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General Introduction
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General introduction

1New medications, treatments and technological possibilities are developed 

everyday all over the world to improve healthcare services. Before entering the 

market, new technologies pass filters of safety and efficacy. These criteria are 

essential, but they are not all that matter. Limited healthcare budgets impose a 

third important criterion: cost effectiveness. 

Economic evaluations, especially cost-effectiveness analyses, play an increasing 

role in supporting policy making. In these methods, additional costs and health 

benefits of a new drug/health intervention are compared to the standard of care. 

When the additional costs and benefits of the new technology are balanced in a way 

that the adoption is worthwhile, the health policy can change in favor of the new 

technology. However, it is not always straight forward to compute additional costs 

and health gains from implementing a new drug/intervention. Different diseases 

with various specifications and progression stages would need different ways of 

calculating the long term costs and health effects. To inform the calculation of costs 

and effects, decision analytic models have been developed as a tool to support cost-

effectiveness analysis for different conditions. These models help to synthesize all 

the characteristics of the disease and all the available evidence and find the costs 

and effects of the alternative interventions of interest. 

After finding the best way to model a disease, cost-effectiveness analysis (CEA) 

helps decision makers to choose among different dugs/treatment options for a 

certain disease. In such analysis, costs are related to a single, common effect that 

may differ in magnitude among the alternative drugs/treatments (Drummond et 

al., 2005). The results of cost-effectiveness analysis are often incorporated in new 

guidelines, supporting the decisions makers to find the best way of allocating 

resources.

However, since any assessment of the effects as well as costs will remain 

uncertain to some degree, any decision based on cost-effectives will also be 

uncertain. This uncertainty arises from different sources, and can have an important 

effect on the results. 

It should be noted that uncertainty is different from variability and patient 

heterogeneity. Variability refers to natural variation in quantities due to chance 

(e.g. when the effect of a certain drug is varying among patients with the same 
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1 characteristics) and patient heterogeneity refers to variations due to different 

characteristics of patients (e.g. when the drug effect is varying among patients with 

different characteristics). In contrast, uncertainty refers to the degree of precision 

with which quantities are measured (for instance when the effects on a particular 

patient is not precisely known) (van Belle, 2002). Uncertainty can often be reduced 

by gathering further information, while variability and patient heterogeneity are 

inevitable parts of the results of any economic evaluation. The variability between 

subjects has also been referred to as “first order uncertainty” or “stochastic 

uncertainty” in medical decision making literature (Groot Koerkamp, 2009; Stinnett 

and Paltiel, 1997).

In this thesis I aim to analyze the methods to handle the uncertainty in the results 

of economic evaluations, while I also address the variability and heterogeneity. 

There are three reasons why it is essential to analyze the uncertainty surrounding 

effects and costs (Claxton, 2008): (i) to evaluate the expected effects and costs 

correctly; (ii) to make sure if the current evidence is sufficient; and (iii) to consider 

the possible consequences of an uncertain decision. 

In the next sections, different decision modeling approaches are introduced and 

some basics regarding the cost-effectiveness analysis are explained. Then different 

possible sources of uncertainty are discussed and some methods to handle the 

uncertainty are reviewed. In the end, the theme and objectives of this thesis are 

described.

DECISION ANALYTIC MODELING

Decision analytic models use mathematical relationships to find possible 

consequences of different alternative decisions (Briggs et al., 2006). In a decision 

analysis, inputs related to each decision option are fed into to the model. Using the 

inputs, the model will generate the likelihood of each outcome together with costs 

and health effects. 

An important aspect of decision modeling, which is also of interest for this 

thesis, is to allow for the uncertainty and variability in the outcomes. The inputs are 

uncertain and hence the outcomes are uncertain, and the decision models make it 
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1possible to analyze the uncertainty and to quantify it. Different model structures are 

used in this thesis in order to calculate the costs and effects and the uncertainties. 

Based on the features of the disease and the technology that is being evaluated, 

different model structures might be appropriate (Briggs et al., 2006). In the next 

sections, some of the most important model structures are described. 

Decision Trees

The decision trees are probably the simplest and the most common form of 

decision models (Briggs et al., 2006; Drummond et al., 2005). They illustrate a 

patient’s possible pathways, including possible prognosis tests and interventions. 

By calculating the probability of each pathway together with costs and effects of 

that pathway, and summing up the costs and effects weighed by the probabilities 

across the pathways, the expected costs and effects can be computed (Drummond 

et al., 2005). An example of a decision tree model  is given in chapter 2 of this thesis 

(Mohseninejad et al., 2012).   

Decision trees are widely applied in economic evaluations, but they have some 

important limitations. First, since there is no explicit time element in the decision 

trees, any decision which needs to include the time aspect would be hard to model. 

Second, decision trees can get very complicated when modeling long term, and in 

particular, chronic diseases. (Drummond et al., 2005). 

Markov Models

Markov models have overcome the limitations of decision trees and they are 

widely used in economic evaluations (Drummond et al., 2005). Markov model 

explicitly model time, and are suitable to present the progression of chronic 

diseases. In a Markov model, the disease cycle is divided into a number of distinct 

states. By having the transitions probabilities for movement between these states 

and attaching estimates of costs and health effects to each state, the long term 

costs and effects associated with a particular healthcare intervention/medicine can 

be estimated (Briggs and Sculpher, 1998). Although the Markov models have been 

very efficient in handling economic evaluations, they also have some restrictions. 
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1 The important restriction is related to the Markov model’s assumption of being 

“memoryless”. This assumption means that when a patient enters a state, the 

model will not consider where the patient has come from or how long the patient 

has been in the process. However, some extensions of the Markov models have 

been designed which incorporate time dependency to the models (Briggs et al., 

2006). In the third chapter of this thesis, we show this time dependency in a Markov 

model for a depression prevention program (Mohseninejad et al., 2013). 

Patient Level Simulation

In a patient level simulation, the patients are tracked individually while they 

are moving through the model and experiencing particular events. Hence, instead 

of transition probabilities, the interest is on the time of the next event  for each 

particular patient (Karnon, 2003). Patient level simulation models (also called as 

microsimulations or individual sampling methods) offer great flexibility, as they are 

able to account for the history of the patients. Despite the structural flexibility, such 

models also have some limitations. Since the parameters representing possible 

future pathways for a patient are conditional on history, additional evidence is 

needed to populate such models. The simulation requirement of these models can 

be sometimes very time consuming (Drummond et al., 2005).  

In chapters 4,5 and 6 of this thesis, we use some sort of patient level simulations 

to accumulate costs and effects over a certain period of time and find final 

estimations. 

COST-EFFECTIVENESS ANALYSIS

Cost effectiveness analysis (CEA) is generally referred to analyses in which costs 

are related to a single, common effect that might be different for alternative health 

programs/medicines (Drummond et al., 2005). Results of such comparison are 

mainly stated as costs per unit of effect. 
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1Cost effectiveness ratio

Typically the CEA is expressed in terms of a ratio where the denominator is a 

gain in health (life years/ Quality adjusted life years, improved symptoms, etc) and 

the numerator is the cost associated with the health gain (Gold et al., 1996). To make 

the comparison of alternative options easier, incremental cost-effectiveness ratios 

(ICERs) have been introduced. If CA and CB are the costs of the health intervention/

medicine A and B respectively, and EA and EB are the effects, ICER of intervention A 

versus B will be computed as:

BA

BA

EE
CCICER

−
−

=                                                                                                              (1)

When the ICER is below the maximum acceptable cost-effectiveness ratio (or 

willingness-to-pay threshold per unit of effect), the program A is considered cost-

effective. In other words, if we call the threshold ratio by λ , we should have:

λ<
∆
∆

E
C

                                                                                                                           (2)

Incremental Net Monetary Benefits

ICERs are very informative and are widely used to express results of economic 

evaluations. However, since they are ratio estimators, they sometimes cause 

problems for standard statistical methods (Briggs and Fenn, 1998). By re-expressing 

equation 2 we have:

0>∆−∆ CEλ                                                                                                                   (3)

The increase in health effects ( E∆ ) multiplied by the amount the decision maker 

is willing to pay per unit of health (λ ), less the increase in costs ( C∆ ) is called the 

Incremental Net Benefits (INB).  Working with INBs is often more convenient for 

policy makers and clinicians, as the extra benefit of the new technology can be 

easily extrapolated to the population level by multiplying the benefit per patient 

by the total population. Besides, the confidence intervals for INBs can give a more 
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1 clear view of the risk to the policy makers (Groot Koerkamp, 2009). In chapters 3,5 

and 6 of this thesis, we choose to work with INBs rather than ICREs and we go on to 

show that the uncertainty surrounding INB can be more easily analyzed by assigning 

distributions.

SOURCES OF UNCERTAINTY

The uncertainty surrounding the estimations of the cost-effectiveness of a 

particular intervention or drug can be caused by different sources, for example, 

uncertainty in the treatment/drug effects or costs, the type of model used, and the 

applicability or generalizability of the results to the decision-maker (Bojke et al., 

2009). There are several ways to categorize the sources of uncertainty. In a more 

common categorization, the sources of uncertainty are described as: parameter 

uncertainty, methodological, and structural uncertainty (Briggs, 2000). 

Parameter uncertainty

Decision analytic models need some input parameters to generate the 

outputs such as health gains and costs. A decision model might need various input 

parameters to be able to perform. For instance the epidemiological parameters 

such as incidence and prevalence, relative risks, duration of the disease stages 

and the treatment, and related costs are the most common input parameters of a 

decision model. Estimating the true value of all the different parameters is almost 

impossible, meaning that there will always be an uncertainty surrounding the inputs 

of the model. Methods to analyze the uncertainty regarding the model parameters 

have been well established (Briggs et al., 2012) and recorded in health economic 

guidelines (e.g. (NICE, 2004)). Some of these methods are explained later in this 

chapter. 

Methodological uncertainty

The uncertainty in outcomes of an economic evaluation could be due to the 

methods underpinning the evaluation. One example of the methodological source 

of uncertainty is the perspective adopted, which defines the selection of costs and 
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1health gains to include in an economic evaluation (Briggs and Gray, 1999). Choosing 

the right perspective is essential to avoid extra uncertainty in the outcomes. 

Assigning the maximum acceptable value for each additional unit of health 

has also been a source of debate. Since choosing the threshold value might need 

to reflect disease characteristics, budgetary impacts, equity measures and other 

criteria, it can add to the uncertainty of the evaluation (Birch and Gafni, 2006; 

McCabe et al., 2008; Stolk et al., 2004). 

Another choice regarding the methodology concerns the selection of discount 

rates. Different rate to discount costs and health benefits have been proposed so 

far, and there has been a debate whether equal discount rates should be considered 

for costs and effects (Brouwer et al., 2005; Claxton et al., 2006). Selecting the right 

instrument for valuation of health outcomes is also a source of uncertainty in the 

methodology (Briggs, 2000). 

While the focus in the literature of uncertainty analysis has mostly been 

on parameter uncertainty, in this thesis we pay considerable attention to the 

methodological uncertainties.  We analyze the uncertainty caused by choosing the 

perspective (chapter 3), the threshold value (chapters 2, 3, 4, 5 and 6), the discount 

rate (chapters 2 and 5) and the valuation of health outcomes (chapter 2). We show 

how important this source of uncertainty source can be in different examples. In the 

third chapter of this thesis, we show that methodological uncertainty in choosing 

a perspective for the analysis is causing significant changes in the economic 

evaluation and the priority settings (Mohseninejad et al., 2013). We discuss the 

related findings in chapter 7. 

Structural uncertainty

Other types of uncertainty which cannot be classified under parameter or 

methodological uncertainty are usually called structural uncertainty (Bojke et 

al., 2006). Different types of simplifications and scientific judgments made when 

constructing and interpreting any model are examples of structural uncertainty 

(Bojke et al., 2009). Structural uncertainty might not always be distinguishable from 

other types of uncertainty, for instance sometimes changing a model parameter 
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1 might change the structure of the model as well. A common type of structural 

uncertainty is the choice of the alternative model specification. Often, scenarios 

are presented based on extreme assumptions that can be made (Claxton et al., 

2004). We present the scenario analysis to analyze the structural uncertainty in the 

next chapters of this thesis. In chapter 2 we illustrate the importance of structural 

uncertainty by showing how cost-effectiveness results and budgetary impact might 

change when including different scenarios. In chapters 4 and 5 we discuss different 

scenarios when deciding on the right time for making a decision. I address possible 

improvements in chapter 7.

METHODS TO HANDLE UNCERTAINTY

Various studies have so far addressed the uncertainty problem and several 

methods have been developed to handle the uncertainty which is rising from 

different sources. In this section I introduce some common uncertainty analysis 

methods which are going to be applied and extended in this thesis. 

Deterministic Sensitivity analysis

Deterministic sensitivity analysis (DSA) is probably the simplest way to analyze 

and present the uncertainty in the outcomes. In a DSA, parameter values are varied 

manually to examine the sensitivity of the model’s results to specific parameters or 

sets of parameters (Briggs et al., 2012). 

Probabilistic Sensitivity analysis

Probabilistic Sensitivity analysis (PSA), evaluates the joint effect of uncertainty 

about all estimated parameter values in the model. In PSA, a probability distribution 

is assigned to each parameter of the model. Then all parameters are varied 

simultaneously, with multiple sets of parameter values being sampled from the 

priori–defined distributions simultaneously using Monte Carlo simulation (Briggs 

and Gray, 1999; Briggs et al., 2012). It is important to assign appropriate distributions 

to different parameters with respect to the characteristics of the parameter being 

estimated (Briggs et al., 2006). 
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1Different ways of presenting and analyzing the results of a probabilistic 

sensitivity analysis are described later in this chapter.

Cost effectiveness plane

The most common way of presenting the results of a probabilistic sensitivity 

analysis is the cost-effectiveness (CE) plane (Anderson et al., 1986; Black, 1990). 

An illustration of the CE plane is presented in Figure 1. In the diagram, 

the horizontal access represents the gains in effects when using the new 

intervention (A) versus the old standard one (B), and the vertical access 

represents the additional costs of A comparing to B. The plane is divided into 

four quadrants indicating four possible situations in relation to the additional 

costs and additional health outcome of the new treatment compared to the old 

standard one. Results of probabilistic sensitivity analysis can be shown by dots in 

the plane: each dot represents the result of one run of the probabilistic model. 

Figure 1 The general form of a cost-effectiveness plane. Adapted from Black (Black, 1990) 

CE plane is very useful for the presentation of uncertainty as a region in the 

cost-effectiveness space (van Hout et al., 1994). For instance if the estimates are 

all distributed in the same quadrant of the plane, it can be concluded that the 

uncertainty is relatively low. 

 
New treatment more costly 

New treatment less costly 

New treatment 
less effective 

New treatment 
more effective 

New treatment 
dominates 

Old treatment 
dominates 

New treatment 
more effective 

 but more costly 

New treatment 
less costly  

but less effective 

Maximum acceptable ICER 

Quadrant IV Quadrant I 

Quadrant II Quadrant III 
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1 Cost-effectiveness acceptability curves

To consider the effect of different willingness-to-pay (λ ) thresholds in the 

cost-effectiveness analysis, cost-effectiveness acceptability curves (CEACs) are 

introduced. For each predefinedλ , CEACS show the probability that the cost-

effectiveness ratio found in the study is acceptable (van Hout et al., 1994). The 

probabilities are calculated as the proportion of dots which fall below the λ  line 

(maximum acceptable ICER) in figure 1. 

Value of information analysis

With roots in statistical decision theory (Raiffa and Schlaifer, 1959), Value of 

information (VOI) analysis has been applied in the health care field in recent years 

(Claxton, 1999; Claxton and Posnett, 1996). VOI analysis can be performed as a 

part of probabilistic sensitivity analysis to show if additional information is needed 

to support the decision on adoption or reimbursement of a health intervention/

drug. Such analysis can also support the decisions to choose among different types 

of research (Claxton and Sculpher, 2006), select the parameters which are more 

important in future research (Ades et al., 2004), or to find the optimal design of 

studies (Claxton and Posnett, 1996; Claxton and Thompson, 2001; Eckermann and 

Willan, 2007).

In this thesis we develop rather novel applications of the value of information 

analysis to show the robustness of the results of economic evaluations (chapters 

2 and 3), to establish the priorities in future research with respect to perspective 

(chapter 3), to investigate the information update over time (chapters 4, 5 and 6), 

and to evaluate quality of data (chapter 6). 

Resolving uncertainty over time

Various methods have so far been introduced to address the time aspect in 

decision uncertainty. As the new technologies/drugs spread over time, some part 

of uncertainties on their costs and effectiveness resolves; hence it is important 

to investigate the effect of time in the information flow which leads to decreased 

uncertainty. Many different methods have been developed or adapted from other 
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1fields of science to healthcare, aiming to analyze the resolution of uncertainty 

over time and the subsequent decisions. One of the more common methods is the 

applications of real options approach (ROA) (Raiffa and Schlaifer, 1959) in health 

technology assessment (Palmer and Smith, 2000). Some extensions of the value of 

information analysis in optimal trial design (Willan and Pinto, 2006) have also been 

used to address the information update over time (Chen and Willan, 2013; Willan 

and Kowgier, 2008). Sequential analysis (Wald, 1945) is another related method for 

deciding on adoption/reimbursement.

