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SUMMARY

We consider the problem in which N coupled heterogeneous uncertain linear systems aim at tracking one
or more reference signals generated by given exosystems under the restriction that not all the systems are
directly connected to the exosystems. To tackle this problem, the reference signals are reconstructed via local
interaction of the systems among themselves and the exosystems in accordance with the given communica-
tion graph. Then, decentralized robust controllers using the reconstructed reference signals are designed and
shown to result in a closed-loop system whose outputs track the prescribed reference signals. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In multi-agent coordination problems, one of the possible tasks, which the agents may have to
carry out, is to track an exogenous signal [2–7]. Two possible scenarios can be considered. In the
first one, all the agents are assumed to know the reference signal and use this information as well
as the relative information coming from the neighboring agents to carry out the control task. The
motivation for this scenario stems from the empirical observation that the use of the neighbors’
information in the control laws improves the robustness of the overall system. In the second scenario,
the reference signal is not available to all the agents, and strategies to overcome this limitation are
put in place [7–9].

A related problem has been considered in [10]. Given N heterogeneous linear systems and a
communication graph, what are the necessary and sufficient conditions for the systems to achieve
output synchronization? Interestingly, the authors have shown that an exosystem [11] that generates
the ‘reference signal’ to which all the systems’ outputs converge must necessarily exist. As a result,
controllers that guarantee output synchronization are those which solve an output regulation problem
associated to that exosystem. In addition, to make sure that the outputs of all the systems converge to
a specific reference signal (the same for all the systems) generated by the exosystem, the controllers
exchange local information with their neighbors.
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430074, China.

†E-mail: bloomhui@gmail.com
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Motivated by this result, we turn the attention to the problem in which the systems aim at tracking
one or more reference signals generated by exosystems given in advance and ask whether there exist
controllers that can guarantee the tracking of the reference signals even under the restriction that
not all the systems are directly connected to the exosystem. Inspired by [10], we aim at reconstruct-
ing the reference signal via local interaction of the systems among themselves and the exosystem
in accordance with the given communication graph. Then, controllers which solve the output reg-
ulation problem are designed and shown to track the actual reference signal even though they are
fed by the local estimate of the signal. Differently from [10], we do not assume that the systems’
models are perfectly known and robust regulators have to be designed [11]. The problem in [10]
for the case of uncertain systems has been studied in [12] as well but, compared with the latter, the
problem formulation in our paper is different and the approach taken in this paper seems to lead to
simpler analysis.

Similar approaches have been proposed very recently in the literature. In [13], the systems that
do not have direct access to the exosystem exchange information about the local tracking errors.
Compared with our contribution, however, the authors require the communication graph to contain
no cycles, with the leader (the exosystem) having a directed path to all the other systems (in our
paper, we show that the latter condition is enough). Moreover, we assume the uncertainties of the
system to range over a (an arbitrarily large) compact set rather that being sufficiently small. The
problem of lifting the restrictions on the graph in [13] have been also tackled in the subsequent
paper [14]. However, the systems considered in that paper are all assumed to have the same model
and no uncertainty is considered.

Other related papers have appeared in the recent literature. To deal with velocity tracking in
coordination problems for passive systems, [15, Chapter 3] proposes an internal model approach in
which the reference trajectory is generated by an exosystem that cannot be accessed by the agents
except one. Also, leader-follower problems using the internal model principle have been studied
in [16]. In Section III of [7], an internal model approach to (position and) velocity tracking in
networks of Euler-Lagrange systems is pursued, but the exosystem is restricted to the trivial one
(constant reference velocity). To deal with non-constant reference velocities, the authors rely on a
discontinuous control law and require information about one-hop and two-hop neighbors. Related
work is also available in [9]. Examples on the use of ideas from output regulation theory and multi-
agent systems can be found in the work [17], later developed in for example, [18, 19].

We also look at the problem of tracking multiple reference signals in order to realize clustering
in multi-agent systems. Clustering has recently been studied as a coordination task [20–22], and
the main challenge is how to have the agents converge to different asymptotic states under the con-
straints that all the agents are coupled together throughout the system’s evolution. Until now, only
few of the existing works have considered the situation when the agents are heterogenous. Building
upon our results on tracking a single reference signal, we propose a novel robust decentralized out-
put regulation algorithm to track different reference signals for different subgroups of systems and
thus realize clustering.

In Section 2, we first formulate the problem of robust decentralized output regulation for uncertain
heterogeneous systems along with the standing assumptions, and then state the main results. In
Section 3, we extend the results in Section 2 to study clustering output synchronization. The actual
design of the controllers is described in Section 4 and then illustrated via two numerical examples
in Section 5. Conclusions are drawn in Section 6.

2. OUTPUT REGULATION OF UNCERTAIN HETEROGENEOUS SYSTEMS

2.1. Problem statement and standing assumptions

Consider N heterogeneous uncertain linear dynamical systems

Si W
Pxi D Ai .�i / xi C Bi .�i / ui
yi D Ci .�i / xi ;

(1)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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with state vector xi 2 Rni , control input ui 2 Rpi , and output vector yi 2 Rq for i D 1; � � � ; N .
Each matrix of the system (1) depends on a vector �i of uncertain parameters, which is assumed to
range over a given set Pi .
Consider also another system, which we will refer to as the ‘leader’, whose dynamical behavior is
described by the following equation:

Pw0 D Sw0

r D Rw0 ;
(2)

where w0 2 Rm, r 2 Rq and matrices S 2 Rm�m, R 2 Rq�m. These matrices are assumed to
satisfy the following:

Assumption 1
The real parts of the eigenvalues of S are zero, i.e., �.S/ � C0 and .R; S/ is detectable.

The N systems (1) exchange information according to the communication topology described by
the directed graph G D .V; E/. Each system is represented by a node in the set V D ¹1; 2; : : : ; N º
and system j sends information to system i if and only if .j; i/ 2 E � V�V . Associated to the graph
G is the adjacency matrix A D Œaij �. The entry aij D 1 if and only if .j; i/ 2 E and 0 otherwise. If
aij D 1, we say that j is a neighbor of i . We set ai i D 0 for each i D 1; 2; : : : ; N . The Laplacian
L is the matrix L D D�A, withD D diag.d1; : : : ; dN / and di D

P
j¤i aij . A directed path from

i to j is a sequence of edges .v0; v1/; .v1; v2/; : : : ; .vk�1; vk/ in E such that v0 D i and vk D j .
In addition to the graph G, we consider the directed graph G0 D .V0; E0/, obtained as follows.
Let system (2) (the leader) be associated with node 0 and set V0 D V [ ¹0º. Moreover, for i D
1; 2; : : : ; N , we set ai0 D 1 if and only if there is an arc from 0 to i and ai0 D 0 otherwise. Then,
we set E0 D E [ ¹.0; i/ W ai0 D 1º. Compared with G, the graph G0 additionally describes which
followers have direct access to the information of the leader.
In what follows, we exploit the following lemma [7], where we refer to the graphs G;G0 and the
Laplacian L introduced earlier.

Lemma 1
If in graph G0, node 0 has directed paths to all the nodes i D 1; 2; : : : ; N , then the matrix L C
diag.a10; : : : ; aN0/ has all the eigenvalues with strictly positive real part.

The objective of the paper is to design the control laws ui , which guarantee

lim
t!1
jjyi .t/ �Rw0.t/jj D 0; for all i D 1; � � � ; N;

under the following restrictions on the available measurements:

(i) Only the systems Si for which ai0 D 1 can access the leader and therefore the reference signal
r . Hence, only these systems Si can measure the tracking error

�i D yi �Rw0:

This restricted access to the leader causes the readability of �i from yi not possible for all the
systems [13] and makes the problem meaningful.

(ii) The systems Si ’s exchange only relative information.
(iii) For all i D 1; � � � ; N , the system Si has access to the relative information with respect to Sj

if and only if Sj is a neighbor of Si .
Other assumptions are needed in order to state our main result in the next subsection.

