldoende voorwaarden waaronder zo’n oplossing
bestaat. Daarnaast worden een aantal gerelateerde problemen besproken, waaronder het
regulatic problecem: het gedrag van het systeem dient zich “na cnige stappen” tussen de
beide limieten te bevinden en het uitgebreide regelprobleem waarbij ook de communicatie
gebeurtenissen in het gewenste cindgedrag worden meegenomen.

Het gezamelijke gedrag van twee (of meer) systemen met discrete gebeurtenissen
(we spreken dan over de connectie van die systemen) kan eindigen in deadlock: geen
der systemen is in staat cen gebeurtenis te doen plaatsvinden overcenkomstig de regels
zoals die gelden bij connectie. In dit proefschrift worden middelen aangedragen om
deze deadlock te detecteren en om regelaars te vinden voor CODE die geen deadlock
veroorzaken. Middels een voorbeeld (van de etende filosofen) wordt aangegeven hoe
in een connectie van een aantal systemen een extra systeem mogelijke deadlock kan
opheffen.

De exogene gebeurtenissen van een systeem kunnen leiden tot een intern gedrag, dat

128

Index

door de omgeving niet is waar te nemen. Indien ook het uitwendige gedrag (het com-
municatie gedrag) hierdoor kan verschillen spreken we van niet-determinisme. Mogelijke
vormen van niet-determinisme worden besproken.

Tot slot is een hoofdstuk gewijd aan het gedistribueerd regelen van systemen, dat wil
zeggen dat cen aantal decl-regelaars, clk werkend op cen decl-systeem, gezamclijk con
gewenst totaal gedrag teweeg brengen. Met het alternating bit protocol als voorbeeld
wordt aangegeven hoc in dat geval de decl-regelaars zijn te vinden.

129

Curriculum vitae

He has laughted and he has cried
He has fought and he has died

He’s just the same as all the rest
He’s not the worst, he’s not the best

Yet another movie — A momentary lapse of reason

Rein Smedinga werd geboren op 9 november 1957 in Harlingen. Na de lagere school vol-
gde hij de VWO-opleiding aan de Rijksscholengemeenschap Simon Vestdijk te Harlingen
en haalde in 1976 zijn diploma Atheneum-B.

Daarna volgde de studie wiskunde aan de Rijksuniversiteit te Groningen. In 1979
behaalde hij daar zijn kandidaatsexamen, waarna hij zich specialiseerde in de systeem
theory en in januari 1983 cum laude afstudeerde op het afstudeerverslag “Ontwerp van
cen computer programma voor het oplossen van storingsontkoppclingsproblemen.”

In april 1983 werd hij lid van de vakgroep informatica aan de Rijksuniversiteit te
Groningen, waar hij o.a. onderzoek deed op het gebied van simulatie, hetgeen resulteerde
in het boek Simulatie en Implementalie (zie [Sme3]), en discrete event systems, hetgeen
resulteerde in dit proefschrift.

130

Index

12 3 4 6 7 8 9 10 1112 13 14 15161718 19 20212223 24 25 262728 29
1 m . el ep . . . €e
2 eg . er . . €e
3 go - [- Je
4 . eg . . €e el .
5 eg . Ce €1
6 - g0geg1 -
7 egeeel . m
8 Ce . .
9 . 91 - g0ge -
10 ep . €e . m . e1
11 €g . €e . €1
12 . g1 . goGge
13 eg . m e, . er . . .
14 . 9o . ge - G
15 eg €e€l m
16 eg €e€1 .
17 e m eg Ce
18 el . e . . €e
19 . g1 9o ge
20) . m e, . e] . ..
21 er €gee . . I
22 er . egée .
23 g0 . geg1
24 .. e . m egp €e . .
25 [g1 . go © Ge
26 - . €g m . eceq
27 . €ep€e el . m .
28 . . 90 . geg1
29 €g el m €e .

131

132 Control of Discrete Events

1 2314 5 6 7 89 10 11 12 131415 16 1718192021 22 23 242526 27 28 29 30 31
ey . . er . . Coe e e e [
n . . LN L. g0 ge
. g0 . . oq L
€y

Ge
. . Ce . . e . el

n gogegi
- g0gegi
epecel . S .
g1 - n goge
g1 + + goge . . .

o
=]
@ .
(1)
™
S

g1 - I goge . . .
go - . . n ge g1
go - - - - . . geq
€o eecey . .
el . . L. ey ...
S
. g1 E .
eg ee €1 . . P
e . . P epee e .
90 A . . P 0 geqn
. go e - . . geqn
el . . L. ey . . . €e . .

€e

. L e e el
S . P 7YY SN § OO . .omn .
gi - 9o P . R S
o eg . . oL L. eeeq
g1 - 9o T L ge . . .
Lo er . . e egee
. g0 - . N e S e ge
go T L geg1
ey . - er . . R SO -

W WRONRONNDNNDNDNDR == = = =
FO O IO RN R RN~ DO OTDT R W= (@RISR 0N~