Although many approaches have been developed to analyze the information 

trend over time, there is still the need to find the optimal time at which delaying a 

decision further to wait for more information is no longer worthwhile. In this thesis 

we discuss various methods towards analysis of uncertainty over time (chapters 

4 and 5), we develop a new method to find the optimal time of decision making 

(chapter 4), and we show applications of our method (chapters 5 and 6)

POLICIES TOWARDS UNCERTAINTY MANAGEMENT

When a new healthcare technology is introduced the information about its 

cost-effectiveness is often scarce. Hence, it is essential to analyze the uncertainty 

before making a decision. In some instances a cost-effectiveness evaluation may 

be a onetime event, used when making the adoption/reimbursement decision for 

a new drug/technology. For such cases, analysis of uncertainty would enable the 

decision maker to get knowledge on the risk in the decision and the consequences 

of a wrong choice before actually making the decision. It will also inform the 

decision maker whether further research is needed before making a choice, and if 

so, what sort of research is needed. We address the policy implications regarding 

the uncertainty analysis for onetime evaluations in chapter 2 and 3 of this thesis. 

In many other cases, the uncertainty surrounding the information about a 

new drug/technology is so high that the decision maker cannot decide whether 

to adopt/reimburse right away, needing some time to observe evidence about 

the costs and effects of the new technology. On the other hand, providers and 

patients legitimately require access to the new technology from which they might 
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1 benefit. These two rather opposite demands have emerged new policy schemes 

for managing the uncertainty surrounding the cost-effectiveness of new health 

technologies in recent years. Different coverage and reimbursement schemes have 

been proposed to guarantee further research before making a final decision in 

different countries (e.g. (Stafinski et al., 2010; Stafinski et al., 2011; Walker et al., 

2012)). Access with evidence development (AED) is a category of these schemes 

(Carlson et al., 2010). AED refers to a form of a provisional coverage arrangement 

in which the new drug/technology is temporarily funded until further evidence 

supports a definite adoption/reimbursement decision. 

We explore different policy options and contribute to the methods of linking 

administering and reimbursement of medical products to the collection of additional 

evidence in an AED scheme in chapters 4, 5, 6 and 7 of this thesis. 

AIM AND SCOPE OF THIS THESIS

The objective of this thesis is to explore different ways of handling the 

uncertainty in economic evaluation of new medical technologies and contribute to 

the methods of the uncertainty analysis.

After the general introduction on decision analytic modeling, cost-effectiveness 

analysis and analysis of uncertainty in chapter 1, an elaborated example of the 

decision modeling followed by cost-effectiveness and uncertainty analysis is 

presented in chapter 2. In this chapter, a decision tree is used to model the cost-

effectiveness of screening for coeliac disease in patients with irritable bowel 

syndrome (IBS). A deterministic sensitivity analysis is performed to examine the 

effect of different model parameters in the results. Also probabilistic sensitivity 

analysis including the presentation of CEACs and value of information analysis is 

used to analyze the uncertainty in the outcomes. Results show that the screening 

program is cost-effective, and that uncertainty surrounding the outcomes have 

limited effect on the decision.

In chapter 3 a Markov model is used to evaluate the costs and long term 

health benefits of screening followed by Minimal Contact Psychotherapy (MCP) for 

depression prevention. In this chapter, value of information analysis is performed 
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1and presented in a more elaborated way and results are compared from a healthcare 

and a societal perspective. Results of this chapter show the need for carefully 

choosing the relevant perspective for the decision problems. 

Chapter 4 goes one step further in handling the uncertainty in economic 

evaluations by including timing in the reimbursement decisions. In this chapter 

we use a value of information framework to develop a model which describes 

the problem of making a definite decision on a conditionally reimbursed drug. 

The method developed in this chapter enables the decision maker to select the 

optimal period of conditional reimbursement and additional evidence gathering. By 

choosing the optimal time for a definite decision, more flexibility is introduced into 

the methods of solving the uncertainty over time. 

In chapter 5 simulation methods are used to find the optimal time of making 

a definite decision on reimbursement of voriconazole for primary treatment of 

invasive aspergillosis. While the old regulations for expensive new inpatient drugs 

in The Netherlands specify a maximum period of four years for conditional funding, 

it is shown in this chapter that in case of antifungal drugs at any point after the 

2nd year the uncertainty becomes almost ignorable and the decision is close to 

optimum.

Chapter 6 evaluates a registry which has been set up to provide further 

evidence for deciding on reimbursement of oxaliplation for treatment of stage III 

colon cancer. In this chapter, patient level data has been mixed with simulated data 

to find out if the registry provides sufficient information to resolve the uncertainty 

in the reimbursement decision of oxaliplatin. Results of this chapter indicate that 

the registry should have been improved, or should have been stopped after 2 years 

rather than simply complete the current 4-years period. 

The concluding chapter 7 presents a discussion on methods used in this thesis, 

the methodological contribution of the thesis and the policy implications.
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Abstract

Objectives: A high prevalence of Coeliac Disease (CD) is found among patients 

with a clinical diagnosis of irritable bowel syndrome (IBS) compared to the general 

population. Symptoms of CD are quite similar to IBS, but its treatment is different. 

The aim of this study is to evaluate the cost-effectiveness of screening for CD in 

patients with diarrhoea/ mixed type IBS (IBS-D/mix) in terms of cost per QALY in the 

Netherlands.

Methods: A decision model was constructed to evaluate the costs and health 

benefits of serological testing followed by confirmatory endoscopy with biopsy. 

Probabilistic sensitivity analysis (PSA) was performed to examine the effect of 

parameter uncertainty. Finally, the budget impact of implementing the screening 

process was also computed for implementation over a 10-year time horizon.

Results: Screening resulted in an increase of about 0.07 QALYs per patient over 

a lifetime horizon. The incremental cost effectiveness ratio was about 6,200 €/QALY 

compared to no screening. PSA showed that the uncertainty in cost effectiveness 

results is not considerable. Value of information analysis confirmed the robustness 

of the results. Screening all current patients with diarrhea/mixed type IBS would 

require a total budget of about 25 million Euros over a 10 year time period.

Conclusion: Screening patients with IBS-D or IBS-mix for CD is almost certainly 

cost-effective. The screening program would improve the quality of life of those 

patients with IBS symptoms who actually have CD at a relatively low cost. 



27

Targeted screening for Coeliac Disease

2

INTRODUCTION

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder 

characterized by abdominal pain and defecation pattern disturbances (Inadomi et 

al., 2003). IBS is quite common, with a prevalence ranging from 6.2% to 12% in 

Europe (Hungin et al., 2003). Compared to the general population patients suffering 

from IBS have a low quality of life. In recent years, several quality of life instruments 

have been applied to IBS populations. Generic questionnaires that result in values 

useful for computing quality adjusted life years (QALYs) have been validated against 

more disease specific and multidimensional questionnaires. The EQ5D turned out to 

be valid with scores ranging from 0.62 to 0.75 in different IBS populations (Akehurst 

et al., 2002; Berg et al., 2006; Bracco et al., 2007; Brazier et al., 2006; Brazier et al., 

2002; Brazier and Usherwood, 1998; Bushnell et al., 2006; Spiegel et al., 2009). IBS 

shows an association with Coeliac Disease (CD), a chronic autoimmune disorder 

with a severe impact of symptoms on quality of life (Gray and Papanicolas, 2010; 

Sanders et al., 2001; Sanders et al., 2003; Shahbazkhani et al., 2003) and increased 

mortality risk. Once detected, CD should be treated by prescribing a gluten free 

diet. For this reason, diagnosis of CD in IBS patients is important. Normally, such 

diagnosis may occur with a substantial delay, due to the similarity of symptoms.

While screening for CD in the general population has been shown not to be cost-

effective (Hershcovici et al., 2010), conducting screening for CD in patients with IBS 

has been suggested to be potentially worthwhile.  Studies from Mein and Ladabaum 

(Mein and Ladabaum, 2004) and the National Institute for Health and Clinical 

Excellence (NICE) guideline on IBS (2008a) have assessed the cost-effectiveness of 

screening for CD in all patients with IBS symptoms. However, constipation only is 

not among symptoms of CD (Spiegel et al., 2004). Therefore, we can assume that 

the prevalence of CD in IBS patients with only constipation type symptoms is low 

and comparable to that in the general population. Hence, excluding patients with 

constipation from the screening process and including only those with diarrhoea 

predominant or mixed type IBS (both constipation and diarrhoea) may result in a 

more favourable cost effectiveness ratio. Spiegel et al. (Spiegel et al., 2004) have 

evaluated testing for CD in IBS patients with predominant diarrhoea. They found 
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that such a targeted screening program has an acceptable cost per symptom 

improvement when the prevalence of CD is above 1%. The health gains ensuing 

from a correct diagnosis of CD were modelled quite different in the three studies 

mentioned above. Mein and Ladabaum (Mein and Ladabaum, 2004) only took into 

account utility gains, while the research for the NICE guideline (2008a) considered 

only survival gains. Spiegel et al. (Spiegel et al., 2004) considered symptomatic 

improvements as the outcome measurement. 

That is, no study evaluated costs per QALY for targeted screening taking into 

account both health benefits in terms of survival and in terms of quality of life. 

The aim of the current study hence was to evaluate the cost-effectiveness of 

targeted screening for CD in patients with IBS-D/ IBS-mix in the Netherlands in 

comparison to no screening and to screening all IBS patients, in terms of cost per 

QALY. We took into account both the improvements in quality of life and reductions 

in mortality resulting from adhering to a gluten free diet and used QALYs as the 

outcome measurement. We reported the number of cases that may be detected 

by the screening process and identified the most important sources of uncertainty 

in the evaluation. The effect of parameter uncertainty was evaluated by means of 

assigning distributions to parameters and running probabilistic sensitivity analysis. In 

addition, elaborate univariate sensitivity analyses were performed to test the effect 

of several model assumptions. Cost-effectiveness acceptability curves were derived 

and the budgetary impact of introducing screening for CD in the Dutch population 

was also assessed. In addition, a value of information analysis was performed to 

assess the need for additional research on uncertain parameter values. 

METHODS

A decision model was constructed to compare the costs and health benefits of 

screening and subsequent treatment for Coeliac Disease (CD) among patients with 

IBS-D/mix with care as usual that is, no structured screening strategy. The model 

reflects possible trajectories over the life course of a cohort of IBS patients.

In the model, undiagnosed CD patients have an increased mortality, as well as 

reduced quality of life compared to diagnosed CD patients. However, in order to 
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avoid overestimating the health gains of screening, cases of CD among IBS patients 

are assumed to be detected because of sustained symptoms after a delay. The 

duration of the delay period is hard to establish. In previous studies delays that 

were applied ranged from 6 months to infinity (no detection of CD in case of no 

screening). We used an estimate of four years for the delay period. Such estimate is 

quite conservative, since evidence from the United States and Europe indicates that 

most CD patients probably remain undiagnosed for the rest of their lives (Spiegel 

et al., 2004). We included smaller and larger delay times in sensitivity analysis to 

examine the effects of the different delay time assumptions. 

Patient population

We divided bowel habits of IBS patients into three categories: diarrhoea, 

constipation and mixed (van der Veek et al., 2007). The prevalence of CD among 

those IBS patients whose bowel habits are restricted to constipation is assumed 

to be similar to the CD prevalence in general population. Accordingly we excluded 

patients with constipation in the base case analysis. However, they have been 

included in sensitivity analysis to check whether such exclusion significantly 

improved the cost effectiveness of the testing strategy. Cohort age at screening was 

assumed to be 34, based on the expert opinions about typical IBS patients.

Screening strategy

Screening starts with tissue transglutaminase antibody (tTG) in combination 

with Immunoglobulin A (IgA) antibody test according to the current Dutch practice. 

When the IgA level is lower than 0.7 g/l, the results of the tTG are not reliable and 

endoscopy with biopsy will be conducted to confirm possible CD. When IgA level is 

higher than 0.7, tTG results are reliable and decision will be made based on them: 

patients with positive tTG results will enter endoscopy with biopsy and those with 

negative results will be assumed to have no CD. There is a small probability of major 

complication when endoscopy is performed (0.2%). Such complications increase 

costs and may be fatal in some cases (5%) (Mein and Ladabaum, 2004). 
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Model

A decision model was built using TreeAge software (TreeAge Pro 2009 Suite, 

Release 1.0.1). The control strategy is “no testing”, in which we distinguished two 

possible outcomes. First, showing IBS symptoms which are not due to CD. In this 

case, the patient is a normal IBS patient, will receive routine IBS care and her annual 

costs and quality of life is computed based on published data from studies in IBS 

populations. Second, a patient with IBS symptoms may actually have CD. In this 

case, we assume that the CD will be detected after a delay period of four years. 

Therefore, in the first four years the patient will be considered to have the same 

costs as an IBS patient, but the quality of life and mortality of a CD patient. After 

four years, the costs of diagnosis of CD are incurred and from then on, the specific 

costs of IBS care will be replaced by the costs of a gluten-free diet and CD care, 

while quality of life improves and mortality decreases. 

The intervention strategy is screening patients with IBS-D and IBS-mix. Here 

again, several possible outcomes exist. Patients may have IBS and test negative 

(true negatives). They may have IBS and test positive (false positives), in which case 

the endoscopy will show negative results. They may have CD and test negative (false 

negatives), in which case CD will only be detected after the delay period. Finally 

they may have CD and test positive (true positives), and receive a proper diagnosis 

of CD after endoscopy, followed by CD treatment. 

Net present values for all future costs and health benefits have been calculated, 

applying a discount rate of 1.5% to health benefits and 4% to costs (2006). The 

decision model is illustrated in Figure 1.

The prevalence of CD among patients with IBS symptoms regardless of symptom 

types was 4.7% (2008b).  However, excluding patients with constipation will lead to an 

increased prevalence in the screened population. About 25% of IBS patients have solely 

constipation symptoms (van der Veek et al., 2007), and using the 0.35% prevalence of 

CD in the general population (2008b) for them, the prevalence of CD among IBS patients 

eligible for screening should be 6.15%. Prevalence and incidence rates of diagnosed 

IBS were used to estimate the size of the target population for screening. The input 

parameters of the model, their base case values and the distributions used in the 

probabilistic sensitivity analysis are listed in table 1. 
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Figure 1 The decision model of screening for coeliac disease in patients with symptoms of 
IBS D/mix 

Table 1 input parameters and distributions

Parameter Value Distribution Reference

Clinical parameters

Age 34 years --- ---

Prevalence of CD among patients with IBS 4.7 % Beta (35,714) (2008b)

Prevalence of CD in general population 0.35 % Beta (6,1700) (2008b)

Prevalence of constipation among patients 
with IBS

25% Beta (13,39) (van der Veek et al., 2007)

Prevalence of diagnosed IBS in general 
population

1.05% (van der Linden et al., 2004)

Annual incidence of IBS 0.56% (van der Linden et al., 2004)

IBS utility 0.675 Lognormal (-0.39,0.029) (Akehurst et al., 2002)

CD utility 0.56   Lognormal (-0.58,0.026) (Gray and Papanicolas, 2010)

Treated CD utility 0.84 Lognormal (-0.17,0.01) (Gray and Papanicolas, 2010)

Standard Mortality Rate for untreated  CD 1.6 --- (Shamir et al., 2006)

Test performance

Sensitivity of tTG 0.949 Beta (26,1.40) (2008b)

Specificity of tTG 0.975 Beta (106,2.71) (2008b)

Probability of major complication with 
endoscopy

0.2 % Beta (3.3,1600) (Mein and Ladabaum, 2004)

Probability of death due to major complication 5 % Beta (5.12,88) (Mein and Ladabaum, 2004)

Costs (price level 2009)

Cost of tTG € 39.63 Uniform (20-55) (1998)

Cost of IgA € 9.91 --- (1998)

Cost of endoscopy with biopsy € 386 ---

Cost of major complication € 6200 --- (Mein and Ladabaum, 2004)

Costs of IBS per patient per year € 275 Lognormal (5.61,0.03) (Goettsch et al., 2004)

Cost of gluten free diet per patient
per year

€ 1093 Lognormal (7,0.17) (2008b)
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Taking the sensitivity and specificity of the tTG test into consideration and using 

a prevalence of 6.15% for CD in the population screened, the chances of a true or 

false positive result for tTG will be 8.2 % in our base case analysis. These positive 

cases will undergo endoscopy in which 29% will turn out to be false positives. The 

remaining 71% are correctly diagnosed as having CD and will receive gluten free 

diet as a treatment.

Health benefits 

Quality adjusted life years (QALYs) are the main outcome measurements for 

health benefits. As shown in table 1, the utility of a person with IBS symptoms 

whose test results were negative is 0.675, which is the quality of life for IBS. IBS 

quality of life is assumed to remain the same for the rest of patient’s life (Akehurst 

et al., 2002). In case of undiagnosed CD, the patient will have a quality of life weight 

as low as 0.56 for the first four years (Gray and Papanicolas, 2010). As mentioned 

before, a correct diagnosis is assumed to occur after this delay period, resulting in 

improved quality of life from then on. Whenever a patient is diagnosed with CD 

and is adhering to a gluten free diet, quality of life is assumed to increase to 0.84 

(Gray and Papanicolas, 2010) and stay the same for the remaining life expectancy. 

Therefore, the utility gain associated with a correct diagnosis and treatment is 

assumed to be 0.28, which is quite considerable. 

Patients with undiagnosed CD have an increased mortality rate and hence, a 

lower life expectancy. The Standard Mortality Rate (SMR) for untreated CD is 1.6 

(Shamir et al., 2006). Since CD was assumed to be detected anyway after four years, 

the increased mortality risk will just affect the first four future years of the patient’s 

life. The life expectancy of an IBS patient is assumed to be the same as that of the 

general population of the same age. Applying a discount rate of 1.5% (2006) and 

using the Dutch life tables (2003), we found a discounted remaining life expectancy 

of 33.23 and 33.20 years for the general population and undetected CD patients 

at the time of screening respectively. Therefore, the survival gain from immediate 

correct diagnosis rather than after a four years delay will be 0.03 years. 
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Costs

As listed in table 1, relevant testing and treatment costs were taken into 

account, and these were estimated bottom-up. Cost of serological tests, endoscopy, 

complications, IBS care, and gluten free diet were distinguished. 