Assumption 2
(i) the �i�dependent Francis’ equations

…i .�i /S D Ai .�i /…i .�i /C Bi .�i /�i .�i /

0 D Ci .�i /…i .�i / �R
(3)

have a �i�dependent solution …i .�i /, �i .�i / for each i D 1; � � � ; N .

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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(ii) there exist matrices ˆi ;Hi ; †i .�i /, with ˆi ;Hi independent of �i , such that

†i .�i /S D ˆi †i .�i /

�i .�i / D Hi†i .�i /
(4)

(iii) there exists a matrix Gi independent of �i such that the linear system defined by the triplet�
Ai .�i / Bi .�i /Hi
0 ˆi

� �
Bi .�i /

Gi

� �
Ci .�i / 0

�
is robustly stabilizable by the dynamic output feedback, i.e. there are matrices Ki ; Li ;Mi indepen-
dent of �i , such that the matrix0

@
�
Ai .�i / Bi .�i /Hi
0 ˆi

� �
Bi .�i /

Gi

�
Mi

Ki
�
Ci .�i / 0

�
Li

1
A (5)

is Hurwitz.

A few comments on Assumption 2 are in order.
– Fix i 2 ¹1; 2; : : : ; N º. Suppose that there exists a controller of the form

P�i D Li�i CKi�i
ui D Hi�i CMi�i

(6)

which robustly stabilizes the system Si . Then, provided that �.S/ � C0 (see Assumption 1),
Equations (3), (4) are well-known ([11, Proposition 1.4.1]) necessary and sufficient conditions for
the controller (6) to solve the tracking problem for the system (1) for each �i 2 Pi . Recall that the
controller (6) is said to solve the tracking problem for the system (1) for each �i 2 Pi if, for each
�i 2 Pi , (i) the equilibrium .xi ; �i / D .0; 0/ of the unforced closed-loop system (1), (6) is asymp-
totically stable; (ii) the response of the closed-loop system (1), (6) is such that limt!1 �i .t/ D 0.
– If in addition condition (iii) in Assumption 2 holds, then one can prove that the dynamic feedback
control law

P�i D ˆi�i CGiMi�i
P�i D Li�i CKi�i
ui D Hi�i CMi�i

(7)

solves the tracking problem. Because of the fact that the tracking error �i may not be available to
the controller of system Si , the previous controller cannot be implemented. In the next section, we
overcome this lack of information on �i with the use of the information collected from the neighbors
of system Si .

2.2. Tracking a single reference

The control strategy we propose to solve the decentralized output regulation problem formulated in
the previous section comprises two steps. Because not all the systems Si may have access to the
reference signal r , we first design systems which aim at asymptotically reconstructing the reference
signal using only locally available relative information. As a second step, we use such an asymptotic
estimate of the reference signal to feed the tracking controllers and show that they achieve the
prescribed control objective.
Motivated by Lemma 1, we introduce the following:

Assumption 3
In the graph G0, the node 0 has directed paths to all the nodes i D 1; 2; : : : ; N .

The assumption implies that there exist 1 6 N1 6 N systems, which has direct access to the
leader. Without loss of generality and for the sake of simplicity, we assume that N1 D 1 and that

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc
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the system with direct access to the leader is the first one. To reconstruct the reference signal, the
systems cooperate to estimate the internal state of the exosystem. For system S1, the estimation is
carried out by

POw0 D S Ow0 CG0R.w0 � Ow0/

Pw1 D Sw1 C

NX
jD1

a1j .wj � w1/C a10. Ow0 � w1/;
(8)

where the matrix G0 is properly chosen in such a way that �.S � G0R/ � C� and Ow0 is an
asymptotic estimate of the leader’s internal state w0. For system Si ; i 2 ¹2; : : : ; N º, the system
which carries out the asymptotic estimation is given by

Pwi D Swi C

NX
jD1

aij .wj � wi /: (9)

For the system

Pw0 D Sw0
POw0 D S Ow0 CG0R .w0 � Ow0/

Pw1 D Sw1 C

NX
jD1

a1j .wj � w1/C a10 . Ow0 � w1/

Pwi D Swi C

NX
jD1

aij .wj � wi / ; i D 2; � � � ; N;

(10)

we have the following result for the convergence of wi :

Lemma 2
Let Assumptions 1 and 3 hold. Then, jjwi .t/ � w0.t/jj ! 0 exponentially for all i D 1; � � � ; N , as
t !1.

Proof
Let Qwi D wi � w0, for all i D 1; � � � ; N . Let Qw0 D Ow0 � w0. Then, we have

PQw1 D Pw1 � Pw0 D S Qw1 C

NX
jD1

a1j . Qwj � Qw1/C a10. Qw0 � Qw1/ ;

and

PQwi D S Qwi C

NX
jD1

aij . Qwj � Qwi / :

Moreover,

PQw0 D POw0 � Pw0 D S. Ow0 � w0/CG0R.w0 � Ow0/ D .S �G0R/ Qw0 :

Because �.S �G0R/ � C�, one obtains that Qw0 converges to the origin exponentially as t !1.
Following [23], let !i D e�St Qwi for all i D 0; 1; � � � ; N . Then, we have

P!1 D �Se
�St Qw1 C e

�St

2
4S Qw1 C NX

jD1

a1j . Qwj � Qw1/C a10. Qw0 � Qw1/

3
5

D

NX
jD1

a1j .!j � !1/C a10.!0 � !1/ ;

(11)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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and

P!i D

NX
jD1

aij .!j � !i /; i D 2; � � � ; N : (12)

Let ! D
�
!T1 ; !

T
2 ; � � � ; !

T
N

�T
2 RNm. We write the aforementioned two equations into the

compact form

P! D �.L˝ Im/! �

�
a10Im 0

0 0

� �
!1
0

�
C

�
a10Im 0

0 0

� �
!0
0

�

D �. QL˝ Im/! C

�
a10Im 0

0 0

� �
!0
0

�
;

where � QL D �L � diag.a10; 0; � � � ; 0/ and ˝ denotes the Kronecker product. According to
Lemma 1, � QL is Hurwitz. Thus, � QL ˝ Im is Hurwitz. Moreover, it has been proved that Qw0 con-
verges to the origin exponentially as t !1. Thus, !0 D e�St Qw0 converges to zero exponentially
as t ! 1, because �.S/ � C0. Therefore, ! converges to the origin exponentially as t ! 1.
Because Qwi D eSt!i for i D 1; � � � ; N and �.S/ � C0, one has that Qwi ! 0 exponentially as
t !1. Thus, we arrive at the result jjwi .t/ � w0.t/jj ! 0 exponentially for all i D 1; � � � ; N , as
t !1. �

Remark 1
Clearly, the signals Rwi .t/, i D 1; 2; : : : ; N , converge exponentially to r.t/.

Next, we introduce the controllers for systems (1) as follows. As system S1 has access to w0, we
design u1 as

POw0 D S Ow0 CG0R.w0 � Ow0/

Pw1 D Sw1 C

NX
jD1

a1j .wj � w1/C a10. Ow0 � w1/

P�1 D ˆ1 �1 CG1M1�1

P�1 D L1�1 CK1.y1 �Rw1/

u1 D H1�1 CM1�1

(13)

For agent i D 2; � � � ; N , we design ui as

Pwi D Swi C

NX
jD1

aij .wj � wi /

P�i D ˆi �i CGi Mi�i

P�i D Li�i CKi .yi �Rwi /

ui D Hi�i CMi�i

(14)

The matrices ˆi ; Gi ;Mi ; Li ; Ki ;Hi are those found in Assumption 2.

Theorem 1
Consider N heterogeneous linear systems (1) coupled via the dynamic couplings (13) and (14).
Suppose Assumptions 1–3 hold. Then, jjyi .t/ � Rw0.t/jj exponentially converges to 0 as t ! 1
for all i D 1; � � � ; N .