The tests used in the screening strategy are conducted by various labs within 

the Netherlands, using different prices. Central tariffs exist, which act as a reference 

value. We used prices as listed on the website of Sanquin Blood Supply Foundation 

(1998), €39 for the tTG and an added €10 for the IgA test. Considering different 

tariffs for test prices, we used a range of €20-€55 for tTG test in our PSA. 

Costs of endoscopy were based on estimates provided by the experts that were 

involved in the guideline and confirmed by the DRG tariff  which was € 385, 80 in 

2009.

Costs of complication were based on Mein and Ladabaum (Mein and Ladabaum, 

2004). Costs of GP visits were assumed to be comparable for IBS and CD patients, 

that is, both types of patients by assumption visited their primary care physician 

with the same frequency. The specific medication and hospital costs of IBS patients 

were extracted from a Dutch case-control study (Goettsch et al., 2004). The costs of 

a gluten free diet were based on data from the Dutch CD guideline and the website 

of Dutch Coeliac Disease organization (2008b). Estimated costs varied, which is 

logic, given the variability of people’s food patterns. We found a lower bound of € 

253 and an upper bound of €1417 for dietary costs in 2009. The mean annual cost 

of diet used in base case analysis was € 1093 (2008b). 

All costs are presented for price level 2009 in table 1. Price indices were used to 

update costs to this price level if necessary. 

Sensitivity analysis

One way sensitivity analyses were performed for some important parameters 

and model choices. First, we examined the scenario of screening patients with 

all types of IBS, instead of targeted screening to see how excluding patients with 

constipation only has affected the results. Then, the health benefits related to a 

proper diagnosis of CD were investigated by estimating the cost-effectiveness of 
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the screening strategy assuming that diagnosis and treatment of CD had a) only a 

utility gain, or b) only a survival gain. Another scenario tested in sensitivity analysis 

was using a couple of blood tests instead of one in the screening process. We added 

Endomysial Antibodies (EMA) test in combination with tTG in the base case analysis. 

The result of the combination was assumed to be positive if either one of them 

showed a positive result. Therefore, such analysis would indicate if more precise 

but more expensive testing at the beginning of the screening strategy would lead to 

better cost effectiveness results.

The effect of assuming equal discount rates for health and money was also 

investigated in one way sensitivity analysis. We ran the model for the case in which, 

according to the old Dutch guidelines, both health gains and cost are discounted to 4%. 

Costs of endoscopy and of complications related to endoscopy were hard to 

estimate. Therefore, we varied them using a broad range of 50% to 150% of baseline 

estimates to check the sensitivity of the outcomes for these input parameters.  

Prevalence of CD in patients with IBS symptoms was changed to 3%, which is 

the prevalence used in the cost effectiveness study by Mein and Ladabaum (Mein 

and Ladabaum, 2004) based on data from two British studies (Sanders et al., 2001; 

Sanders et al., 2003), rather than our 4.7% value which was based on Dutch data. 

Furthermore results were investigated using a lower limit of 0.024 for the utility 

gain, based on the value used by Mein and Ladabaum(Mein and Ladabaum, 2004). 

The delay period before a correct diagnosis of CD without screening was 

increased to 8 years, also to lifelong to check how the assumption of a correct 

diagnosis of CD after only four years in the absence of screening affects the cost 

effectiveness. We also included lower delay times to examine the cost-effectiveness 

of the screening in a situation in which patients are routinely tested for CD. However, 

such situation is usually rare and four years was considered a conservative estimate.

The prevalence of constipation in patients with IBS symptoms was changed by 

±10% compared to the baseline estimate of 25%, which was based on a Dutch study 

(van der Veek et al., 2007) and consultation of experts. 

Furthermore, a probabilistic sensitivity analysis was conducted to examine 

the overall effect of parameter uncertainty. Monte Carlo simulation was run using 

10,000 replications, to examine the effects of parameter uncertainty and to evaluate 
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the robustness of the results. As shown in table 1, we have assigned probability 

distributions to all uncertain parameters of the model. The distribution used for 

each parameter was selected on the basis of suggestions in the literature (Briggs 

et al., 2006). The distribution parameters were calibrated to fit the 95% confidence 

intervals or standard deviations given in the reference sources. The number of 

Monte Carlo runs was validated by checking whether or not results changed after 

increasing the number of replications to 15,000. 

Value of Information Analysis

In addition to the cost effectiveness analysis, the Expected Value of Perfect 

Information (EVPI) was calculated as the difference between the expected net 

monetary benefits of the perfect and current information. EVPI determines the value 

of conducting additional research and informs decision makers about the value of 

acquiring more precise estimates of input parameters used in a cost-effectiveness 

analysis (Claxton et al., 2001). Population EVPI was computed using the estimation 

of the number of cases eligible for screening in the Netherlands. Giving an upper 

bound for the value of future research, population EVPI helps the decision maker 

to decide whether current information is sufficient for the final policy decisions and 

whether further research may be required. Population EVPI was obtained from the 

results of Monte Carlo simulations for a willingness to pay range of 0 to 30,000 €/

QALY. 

Budget impact 

The budget impact of implementing the screening process was calculated for 

a 10-years time horizon. To estimate consequences of the implementation at a 

population level, two different screening scenarios were investigated:

1. Catch up Scenario: Screen all prevalent IBS cases with IBS-D/mix type 

symptoms at the beginning and then continue with screening of new incident cases 

in the following years. 

2. Gradual Scenario:  Start screening new incident cases and continue this 

annually.
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For obtaining the budget impact of implementing the screening process, we 

assumed that patients with a General Practitioner (GP) diagnosis of IBS-D/mix will 

be screened for CD. The reason for only including patients with a GP diagnosis of 

IBS is that almost everybody in the Netherlands is registered with a GP. Therefore, 

the GP practice is the most common location for diagnosis of IBS, and hence for CD 

screening in those with IBS-D/mix type symptoms. A broader screening strategy 

would require population based screening for IBS first, to decide on subsequent 

eligibility for CD testing. That would imply a considerable budget would be needed 

for IBS screening in the first place. This would render any screening strategy unlikely 

to ever become cost-effective. Hence, GP based CD testing in GP diagnosed IBS 

cases seems to be the most logical way of organizing a CD screening strategy in IBS. 

Considering the prevalence of 1.05% for diagnosed IBS in the Netherlands (van 

der Linden et al., 2004), and the adult population of 10,073,028  aged 20-65 years 

in 2009 (2003), the target population for a catch up scenario was almost 106,000 

people. Using IBS incidence of 0.56% (van der Linden et al., 2004), an annual 

incidence of about 56,000 cases was used for the gradual scenario.

RESULTS

Base case

Starting with a cohort of 100,000 IBS patients and excluding patients with 

constipation type IBS (IBS-C), 75,000 patients would be eligible to enter the screening 

process. Performing tTG+IgA at the beginning would determine approximately 

6,251 patients who either have low IgA levels or normal IgA levels with positive 

tTG results. Those patients must then enter the endoscopy with biopsy phase. 

Performing confirmatory endoscopy with biopsy would diagnose a total of 4,380 

actual cases of CD. Approximately 12 patients may experience complications due to 

the endoscopy process.

After conducting screening in patients with IBS-D or Mix type symptoms and 

treatment of the diagnosed CD patients, the average discounted quality adjusted 

life expectancy for each patient will be 22.8 QALYs. In comparison with no screening, 

this is an increase of about 0.067 QALYs for an incremental cost of €418 per patient 
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on average. This results in an incremental cost effectiveness ratio of about 6,200 €/

QALY compared to a policy of no screening. 

Sensitivity analysis

Results of one-way sensitivity analysis are shown in table 2. 

If all diagnosed IBS patients are screened instead of just IBS-D/mix, an additional 

25,000 patients would have to be tested, resulting in 1720 positive tTG results. This 

would then result in 1,115 more correctly diagnosed CD cases, but also 605 more 

false positives. Screening process would need an additional €300 per QALY gained 

for each patient compared to the base case targeted screening. The incremental 

cost-effectiveness ratio of adding CD screening in IBS-C would be 27,300 € /QALY, 

which is quite high. Therefore, our exclusion of constipation type IBS seems to be 

worthwhile. 

In case that only survival gains are taken into account, the cost-effectiveness 

ratio will increase considerably. Ignoring survival gains, or assuming a utility gain 

of 0.024 (Mein and Ladabaum, 2004) rather than 0.28 from correct diagnosis also 

results in less favorable outcomes. However, the screening strategy still seemed 

cost effective in these cases, with incremental ratios below 20,000 €/QALY. 

Double testing scenario which includes a second blood test (EMA) in combination 

with tTG resulted in a slightly higher cost-effectiveness ratio. Assuming an equal 4% 

discount rate for health and costs resulted in a small decrease in the ratio, making 

the results more favourable.

The period of delay that was applied for the correct diagnosis of CD in absence 

of screening also seems to have an important effect on the results: if patients 

with IBS-D/mix symptoms whose CD has not been diagnosed are assumed to be 

diagnosed earlier than a period of 4 years, the incremental cost-effectiveness ratio 

will increase significantly. However, it will not exceed the unofficial Dutch threshold 

of 20,000 €/QALY. Hence, even in a very unlikely case in which the delay in the 

correct diagnosis of CD is as small as 6 months the screening strategy would still be 

cost-effective. On the other hand, extending the time to correct diagnosis will lead 

to a more favorable cost-effectiveness ratio.
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The remaining parameter values including changes in the prevalence of CD and 

prevalence of IBS-C, costs of endoscopy and complication costs had little effect on 

the outcomes.  

Table 2 Sensitivity analysis results

Incremental 
costs/ QALYs

Base case results 6,200

Screening patients with all IBS symptoms 6,500

Screening all IBS vs. screening IBS-Diarrhoea/mix 27,300

Assuming only Utility gain 6,431

Assuming only Survival gain 14,929

Double tests strategy 6,800

Variable Base case value Value in SA

Discount rates (health, costs) 1.5% , 4 % 4% , 4% 5,800

Cost of Endoscopy with Biopsy
386 € 200 € 6,149

600 € 6,358

Cost of major complication
6200 € 3100 € 6,239

9300 € 6,254

Prevalence of CD in IBS 4.67 % 3 % 6,413

Utility gain from diagnosis and treatment of Coeliac 0.28 0.024 12,667

Time to correct diagnosis in case of no screening 4 years

6 months 19,000

2 years 8,700

8 years 3,167

lifelong 768

Prevalence of
constipation

25%

15% 6,466

35% 6,077

50% 5,940

Prevalence of low IgA 1:875 1:200 6,270

Probabilistic Sensitivity analysis 

Figure 2 depicts the cost effectiveness plane for targeted screening versus care 

as usual (no screening), resulting from 10,000 samples in a Monte Carlo simulation. 

The mean incremental cost effectiveness ratio was 6,200 €/QALY. The figure 
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suggests rather low uncertainty in the results: all dots were located densely in the 

first quadrant. Also it can be seen that all dots were located below a reference line 

of 15,000 €/QALY, showing that the Incremental Cost Effectiveness Ration (ICER) is 

unlikely to surpass 15,000 €/QALY.

Cost Effectiveness Acceptability Curve (CEAC) is depicted in Figure 3, and again 

illustrates that for willingness-to-pay thresholds higher than 15,000 €/QALY, the 

screening strategy is almost certainly cost effective. Therefore, the decision of 

accepting the screening strategy seems to carry negligible risk of exceeding the 

threshold.

Such certainty was confirmed by the results for the Expected Value of Perfect 

Information. As presented in Figure 4, the maximum population EVPI peaked at 

about € 2.7 million at a willingness to pay threshold equal to the mean incremental 

cost effectiveness (6,200 €/QALY). For thresholds higher than 11,000 €/QALY, 

additional research would have almost no value. Thus, the base case results were 

shown to be sufficiently robust and there was no need to run additional analyses 

like partial EVPI.
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Figure 2 Results of probabilistic sensitivity analysis: Incremental cost-effectiveness ratios 
(ICERs) for 10,000 samples in Monte Carlo simulation. The 15,000 €/QALY line is shown as a 

reference
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Figure 4 Population EVPI for a willingness-to-pay threshold range of 0-30,000 €/QALY
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Budget impact

Screening and treatment of all patients known with IBS-D or Mix over 10 years 

would cost in total 25 million Euros. Costs of testing and endoscopies together 

would be about 6.7 million Euros. The remaining additional costs (18.3 million 

Euros) are incurred by treatment of CD being more expensive than treatment of IBS. 

In the gradual scenario, when only incident cases are considered, the total 10-years 

budget needed would be about 103 million Euros. 

Adding these annual costs of incident cases for the next 10 years to the costs 

of screening current patients, the catch up scenario would cost about 128 million 

Euros. 

DISCUSSION

The results of our study indicate that screening for CD in patients with IBS type 

D or mixed is a cost-effective way of improving quality of life/health for patients 

with IBS symptoms compared to the current situation with no structured testing 

strategy. The initial tTG test detects potential cases of CD with an acceptable 

specificity, but the number of false positives is rather high. Endoscopy with biopsy is 

therefore applied for a definite diagnosis of CD. Hence, costs and burden of dietary 

care are minimized by finding the exact group of patients with CD. However, the 

budget needed for conducting the screening process in The Netherlands in still high 

due to the high prevalence of IBS.

Three studies evaluated the cost-effectiveness of screening for CD in patients 

with IBS (Mein and Ladabaum (Mein and Ladabaum, 2004), NICE IBS guideline 

(2008a) Spiegel et al. (Spiegel et al., 2004)). In contrast to our study, the first two 

studies have included patients with any IBS type rather than only patients with IBS-D 

or IBS-Mix. The ICER of adding screening for IBS-C versus screening only mixed/D 

IBS would be 27,300 €/QALY. Thus, we illustrated that excluding patients with IBS-C 

will result in a significantly lower cost-effectiveness ratio. Since the prevalence of 

CD in patients with IBS-C is very low, screening them will yield little health gain. 

Conversely, adding these patients to the target population would unnecessarily 

increase the costs per QALY gained and especially the total budget impact. 
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The third study (Spiegel et al., 2004) evaluated the cost-effectiveness of 

screening for CD in patient with IBS-D. The outcomes and costs were measured 

differently in this study. Due to a lack of validated utility measures, the authors 

have used symptom improvements as a measure of health gains. Since recently 

new studies were published with quality of life estimates for CD and for IBS, as well 

as a validation of the questionnaires used in the specific patient populations, use of 

QALYs was now possible.  

In the NICE guideline (2008a) only survival gain was taken into account. 

However, it has been shown that patients with diagnosed CD will have higher health 

utilities than undiagnosed cases (Gray and Papanicolas, 2010). Therefore, we have 

included the utility gains in the outcome measurements. On the other hand, Mein 

and Ladabaum (Mein and Ladabaum, 2004) have only taken into account the utility 

gain, while studies show that patients with untreated CD have a higher mortality rate 

(Shamir et al., 2006). Hence, such an assumption seems to be quite conservative. We 

have included the increase in mortality. In order to avoid overestimation of health 

gains, we have restricted the low utilities and survival rates of undiagnosed CD to 

the first four years of the analysis. Because of continued symptoms the patient is 

assumed to be diagnosed with CD after these four years regardless of screening.

Since incremental cost effectiveness ratios in Spiegel et al. (Spiegel et al., 

2004) are stated in cost per additional symptomatic improvement and hence are 

inconsistent with our measurements, we cannot compare these to our results. 

Using the same currency and price levels in the two more consistent studies, the 

base case incremental cost effectiveness ratio in Mein and Ladabaum (Mein and 

Ladabaum, 2004) and NICE IBS guideline (2008a) were 5,800 €/QALY and 16,300 €/

QALY, respectively. The main causes of the difference between cost effectiveness 

ratios in the two mentioned studies and our results may be the inclusion of dietary 

costs and differences in health benefits included. Costs of gluten free diet were 

considered in NICE IBS guideline (2008a) , while these costs were ignored in Mein 

and Ladabaum (Mein and Ladabaum, 2004). Our study used larger health benefits, 

since both utility and survival gains were included. This as well as a lower cost for 

endoscopy with biopsy in the Dutch health system may be the reason for such 

a difference. As shown in one way sensitivity analysis, if only survival gains are 
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accounted, the cost effectiveness ratio of our study will also reach values of about 

14,900 €/QALY, while the exact cost figures applied were relatively unimportant for 

the outcomes. . 

When restricting the type of health gains from a correct diagnosis and treatment 

of CD to only utility or only survival gains, the cost effectiveness ratios of screening 

was higher. Such an increase is to be expected, since ignoring some of the effects of 

the screening strategy will result in a less favorable cost-effectiveness ratio. 

Our estimation of the utility gain from correct diagnosis and treatment of CD 

was different from Mein and Ladabaum’s estimate. We have considered a utility 

gain of 0.28 QALYs based on the Gray and Papanicolas (Gray and Papanicolas, 

2010) study. Mein and Ladabaum (Mein and Ladabaum, 2004) have calculated the 

utility gain from correct diagnosis and treatment of CD as the difference between 

utilities of treated CD and IBS utility. Such calculation does not seem to be quite 

accurate, since IBS utility is taken into account instead of untreated coeliac utility. 

In other words, Mein and Ladabaum (Mein and Ladabaum, 2004) have assumed 

that patients with IBS symptoms who are not screened for CD have the health state 

utility of IBS. They have ignored the probability that patients with IBS symptoms 

actually suffering from CD will have a lower quality of life compared to true IBS 

patients. We have taken into account the difference between treated and untreated 

CD utility, as well as the proportion of IBS patients who may have undiagnosed CD. 

Time to remain undiagnosed without screening is also important. The longer 

the time period before a patient is detected with CD without screening, the higher 

the potential QALY gain for the screening strategy. Hence, the screening strategy 

will have higher incremental effects and a lower cost-effectiveness ratio. We used 

a rather conservative estimate of 4 years of delay based on the Dutch guideline 

comity’s advice. Studies have shown that the gap between the start of symptoms and 

the CD diagnosis is usually more than 10 years (Fasano, 2003) and sometimes a CD 

patient remains undiagnosed for the rest of her life (Spiegel et al., 2004). As shown 

in our sensitivity analysis, longer time periods would result in more favourable, i.e. 

lower incremental cost-effectiveness ratios. Therefore, the cost-effectiveness ratio 

of our study may be considered a conservative upper bound of the possible ratio. 

Plausible alternative assumptions regarding the lag time before correct diagnosis 
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would not change the results unfavourably.

Another advantage of the current study is the elaborate inclusion and 

presentation of parameters uncertainty and the resulting uncertainty in the 

outcomes. Cost-effectiveness acceptability curves help the decision maker to 

decide more easily and to get an estimation of the risk of the decision when there 

is uncertainty in the results. Value of information analysis gives the decision maker 

an upper bound for the value gained by reducing the uncertainty in the input 

parameters. 

Since there was no literature on the mean age of screening and time to remain 

undiagnosed in absence of screening, these parameters were valued based on expert 

opinions. This can be mentioned as a limitation of our study, since the assumptions 

are affecting our results. However, assumptions seem quite reasonable, and they 

prevent results from being too optimistic. 

Our model is evaluating a cohort of 34 year old patients, and could be refined to 

evaluate a typical IBS population from 20 to 65 years old. Changing the cohort age 

will alter the remaining life expectancy which is multiplied by the costs and effects 

per year to estimate the overall cost effectiveness ratio. Since such factor equally 

affects both nominator and denominator of the cost-effectiveness ratio, making 

changes in that would not substantially alter the results. 

We also ignored the costs of organizing a screening program. However, since 

GPs can refer for serological testing during their normal IBS consultations and then 

refer for endoscopy if needed, such costs are relatively low, provided the screening 

for CD takes place for GP diagnosed IBS only. 

Endoscopy and biopsy have a very small probability of complications. If the 

patient survives, a short period with decreased quality of life may be assumed. 

Comparing to the whole life of the patient, such decrement will take place for a very 

short while (2-3 weeks). Since it moreover has a very low chance of occurrence, the 

survival difference was ignored in the analysis.

Results of our study support the notion that screening may be implemented 

in the Netherlands to improve the quality of life in patients labelled with IBS at 

relatively low costs. These results were incorporated in the new Multidisciplinary 

Dutch guideline for IBS.



45

Targeted screening for Coeliac Disease

2

Our study evaluates one of the possible ways of detecting CD in general 

population. New screening tools such as screening based on genetic rather than 

serologic tests could also be evaluated in future studies. For the moment the costs 

of these tests in comparison to their sensitivity and specificity seem to favour the 

serologic tests applied in the current analyses. To conclude, testing patients with 

diagnosed IBS-D or IBS-mix for CD is almost certainly cost-effective. Assumption 

regarding type and size of health gains from CD diagnosis affects the results, while 

time to remain undiagnosed without screening is also important. However, results 

were quite robust. 
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Abstract

Objectives: Productivity losses usually have a considerable impact on cost-

effectiveness estimates while their estimated values are often relatively uncertain. 

Therefore, parameters related to these indirect costs play a role in setting priorities 

for future research from a societal perspective. Until now, however, value of 

information analyses has usually applied a health care perspective for economic 

evaluations. Hence, the effect of productivity losses has rarely been investigated in 

such analyses. The aim of the current study therefore was to investigate the effects 

of in- or excluding productivity costs in value of information analyses.

Methods: Expected Value of Information Analysis (EVPI) was performed in 

cost-effectiveness evaluation of prevention from both societal and healthcare 

perspectives, to give us the opportunity to compare different perspectives. Priorities 

for future research were determined by Partial EVPI. The program to prevent major 

depression in patients with sub-threshold depression was opportunistic screening 

followed by Minimal Contact Psychotherapy (MCP).

Results: The Expected Values of Perfect Information (EVPI) indicated that 

regardless of perspective further research is potentially worthwhile. Partial EVPI 

results underlined the importance of productivity losses when a societal perspective 

was considered. Furthermore, priority setting for future research differed according 

to perspective.

Conclusion: The results illustrated that advises for future research will differ 

for a health care versus a societal perspective and hence the value of information 

analysis should be adjusted to the perspective that is relevant for the decision 

makers involved. The outcomes underlined the need for carefully choosing the 

suitable perspective for the decision problem at the hand. 
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INTRODUCTION  

Estimates of cost-effectiveness are surrounded by uncertainty. Reduction of 

uncertainty is usually costly. A Value of Information (VOI) analysis estimates the 

monetary value of investments that may be required to eliminate all or part of 

uncertainty in the evaluations. Such estimation can support the decision maker 

in deciding whether further research is warranted (Raiffa, 1968). When further 

research turns out to be worthwhile, more detailed value of information analysis can 

identify the uncertainties which should then become research priorities. Value of 

information for parameters estimates the expected values of information on groups 

of parameters and assists the decision maker to decide on those uncertainties. 

The concept of value of information analysis (Raiffa, 1968) was applied in many 

sectors (Yokota and Thompson, 2004) before it was introduced in health technology 

assessment by Claxton et al. (Claxton, 1999). Recently, the number of applications 

in health care has steadily grown. A range of studies were published after 2004 

(Black et al., 2009; Bojke et al., 2008; Claxton and Sculpher, 2006; Fox et al., 2007; 

Hassan et al., 2010; Rojnik and Naversnik, 2008; Smits et al., 2010; Wailoo et al., 

2008; Welton et al., 2008; Wilson et al., 2010).

While the societal perspective is recommended for economic evaluations in 

many countries (Claxton et al., 2010) the majority of the previous studies have 

applied a health care perspective in analyzing the value of information. Studies 

performed in the UK were just following national directives in adopting a health 

care perspective according to The guidelines manual (2009). Also among the 

non-UK studies, however, only a few have taken into account other than direct 

health care costs. Some included direct non-healthcare or some part of indirect 

healthcare costs (Smits et al., 2010; Spronk et al., 2008), however, they have ignored 

productivity losses. Galani et al. (2008) mentioned that cost estimates included 

indirect costs, but they did not elaborate further on the consequences of this for the 

interpretation of their results. Nevertheless, most guidelines that recommend using 

a societal perspective also suggest comparing the results from two perspectives. 

Such a comparison has been usually missing from the studies. The review by Yokota 

and Thompson (Yokota and Thompson, 2004) highlights that also in other sectors 
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applications have often chosen a relatively narrow perspective. Hence, to the best 

of our knowledge, only very few papers have included productivity losses and if 

they did, the implications were not thoroughly discussed. This seems an omission, 

since in interventions that target chronic diseases with a high prevalence among 

patients in their working ages, productivity costs may have a large impact on cost-

effectiveness results. Furthermore, productivity costs often can only be estimated 

with large uncertainty. Information on individuals’ working hours as well as hourly 

productivity may be difficult to ascertain and is not often included in most clinical 

trials. Therefore, looking at the impact of the choice of perspective and inclusion of 

productivity costs on the outcomes of a value of information analysis is worthwhile 

and was the aim of the current study. 

A case study was chosen in the field of mental disorders. Many reports show that 

mental disorders lead to a reduction in employee productivity due to absenteeism 

or impaired functioning at work (Dewa et al., 2007). Depression is one of the major 

mental disorders, with a high burden of disease (Kuijshaar et al., 2005; Mykletun et 

al., 2009). Due to work loss, absenteeism and presentism, productivity losses resulted 

from depression are considerable (Smit et al., 2006). A recent study showed that 

productivity costs, on average, reflect more than half of the total costs for treatment 

of depressive disorders (Krol et al., 2011). In fact, the majority of costs of depression 

fall outside the health care sector, i.e., the benefits of preventing depression are not 

restricted to the health sector but society as a whole. Accordingly, for many health care 

decision makers it will be relevant to consider a societal perspective in addition to the 

health care perspective in evaluating cost effectiveness in depression prevention. Still, 

to date most economic evaluations of treatments for adults with depressive disorders 

have ignored productivity losses (Krol et al., 2011). 

The objective of our study then was to perform a value of information analysis 

in cost-effectiveness evaluation of preventing major depression in patients with 

minor depression. We considered both a societal and a health care perspective 

and paid attention to the consequences of different perspectives for policy advice. 

The depression case serves as an illustration for many interventions with large but 

uncertain effects on productivity costs.

MATERIALS AND METHODS
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In a recent study (VanDenBerg et al., 2011) a Markov model based on Vos et 

al. (Vos et al., 2005) was used to evaluate the costs and long term health benefits 

of screening followed by Minimal Contact Psychotherapy (MCP) for depression 

prevention. The model was adjusted to allow evaluation of depression prevention 

and was adapted to the Dutch setting. The short term outcomes of MCP were 

previously evaluated alongside a randomized controlled trial (Smit et al., 2006). The 

current chapter adds an elaborate value of information analysis, and focuses on a 

comparison between the values of solving uncertainties for different perspectives. 

The model was used to extrapolate the trial outcomes over a five-year time horizon. 

Five years were considered long enough to capture the full effects of the intervention 

and still short enough to trust the data on the population and the screening results. 

The discount rates used were 1.5% and 4% according to the Dutch Guidelines 

for pharmacoeconomic research (2006), and monetary outcomes were valued in 

Euros, at the 2008 price level. For clarity reasons, we explain the intervention, the 

model and parameter estimation sources in the following sections. 

Intervention	

The intervention was opportunistic screening for sub-threshold depression 

followed by Minimal Contact Psychotherapy (MCP). Full details about the 

intervention and its short term effects compared to no screening have been 

published before (Willemse et al., 2004). In short, opportunistic screening takes 

place in three steps: first, people are approached by the assistant when they are 

in the waiting room during a regular GP visit Those who are eligible for screening 

and give informed consistent (participation rate: 72.5%) are then screened for sub-

threshold depression (screen positive rate: 26.6%). In a second step, screen-positive 

patients are approached for a further screening to check whether they meet the 

inclusion criteria for sub-threshold depression (participation rate: 35.7%). Those 

who meet all inclusion criteria receive MCP (59.5% of positive screens).

MCP consists of a self-help manual with instructions on cognitive-behavioral 

self-help in mood management skills. The manual contains registration exercises 

and homework assignments aimed at cognitive restructuring, relaxation, and 
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activity scheduling to increase pleasant activities. 

In the control group no screening took place. People with sub-threshold 

depression received care as usual from their GP, i.e., they were offered treatment 

upon presenting themselves with symptoms. 

The effects of the intervention were twofold: incidence and recurrence of major 

depression decreased by 6% (Willemse et al., 2004) and the total annual per capita 

costs decreased by 21% (Smit et al., 2006).

Patient	population

The intervention targets patients with minor (sub-threshold) depression. Sub-

threshold depression, which is diagnosed when a patient has 2-4 symptoms of 

major depression, has a lifetime prevalence of 10% (Kessler et al., 1997). People 

with minor depression have an increased risk of developing major depression 

compared to those not meeting the criteria of sub-threshold depression (Cuijpers 

and Smit, 2004).

Markov	model	

The model distinguishes three main states: sub-threshold depression, major 

depression (MD) and recovered from depression (no MD). Each state is divided into 

episodes which last for four weeks. After each cycle of four weeks, a person has the 

chance of moving to another state of disease, or to stay in the same state and start 

a new episode within that state. The Markov model is depicted in Figure 1. 

The probability of developing major depression for people with sub-threshold 

depression (the incidence rate) has been assumed to be independent of the time 

that persons were in the sub-threshold state, while the probabilities of recovery 

from major depression and relapse into major depression by assumption decreased 

over the time which was spent in MD and no MD states respectively. Parameters 

related to costs and QALYs in the recovered states are by assumption the same as in 

the sub-threshold states.

Modeling and analyses were all done by means of the R software environment 

for statistical computing.
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Parameter	estimation 

Estimates of relapse and recovery rate as a function of duration were based 

on the Dutch NEMESIS study (Kuijshaar et al., 2005), a large population based 

cohort study addressing mental disorders. The time-dependant probability curves 

for relapse and recovery rates can be found in van den Berg (VanDenBerg et al., 

2011). Prevalence of sub-threshold depression, intervention costs, health care and 

societal costs for sub-threshold depression were based on trial results (Smit et al., 

2006). Population parameters and incidence probabilities from sub-threshold to 

major depression were taken from Willemse et al. (Willemse et al., 2004). Costs 

and productivity losses for major depression were estimated based on a review of 

Dutch studies (Bosmans et al., 2007; Stant et al., 2008; VanRoijen et al., 2006). QALY 

estimates were based on the NEMESIS study (Kuijshaar et al., 2005). Distribution 

functions were estimated for all important model parameters. Parameters that 

were used in the probabilistic sensitivity analysis are presented in Table1. 

Effects of MCP were conservatively assumed to cease one year after the 

intervention. That is, after one year, persons are assumed to return to the same risk 

of developing major depression as under care as usual if still in the sub-threshold 

state. 
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Table	1 Distributions of the parameters of intervention used in PSA (EVPPI group indicates 
how the parameters were grouped for the partial value of information analysis)

No MCP MCP 
EVPPI group

Distribution
Mean 
(s.e.)

Mean 
(s.e.)

Screening 
process

Fraction of the 
target population 
that agrees to be 
screened [26]

Beta 
distribution 
(alfa=3826; 
beta=1452)  

0.725 
(0.006)

Population

Fraction of screened 
included for 
diagnostic interview 
[26]

Beta 
distribution
(alfa=364; 
beta=3463)

0.095 
(0.005)

Population

Fraction of 
interviewed 
included in 
intervention [26]

Beta 
distribution
(alfa=217; 
beta=148) 

0.595 
(0.026)

Population

Sub 
threshold 
states

Incidence 
probabilities from 
sub-threshold to 
major depression
[26]

Beta 
distribution
(alfa=21; 
beta=90) 

0.016 
(0.003)

Beta 
distribution
(alfa=14; 
beta=95) 

0.011 
(0.003)

Incidence 
rate

Health care costs 
[21]

Gamma 
distribution
(shape=15; 
scale=108) 

1627 
(419)

Gamma 
distribution
(shape=31; 
scale=55) 

1687 
(305)

Health care 
costs sub-
threshold

Productivity loss 
[21]

Gamma 
distribution
(shape =22; 
scale=300) 

6481 
(1393)

Gamma 
distribution
(shape =8; 
scale=576) 

4638 
(1634)

Productivity 
loss 

Direct non medical 
costs
[21]

Gamma 
distribution
(shape =43; 
scale=12) 

507 
(77)

Gamma 
distribution
(shape=56; 
scale=8) 

441 
(59)

----

Quality of life 
[19]

Uniform 
distribution
(0.81-1)  

0.91 
(0.05)

Same as No MCP QALYs

Major 
depression 
states

Health care costs 
[29,30,31]

Gamma 
distribution 
(shape=15; 
scale=152)  

2280 
(589)

Same as No MCP
Health care 
costs major 
depression

Productivity loss 
[29,30,31]

Gamma 
distribution 
(shape=8; 
scale=27)

216 
(76)

Same as No MCP
Productivity 
loss 
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Expected	Value	of	Perfect	Information	

The Expected Value of Perfect Information (EVPI) was calculated for a cost 

effectiveness range of 0 to 60,000 €/QALYs. The global EVPI was computed as the 

difference between the expected net benefit of perfect and current information 

over a sufficient number of simulations, and the net benefits of the standard 

therapy (No MCP) were assumed to be zero:

].0),,([max)],(,0max[ θθ θθ MCPNBEMCPNBEEVPI −=

Here θ  represents a list of unknown parameters. Population EVPIs were then 

computed by multiplying global EVPIs by the relevant population sizes. These were 

based on the prevalence of sub-threshold depression (Smit et al., 2006). 

In addition to this, parameters were grouped to find the Expected Value of 

Perfect Parameter Information (EVPPI) for each of these groups of parameters. 

EVPPI or partial EVPI is intended to inform research priorities, that is, the type 

of additional evidence which would be the most valuable to inform the decision. 

Parameters which explained the same concepts were grouped together as shown 

in Table 1. Like the global EVPI, the Partial EVPIs were analyzed for different cost-

effectiveness thresholds to see how they varied for a range of thresholds. 

The EVPPI is calculated as the difference between the expected value of a 

decision made with perfect information on a group of parameters and the expected 

value with current information on that group of parameters. It reflects the maximum 

value of additional information on the value of this group of parameters and may 

serve to help decide whether or not certain research to find better information on 

the parameters is worth its costs:

].0),,([max)],,(,0[max | θψϕ θϕψϕϕ MCPNBEMCPNBEEEVPPI −=

Where ϕ  is the group of parameters of interest and ψ  represents the remaining 

uncertain parameters. To compute the partial EVPI, first the simulation must be run 

for parameters ψ  but with a particular value of ϕ  (an inner loop) and then a new 
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value of ϕ  is sampled and the simulation is run again (an outer loop). This process 

is repeated until we have sampled sufficiently from the distribution of ϕ  (Briggs et 

al., 2006).