Proof
Let Qxi D xi � …i .�i /wi , Q�i D �i � †i .�i /wi . Recall that ai0 > 0 if and only if i D 1 and 0
otherwise. Then, according to Equations (1), (8), and (9), we have

PQxi D Ai .�i / Qxi C Bi .�i /Hi Q�i C Bi .�i /Mi�i �…i .�i /

0
@ NX
jD1

aij .wj � wi /C ai0. Ow0 � wi /

1
A ;

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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where we have exploited the first equation of (3) and the second equation of (4) in Assump-
tion 2. Furthermore, standard manipulations and the first equation of (4) in Assumption 2 lead to
the equation

PQ�i D ˆi Q�i CGiMi�i �†i .�i / �

0
@ NX
jD1

aij .wj � wi /C ai0. Ow0 � wi /

1
A :

One can also observe that

yi �Rwi D Ci .�i /xi �Rwi

D Ci .�i / Qxi C .Ci .�i /…i .�i / �R/wi

D Ci .�i / Qxi ;

where we have used the second equation of (3) in Assumption 2. Hence,

P�i D Li�i CKi .yi �Rwi /

D Li�i CKi
�
Ci .�i / 0

� � Qxi
Q�i

�
:

(15)

Using the new coordinates Qxi ; Q�i , and �i , we write the dynamics in the compact form�
PQxi
PQ�i

�
D

�
Ai .�i / Bi .�i /Hi

0 ˆi

� �
Qxi
Q�i

�
C

�
Bi .�i /

Gi

�
Mi�i

�

�
…i .�i /

†i .�i /

� 0@ NX
jD1

aij .wj � wi /C ai0. Ow0 � wi /

1
A

P�i D Li�i CKi
�
Ci .�i / 0

� � Qxi
Q�i

�
:

(16)

The third condition of Assumption 2 shows that the dynamic matrix of the closed loop system
(16) is Hurwitz. Because

PN
jD1 aij .wj � wi / C ai0. Ow0 � wi / converges exponentially to zero,

then Qxi ! 0 ; Q�i ! 0 exponentially. Furthermore, yi � Rwi D Ci .�i / Qxi ! 0 exponentially.
As wi � w0 ! 0 for all i exponentially, then the latter implies that yi .t/ ! Rw0.t/ for all
i exponentially. �

Remark 2
Theorem 1 solves the robust decentralized output regulation problem, in which the actual reference
signal is tracked relying on local estimates of the signal. The papers [10, 12, 24, 25] have addressed
similar problems, with some differences that we are going to discuss in the succeeding text. Dif-
ferently from [10], we do not assume that the systems’ models are perfectly known and robust
regulators have to be designed. The problem in [10] has been studied in [12] in the case of uncer-
tain systems. It is worth mentioning that the problem formulation in our paper is different from that
in [10, 12]. The work in [10, 12] deals with synchronization problem without any leader and thus
they cannot enforce the desired asymptotic regime of individual systems. In contrast, our problem
requires that the outputs of individual systems track the prescribed reference signal. More recently,
Su and Huang [24, 25] have studied the leader-follower output synchronization problem of hetero-
geneous linear multi-agent systems. However, the systems considered in the two papers are perfectly
known and assumed to have no uncertainty.

The design of robust regulators that fulfill the conditions in Assumption 2 will be discussed in
Section 4. For such a design, we will need Corollary 1 in the succeeding text, which deals with the
case in which the dynamics of each system (1) is affected by the signals wi , namely,

Swi W
Pxi D Ai .�i / xi C Bi .�i / ui C Pi .�i / w
yi D Ci .�i / xi ;

(17)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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where w D
�
wT1 : : : w

T
N

�T
is the vector of signals generated by (8), (9) and

Pi .�i / D .Pi1.�i / : : : PiN .�i //:

The previous theorem can be easily extended provided that Assumption 2 is modified as follows:

Assumption 4
(i) the �i�dependent Francis’ equations

…i .�i /S D Ai .�i /…i .�i /C Bi .�i /�i .�i /C

NX
jD1

Pij .�i /

0 D Ci .�i /…i .�i / �R

(18)

have a �i�dependent solution …i .�i /, �i .�i / for each i D 1; � � � ; N .
(ii) and (iii) are as in Assumption 2.

The result below is used in Section 4 to design the output regulators.

Corollary 1
Consider N heterogeneous linear systems (17). Suppose the systems are coupled via the dynamic
couplings (13) and (14). Suppose Assumptions 1, 3 and 4 hold. Then, jjyi .t/ � Rw0.t/jj
exponentially converges to 0 as t !1 for all i D 1; � � � ; N .

Proof
The result descends from the proof of Theorem 1 after making necessary modifications. In view of
(18), the variable Qxi of the closed-loop system (17), (13) and (14) satisfies the equation

PQxi D Ai .�i / Qxi C Bi .�i /Hi Q�i C Bi .�i /Mi�iCPN
jD1 Pij .�i /.wj � wi / �…i .�i / �

�PN
jD1 aij .wj � wi /C ai0. Ow0 � w1/

�
:

Repeating the same arguments of Theorem 1, one arrives at the following system:�
PQxi
PQ�i

�
D

�
Ai .�i / Bi .�i /Hi

0 ˆi

� �
Qxi
Q�i

�
C

�
Bi .�i /

Gi

�
Mi�i

C

�PN
jD1 Pij .�i /.wj � wi /

0

�
�

�
…i .�i /

†i .�i /

� 0@ NX
jD1

aij .wj � wi /C ai0. Ow0 � w1/

1
A

P�i D Li�i CKi
�
Ci .�i / 0

� � Qxi
Q�i

�
As before, the system earlier is Hurwitz and driven by signals that converge exponentially to zero.
The states converge exponentially to zero and the thesis follows. �

In the next section, we further expand the results developed in the section to the case where
multiple reference signals have to be tracked.

3. CLUSTERING THROUGH OUTPUT REGULATION

3.1. Problem statement

We again consider N heterogeneous uncertain linear dynamical systems Si , 1 6 i 6 N , given by
(1). In addition, we consider another n systems Lj , 1 6 j 6 n, called ‘leaders’, with state variables
w01; w02; : : : ; w0n. Their dynamics are of the same form described by

Pw0j D Sw0j

rj D Rw0j ;8j D 1; : : : ; n
(19)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
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but with different initial conditions, that is, w01.0/; w02.0/; : : : ; w0n.0/ are different from each
other. We will explore topological connections and design decentralized controllers such that, for
a given partition of the N heterogeneous systems Si with n subsets, the output of each system in
the same subset converges to the same reference signal Rw0j for j 2 ¹1; : : : ; nº and the outputs
of the systems in different subsets converge to different reference signals. The desired behavior is
formalized as follows.

Definition 1
Let ¹N1;N2; : : : ;Nnº be a partition of the set ¹1; 2; : : : ; N º into n nonempty subsets, which satisfy
Ni \Nj D ; where i ¤ j and

Sn
iD1 Ni D ¹1; 2; : : : ; N º. Suppose that N1 D ¹1; : : : ; h1º;N2 D

¹h1C1; : : : ; h1Ch2º; : : : ;Nn D ¹h1C: : :Chn�1C1; : : : ; h1C: : :Chn�1Chnº, where 1 < n < N ,
1 6 hi < N , and

Pn
iD1 hi D N . A network of N heterogeneous linear systems Si , partitioned

according to ¹N1;N2; : : : ;Nnº is said to realize an n-cluster output synchronization, if the outputs
yi of the heterogeneous systems (1) satisfy limt!C1

Pn
jD1

P
i2Nj

jjyi .t/ �Rw0j .t/jj D 0.