 

Number	of	simulations 

Careful selection of the number of simulations needed in the inner and outer 

loop is required to balance off computation time and precision. The numbers of 

sufficient inner and outer loops for the EVPPIs were computed using a three stage 

algorithm which estimates the bias and confidence intervals for the outcomes 

of EVPPI  (Oakley et al., 2010). Predicted bias and the width of 95% confidence 

intervals for different number of inner loops (J) and outer loops (K) are presented in 

Table 2 for the health care perspective. The numbers presented are relative values, 

indexing the global EVPI (43,500,000 €) to 100. We chose J=1000 and K=100 as the 

sufficient  numbers for our simulation from both perspectives, since the bias was 

reasonably low and also the width of confidence interval was estimated to be low 

enough at 3% of the global EVPI.

Table	2 Predicted bias and 95% CI for Monte Carlo partial EVPI estimate, 
 EVPI indexed to 100

 J=10 J=100 J=500 J=1000 J=5000 J=10000
Bias (indep’t of K) 7.62 -0.54 -0.21 -0.05 0.03 -0.09
95% CI  
K=10 303.74 56.63 24.82 17.95 11.1 5.2
K=100 35.94 10.14 4.5 2.94 1.51 0.83
K=500 7.16 2.02 0.9 0.59 0.3 0.17
K=1000 3.58 1.01 0.45 0.29 0.15 0.08
K=5000 0.72 0.2 0.1 0.06 0.03 0.02
K=10000 0.35 0.1 0.05 0.03 0.01 0.01

RESULTS 

Estimates of effects and costs per intervention together with incremental effects 

and costs are shown in Table 3. From a health care perspective, the incremental 

cost effectiveness ratio of MCP compared to the standard therapy (no MCP) is 
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about 1100 €/QALY. From a societal perspective, the intervention is cost-saving 

(VanDenBerg et al., 2011). 

Table	3	Estimates of effects and costs per intervention  
and incremental effects and costs

QALYs *(1,000)
Health care costs 
*(1,000,000)

Total costs
*(1,000,000)

No MCP 1158 2911 11612

MCP 1170 2924 11240

Incremental 12 13 -372

We illustrate our results showing outcomes for two different perspectives in 

single pictures/graphs with the cost-effectiveness threshold on the horizontal axis, 

allowing a comparison of the societal and health care perspective. 

EVPI 

Figure 2 depicts the Cost-Effectiveness Acceptability Curves (CEACs) together 

with results of EVPI from a societal and a health care perspective. CEACs were also 

presented by van den Berg (VanDenBerg et al., 2011), but are repeated here to 

support explanation of the EVPI. 

From a health care perspective, at low cost effectiveness thresholds, prevention 

using MCP is not cost effective. The value of perfect information is relatively low, 

since the decision not to implement MCP is relatively certain to be the best decision. 

The EVPI rises to a maximum of 57 million Euros at a threshold value of about 

1100 €/QALYs, which is equal to the mean cost-effectiveness of the intervention 

from a health care perspective. For larger thresholds, the probability that the MCP 

is cost effective increases and the EVPI decreases with the threshold rising. At a 

threshold surpassing the mean incremental cost-effectiveness ratio, we expect the 

intervention to be cost-effective and the decision is less likely to be changed by 

further information. With increasing cost effectiveness thresholds the value paid for 

each additional QALY increases. Hence, at high values of the threshold, the global 

EVPI rises again due to an increased investment risk. 
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In contrast, from a societal perspective, the intervention is cost saving on average 

and the probability of a correct decision is always increasing as the threshold gets 

higher; hence the global EVPI is always decreasing. We expect, however, that at 

very high thresholds (which are not shown in these graphs), the EVPI starts to rise, 

because high threshold values mean that a wrong decision is extremely costly. 

b)a)

Figure	2 (a) Global expected value of perfect information (EVPI) curves; and (b) Cost 
effectives acceptability curves

It is apparent that the value of information is mostly higher from a societal 

perspective comparing to a health care perspective. Towards the right end of the 

willingness to pay-scale, however, the VOI from health care perspective rises above 

the levels of the EVPI from a societal perspective. This can be explained by having 

a look at the CEAC: it shows that the probability of making an incorrect decision 

remains higher for the health care perspective. Comparisons, however, of the value 

of information for different perspectives might require different willingness to pay 

thresholds. The amount that the decision maker is willing to pay per additional 

QALY would most likely change when different perspectives are considered. 

Therefore, to reach the best comparison, the values of the thresholds relevant for 

the decision makers should be known. For instance, if the threshold for evaluating 

MCP from a health care perspective is 20,000 €/QALY and the threshold for the 

same intervention from a societal perspective is 40,000 €/QALY, then the CEACs 

and EVPIs must be compared on two different points of 20,000 and 40,000 €/QALY 
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on the x-axis. The vertical lines in Figure 2 show the comparison considering these 

hypothetical threshold values. We will come back to this point in discussion. 

Partial	EVPI	

The expected value of perfect information for separate parameters groups from 

the societal perspective is illustrated in Figure 3. Results indicated that when the 

societal perspective is considered, the productivity loss was the most important 

source of uncertainty at any threshold. The effect of productivity loss, however, 

was more important for low thresholds than for higher ones. The next important 

parameter group was health care costs (including both sub-threshold and major 

depression), which became more prominent at higher thresholds. The third and 

fourth priority would be given to parameters related to QALYs and the incidence 

rate. Other parameters, such as population and recovery-relapse rates were not 

significantly affecting the value of information, indicating that they would have a 

low priority in further research. 

Figure	3  Partial EVPI curves considering a societal perspective.
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Figure	4 Partial EVPI curves considering a health-care perspective. 

Results of the partial EVPI from a health care perspective are shown in Figure 

4. The graph indicated that the most important sources of uncertainty were health 

care costs. Since health care costs had such a clear effect on the uncertainty of the 

problem, they have been subdivided into two groups of parameters: health care 

costs in sub-threshold and in major depression. At very low thresholds costs of 

major depression were more important than at high thresholds. The health care 

costs of major depression had an almost negligible expected value of information 

at thresholds above 5000 €/QALYs. The incidence rate also had considerable impact 

at low thresholds, but low impact at high thresholds. Results showed that the most 

important priorities in future research were those related to the health care costs 

of sub-threshold depression. The population which will finally receive the MCP 

also became an important parameter at high willingness to pay thresholds. This 

parameter is determined by the fraction of the target population that agrees to 

be screened, fraction of screened included for diagnostic interview and fraction of 

interviewed included in intervention. Other parameters, related to QALYs, recovery 

and relapse rates were of very little importance in the health care perspective.



63

Value of information analysis and perspective

3

DISCUSSION 

This chapter examined how the value of information would change for different 

perspectives. The case study was the decision whether or not to use opportunistic 

screening in combination with MCP to reduce the incidence of major depression. 

For depression, absence from work and the associated productivity costs represent 

an important part of the burden of disease. For this reason, results were evaluated 

both from a societal perspective and from a health care perspective. We found that 

regardless of the perspective, parameters related to costs had the largest expected 

values of partial information, that is, resolving their uncertainty would be most 

valuable for this case study. From a societal perspective, however, productivity 

costs got priority, while these were by their very nature ignored from a health care 

perspective. 

The current case study could be illustrative for many other mental disorders: 

often productivity costs represent a relatively large part of the disease burden, 

and they are also often relatively uncertain due to a lack of data. It is obvious that 

when the societal perspective is relevant for the decision maker, a VOI from a health 

care perspective may lead to erroneous priorities for further research, especially in 

presence of large and uncertain productivity costs.

Comparing the cost-effectiveness results from a societal perspective to a 

health care perspective as required by most guidelines recommending a societal 

perspective, indicates that including societal costs in the analyses may significantly 

affect the outcomes and even change the decisions. The changes occur not only 

regarding the acceptability of the intervention but also regarding priorities for 

further research and value of information. According to the cost-effectiveness 

acceptability curves (Fig. 2), for very low willingness-to-pay thresholds from a 

health care perspective rejecting the intervention seems to be the most reasonable 

decision. From a societal perspective, however, for low thresholds accepting the 

intervention has a fair chance of being cost-effective. 

To have an estimation of the EVPI we look at the graphs at the unofficial Dutch 

thresholds for preventive interventions of 20,000 €/QALY (VanDenBerg et al., 2008). 

This threshold was first mentioned in a health care perspective setting (Casparie 
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et al., 1998). It has also been used, however, for analyses in a societal perspective 

(VanDenBerg et al., 2008). At the threshold of 20,000 €/QALY, the global EVPIs had 

a value of about 42 and 32 million Euros from societal and healthcare perspectives 

respectively, both indicating that it would be worthwhile to gather more information. 

Hence, using an invalid perspective could lead to unrealistic importance attached 

to additional research, depending on the actual threshold value. As mentioned 

in the results, however, considering the same threshold for both perspectives is 

not very practical. In real world decisions, threshold values change based on the 

perspective chosen. From a societal perspective threshold values should reflect 

the consumption value of health, while from a health care perspective they would 

reflect the marginal value of health provided for by a publicly financed health 

care system, which are not necessarily the same. Opinions differ, however, on this 

issue (Claxton et al., 2010; Jönsson, 2009). Meanwhile, it is not clear how large the 

difference between the two thresholds should be. In applications, similar threshold 

values are sometimes mentioned in studies applying a societal perspective as well 

as studies using a health care perspective. For instance, as mentioned before, the 

unofficial Dutch threshold of 20,000 €/QALY has been used in both health care 

and societal perspectives, indicating the difficulties in understanding the relation 

between perspective and threshold in many decision contexts.

We choose to illustrate our results in graphs with a single threshold on the 

x-axis. If the actual thresholds were larger from a societal perspective (following 

the reasoning in Claxton et al. (Claxton et al., 2010)) then a figure which compares 

both perspective should use two different scales on the x-axis, effectively shifting 

the societal perspective graph to the left. This implies that the differences between 

the societal and health care perspective in the value of the global EVPI decrease. It 

is obvious that the only way to reach a precise comparison between the VOI from 

the two perspectives is to know the exact willingness-to-pay threshold considering 

each perspective. 

Using a health care perspective, value of information analysis informs decision 

makers about allocating funding for actual interventions and research that basically 

can be considered as originating from the same health care budget. All costs and 

savings hence refer to the same budget and decision maker, even if in reality 
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earmarking and separate budgets will be present. Using a societal perspective, 

however, this may no longer hold. For instance, savings in productivity costs will 

accrue to employers, not to health care decision makers. In recent years this has led 

to discussions on how the costs of interventions and research must be sponsored 

when a societal perspective is considered. Debates are mostly focused on public 

health interventions, in which the impacts are often wide-ranging. Costs and 

benefits associated with an intervention aiming at public health, like the depression 

prevention case, will fall on many sectors within the society (Weatherly et al., 

2009). Some authors just assume that when a societal perspective is taken, the 

society pays for health care interventions through a single payer system and also 

pays for research projects for reducing uncertainties through government or private 

donation based agencies (Willan and Pinto, 2005). Weatherly et al. (Weatherly et 

al., 2009) reviewed a number of approaches that have been suggested to account 

for the impact of interventions across different sectors. For instance, Claxton et al. 

(Claxton et al., 2007) introduce a multi-sectoral societal decision-making approach 

to evaluate costs and benefits which fall on different sectors of the economy. Smith 

et al. (Smith et al., 2005) also demonstrate the value of using a macroeconomic 

approach to modelling a major health problem, using the context of antimicrobial 

resistance and applying general equilibrium analysis. Following Willan and Pinto 

(Willan and Pinto, 2005), it seems valid to argue that a societal perspective implies 

that resources can –in principle- be transferred from one part of the economy to 

the other and the extended Pareto criterion may be applied to decide whether an 

intervention or additional research is worthwhile. Hence, in presence of uncertainty, 

value of information analysis will inform whether additional research is potentially 

worthwhile from a societal point of view to support better future decision making, 

independent of who is going to pay or gain from this research. 

To conclude, our results underlined the need for carefully choosing the relevant 

perspective for the decision problem at the hand, also in value of information 

analyses, in order to avoid erroneous choice of research priorities. 
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Abstract

Access under the condition of evidence development plays an increasing role 

in drug reimbursement decisions. The goal is to ensure quick market access and 

deployment of innovations while simultaneously assuring collection of further 

evidence collected to support informed decision making. In the Dutch setting for 

inpatient drugs, conditional reimbursement implies that drugs are provisionally 

reimbursed, while prospective observational research is undertaken during a 

predetermined period. This period has been fixed at four years, followed by a re-

evaluation and definite reimbursement decision. The period of four years is arbitrary 

and the question is what period is optimal and whether it should be case specific. 

The current study presents a framework for establishing a suitable time point for 

making a definite decision. This framework takes a decision makers’ approach. 

Deriving the expected value of the additional information, and trading it off against 

the costs of delaying the definite decision, the expected net gains from delay can be 

found and optimized. The optimal period for adoption under research is shown to 

be variable depending on several drug- and indication specific parameters.
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INTRODUCTION

In recent years, new challenges have risen due to the advent of new innovative 

but expensive drugs. While these drugs are potentially effective for some 

individuals, their overall cost-effectiveness may be questionable given limited 

healthcare resources (Nikolentzos et al., 2008). Therefore, it is essential to carefully 

select evaluation criteria for these drugs. Where health technology assessment 

(HTA) is part of decision-making systems, cost-effectiveness studies usually are a 

onetime event, used when making the reimbursement decision for a certain drug 

(Martikainen and Rajaniemi, 2002). Though these analyses involve sensitivity 

analysis (univariate and/or probabilistic) and scenario analysis to give insight in 

the uncertainty level, decisions often ignore that part of the uncertainty around 

estimates of costs and effects will dissolve over time. That is, the relevant decision 

is not just whether to reimburse or not, but also when and under what conditions 

to start reimbursement of a new drug. 

Ideas for regulation have been introduced that deal with this aspect of timing 

in drug reimbursement decisions in different jurisdictions. For instance in the UK, 

a system has been proposed distinguishing four categories of guidance for new 

medications. Based on the estimated cost-effectiveness, degree of uncertainty, and 

costs of further research, a new medication may  be rejected, approved, approved 

with research (AWR), or recommended only in research (OIR) (Claxton et al., 2011).

Alternatively, but very similarly, Eckermann and Willan (Eckermann and Willan, 

2007) distinguished three decision options: 1) Adopt and no trial (AN): To adopt 

the new medication with no further research; 2) Delay and trial (DT): To delay the 

decision in order to search for more evidence using a clinical trial. 3) Adopt and trial 

(AT): Adopt the new medication and search for new evidence, using a clinical trial 

with certain size and fixed final time.

The “Approval with Research”/“Adopt and Trial” category is comparable 

to what is called “conditional reimbursement” in the Netherlands. Conditional 

reimbursement has actually been put to practice. It was implemented as of 2007 

for expensive intramural drugs, and then was extended in 2012 to all drugs claiming 

added value compared to existing treatments. Drugs are temporarily reimbursed 
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while more evidence on the added value and cost-effectiveness is gathered. After 

a period of four years (Boer, 2012) the new information is added to the available 

evidence and a definite reimbursement decision is to be made. Other countries have 

also introduced variants of access with evidence schemes (Carlson et al., 2010). In 

most European countries including the Netherlands, the reimbursement decision is 

made separate from the market approval, with different criteria in different countries 

(Martikainen and Rajaniemi, 2002). So far coverage and reimbursement of new 

drugs have been linked to the collection of additional evidence in many countries 

(Carlson et al., 2010; Mohr and Tunis, 2010; Towse and Garrison, 2010; Trueman 

et al., 2010), and several studies have reported on combinations of  (economic) 

evaluation of drugs and more flexible ways of decision making (Chen and Willan, 

2013; Eckermann and Willan, 2008a; Eckermann and Willan, 2007, 2008b; Willan, 

2008; Willan and Kowgier, 2008; Willan and Pinto, 2006). 

The period of four years for making the definite decision is arbitrarily chosen in 

the Netherlands, raising the question of whether a model may be developed that 

allows for flexible timing of the moment of re-evaluation. Such a model would have 

to balance several aspects. Waiting for new information may add value by reducing 

uncertainty. On the other hand, a longer period of conditional reimbursement will 

be associated with increased research costs, as well as opportunity losses resulting 

from more patients using a sub-optimal medication. 

In the Dutch setting, data collection during the four year period is usually 

performed by means of observational data, for instance a patient registry. This has 

two reasons. First, additional trials are hard to organize in the same jurisdiction 

once a medication has been –even conditionally- admitted. Second, reimbursement 

authorities usually want additional evidence on local effectiveness and costs in 

actual practice, which trials are less suited to produce. 

Registries also have the advantages of reflecting daily practice quite closely and 

of not requiring patient to agree to randomization for their treatment. Observational 

designs, however, have drawbacks. The most important is of course the lack 

of randomisation, which introduces the possibility of biased results. Especially 

estimating effectiveness can be complicated by selection and other biases. 

These risks may be managed to some degree by good design (Dugas et al., 
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2008) and proper analysis of data, e.g. by using propensity scores (Indurkhya et al., 

2006). This, however, is not the focus of the current manuscript. Since the purpose 

of the current manuscript is to improve actual conditional reimbursement schemes 

in some other aspects, we will ignore any possible bias in the registry data in our 

first sections, while admitting such biases will affect how models perform. We turn 

back to the issue in the discussion.