The N systems Si exchange information according to the topology described by the directed
graph G. Associated to the graph G is the adjacency matrix A D Œaij � 2 RN�N . The entry aij
equals 1 or �1 for 1 6 i; j 6 N; i ¤ j , if and only if there is a coupling from Sj to the system
Si ; otherwise aij D 0. In this section, we allow couplings among the agents that belong to differ-
ent subsets to be negative, and as a result aij 2 ¹1; 0;�1º. We set ai i D 0 for each i D 1; : : : ; N .
Moreover, the partition ¹N1;N2; : : : ;Nnº induces the following block-matrix structure of the
matrix A:

A D

0
B@
A11 A12 : : : A1n
A21 A22 : : : A2n
: : : : : : : : : : : :

An1 An2 : : : Ann

1
CA :

The Laplacian matrix L D Œlij � 2 RN�N associated with the graph G is the matrix L D D �

A, with D D diag.d1; : : : ; dN / where di D
PN
jD1;j¤i aij . Similar to A, the matrix L can be

written as

L D

0
B@
L11 L12 : : : L1n
L21 L22 : : : L2n
: : : : : : : : : : : :

Ln1 Ln2 : : : Lnn

1
CA ;

with Lij 2 Rhi�hj for i; j D 1; : : : ; n.
The matrix L is assumed to satisfy the following:

Assumption 5
Suppose that the block-matrices Lij 2 Rhi�hj , i; j D 1; : : : ; n, have zero row sums, namely,Phj
`D1

lkiCm;kjC` D 0 for all m D 1; : : : ; hi , ki D h1 C : : : hi�1 and kj D h1 C : : : hj�1.
Furthermore, the off-diagonal elements of Li i 2 Rhi�hi are non-positive.

A few explanations on Assumption 5 are in order. The assumption that all Lij have zero row
sums is natural and necessary. It means that the sum of the couplings from the systems in the j th
subset to each system in the i th (i ¤ j ) subset is zero. Thus, the effect from the systems in the j th
subset to each system in the i th subset will vanish when synchronization in each subset of systems
is achieved. This guarantees that clustering synchronization can be realized.
Next, we explain the existence of negative elements in the adjacency matrix A in the framework of
clustering synchronization. If aij > 0, a cooperative coupling is enforced, whereas if aij < 0, the
coupling is competitive or repulsive. Intuitively, competition or repulsion can affect the synchro-
nization behavior and may result in diverse behaviors in a coupled network. Hence, it is natural to
allow negative couplings among different subsets of systems and to have positive couplings among
the systems in the same subset.
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In what follows, we will also need the following connectivity assumption:

Assumption 6
For each j D 1; : : : ; n, there exists at least one system Si ; i 2 Nj which is connected to the
leader Lj .

Moreover, we assume that there is a unique leader for each subset of systems. That is to say, we
exclude the possibility that a system Si ; i 2 Nj , is connected to a leader Lk where k ¤ j . We use
a10; a20; : : : ; aN0 to describe the existence of a directed edge from the leader to a system. Namely,
for each j D 1; 2; : : : ; n, if there is a coupling from the leader Lj to the system Si ; i 2 Nj , then
ai0 D 1; otherwise ai0 D 0.

The matrix A only describes the underlying communication topological structure. It does not
provide any information about how strong the couplings or connections are. We use the notion of
‘coupling strength’ to describe the strength of the coupling for an edge. Intuitively, enhancing the
couplings among agents inside the same subset will help the whole network to realize clustering
synchronization. Hence, we set the coupling strengths among the systems that are inside the set Nj
to be the positive constant cj > 1. And we set the coupling strengths of the directed edges from the
leader Lj to the systems Si where i 2 Nj to be the constant cj as well. We call the parameters cj ,
for j D 1; : : : ; n as the inner coupling strengths.

3.2. Tracking multiple references

The control strategy, which we propose to solve the clustering output synchronization problem for-
mulated in Definition 1, comprises two steps. Because not all the systems Si may have access to the
leaders, we first design systems which aim at reconstructing the reference signals using only locally
available relative information. As a second step, we use such an asymptotic estimate of the reference
signal to feed the tracking controllers and show that they achieve the prescribed control objective.

To reconstruct the reference signal, the systems cooperate to estimate the internal state of the
exosystems. For system Si ; i 2 Nj ; j D 1; : : : ; n, the estimation is carried out by

POw0j D S Ow0j CG0R.w0j � Ow0j / ;

Pwi D Swi C
X
k2Nj

cj aik.wk � wi /C

NX
kD1;k…Nj

aik.wk � wi /C cj ai0. Ow0j � wi / ;
(20)

where the matrix G0 is properly chosen in such a way that �.S � G0R/ � C� and Ow0j is an
asymptotic estimate of the leader’s internal state w0j . Let matrix„j 2 Rhj�hj denote the diagonal
matrix

diag
�
akjC1;0; : : : ; akjChj ;0

�
:

Let Nwh1 D
�
wT1 ; : : : ; w

T
h1

�T
; : : : ; Nwhn D

�
wT
h1C���Chn�1C1

; : : : ; wT
h1C���Chn

�T
. We now write the

dynamics of the estimations as follows:0
BBB@
PNwh1
PNwh2
:::
PNwhn

1
CCCA D .IN ˝ S/

0
BBB@
Nwh1
Nwh2
:::

Nwhn

1
CCCA �

0
B@
c1L11 L12 : : : L1n
L21 c2L22 : : : L2n
: : : : : : : : : : : :

Ln1 Ln2 : : : cnLnn

1
CA ˝ Im �

0
BBB@
Nwh1
Nwh2
:::

Nwhn

1
CCCA

C diag¹c1„1; c2„2; : : : ; cn„nº ˝ Im �

0
BBB@

1h1 ˝ Ow01 � Nwh1
1h2 ˝ Ow02 � Nwh2

:::

1hn ˝ Ow0n � Nwhn

1
CCCA ;

(21)

where 1hj 2 Rhj are vectors of all ones, for j D 1; : : : ; n.
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To show the convergence of wi , we first introduce some notations of block matrices. Let
the matrices

L„ ,

0
B@
c1L11 C c1„1 L12 : : : L1n

L21 c2L22 C c2„2 : : : L2n
: : : : : : : : : : : :

Ln1 Ln2 : : : cnLnn C cn„n

1
CA ; (22)

L
.1/
„ , diag¹c1L11 C c1„1; c2L22 C c2„2; : : : ; cnLnn C cn„nº, L

.2/
„ , L„ � L

.1/
„ , and

D„ , diag¹c1„1; c2„2; : : : ; cn„nº. We have the following result for the convergence of wi :

Lemma 3
Suppose that Assumptions 5 and 6 hold. If the matrix L„ is positive definite, then wi ; i 2
Nj for all j D 1; : : : ; n will asymptotically track the references w0j , that is, it holds that
limt!C1

Pn
jD1

P
i2Nj

jjwi .t/ � w0j .t/jj D 0.

Proof
Let Qwhj D Nwhj � 1hj ˝ w0j and Qw0j D Ow0j � w0j for j D 1; : : : ; n. From (21), one has0

BBB@
PQwh1
PQwh2
:::
PQwhn

1
CCCA D .IN ˝ S/

0
BBB@
Qwh1
Qwh2
:::

Qwhn

1
CCCA �

0
B@
c1L11 L12 : : : L1n
L21 c2L22 : : : L2n
: : : : : : : : : : : :

Ln1 Ln2 : : : cnLnn

1
CA ˝ Im �

0
BBB@
Nwh1
Nwh2
:::

Nwhn

1
CCCA

� .D„ ˝ Im/ �

0
BBB@
Qwh1
Qwh2
:::

Qwhn

1
CCCAC .D„ ˝ Im/ �

0
BBB@

1h1 ˝ Qw01
1h2 ˝ Qw02

:::

1hn ˝ Qw0n

1
CCCA

(23)

Note that Lij are zero-row-sum matrices. It follows that0
B@
c1L11 L12 : : : L1n
L21 c2L22 : : : L2n
: : : : : : : : : : : :

Ln1 Ln2 : : : cnLnn

1
CA ˝ Im �

0
BBB@

1h1 ˝ w01
1h2 ˝ w02

:::

1hn ˝ w0n

1
CCCA D 0 :

Using the aforementioned equation and the notation L„, we can rewrite (23) as0
BBB@
PQwh1
PQwh2
:::
PQwhn

1
CCCA D .IN ˝ S/

0
BBB@
Qwh1
Qwh2
:::

Qwhn

1
CCCA � .L„ ˝ Im/

0
BBB@
Qwh1
Qwh2
:::

Qwhn

1
CCCAC .D„ ˝ Im/ �

0
BBB@

1h1 ˝ Qw01
1h2 ˝ Qw02

:::

1hn ˝ Qw0n

1
CCCA (24)

Let Qw ,
�
QwT
h1
; QwT

h2
; : : : ; QwT

hn

�T
and Qw�0 ,

�
.1h1 ˝ Qw01/

T ; .1h2 ˝ Qw02/
T ; : : : ; .1hn ˝ Qw0n/

T
�T

.
Then, (24) can be written into the compact form

PQw D .IN ˝ S/ Qw � .L„ ˝ Im/ Qw C .D„ ˝ Im/ Qw
�
0 : (25)

Let $ D .IN ˝ e�St / Qw and ' D
�
IN ˝ e

�St
�
Qw�0 . Then, one has

P$ D �
�
IN ˝ e

�StS
�
Qw C

�
IN ˝ e

�St
�
PQw

D �
�
IN ˝ e

�St
�
.L„ ˝ Im/ Qw C

�
IN ˝ e

�St
�
.D„ ˝ Im/ Qw

�
0

D �.L„ ˝ Im/$ C .D„ ˝ Im/' :

(26)

According to the condition in Lemma 3, the matrix �.L„ ˝ Im/ is Hurwitz. Moreover, from
PQw0j D POw0j � Pw0j D .S � G0R/ Qw0j and �.S � G0R/ � C�, one has that Qw�0 converges to zero
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exponentially as t ! 1. It further implies ' D
�
IN ˝ e

�St
�
Qw�0 converges to zero exponentially.

Therefore, one has that $ converges to the origin exponentially as t ! 1. Furthermore, because
Qw D .IN ˝ e

St /$ and �.S/ � C0, one has that Qw ! 0 exponentially as t ! 1. Thus, one
obtains that limt!C1

Pn
jD1

P
i2Nj

jjwi .t/ � w0j .t/jj D 0. �

Remark 3
Assumption 5 is a trivial condition when clustering synchronization is discussed in multi-agent sys-
tems with diffusively coupled dynamical oscillators. For example, Assumption 5 on the Laplacian
matrix L is the same as the one in Definition 4 in [20], and similar to that in Proposition 2 in [21].
However, in this subsection, we study different system dynamics and thus a different problem. We
have proposed the stability criterion for system (20) in Lemma 3 under suitable assumptions on the
communication topologies.

The condition on the matrix L„ is an algebraic condition, which is difficult to check in applica-
tions. Now, we specify the connectivity strengths such that the matrix L„ is positive definite. The
way to construct the connectivity strengths is motivated by some results in [20, 21]. Because the
results in [20, 21] cannot be applied to our problem directly, we carry out the construction as follows:

Lemma 4
[26] Let A and B be N �N Hermitian matrices, and let the eigenvalues 	i .A/, 	i .B/, 	i .AC B/
be arranged in increasing order as 	1.�/ 6 	2.�/ 6 : : : 6 	N .�/. For each k D 1; 2; : : : ; N , we have

	k.A/C 	1.B/ 6 	k.AC B/ 6 	k.A/C 	N .B/ :

Lemma 5
Suppose that Assumptions 5 and 6 hold. And suppose that the matrix L is symmetric and the
matrices Ljj for j D 1; : : : ; n are irreducible. If

cj > max

8<
:�

	min

�
L
.2/
„

�
	min.Ljj C„j /

; 0

9=
;

for all j D 1; : : : ; n, then the matrix L„ is positive definite.

Proof
We will prove that the matrix L„ is positive definite if the constants cj for j D 1; : : : ; n are
sufficiently large. From Lemma 4, one has

	min .L„/ > 	min

�
L
.1/
„

�
C 	min

�
L
.2/
„

�
D min16j6n

®
	min.cj Ljj C cj „j /

¯
C 	min

�
L
.2/
„

�
D min16j6n

®
cj 	min.Ljj C„j /

¯
C 	min

�
L
.2/
„

�
:

Note that Ljj for j D ¹1; : : : ; nº are Laplacian matrices satisfying zero row sums and non-
positive off-diagonal elements. Thus,Ljj are positive semi-definite. In addition,Ljj are irreducible.
According to Lemma 1, the matrices Ljj C „j for j D 1; : : : ; n are positive definite. Thus, if

cj > �
�min

�
L
.2/
„

�
�min.LjjC„j /

for j D 1; : : : ; n, then 	min.L„/ > 0. We have arrived at the conclusion that

the matrix L„ is positive definite if cj > max

´
�

�min

�
L
.2/
„

�
�min.LjjC„j /

; 0

μ
for j D 1; : : : ; n. �

Now, we give some comments on the condition of the inner coupling strengths cj in Lemma 5.

Remark 4
There might exist other connection patterns such that L„ is positive definite. Lemma 5 provides
one way to construct communication topologies for this purpose. It requires lower bounds for cj
to guarantee the positive-definiteness of L„, which implies that large inner couplings are good for
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clustering synchronization in a network. This also can be understood in real-world situations, as
clustering is likely to happen in a network if inner connections inside clusters are strong, whereas
connections among different clusters are weak. In addition, if more systems in the subset Nj are
connected to their leader Lj , it results in a larger positive value of 	min.Ljj C „j /. According to
the lower bound for cj in Lemma 5, a smaller positive cj may be obtained consequently. This also
makes sense in practice.

We have discussed clustering synchronization of the reference trajectories in Lemma 3. The
estimations wi can be treated as a group of reference signals and used to tackle the decentral-
ized n-cluster output synchronization problem for heterogeneous systems. This is pursued in the
succeeding text.

We introduce the controllers for systems (1) as follows. For agent i 2 Nj ; j D 1; : : : ; n, we
design ui as

POw0j D S Ow0j CG0R.w0j � Ow0j /

Pwi D Swi C
X
k2Nj

cj aik.wk � wi /C

NX
kD1;k…Nj

aik.wk � wi /C cj ai0. Ow0j � wi /

P�i D ˆi �i CGi Mi�i

P�i D Li�i CKi .yi �Rwi /

ui D Hi�i CMi�i

(27)

The matrices ˆi ; Gi ;Mi ; Li ; Ki ;Hi are those found in Assumption 2.

Theorem 2
Consider N heterogeneous linear systems (1) coupled via the dynamic couplings (27).
Suppose that Assumptions 1 and 2 hold, and the assumptions in Lemma 3 hold. Then,
limt!C1

Pn
jD1

P
i2Nj

jjyi .t/ �Rw0j .t/jj D 0.

Proof
Let Qxi D xi � …i .�i /wi , Q�i D �i � †i .�i /wi . Similar manipulations as those in the proof of
Theorem 1 lead to

PQxi D Ai .�i / Qxi C Bi .�i /Hi Q�i C Bi .�i /Mi�i�

…i .�i /

0
@X
k2Nj

cj aik.wk � wi /C

NX
kD1;k…Nj

aik.wk � wi /C cj ai0. Ow0j � wi /

1
A ;

and

PQ�i D ˆi Q�i CGiMi�i �†i .�i /�

�

0
@X
k2Nj

cj aik.wk � wi /C

NX
kD1;k…Nj

aik.wk � wi /C cj ai0. Ow0j � wi /

1
A :

Furthermore, yi �Rwi D Ci .�i / Qxi . Hence,

P�i D Li�i CKi .yi �Rwi /

D Li�i CKi
�
Ci .�i / 0

� � Qxi
Q�i

�
:

(28)
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In the new coordinates Qxi ; Q�i , and �i , the system can be written as�
PQxi
PQ�i

�
D

�
Ai .�i / Bi .�i /Hi

0 ˆi

� �
Qxi
Q�i

�
C

�
Bi .�i /

Gi

�
Mi�i

�

�
…i .�i /

†i .�i /

�0@X
k2Nj

cj aik.wk � wi /C

NX
kD1;k…Nj

aik.wk � wi /C cj ai0. Ow0j � wi /

1
A

P�i D Li�i CKi
�
Ci .�i / 0

� � Qxi
Q�i

�
:

(29)
By Assumption 2, the dynamic matrix of the closed loop system (29) is Hurwitz. Moreover, all
the forcing inputs decay exponentially to zero. As a result, limt!C1

Pn
jD1

P
i2Nj

jjyi .t/ �

Rw0j .t/jj D 0. �

4. DESIGN OF THE CONTROLLERS

The actual design of the controllers in the previous Sections 2 and 3 depends on the fulfillment
of the conditions in Assumption 2 or 4. In this section, we discuss how this can be achieved. The
arguments follow the treatment in [11, Section 1.5]. For the sake of simplicity, we only focus on
the design of controllers discussed in Section 2. The controllers discussed in Section 3 can be
designed similarly.
We start with condition (ii), namely with the fulfillment of the internal model principle. Let ˆ;H
and †i .�i / be the matrices

ˆ D

0
BBBB@

0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

�a0 �a1 �a2 : : : �ad

1
CCCCA ;H D

0
BBB@
1

0

0

: : :

0

1
CCCA
T

†i .�i / D

0
BBBBB@

�i .�i /

�i .�i /S
:::

�i .�i /S
d�2

�i .�i /S
d�1

1
CCCCCA

where 	d C ad�1	d�1 C a1d C a0 is the minimal polynomial of S and �i .�i / is the matrix that
appears in the regulator Equation (3). It is straightforward to check that these matrices satisfy the
internal model condition (4).
To the purpose of fulfilling also the robust stability condition (iii), it is convenient to introduce other
matrices Fi ; Gi ; ‰i ; Ti , which also fulfill the internal model principle. These matrices are detailed
in the following lemma ([11, Lemma 1.5.6]):

Lemma 6
Let Fi be any Hurwitz s � s matrix and let Gi be any s � 1 vector such that the pair .Fi ; Gi / is
controllable. Let ˆ be any s � s matrix whose eigenvalues are all in CC and let H be any 1 � s
vector such that the pair .H;ˆ/ is observable.
Then, there exist a 1 � s vector ‰i and a nonsingular s � s matrix Ti such that

.Fi CGi‰i /Ti D Tiˆ

‰iTi D H:
(30)

It is immediate to see that the matrix Q†i .�i / D Ti†i .�i / satisfies

Q†i .�i /S D .Fi CGi‰i / Q†i .�i /

�i .�i / D ‰i Q†i .�i / :
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Hence, the internal model principle property (4) is fulfilled by the matrices Fi CGi‰i , ‰i , Q†i .�i /.
The controllers introduced in Section 2.2 can be rewritten as:

POw0 D S Ow0 CG0R .w0 � Ow0/

Pw1 D Sw1 C

NX
jD1

a1j .wj � w1/C a10 . Ow0 � w1/

P�1 D .F1 CG1‰1/ �1 CG1M1�1

P�1 D L1�1 CK1.y1 �Rw1/

u1 D ‰1�1 CM1�1

(31)

and, for agent i D 2; � � � ; N ,

Pwi D Swi C

NX
jD1

aij .wj � wi /

P�i D .Fi CGi‰i / �i CGi Mi�i

P�i D Li�i CKi .yi �Rwi /

ui D ‰i�i CMi�i

(32)

For the purpose of stabilizing the overall closed-loop system (requirement (iii) in Assumption 2),
it is more convenient to work with these controllers rather than with those in (8), (9). In the rest
of the section, we turn now to the problem of determining the stabilizing matrices Li ; Ki ;Mi ,
i D 1; 2; : : : ; N .
For each i , consider the system (1) with output "i D yi �Rwi , namely

Pxi D Ai .�i / xi C Bi .�i / ui

"i D Ci .�i / xi �Rwi :
(33)

As in [11], to reduce the notational burden, we focus on the case in which the inputs ui and the
outputs yi are scalar, that is, pi D 1 for i D 1; 2; : : : ; N and q D 1. Further, assume that Pi is a
compact set and that for each �i 2 Pi , the system (33) has the same relative degree ri from ui to
"i . Namely, there exists an integer ri > 1 such that for each �i 2 Pi

Ci .�i /A
j
i .�i /Bi .�i / D 0 ; j D 0; 1; : : : ; ri � 2

Ci .�i /A
ri�1
i .�i /Bi .�i / ¤ 0 :

Then, there exists a �i -dependent change of coordinates

�
´i
ei

�
D

0
BBBBB@

Zi .�i /

Ci .�i /

Ci .�i /Ai .�i /
:::

Ci .�i /Ai .�i /
ri�1

1
CCCCCA xi DW QZi .�i /xi ; (34)

where Zi .�i / is a suitable matrix such that QZi .�i / is nonsingular, such that the system (33) in the
new coordinates becomes

Ṕ i D A
.11/
i .�i /´i C A

.12/
i .�i /ei

Pei1 D ei2
:::

Pei;ri�1 D eiri

Pei;ri D A
.21/
i .�i /´i C A

.22/
i .�i /ei C bi .�i /ui

"i D ei1 �Rwi D Cei �Rwi ;

(35)
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where in particular bi .�i / D Ci .�i /A
ri�1
i .�i /Bi .�i / ¤ 0.

We further change the coordinates in the following way:

Qei D ei CQiw

where Qi D
�
QT
i1 : : :Q

T
ir

�T
, w D

�
wT1 : : : w

T
N

�T
,

Qi1 D .01�m : : : 01�m �R 01�m : : : 01�m/ ;

Qi;jC1 D Qi;j
QS; j D 1; 2; : : : ri � 1

and QS D .IN ˝ S � L˝ Im/. Then, we obtain

Ṕ i D A
.11/
i .�i /´i C A

.12/
i .�i / Qei CQi .�i /w

PQei1 D Qei2
:::

PQei;ri�1 D Qeiri
PQei;ri D A

.21/
i .�i /´i C A

.22/
i .�i / Qei C QQi .�i /w C bi .�i /ui

"i D Qei1;

(36)

with

Qi .�i / D �A
.12/
i .�i /Qi ; QQi .�i / D �A

.22/
i .�i /Qi :

In the succeeding text, we use the following partition for the two matrices:

Qi .�i / D
�
Qi1.�i / : : :QiN .�i /

�
QQi .�i / D

�
QQi1.�i / : : : QQiN .�i /

�
:

Observe that because of the latter change of coordinates, the signal w affects the dynamics of the
systems. Hence, (36) falls in the class of systems considered in (17) and Corollary 1 applies. Before
doing this, we need an additional assumption. Let the system (33) be minimum-phase, namely

Assumption 7
For each �i 2 Pi , all the eigenvalues of A.11/i .�i / have strictly negative real parts.

As a consequence of this assumption, it is promptly verified (see [11], page 27) that the matrices

…i .�i / D
�
…i1.�i /

T 0 : : : 0
�T

�i .�i / D �
1

bi .�i /

2
4A.21/i .�i /…i1.�i / �

NX
jD1

QQij .�i /

3
5 ; (37)

where …i1.�i / is the unique ri � ri matrix, which solves the Sylvester equation

…i1.�i /S D A
.11/
i .�i /…i1.�i /C

NX
jD1

Qij .�i /; (38)

satisfy condition (i) in Assumption 4 with

Pi .�i / D

0
BBBBB@
Qi .�i /

0
:::

0
QQi .�i /

1
CCCCCA :

Before carrying out the next step of our robust controllers design, we explain the differences of our
design method explored in the aforementioned text, compared with the basic robust regulator design
method in [11].
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Remark 5
The arguments on the actual design of the decentralized robust controllers follow closely the treat-
ment in [11], but they are not the same. The robust controller design method in [11] only deals with
output regulation of a single system. In our case, we design decentralized robust controllers for the
cooperative multi-agent systems (1). Consequently, we have to deal with the dynamical coupling
terms existing in the controllers (31) and (32). To be specific, in our case only system S1 has direct
access to the exosystem, the other systems S2; : : : ;SN are fed by the local estimates of the reference
signal. As a result, the systems’ controllers are coupled with each other through the estimates, and
the controllers cannot be designed separately for each system Si to track the corresponding recon-
structed reference signal wi . To deal with the difficulties caused by the dynamical couplings and the
cooperation framework discussed in this paper, in the calculations to obtain (36), we treat the recon-
structed references w1; : : : ; wN as a whole, that is generated by an exosystem Pw D QS w. Finally,
we have adopted different coordinate changes for Qei , compared with those in [11, Section 1.5].