In the current study, we develop a model which allows for finding the optimal 

data observation period during a conditional reimbursement process. We divide 

the time of the conditional reimbursement to different stages. We take a healthcare 

perspective, in which healthcare costs and registry costs are both covered by national 

authorities. We extend and modify the approach set out by Eckermann and Willan 

(Eckermann and Willan, 2007) to the relevant case where new evidence is gathered 

over time in a patient registry, while numbers of patients on each of the relevant 

drugs are driven by actual practice and disease characteristics. Furthermore, we 

deliberately account for dependency of the observations over time. Different 

solution strategies are considered, depending on the required timing of the decision 

and the follow-up period, either before the registry starts or later. Using simulation 

then enables us to establish the optimal solution and avoid the complexity and data 

requirements of a full analytic solution that would hinder actual application.   

Based on the simulations, we find an optimal time point for making the final 

decision. This point is optimal, given the knowledge available at that point in 

time, i.e., waiting for further information would not be worthwhile anymore. That 

is because the expected losses of further delay of a decision are more than the 

expected gains from ascertaining more information. 

In the remainder of the chapter, first a background section relates our model to 

the existing literature on sequential sampling, real options analysis, and multistage 

trials. Then in section 3, the theoretical model is set out. Section 4 presents a simple 

hypothetical example to clarify how the model works and to test its robustness 

to changes in input parameters. Finally, the discussion turns back to the issues 

concerning observational research mentioned above and discusses strengths and 

limitations of the proposed approach. 
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BACKGROUND 

Several authors have addressed the issue of timing when deciding on new 

research, but this was almost exclusively in an experimental setting (trials) with little 

attention to everyday policy decisions and use of observational data. The current 

section briefly summarizes what has been published and explains what has to be 

added in order for the methods to be applicable in a setting of access with evidence 

development like the Dutch version of conditional reimbursement. 

Traditional power analyses is concerned with optimal sample size (n) (Lachin, 

1981), using fixed criteria on type I and type II errors. Recently, several authors used 

decision theory to approach the problem of optimal sample size by balancing the 

gains and losses from more information gathering. Willan and Pinto (Willan and 

Pinto, 2006) balance trial costs, opportunity losses and gains from a better informed 

decision to determine the optimal sample size of a single stage trial using a Value 

of Information (VOI) approach. Subsequent studies (Eckermann and Willan, 2008a; 

Eckermann and Willan, 2007, , 2008b; Willan, 2008; Willan and Pinto, 2006) have 

also used VOI analysis to provide models which identify optimal strategies and 

design for a single stage trial, using different perspectives. While they include the 

time horizon as a variable in their models, they do not optimize with respect to time 

and do not discuss the timing aspect of actual decision making.   

Research on multi-stage design extends this in a way that allows for including 

the time aspect more explicitly in the problem. Berry and Ho (Berry and Ho, 1998) 

used a Bayesian decision-theoretic approach from an industry perspective and 

propose a procedure to stop a trial at any stage once the new treatment shows 

negative efficacy. Taking a societal perspective, Willan and Kowgier (Willan and 

Kowgier, 2008) have extended their single stage trial model (Willan and Pinto, 

2006) to include multi-stage adaptive designs, while another study by the same 

group of authors used an industry perspective (Chen and Willan, 2013). The latter 

two studies (Chen and Willan, 2013; Willan and Kowgier, 2008) are relevant and 

related.  By optimizing the number of stages along with the sample size, their model 

concerns the timing aspect. A major disadvantage of their approach however is its 

complexity. While a full analytic approach is proposed in the theoretical model, 
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actual application is restricted to cases with only two stages, since the complexity 

of the solutions increases geometrically with the number of stages. As a solution, 

they suggest finding simpler near-optimal solutions numerically when the numbers 

of stages increase, but this is left for further research. 

The current study concentrates on the length of the observation period as 

the variable of interest, taking the number of patients as given. The idea is that 

this reduces complexity and will result in a tractable model that can be applied in 

practice.

While the studies discussed so far took a decision theoretical approach, 

sequential analysis has been proposed much earlier (Wald, 1945) using a traditional 

statistics approach. Sequential analysis assumes that a certain statistical test is 

performed to compare the two groups of the patients in the trial in each stage. If 

the null hypothesis is rejected, the trial is terminated, otherwise it continues for 

one more stage (Wald, 1945). This implies that criteria based on given sizes of type 

I and type II errors determine the number of stages.

From the field of economics comes another relevant method, the real options 

approach, introduced by Myers (Myers, 1984) and explained extensively by Dixit 

and Pindyck (Dixit and Pindyck, 1994). This approach explicitly evaluates the value 

of delay (rather than taking a decision right away) using similar underlying valuation 

of financial options (which also involves flexibility, since the holder may choose 

whether or not to use the option). Compared to traditional cost-benefit analysis, 

a real options analysis hence adds the choice of time for investment to the choice 

whether or not to invest. 

Applying the approach to reimbursement of drugs, delay and trial (DT) can be 

viewed as a call option for the decision maker (payer) from the producer (applicant). 

Costs of doing a clinical trial is the price of that call option and the decision maker could 

decide whether it is worthwhile to buy that option, or to make the definite decision 

about the investment right away (Towse and Garrison, 2010). When the period for 

re-evaluation is considered flexible as we propose, the similarity is still present, yet in  

American options (flexible execution time) rather than European options. 

In recent years, a number of studies have applied ROA to the healthcare field 

(Attema et al., 2010; Favato et al., 2013; Forster and Pertile, 2012; Grutters et al., 
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2011; Palmer and Smith, 2000; Pertile et al., 2009) with different aims. Some of 

these studies analyze different investment strategies (Attema et al., 2010; Grutters 

et al., 2011; Pertile et al., 2009) some concern clinical decision making (Favato et al., 

2013), and some incorporate ROA in decision rules in health technology assessment 

(Forster and Pertile, 2012; Palmer and Smith, 2000). The intention has been to use 

the ROA to support the healthcare decision by taking into account the different 

management options (Attema et al., 2010; Favato et al., 2013), the uncertainty and 

irreversibility associated with a technology (Forster and Pertile, 2012; Grutters et al., 

2011; Palmer and Smith, 2000; Pertile et al., 2009), costs and benefits of additional 

research and the dynamic nature of the decision process (Forster and Pertile, 2012), 

the risk of investing in a suboptimal therapy (Grutters et al., 2011), or the risk of 

withholding patients the optimal treatment (Attema et al., 2010; Grutters et al., 

2011). However, the optimal time for making a decision has not been established in 

any of the studies. Pertile et al. (Pertile et al., 2009) have used ROA to compare the 

value of immediate investment with that of postponing the investment for discrete 

points in time. Importantly, they were unable to find the optimal timing strategy.

A problem with applying ROA to reimbursement decisions is that the assumptions 

underlying the approach include full market equilibrium and interdependence over 

time, which will rarely be satisfied in a health care setting.

Being both decision oriented, the value of information approach and the real 

options approach are closely related. It has been demonstrated that (Eckermann 

and Willan, 2008b) the option value of delaying decisions to allow collection of 

further information can be estimated as the expected value of sample information 

(EVSI).

The decision theory approach using value of information could be considered 

most relevant in a health technology assessment setting. The VOI framework 

evaluates the additional information generated by further research, which is 

consistent with the objectives and constrained resources. Allowing a comparison 

of the potential benefits of further research with its costs, VOI provides a coherent 

framework for the use of health care technologies (Claxton and Sculpher, 2006). 

It does not require the market equilibrium assumptions and independency over 

time like the real options framework and has successfully been applied in the field 
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of health care decision making (Ades et al., 2004; Yokota and Thompson, 2004). 

While the differences are subtle, they concern, apart from terminology, important 

assumptions about the timing of information and decisions. 

MODEL

To find the suitable time point for reconsidering the conditional reimbursement 

decision, time is divided into several stages of fixed duration. The duration of each 

stage may change for different drugs and conditions. 

The end point of each stage is a potential point for re-evaluation. Therefore, 

at the end of each stage three paths are possible: continuation of the conditional 

reimbursement, permanent adoption of the new medication, or permanent 

banishment of the new drug from reimbursement. For reasons of practical feasibility, 

a maximum time T is set to the period of conditional reimbursement. 

Assume that the new medication A on introduction is adopted by a fixed 

proportion of r current patients, while the rest continue using the standard of care 

medication B. Call r the adoption fraction. An assumption made for tractability in 

the model is that upon reaching the definite decision all patients change to the 

optimal drug, that is r(t)=1 or r(t)=0, for i≥i* ( i*≤T) where i* is the optimal stage of 

making the definite decision.

INB distribution updates

For any sample, e.g. for the patients in the registry, the Incremental Net Benefits 

(INB) of the new drug (A) versus the old standard of care (B) can be estimated 

as )()( BABA CCEE −−−×λ , where λ  represents the willingness-to-pay 

threshold, EA and EB the mean effects of the new and old medication, and CA and CB 

are mean costs of the new and old medication, respectively. Let ib  be the estimate 

of INB at stage i. ib is the parameter of interest in this model, which may be updated 

using real or simulated registry data after each stage. 

Being a sample statistic, bi is approximately normally distributed:

TibNb iii ,...,2,1),ˆ(~ =υ                                                                                     (1)
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In the above distribution, ib̂ and iυ are to be estimated with respect to the 

information ascertained up to the end of stage i. The comparison between bi and bi-1 

shows how the new information gained during stage i can help to solve part of the 

uncertainties in the decision and decrease the risk of making a wrong decision. We 

consider two approaches towards the update process, which are based on when 

the decision on the optimal re-evaluation time is going to be made.

Ex-ante approach

In this approach, the optimal time is to be decided upon before starting the 

observation period (hence at i=0). Therefore, the parameters of the distribution in 

(1) are to be estimated based on data available at that time. To find the updated 

INB distribution after each stage, the registry data must be simulated for all stages 

to evaluate how the outcomes of interest change stage by stage. 

That is, histories of health benefits and costs are to be simulated for all the 

patients at the start of the registry and the new incident cases that enter the registry 

in each stage. If the population in the registry area is Pr, and l is the prevalence of 

the condition that would indicate administering drug A or B, then we will have: 

lPrn rA ××=0                                                                                                           (2)

lPrn rB ××−= )1(0                                                                                                     (3)

Where nA0 is the number of patients who are receiving A and nB0 is the number 

of patients who are receiving B at the start of the registry (i=0) in the registry area. 

In each stage, the registry will be extended with incident cases. If we call nAi and nBi 

the numbers of patients whose information is available in the registry at the end of 

stage i receiving drugs A and B respectively, we have:

)()1( riAAi Pkrtnn ×××+= −

))1(()1( riBBi Pkrtnn ××−×+= −

                                           (4)

  
                                         (5)

Where t is the duration of each stage and k is the incidence rate of the disease. 
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Estimating the numbers of current and new patients and using distributions 

for health benefits and costs, incremental net benefits can be calculated for each 

potential decision point. A detailed example for the ex-ante approach to find the 

updates in INB and solve the decision problem will be given in the example section. 

Wait-and-see approach

In this approach, the point in time to make the definite decision is established  

as new information is arriving. Therefore, the registry population parameters as 

well as values for bi can be directly observed using the registry information up to 

the end of ith stage. Such an update would still be uncertain due to the fact that the 

observed data sample is just one observation from a range of possible samples, but 

it is more precise than the ex-ante approach. 

Gains of waiting as expected value of sample information

After updating bi at the end of each stage, two outcomes are possible: ib̂  >0 

and ib̂  ≤0.  If ib̂  >0, then the decision would be between permanently adopting A, 

or continuing the registry for one more stage. Therefore in this case, the expected 

opportunity loss would be the loss in permanently adopting A from stage i onwards 

and is calculated as follows (Eckermann and Willan, 2007):

L (b)= 0                       if  bi ≥ 0                                                                                       (6)

L (b)= - bi                    if  bi <0                                                                                       (7)

On the other hand, when ib̂  ≤0, the decision is between permanently accepting 

B or continuing the registry for one more stage. Hence in this case the opportunity 

loss of adopting B is calculated as follows: 

L(b) = 0                             if  bi ≤ 0                                                                                (8)

L(b)=  bi                             if  bi > 0                                                                                (9)

An illustration of opportunity loss of both cases is depicted in figure1.



80

Optimal timing of the reimbursement decisions

4

a

b

Figure 1 Updated distribution from stage i-1 to stage i and the expected opportunity loss 

when a) mean INB is positive at stage i and b) mean INB is negative at stage i (adapted 

from Eckermann and Willan 2007)

Now if we denote the total population of the country, excluding the population 

in the registry area by Pc, the total number of patients that can potentially benefit 

from a well informed decision after stage i can be calculated as:`

))1((

))1(()(

11

111

−−

−−−

××−×+×××−

××−×+×××−××+=

iBiA

iBiAcii

NmrtNmrt

NsrtNsrtPktNN                           

(10)                           

Where mA and mB are the mortality rates of patients using drug A and B and sA 

and sB are the success rates of drug A and B, respectively. 

At the end of each stage i, the Expected value of Sample Information (EVSI) is 
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computed as the expected reduction in the opportunity loss from end of stage i-1 to 

end of stage i using the registry results and indicates the value gained by acquiring 

further information using the registry data in stage i. If ib̂  is positive, the gain of 

waiting one more stage versus adopting A is:

                                             (11)

Where if  is the probability density function of bi after stage i. 

For a negative ib̂ , the gain of waiting for one more stage versus permanently 

adopting B would be calculated:

                                                 (12)

Costs of waiting

To compute the total costs of continuing the conditional reimbursement for 

one more stage when A is permanently adopted in the end, we include two types 

of costs: 

1. Opportunity losses of using drug B in nBi  patients in the registry (continuing 

the registry one more period), which would be calculated as iBi bn ˆ×
2. The variable cost of being on the registry for each patient in stage i (Cvi) which 

is calculated as viBiAi Cnn ×+ )(

Total costs in stage i when ib̂ >0 would then be computed as:

viBiAiiBiAi CnnbnTC ×++×= )(ˆ                                                                        (13)

In the same way, total costs in stage i when ib̂ ≤0 would follow:

viBiAiiAiBi CnnbnTC ×++−×= )(ˆ                                                                      (14)

Note that the opportunity losses of using the non-optimal drug in the patients 

out of the registry have already been included as a part of EVSI calculations before.
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Optimal decision point

The Expected Net Gain (ENG) of continuing registration rather than making a 

definite decision of the population in stage i would be:

AiAi TCEVSI − ib̂                                                        (15)

BiBi TCEVSI − ib̂                                                       (16)

 Ex-ante approach

The optimal point for making the definite decision in the ex-ante approach 

for updating INB is obtained when the cumulative expected net gain approaches 

its maximum. That is, the decision maker is facing the optimization problem of 

finding i in {0,1,2,…T} so as to maximize ∑
i

iENG . At the maximum the expected 

value of the additional information from continuing conditional reimbursement 

just balances the losses of the delaying the definite decision. A longer period of 

conditional reimbursement would reduce the cumulative gains. 

Wait-and-see approach 

Finding the optimal decision point in a wait-and-see approach requires setting 

some criteria on the ENG. When a registry starts, the gain in information in the 

first stages might be very small or even negative because it takes time to observe 

the full effects of the drugs. However, the registry might also continue to give poor 

results in the later stages. Hence, the decision maker must have a criterion to stop 

a non-efficient registry. Setting such criteria would need to consider the treatment 

time of the patient: long treatment times will require extended follow-up periods 

before getting some results.  An analytical solution may be obtained using a Real 

Options Approach (Dixit and Pindyck, 1994). This, however, requires among others 

to assume a distribution on the INB over time. Usually this is taken to be a variant 

of the Brownian motion (random walk) to result in a tractable solution (Palmer and 

Smith, 2000). Lacking such an analytical solution, more simple rules of thumb could 

be applied, e.g. to stop a registry when it starts resulting in negative ENGs after 

having shown positive ENGs for some time. 
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EXAMPLE FOR EX-ANTE CASE

In this section we present the results of the model when a hypothetical example 

is considered. We solve the problem ex-ante, which means we will find the optimal 

time at the beginning of the data gathering period using simulation. 

The example uses survival time as the measure of effect. Of course other effect 

measures could also be used. However, survival is very relevant for the setting of 

expensive intramural drugs, since these are often intended for treatment of severe 

conditions with low remaining life expectancy and have survival as an important 

outcome of interest. This can be readily improved by incorporating other outcome 

measures, depending on the case at hand. 

The model as explained below applies equations (1) to (16) and has been 

programmed in MATLAB 7.12.0. We used 100 runs of the model to reach a robust 

optimal point. Larger numbers of runs did not have considerable effect on the 

results.  

An independent graphical user interface for this model has been developed 

using MATLAB compiler runtime (Appendix 1)

Simulation of the registry data

Assuming the population parameters as shown in table 1 and using the formulas 2-5, 

we calculate the expected number of the patients at the beginning of the registry period 

as well as the number of incident cases per stage. 

Table 1 Values for population input parameters of the example

Parameter Basic value

Total population 16,000,000

Population of the registry area 2,000,000

Prevalence of the disease 0.05 %

Incidence proportion 0.02 %

Duration of each stage 6 months

Number of stages 16

Proportion of the patients using new drug 50%
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Survival times are estimated through simulations, using the appropriate 

distributions. Characteristics of these distributions could be based on previous trials 

and other available information for each drug. For our example, we deduced the 

parameter values of two Weibull distributions (table 2). 

The entry time for all prevalent cases at the beginning of the registry is 0. We 

assume random enrolment in the registry during the survival time of the prevalent 

patient. Therefore, assuming Sj to be the simulated survival time for patient number 

j who is already in the disease state at the start point of the registry, the disease 

time passed for this patient before the registry start can be simulated by:

),0(~ ji SUniformp

And the death date can be calculated as jjj pSd −=  .

The entry time for the new incident cases is assumed to have a uniform 

distribution over the duration of each stage. Therefore, the entry point of an 

incident patient who enters the registry during stage i is simulated by:

),)1((~ titiUniformei ××−

And the death date can be computed as jjj eSd += .

A mean and standard deviation for costs per time unit for each medication can 

be set by using drug costs from tariffs, previous data or expert opinions. Assuming 

some estimate of mean costs and the variability of them per drug, we assign a gamma 

distribution to costs per day for each simulated patient. Base case assumptions on 

cost parameters for each drug are also listed in table 2.

Table 2 Parameters used in registry data simulation 

Mean (SD) Distribution

Drug A (new)
Survivals 1330 (570) Weibull(1500,2.5)

Costs per day (€)* 3.0(1.0) Gamma(9.0,0.3)

Drug B (standard) 
Survivals 1160(420) Weibull(1300,3.0)

Costs per day (€) 2.5(0.7) Gamma(12.7,0.2)
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Observed survival time in each stage

Assume that patient j, with the simulated survival time of Sj days follows the 

path shown in figure 2. As it is clear in the figure, when looking at the end of stage 

1, the patient is censored and the observed survival for this patient is equal to t1. 

At the end of stage 2, the patient is again censored, with the observed survival t2. 

Finally, at the end of stage 3, the death is observed and the survival time for this 

patient is available. From stage 3 onwards, the record for patient j is complete and 

recorded in the database. 

 

Sj 

i=1 

t1 

t2 

i=2 i=3 

ej dj 

Figure 2 A hypothetical patients’ disease time within different stages.

In general, assuming OSji to be the observed survival for patient j at the end of 

stage i with length t we have:

tidifSOS jjij ×≤=

tidifetiOS jjij ×>−×=

If the patient is already in the disease state at the beginning of the registry, 

observed survival time is calculated as: 

tidifSOS jjij ×≤=

tidifpetiOS jjjij ×>+−×= )(
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Observed costs in each stage

For calculating costs in each stage, we assume that treatment costs take place 

during the whole life of the patient. 

tidifSCOC jjjij ×≤×=

tidifetiCOC jjjij ×>−××= )(

Where OCij is the observed treatment costs for patient j at the end of stage i, 

and Cj is the simulated costs per day of the patient j. 

INB updates

Having the mean and standard deviation of survivals and costs as well as the 

number of patients in each stage i, the incremental net benefits can be estimated:

And its variance:

In the base case analysis, we assume the willingness-to-pay (λ ) to be 50,000 €/

life year gained and we alter this in the sensitivity analysis. 

We assume that the initial distribution of INB, shown by INB0, has the following 

rather uncertain distribution: )10000,0(~0 NINB

Expected net gains and the optimal time

Having all simulated updates in the INB distribution for different stages and 

assuming registry costs of €200 per patient per year, we use the formulas 6-16 to find 

the expected net gains (ENG) of waiting for each stage. The optimal decision point 

is the point in which the cumulative ENG reaches its maximum. Figure 3 shows the 

average cumulative ENGs for 16 stages of 6 months each over 100 runs of the model. 
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Figure 3 Average Cumulative Expected Net Gain (ENG) curve over 100 runs of the 
model, for a willingness-to-pay threshold of 50,000 €/life year gained and the base case 

parameters

As shown in figure 3, the cumulative ENG is negative in the beginning. That is 

mainly because in the first stages, the numbers of observed events is insufficient 

to get reliable survival estimates. Therefore, in the first few stages, small gains are 

reached from waiting for information and the costs of the registry are dominating 

the gains. At about stage 4, the gains of the registry start to dominate the costs and 

the cumulative ENG starts to rise and reaches a maximum at stage 7. Therefore, 

given the current parameter distribution, 3.5 years of registry would suffice to make 

a definite decision. After the 7th stage, the graph starts to fall. Hence, after stage 7, 

there would be no more gains in waiting, while in later stages more delays would 

cause relatively big losses. 

Sensitivity analysis

We tested the sensitivity of the model to different parameters to investigate how 

the results can be affected by changing the model assumptions and inputs. First, we 

examined the effect of the assumptions about registry data. The base case analysis 

implies an overall INB with mean €32000 and standard deviation of €3000. Since 

the aim of the registry is to solve uncertainties in the estimate of INB, the standard 
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deviation of the data will affect the optimal time. Changing the parameters of table 

2, we altered the registry INB standard deviation to the scenarios reported in table 

3. A summary of the optimal points for different scenarios is shown in table 3. 

Table 3 Sensitivity analysis on parameters of registry data  
used in data simulation 

Scenario 
Standard deviation of INB in the 

registry data
Optimal

decision stage

Base case 3,000 7

Large registry data variety 10,000 9

Very large registry data variety 40,000 12

As expected, when the standard deviation of the registry data increases, the 

optimal time will be reached later. That is because the large variations make the 

information update process slower, which means that longer observation time 

would be needed. 

We also examined the effect of important population parameters. Results of 

the sensitivity analysis on parameters of the population are reported in table 4. 

Table 4 shows that when fewer patients are included in the registry (either 

because of smaller registry areas or lower prevalence and incidence proportions), a 

definite decision must be postponed. 

Table 4 Sensitivity analysis on parameters of the population 

Parameter Base case value Value in SA
Optimal decision 

stage

Population of the registry area 2,000,000
500,000 9

15,000,000 6

Prevalence (incidence proportions) 
of the disease

0.05 % (0.02 %)
0.005% (0.002%) 9

0.5% (0.2%) 6

We also examined the effect of the adoption proportion (r) on the optimal time. 

For the current settings, changing the adoption fraction did not affect the optimal 

point to stop the registry and make the decision. That is most probably because the 

mean survival time of the patients using A was not much larger than patients using 
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B. Therefore, the opportunity losses do not change much when more patients are 

using B. For different cases, for instance when one drug is much better than the other 

in terms of net benefits, low proportions using the better drug would lead to high 

opportunity losses. That would make the decision time shorter to avoid more losses.

The effect of choosing the willingness-to-pay (WTP) threshold was also 

examined. Results showed that high willingness-to-pay thresholds would increase 

both gains and losses of the registry, while low thresholds would decrease both, 

resulting in less risky decisions. 
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Figure 4 Average Cumulative ENGs over 100 runs of the model for two WTP threshold 

values.

As shown in figure 4, for a willingness-to-pay threshold as high as 80,000 €/life 

year gained, the curve had a higher cumulative ENG. In contrast, for a willingness-

to-pay threshold as low as 20,000 €/life year gained, the cumulative ENG curve was 

lower but it reached the maximum at the same stage. 

DISCUSSION

In this study we developed a model to describe the problem of making a 

definite decision on a conditionally reimbursed drug, and especially to select the 

optimal period of conditional reimbursement and additional evidence gathering 
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using observational data from a patient registry. Choosing the optimal stage for 

definite decisions allows the decision maker and applicant more flexibility in the 

conditional reimbursement setting, with additional information gathering tailored 

to each specific drug. 

The background section described how several approaches have been put 

forward to deal with the issue of finding the best time of follow-up, either connected 

to finding the optimal sample size and using multistage trials or sequential sampling, 

or connected to finding the optimal time for investment decisions, using the real 

options approach and assuming market equilibrium. 

We concluded that the value of information framework could be considered 

most relevant in a health technology assessment setting, and accordingly developed 

a model using this approach for finding the best period of conditional reimbursement 

and the optimal time to re-evaluate the additional data gathered during this period. 

Using the proposed model, the length of the conditional reimbursement period 

could be set in an efficient way, tailored to the drug and disease at hand. Diseases with 

higher prevalence and incidence rates will require a shorter time of research. Also 

when a typical patient’s use of a certain drug is short, less time would be needed to 

get to the optimal point. Another relevant variable is the size of the registry. As seen 

in the sensitivity analyses, when more patients are enrolled in the registry, more 

data will be gathered and hence the optimal time can be shortened. This indicates 

that larger registries could make the decision making process quicker. Of course 

registration costs would rise accordingly, but given that registry costs are for an 

important part fixed set-up costs, while per patient costs are usually more modest, 

efficiency gains might be possible. For instance, as a suggestion to the authorities, 

if regulation could impose reimbursement to be conditional on registration, the 

optimal time of making the definite decision could be reached faster. 

Our study has several limitations that will have to be addressed before the 

proposed framework can be put into practice. 

A first limitation may be the assumption that the additional research consists of 

a patient registry, and we ignore the possibility that new results from randomized 

controlled trials can be included in the data update process. As mentioned in the 

introduction however, in a setting of conditional reimbursement, recruiting patients 
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in the same jurisdiction to participate in a randomized trial seems infeasible. To 

overcome this problem, it has been suggested (Eckermann and Willan, 2009, 

, 2013) to use global trials where patients are recruited from a jurisdictions in 

which the decision has been delayed (DT). However, there is no guarantee to 

the reimbursement authorities that indeed such a trial would be performed and 

they have little instruments to impose this. Furthermore, practice variation across 

jurisdictions (i.e., variable inclusion criteria) may exist, resulting in similarly bias 

prone results.  Finally, often reimbursement authorities are looking for additional 

information on effects and costs in actual practice rather than idealized trial 

circumstance. Hence, experience has shown that registries were often initiated 

to fulfill the requirement of additional data gathering. This same experience has 

also shown that many of these registries came to disappointing results at the re-

evaluation time, stressing the need to carefully think over the registry design as well 

as the length of follow-up. Our manuscript addressed the latter point.

A second limitation of the current model is the assumption of perfect 

implementation. We assume that after the final decision the drug would be 

completely adopted or abandoned, while in practice some proportion of patients 

will continue using other drugs also after the final decision. Eckermann and Willan 

(Eckermann and Willan, 2010) relaxed this assumption for a single stage trial. For 

our multistage observational data model, we expect that relaxing the assumption 

is also possible and will not change the basic approach. However it might influence 

the gains and losses from delaying the decision, since it affects the opportunity 

losses (Eckermann and Willan, 2010). How this works out in an example is a topic 

for future research. 

Our theoretical model is valid for any adoption proportion (r) and does not 

necessarily require it to have a fixed value over time. However, in our example we 

used a fixed value and analyzed different proportions in the sensitivity analysis. This 

could be considered a limitation, since it maybe expected that in reality the adoption 

proportion will vary over time, for instance showing an increasing proportion 

of patients using the new drug. The a-priory approach then would require to 

estimate this function, rather than a certain proportion, while for the wait-and-

see approach, the proportion can be updated in each stage with real observations. 
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Actually estimating or observing these proportions might be difficult, and hence the 

pragmatic solution used in the example is possibly most relevant. 

Varying the adoption proportion is also a way to deal with a registry which is 

expected to show insurmountable problems in terms of selection bias. In that case, 

only the data on patients that received the new drug could be used for investigating 

whether the original assumptions regarding the absolute effects in these patients 

are confirmed in practice or have to be adjusted. Then our tool may be used with 

r equal to 1 to find the best period for re-evaluation using the registry in this way.

In the example presented in this study we used trial based distributions to 

simulate future registry data. That might not be entirely appropriate, given the 

differences between trials and actual practice and the possible existence of learning 

effects. However, in absence of other data it is the best available information on 

what to expect from the registry. 

Our model may very well result in an optimal decision time of i*=0, which 

means the registry would not even be worthwhile to start, at least not for the 

purpose of informing the re-evaluation of the reimbursement decision. This might 

happen when overall gains are never dominating overall costs. In contrast, it might 

also happen that an optimal point is never reached within the time frame (T) of the 

problem. In other words: i*>T. Such an outcome indicates that for some reason 

(for instance very scarce initial information on the drugs, high opportunity losses 

of removing a drug from the reimbursement list, low registry costs, etc), a definite 

reimbursement decision should be postponed to the latest possible time. Such 

situations require careful deliberation whether and under what conditions should 

a drug be allowed in reimbursement and/or a registry is the best way to inform the 

definite decision. It might be the case that the i=0 point needs to be postponed, 

meaning that a conditional reimbursement should not be started yet. Alternatively, 

different types of research maybe needed to inform the definite decision.

Our manuscript describes two methods to update the information (i.e. ex-ante 

or wait-and-see). Both have their limitations and strengths. In the ex-ante case, 

lack of real registry data would mean that the registry data must be simulated 

based on assumptions. These assumptions are of course uncertain and so the real 

optimal point might not be the same as the point found using hypothetical patients. 
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However, the ex-ante solution is useful in giving the decision maker an idea of the 

time to stop data observation in lack of any registry information. With the user 

interface developed along with this chapter (Appendix 1), the decision maker has 

the opportunity to run the model for different inputs and analyze the sensitivity to 

the assumptions made. 

In comparison to the ex-ante approach, the wait-and-see approach uses more 

reliable data to obtain the optimal time for a definite decision. Such a procedure 

captures the full option value of delaying a definite decision (Dixit and Pindyck, 

1994) and weigh it against the benefits of making a definite decision. Thus, the 

decision maker would not announce any specific time to the producer, but only the 

rules for decision making. One limitation of the wait-and-see approach is that the 

decision maker has to wait for data before being able to estimate a decision time. 

Besides, a stopping criterion for the registry must be established in the beginning 

of the registry period. Setting such criteria is not very straight forward in lack of an 

analytical solution. To improve the model and minimize the limitations of both the 

ex-ante and wait-and-see approaches, a combination of the two might be efficient. 

For instance, the decision maker can wait until some preliminary results of the 

registry help to find a relatively reliable estimate for the registry parameters. 

Conclusion 

Current adoption with research strategies need to be tailored to the specific 

drugs and conditions at stake. Using the model proposed in this study, the policy 

decision process would become more efficient. It stresses the need to carefully think 

about the length of the period of additional data gathering as one of the important 

issues to solve beforehand. 
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APPENDIX 1

Graphical user interface 

The graphical user interface developed alongside the model of this chapter allows 

the user to calculate an estimate for the optimal decision making time though a few 

simple steps. An illustration of the user interface and its consecutive steps is shown 

below. 
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Abstract
Background: Invasive fungal infections (IFIs) are severe complications which 

are difficult to diagnose and treat. Information on effectiveness, safety and cost-
effectiveness of different treatment options for IFI is still scarce. Therefore, the 
decision of reimbursing a new antifungal drug is usually difficult to take and involves 
a lot of uncertainty. In The Netherlands, the Dutch reimbursement authorities used 
an optional procedure for expensive new inpatient drugs which involves conditional 
funding for a maximum period of four years along with additional data gathering. 
However, the 4 years length of the re-evaluation period is arbitrary.

Aim: The aim of this chapter is to find the optimum time of making a definite 
reimbursement decision for voriconazole as the newest drug of choice for primary 
treatment of invasive aspergillosis. We assume that a well-designed patient 
registry for outcomes research provides new observations over costs and effects of 
voriconazole and its comparator amphotericin B.

Methods: The optimal time is estimated a priori by distinguishing a certain 
number of discrete time points. Then the distribution of the incremental net 
benefits (INB) is derived for each time point and the expected net gains (ENG) of 
continuation can be computed using a value of information framework. The optimal 
period for adoption under research is reached when the cumulative ENG reaches 
its maximum.

Results: Preliminary results indicate that cumulative ENG steeply increases until 
about 2 years of data observation and then continues to increase slowly until it 
reaches an optimum at 5 years of observation. These results depend on several 
input parameters such as the willingness-to-pay threshold, the size of the registry 
and the variability of data in the registry. 

Conclusion: Current conditional reimbursement procedures used in The 
Netherlands for expensive new inpatient drugs can be improved by using a 
model that enables tailoring the time to a definite decision for various drugs and 
conditions, using information typically available at the time of an initial decision. 
Gathering additional information about the cost-effectiveness of the new drug 
is costly, so it should be stopped when there is no more gain in waiting for new 
evidence. Conversely, the period of data gathering needs to be sufficiently long to 
obtain relevant information.
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INTRODUCTION

In recent years, the discord between payers, providers and patients has 

intensified. Payers are responsible for ensuring prudent and principled use of 

scarce resources, while both providers and patients legitimately want access 

to technologies from which they could benefit. As a result of such a trend, new 

policy options for managing the uncertainty surrounding the introduction of new 

health technologies have emerged. For instance in the UK, the coverage options 

“only in research (OIR)” and “only with research (OWR)” have been proposed to 

guarantee further research before making a final decision  (Walker et al. 2012). 

Such approaches typically take the form of a provisional coverage arrangement, 

in which the new technology is temporarily funded while evidence needed to 

make a definite decision is being gathered. Implementing such performance based 

reimbursement procedures have been an increasing trend over the last years in 

several countries (Carlson et al. 2010). These approaches have been referred to 

as ‘access with evidence development’ (AED) schemes (Stafinski et al. 2010). One 

important type of the AED scheme is called “automatic reassessment”, which 

comprises a programmed review of a reimbursement decision following a fixed 

period of additional observation. This approach has become a part of the policy 

framework in many European countries now. However, the length of the additional 

research period in Europe reimbursement systems is often not specified. In some 

countries (Belgium, Czech Republic, Denmark, Finland, and France), a fixed time for 

all pharmaceuticals is set varying from 1 to 5 years. There are only a few systems in 

which the review period varies with the pharmaceutical (Scotland, Sweden, and UK) 

(Stafinski et al. 2011). In the latter systems, the time for definite decision depends 

upon the availability of the new evidence. However, they seem to lack a robust 

framework for estimating the time needed for additional research. 