The design of the matrices Ki ; Li ;Mi such that condition (iii) is satisfied can be carried out in
two steps. Consider the system (36) and write it in the compact form

Ṕ i D A
.11/
i .�i /´i C A

.12/
i .�i / Qei CQi .�i /w

PQei D A Qei C B
h
A
.21/
i .�i /´i C A

.22/
i .�i / Qei C QQi .�i /w C bi .�i /ui

i
"i D C Qei ;

(39)

where A;B;C are understood from the context. Also, consider a controller of the form

P�i D Fi�i CGiui

ui D ‰i�i C vi
(40)

where vi is an additional control input and obtain the closed-loop system

P�i D .Fi CGi‰i /�i CGivi

Ṕ i D A
.11/
i .�i /´i C A

.12/
i .�i / Qei CQi .�i /w

PQei D A Qei C B
h
A
.21/
i .�i /´i C A

.22/
i .�i / QeiC

QQi .�i /w C bi .�i /.‰i�i C vi /
i

"i D C Qei :

(41)

The change of coordinates


i D �i �
1

bi .�i /
GiC A

ri�1
Qei

yields the closed-loop system�
P
i
Ṕ i

�
D

 
Fi �

1
bi .�i /

GiA
.21/
i .�i /

0 A
.11/
i .�i /

!�

i
´i

�
C

 
1

bi .�i /

h
FiGiC A

ri�1
�GiA

.22/
i .�i /

i
A
.12/
i .�i /

!
Qei C

 
� 1
bi .�i /

Gi QQi .�i /

Qi .�i /

!
w

PQei D A Qei C B
h
bi .�i /‰i
i C A

.21/
i .�i /´iC�

A
.22/
i .�i /C‰iGiCA

ri�1
�
Qei C bi .�i /vi C QQi .�i /w

i
"i D C Qei :

(42)

The zero dynamics of the system is�
P
i
Ṕ i

�
D

 
Fi �

1
bi .�i /

GiA
.21/
i .�i /

0 A
.11/
i .�i /

!�

i
´i

�
:
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This is asymptotically stable for each �i 2 Pi because Fi is Hurwitz by construction and A.11/i .�i /

is Hurwitz by Assumption 7. In view of this property, it is proven in [11, Lemma 1.5.4] that under
the assumption that bi .�i / > bi > 0 for all �i 2 Pi , there exists a positive gain k�i , a 1 � ri vector
M i such that for all ki > k�i , the feedback

vi D �kiM i Qei DWMi Qei (43)

stabilizes the system (42) for all �i 2 Pi . Moreover, the matrix M i is of the form

M i D .di0 di1 : : : di;ri�2 1/

where 	ri�1Cdi;ri�2	
r1�2C : : :Cdi0 is any polynomial having all the roots with strictly negative

real parts.
The feedback (43) cannot be implemented because it requires the knowledge of Qei , which is not
available. The second step of the construction consists in the design of a controller, which uses an
estimate of Qei . This design can be carried out following [11, Lemma 1.5.5]. Consider the dynamic
feedback controller

P�i D Li�i CKi"i

vi DMi�i ;
(44)

where

Li D

0
BBBBB@

�gici;ri�1 1 : : : 0

�g2i ci;ri�2 0 : : : 0
:::

:::
: : :
:::

�g
ri�1
i ci;1 0 : : : 1

�g
ri
i ci;0 0 : : : 0

1
CCCCCA ; Ki D

0
BBBBB@

gici;ri�1
g2i ci;ri�2

:::

g
ri�1
i ci;1
g
ri
i ci;0

1
CCCCCA (45)

the polynomial 	ri C ci;ri�1	
ri�1 C : : : C ci;1	

1 C ci;0 is any polynomial having all the roots
with negative real part, gi > 0 is a design parameter and Mi is as in (43). Under Assumption 7, if
bi .�i / > bi > 0 for all �i 2 Pi , it can be shown that there exists a positive gain g�i > 0 such that,
for all gi > g�i , the controller (44) asymptotically stabilize the system (42) for all �i 2 Pi .
The latter statement allows us to summarize as follows:

Proposition 1
Consider the system (39). Let Assumption 7 hold and assume that bi .�i / > bi > 0 for all �i 2 Pi ,
with Pi a compact set. Then, there exists a positive gain g�i > 0 such that, for all gi > g�i , the
matrices Li ; Ki ;Mi defined in (45) and (43) are such that the dynamic feedback controller (44)
globally asymptotically stabilizes (42) for all �i 2 Pi .

Remark 6
The overall controller is given by the interconnection of the internal model (40) and the stabilizer
(44). We observe that the design of the two controllers requires local information only. As a matter
of fact, the matrices Fi ; Gi ; ‰i of the internal model can be obtained via Lemma 6. On the other
hand, the controller (44) is designed to robustly stabilize the system (39). Because the only terms in
the system (39) that depend on the Laplacian matrixL are the ‘disturbance’ vectorsQi .�i /;

QQi .�i /

which play no role in the stability property of the closed-loop system, one infers that the design of
Li ; Ki ;Mi is independent of the knowledge of the graph topology.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



ROBUST DECENTRALIZED OUTPUT REGULATION

5. NUMERICAL EXAMPLES

5.1. Tracking a single reference

In this section, we illustrate the design of the robust controllers for decentralized output regulation
via a numerical example. The example we consider corresponds to a network of double integra-
tors with different actuator dynamics, namely we consider the case in which the systems (1) are
modeled as

Pxi D

0
@ 0 1 0

0 0 ci
0 �di �ai

1
A

„ ƒ‚ …
Ai .�i /

xi C

0
@ 0

0

bi

1
A

„ƒ‚…
Bi .�i /

ui

yi D
�
1 0 0

�„ ƒ‚ …
Ci .�i /

xi ; i D 1; 2; : : : ; N;

(46)

where �i D .ai bi ci di /
T is the vector of uncertain parameters. The example was proposed in

[10] where it was assumed that the parameters appearing in the equations are known and used to
design the controllers. Here, we consider the case when these parameters are uncertain. Hence, the
controllers have to be designed differently. We assume that �i is not precisely known and ranges
over a compact set Pi , which is contained in R3>0 � R>0. Observe that the uncertain parameters
ai ; bi ; ci are bounded away from zero. We consider the problem in which the matrices that define
the leader’s equation (2) are given by

S D

�
0 1

0 0

�
; R D

�
1 0

�
: (47)

In other words, the position of the systems (46) has to asymptotically evolve as the ramp reference
signal set by the leader.
Following the previous section, we first compute the relative degree ri of each system. It is easily
verified that

Ci .�i /Bi .�i / D Ci .�i /Ai .�i /Bi .�i / D 0

Ci .�i /A
2
i .�i /Bi .�i / D bici :

Because bici ¤ 0 for each �i 2 Pi , the previous equalities show that each system has a relative
degree ri D 3. As the relative degree equals the dimension of the systems, the matrix QZi .�i / in the
change of coordinates (34) can be written as

QZi .�i / D

0
@ Ci .�i /

Ci .�i /Ai .�i /

Ci .�i /Ai .�i /
2

1
A D

0
@ 1 0 00 1 0

0 0 ci

1
A

and in the new coordinates the system (35) can be written as

Pei1 D ei2

Pei2 D ei3

Pei3 D �cidiei2 � aiei3 C biciui :

(48)

When compared with (35), we observe that the system has no zero dynamics and checking
Assumption 7 becomes superfluous. Moreover,

A
.21/
i .�i / D 0;A

.22/
i .�i / D � .0 cidi ai / ; bi .�i / D bici ;

from which we conclude that bi .�i / > Nbi > 0, for all �i 2 Pi , for some Nbi .
Having verified that all the assumptions of Proposition 1 hold, we can determine the controllers.
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First of all, we determine the matrices Fi ; Gi ; ‰i in (40). This computation is carried out as in the
proof of [11, Lemma 1.5.6]. Because the minimal polynomial of S is 	2, we have

ˆ D

�
0 1

0 0

�
H D

�
1 0

�
and let (see Lemma 6 earlier)

Fi D

�
0 1

�1 �2

�
; Gi D

�
0

1

�
be a pair of matrices with Fi Hurwitz and .Fi ; Gi / controllable. Here, for the sake of simplicity, we
take Fi ; Gi to be the same for each i D 1; 2; : : : ; N . Following the proof of [11, Lemma 1.5.6], one
can construct the vector ‰i and the nonsingular matrix Ti which satisfy (30) and obtain

‰i D
�
1 2

�
; Ti D

�
1 �2
0 1

�
:

This concludes the computation of the matrices Fi ; Gi ; ‰i , which appear in (40).
We turn now to the design of the matrices Li ; Ki ;Mi , which appear in (7). Because ri D 3, and
letting 	2Cdi1	Cdi0 D 	2C2	C1, 	3Cci2	2Cci1	Cci0 D 	3C3	2C3	C1 two polynomials
with all the roots having strictly negative real parts, the matrices Li ; Ki ;Mi are given by

Li D

0
@ �3gi 1 0�3g2i 0 1

�g3i 0 0

1
A ; Ki D

0
@ 3gi3g2i
g3i

1
A ;

Mi D �ki
�
1 2 1

�
where ki ; gi are gains to be chosen sufficiently large. Finally, we let G0 D .2 1/T be such that
S �G0R is Hurwitz.
We conclude that the controllers (31), (32) with the matrices Fi ; Gi ; ‰i , Li ; Ki ;Mi , G0 computed
earlier, solve the decentralized output regulation problem for the systems (46), (47).
We have run a simulation for N D 4 systems with parameters ¹ai ; bi ; ci ; diº chosen to be
¹1C�1; 1C�2; 1C�3; �4º, ¹2:5C�1; 2C�2; 1C�3; �4º, ¹2C�1; 1C�2; 1C�3; 0:5C�4º,
¹2C�1; 1C�2; 1C�3; 1C�4º, respectively, where �1; �2; �3; �4 are 0:3; 0:4; 0:5; 0:7 ,respec-
tively. We set the gains k D 1:1, g D 14. As for the communication graph, we have chosen one
with a direct link between the exosystem and the system S1, that is, there is a directed link .0; 1/.
The communication graph among the systems Si , i D 1; 2; 3; 4 is set to be the undirected and static
graph with edges ¹.1; 2/; .2; 3/; .3; 4/; .4; 1/º. The initial value for the exosystem w0 is taken to be
.2 1/T , whereas all the other initial values are randomly chosen in the interval Œ0; 10�.
Figure 1 shows that the outputs yi , i D 1; 2; 3; 4 of the systems successfully track the exosys-
tem output Rw0. The simulation result supports the conclusions of Theorem 1 and the controller
design method.
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Figure 1. The outputs of the systems track the signal Rw0.
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5.2. Tracking multiple references

In this subsection, we illustrate the design of the robust controllers for decentralized clustering
output synchronization through a numerical example. The example we consider corresponds to a
network of double integrators with different actuator dynamics, namely we consider the case in
which systems (1) are modeled by (46) as well. We consider the problem in which the matrices that
define the leader’s dynamics (19) are given by

S D

�
0 1

�1 0

�
; R D

�
1 0

�
: (49)

In other words, the trajectory of systems (46) has to converge asymptotically to the sinusoidal ref-
erence signals of the leaders.
For systems (46), we have verified that all the assumptions of Proposition 1 hold in the previous
subsection. Thus, we can determine the controllers, using the approach given in Section 4.
First of all, we remark that the matrices Fi ; Gi in (40) are the same as in the previous subsection.
Following again the proof of [11, Lemma 1.5.6], we arrive at the vector ‰i and at the nonsingular
matrix Ti

‰i D
�
0 2

�
; Ti D

�
0 �1

2
1
2
0

�
such that (30) is satisfied. The matricesLi ; Ki ;Mi in (7) can be chosen as in the previous subsection.
Therefore, the controllers

POw0j D S Ow0j CG0R.w0j � Ow0j /

Pwi D Swi C
X
k2Nj

cj aik.wk � wi /C

NX
kD1;k…Nj

aik.wk � wi /C cj ai0. Ow0j � wi /

P�i D .Fi CGi‰i / �i CGi Mi�i

P�i D Li�i CKi .yi �Rwi /

ui D ‰i�i CMi�i

(50)

for i 2 Nj ; j D 1; : : : ; n, with G0 D .2 1/T and the matrices Fi ; Gi ; ‰i , Li ; Ki ;Mi computed
earlier, solve the decentralized output regulation problem for systems (46), (49).
We consider N D 6 heterogeneous systems with parameters ¹ai ; bi ; ci ; diº for i D 1; : : : ; 6 chosen
to be ¹1C�1; 1C�2; 1C�3; �4º, ¹2:5C�1; 2C�2; 1C�3; �4º, ¹2C�1; 1C�2; 1C�3; 0:5C�4º,
¹2C�1; 1C�2; 1C�3; 1C�4º, ¹2:5C�1; 1:5C�2; 1C�3; 0:5C�4º, ¹1C�1; 2C�2; 1C�3; 1C
�4º respectively, where the uncertainties �1; �2; �3; �4 are 0:3; 0:4; 0:5; 0:7 respectively. Those
systems communicate according to graph G shown in Figure 2. There are two different leaders
L1;L2 as shown in Figure 2. We pick systems 1 and 5 to be connected to the two leaders L1;L2
respectively, such that the systems in the network realize a 2-cluster synchronization and track the
two different trajectories of the leaders L1;L2. To be specific, there is a directed edge from leader
L1 to system 1, and a directed edge from leader L2 to system 5. Leader L1 has directed paths to
all the nodes in N1 D ¹1; 2; 3; 4º, although ¹1; 2º and ¹3; 4º are connected indirectly through the
nodes ¹5; 6º. We set the inner coupling strengths c1 D c2 D 2. Then the matrix L„ in (22) can be

described as L„ D

�
c1L11 L12
L21 c2L22

�
C diag¹2; 0; 0; 0; 2; 0º ;where

�
c1L11 L12
L21 c2L22

�
D

0
BBBBB@

2 �2 0 0 1 �1
�2 2 0 0 0 0

0 0 2 �2 �1 1

0 0 �2 2 0 0

0 �1 0 1 2 �2
0 1 0 �1 �2 2

1
CCCCCA : (51)

One can check that the matrix L„ is positive definite.
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Figure 2. Communication graph.
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Figure 3. The outputs of the systems are synchronized in clusters and track the exosystem outputs
Rw01; Rw02.

We consider the leader L1 satisfying Pw01 D Sw01 with w01.0/ D .�2; 0/T , and the leader
L2 satisfying Pw02 D Sw02 with w02.0/ D .2; 0/T , where S has been given in (49). The initial
values of wi for i D 1; : : : ; 6 are randomly selected from the interval Œ0; 5�. We ran the simulation
for systems (46) and controllers (50) in which the gains k; g are set to be 0:8 and 12, respectively.
Figure 3 shows that the outputs yi , i D 1; 2; 3; 4 of the systems asymptotically track the exosystem
output Rw01, and the outputs yi , i D 5; 6 asymptotically track the exosystem output Rw02. The
simulation result validates the conclusions of Theorem 2 and the controller design method.
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6. CONCLUSION

We have tackled the problem of designing decentralized controllers able to track prescribed refer-
ence signals generated by exosystems under the restriction that not all the systems can access the
information available at the exosystem. Under the assumption that each leader (exosystem) has a
directed path to its follower systems, we have shown that there exist decentralized controllers, which
achieve the desired regulation task in the presence of arbitrarily large but bounded uncertainties in
the systems’ models.
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