In the current study, we show that the length of this period can be set relatively 

precisely, depending on the epidemiology of the disease, costs of data gathering 

and other associated parameters. As a case, we investigate the conditional 

reimbursement of voriconazole, an antifungal drug as a treatment option for 

invasive fungal infections (IFIs) in The Netherlands.
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IFIs are severe complications which are difficult to diagnose and treat. The 

incidence of infections in patients who become immuno-compromised due to 

chemotherapy or underlying disease is relatively high. IFIs are associated with very 

high rates of morbidity and mortality and therefore require adequate and timely 

treatment (Barnes 2008). The majority of IFIs are caused by aspergillus and candida, 

with aspergillus as the leading pathogen (Lehrnbecher et al. 2010). 

For many years invasive aspergillus infections were treated by amphotericin B 

deoxycholate. However, treatment is often associated with severe toxicities that 

limit its use, including infusion-related reactions, nephrotoxicity, hypokalemia, 

and hepatotoxicity (Girois et al. 2005). Itraconazole was the first systemic azole 

with activity against aspergillosis, but with gastrointestinal side effects and low 

bioavailability of the oral compound (Heinz, Einsele 2008). Voriconazole is a relatively 

new broad-spectrum triazole that is active against aspergillus species (Espinel-

Ingroff 2001). The voriconazole versus amphotericin B trial in 2002 (Herbrecht et al. 

2002) demonstrated that initial therapy with voriconazole in patients with invasive 

aspergillosis would lead to improved survival and fewer severe side effects than the 

standard approach of initial therapy with amphotericin B. However, recent reports 

show the emergence of acquired resistance of aspergillus spp. to azole compounds 

(van der Linden et al. 2011). Also the usage of voriconazole is still limited to some 

extent due to its side effects, especially rising liver enzymes as well as visual 

disturbance and hallucination (Heinz and Einsele 2008). 

Information on effectiveness, safety, and cost-effectiveness of different 

treatment options for IFI is still scarce, with the 2002 study (Herbrecht et al. 2002) 

being the only randomized clinical trial directly comparing different drugs to each 

other. The new antifungal drugs are usually expensive; hence it is relevant for the 

decision maker to know which drug offers the best value for money. However, 

variations in diagnostic criteria (Ascioglu et al. 2001), changes in the therapy due 

to adverse effects (Girois et al. 2005, Herbrecht et al. 2002, Jansen et al. 2005), 

and the crucial role of the environment in the epidemiology of infections (van den 

Bergh et al. 1999) makes the outcome measurements highly uncertain. Even adding 

experience from ‘real-life’ settings and observational studies might not result in 

sufficient evidence.
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In The Netherlands, new antifungal drugs were considered to be expensive 

new inpatient (ENI) drugs (with costs exceeding €2.5 mln on an annual basis). In the 

period 2006-2011, the Dutch reimbursement authorities used a procedure for ENI 

drugs which involved conditional funding for a maximum period of four years. Until 

January 2012, the temporary funding of 80% of drug costs was based on available 

effectiveness data, a prognosis of cost-effectiveness and budget impact, and a plan for 

additional research. After the four years period, re-appraisal based on the additional 

information gathered during the period of conditional funding should lead to a 

definite decision. From 2012 on, regulations have changed. Now the expensive drugs 

are part of the basic health insurance, but their costs can be included as an add-on to 

a diagnosis-related group (DRG), allowing hospitals to ask for reimbursement of their 

costs in addition to the normal drug costs included in the DRG. After admission to an 

add-on, the reimbursement authority can assess new drugs and consider conditional 

reimbursement based on relevant research questions that have to be answered 

during the conditional period to enable re-evaluation.

The arbitrary length of the re-evaluation period was debated at the time of the 

ENI list. It was originally set at three years and later extended to four years. In the 

new regulation, this period is yet unspecified, but 4 years still seems applicable. It 

may be argued that the period for re-evaluation should depend on the drug and 

condition involved: For some drugs, it may well be that their (in)efficiency is clear 

at much shorter term, implying unnecessary delay of either permanent funding or 

exclusion from the list. For other drugs a longer period of evaluation may improve 

the validity of the re-appraisal.

Considering the limited evidence regarding drug effectiveness, side effects, 

and epidemiology of fungal infections, it seems risky to apply the simple arbitrary 

period of four years for gathering more evidence on the cost-effectiveness of the 

new antifungal drug. Therefore, it may be worthwhile to invest in determining 

the appropriate time for making a definite decision on an antifungal drug’s 

reimbursement.  

In this chapter, we aim to estimate the optimum time of making a definite 

decision on reimbursement of voriconazole as the newest drug of choice for 

primary treatment of invasive aspergillosis. The first decision on conditional 
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reimbursement of voriconazole was modelled based on data from the trial on 2002 

(Herbrecht et al. 2002) as it was actually done by the Dutch Healthcare Insurance 

Board in 2007 (Commissie Farmaceutische Hulp (CFH) 2007). We then went on to 

assume that a patient registry with certain population existed and provided further 

information on costs and effects of voriconazole in comparison to initial therapy 

with amphotericin B. Such a registry has been initiated in The Netherlands. We 

estimate the epidemiological parameters of the condition along with distributions 

of costs and effects and use this to simulate the expected outcomes of the registry. 

We then use a value of information framework to find the gains of waiting for more 

information and balance these with their costs to find the optimal point of making 

the definite reimbursement decision on voriconazole. We also examine the effect of 

uncertainty in input parameters on the optimal timing. 

METHODS

Patient population

We assumed that information is gathered on the prevalent cases of aspergillus 

spp. once the registry starts, as well as the new incident cases that are diagnosed 

in each time period that the registry is in place. Infection with aspergillus spp. could 

happen in several different categories of immunosuppressed patients. In this study, 

seven categories of underlying conditions were considered. These conditions, 

which are different types of hematologic malignancies were as follows: acute 

myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic myeloid leukemia 

(CML), chronic lymphoid leukemia (CLL), non-Hodgkin’s lymphoma (NHL), Hodgkin’s 

disease (HD), and multiple myeloma (MM) (Pagano et al. 2006). 

Model

To find the gains and losses of waiting for more evidence during the conditional 

reimbursement period, we divided time into stages of 12 weeks length after the start 

point of conditional reimbursement. That is because the planned duration of fungal 

infection therapy is usually 12 weeks (Herbrecht et al. 2002, Denning 1996, Denning 

et al. 2002). Shorter stages would not be enough for observing a sufficient number 
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of new outcomes, while longer stages might lead to extra delays in the decision. 

We used the Incremental Net Benefits (INB) of voriconazole versus amphotericin 

B as the main variable which will define the final reimbursement decision. The INB 

was calculated as )()( AVAV CCSS −−−×λ , where λ  is the willingness-to-pay 

threshold for each additional life week gained, SV and SA are survivals weeks and 

CV and CA total treatment costs of voriconazole and amphotericin B, respectively. 

Clearly, the final reimbursement decision would be in favour of voriconazole if 

INB>0 and it would be in favour of amphotericin B if INB<0. 

We calculated an initial estimate for the INB based on available data at the 

beginning of conditional reimbursement period (explained in the next section) and 

then recalculated after each new stage. Data of each stage were assumed to be 

independent from the other stages and we used a maximum likelihood approach 

to find the updated INB distribution after each stage (appendix 1). Having the INB 

distribution in each discrete point of time, gains and losses of delaying the definite 

decision for one more stage were estimated. Better estimates on INBs decrease the 

risk in the decision; hence they result in some gain for the decision maker that may 

be expressed in monetary terms. Using a value of information approach, this gain 

was found as the Expected Value of Sample Information (EVSI). In contrast, delaying 

the decision causes opportunity losses, since more patients could have benefited 

from the optimal medication if the definite decision was made earlier. Besides, 

registering new patients and gathering data on them is costly. After each stage, 

costs of delaying the decision for one more stage were subtracted from the gains of 

the delay, resulting in the Expected Net Gain (ENG) of waiting for more evidence. 

To find the ENG of delaying the decision for each additional stage, we applied the 

“adopt and trial” framework suggested by Eckermann and Willan (Eckermann, 

Willan 2007). Their framework uses a value of sample information to estimate the 

gains of a trial and compares it to the costs of the trial and opportunity losses to 

find the ENG of the trial. We modified this framework for a registry instead of a trial, 

and used it repeatedly rather than once, to find the ENG of waiting in each stage. 

The adopted framework is described in appendix 2. The optimal point was reached 

when more delay in the definite decision would result in a negative ENG. This is an 

a priori optimization, based on the expected outcomes of the registry. 
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In the base case analysis we considered two scenarios: first, the case in which 

the prevalent patients were registered at the beginning and the incident cases were 

added during each stage. In this way, the number of patients using each medication 

in the first stage would be equal to prevalent patients who use that medication 

plus the new incident cases that are prescribed that medication during the first 

stage. After each stage, the number of patients was updated by adding the new 

incident cases and subtracting the dead cases. Since infected patients are usually 

severely ill, they were not omitted from the registry after treatment success. Even if 

the medication worked successfully, the patient would still be followed to observe 

the overall survival time as the outcome measurement. In the second scenario, 

prevalent patients were not included when the registry started and the information 

was ascertained for the incident cases only. In this way, the registry started with zero 

patients and new incident cases were enrolled as time passed. Like the previous 

scenario, after each stage new cases were added and dead cases were omitted. 

The model was programmed in MATLAB and it allowed for flexible parameter 

inputs and comparison of results for different inputs. Since the effect of discount rates 

would remain limited for the time scale of the current case study, we left it out in the 

base case analysis. We examined a discount rate of 3% in a sensitivity analysis. 

Initial Incremental Net Benefits (INB)

In order to estimate the INB at time 0, which is the time that the conditional 

reimbursement has started, we assigned distributions to the effect and cost estimates 

on which the conditional reimbursement decision was based. Health effects were 

defined using the 12 weeks survival proportion and mean survival, taken from the 

cost-effectiveness analysis (Jansen et al. 2005) based on the initial trial (Herbrecht 

et al. 2002) and used in the original decision on conditional reimbursement. A 

Weibull distribution was calibrated to fit the survival times of the two arms of the 

trial. Costs were also taken from the cost-effectiveness study (Jansen et al. 2005) 

and updated to the price level 2008. A gamma distribution was fitted to represent 

the cost data. These data contained Dutch costs from a healthcare perspective. The 

distributions are shown in Table 1. 
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Table 1 Distributions used for survivals and costs at time 0, distributions were fitted to 
figures published by Jansen (2005).

Voriconazole Amphotericin B

Survival (life weeks) weibull (93.8,0.52) weibull (46.6,0.45)

Costs (Euro per 12 weeks) gamma (575,57) gamma (570,59) 

We then used Monte Carlo simulation to simulate from the above distributions 

and computed the INB in each stage based on all iterations. Using the central limit 

theorem we assume normality for the INB being a sample statistic. Its mean and 

variance were then estimated for each stage using the results of the simulation, for 

a range of willingness to pay values. Estimates of the INB values and their standard 

deviations for a range of willingness-to-pay thresholds at time 0 are reported in 

Table 2. 

Willingness-to-pay
(Euros per life year gained)

INB (s.d)

20,000 24,000 (180,000)
40,000 46,000 (360,000)
60,000 66,000 ( 550,000)
80,000 86,000 (740,000)

Table 2. Estimates of the initial INB for different willingness-to-pay thresholds

Table 2 shows that for all the willingness-to-pay thresholds the INB has a 

positive value in the beginning of the conditional reimbursement period. However, 

the relatively large standard deviations indicate high uncertainty in these initial 

estimates. As the willingness-to-pay rises, the initial INB becomes more favorable 

but uncertainty also increases. 

Adoption proportion

Adoption proportion is a parameter that indicates what percentage of the 

patient population is using the new medication. Changing this proportion would 

change the number of patients in both arms of the registry, as well as the number 

of patients that are currently benefiting from a drug. Since the value of such a 
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parameter is often not available before the registry starts and is was not for our 

case study, we examined the results for a range of adoption proportions from 0% to 

100%. When a single value for the adoption proportion was needed, i.e. when the 

effects of other parameters were to be tested, we used the equal 50%-50% rate for 

both arms. 

Incidence and Mortality rates

There are several underlying conditions that cause the infection with aspergillus 

spp. Besides, hospitals differ in their background infection rate. Season as well 

as external circumstances (like building activities) also play an important role. To 

estimate incidence rates, we multiplied the incidence rate of the different underlying 

conditions by the incidence of aspergillus spp. within the condition and summed 

these. Data used to compute the incidence rates are listed in Table 3.

Table 3 Incidence of underlying conditions and aspergillus spp.  infection among each 
category of conditions

Underlying 
condition

Incident cases 
in Netherlands 

(2008)

Infections caused by 
aspergillus spp. (%) 
(Pagano et al. 2006)

Number 
of infected 

cases

Reference for the 
incident cases

AML 625 7.11 44
(Netherlands 

Cancer Registry 
website (KNL) )

ALL 226 3.87 9
(Netherlands 

Cancer Registry 
website (KNL) )

CML 164 2.07 3 (Silver 2000)

CLL 625 0.36 2
(van den Broek et 

al. 2012)

NHL 3691 0.81 30
(Netherlands 

Cancer Registry 
website (KNL) )

HD 447 0.32 1
(Netherlands 

Cancer Registry 
website (KNL) )

MM 1048 0.27 3
(Netherlands 

Cancer Registry 
website (KNL) )

Total 6826 1.35 92



109

When to make a decision: The case of antifungals

5

As shown in Table 3, in total 92 patients would be infected by aspergilluss 

spp. per year in The Netherlands. It should be mentioned that this is a very rough 

estimate in lack of appropriate data on incident cases of aspergilluss spp. We will 

get back to this issue in the sensitivity analysis and the discussion. 

Mortality proportions were derived from the trial comparing voriconazole and 

amphotericin B (Herbrecht et al. 2002). 12-weeks mortality proportions were 29% 

and 42% for voriconazole and amphotericin B, respectively. 

Prevalence

The uncertain nature of the aspergillus infection also affected the prevalence 

estimations. There is a widespread perception that the prevalence of aspergillosis 

has increased over the past decades. However, the evidence for such a claim has been 

usually gathered from longitudinal studies that are conducted in a single hospital, 

and may not be representative of all infected patients (Warnock 2007). In order to 

find an estimate for the infection prevalence, we assumed that the population is 

stable, i.e. the incidence rate does not change over time, and computed prevalence 

as a function of mean survival time and incidence rate (Keiding 1991). Survival time 

was measured in the registry as the effect measure for the drugs. Mean survival 

times reported in the Herbrecht trial (Herbrecht et al. 2002) were different for the 

voriconazole and amphotericin B arms. Therefore, we combined the survival times 

with the adoption proportion (r) to find the overall prevalence of the aspergilluss 

infections:

av SriSrip ×−×+××= )1(

Where vS  and aS  are the mean survival time of voriconazole and amphotericin 

B, respectively, and i is the number of incident cases per year. Considering a mean 

survival time of 174 life-weeks (3.35 years) for voriconazole and 116.1 life-weeks 

(2.23 years) for amphotericin B (Jansen et al. 2005), 92 incident cases per year 

and an adoption proportion of 50%, 256 patients would have experienced fungal 

infections at the beginning of the conditional reimbursement process.
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Registry information 

An important assumption regarding the registry information is that the registry 

is well-designed and that the data is corrected for selection bias. It is essential to 

have data with minimum bias in order to support the final decision; hence this is a 

relevant assumption also for the timing of the decision. 

Characteristics of the registry, for instance the number of patients, sample 

variations, and costs of registering patients were important in the data update 

process. The number of patients who are registered in each stage is a function of the 

incidence rate and the proportion of the total population who are being registered. 

This would determine the number of new observations which will contribute to 

the update in information on INBs of the new drug. We assumed that 75% of the 

patients who received either voriconazole or amphotericin B would be registered 

and their data would be available for the authorities at the time of making the 

definite decision. The latter assumption was tested in sensitivity analysis. 

Sample variation is also among the registry-related information that shows 

the level of homogeneity in registry data. High variations in data from the registry 

is indicative of a slow rate of information arrival, while smaller variations show 

that information is updated in a fast way. Since the decision is to be made ex-ante 

(i.e. before knowing the variation in the registry data), we ran the model for four 

different values of sample variations. 

Costs of registry include 1) Fixed cost of setting up a registry (which is not 

dependent on the number of patients); 2) Cost of registering each patient (cost of 

screening, sending questionnaires, etc, these costs will be multiplied by the number 

of patients). Estimation of these costs was based on opinions from an expert 

involved in the Dutch patient registries for fungal infections.

Sensitivity analysis 

We performed univariate sensitivity analysis (SA) for two types of input 

variables: first for those which are uncertain in this study but mostly certain to 

the decision maker. This category includes variables that can be assigned by the 

authorities. For instance, the willingness-to-pay threshold can be chosen by the 
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health policy decision makers. Drug costs can also be established after negotiations 

with the manufacturers: sometimes a discount in the price of the new drug is 

offered for the duration of the registry. Similarly, the discount rate is known to 

the policy authorities. Having access to the registry set up and costs information, 

decision makers can choose the best value for the parameters of this category. 

These parameters are listed in Table 4. 

Table 4 Base case values of input parameters which are known to decision maker, along 

with values used in SA

Parameter Basic value Value in SA

Total population 16,000,000 ------

Willingness-to-pay threshold
(€/life year gained)

40,000 
20,000
60,000
80,000

Mean treatment costs for 
the new drug (voriconazole) 
per patient per 12 weeks

€26,800
10-1 times the 
initial value

Proportion of the total 
population that is registered

75%
10%

95%

Fixed cost of the registry 
€ 125,000/ year for first 4 years
€ 75,000/ year for second 4 years

±50% of basic 
value

Variable cost of the registry 
per patient

€ 250
±50% of basic 
value

Discount rate 0% 3%

The second category includes uncertain variables that should be estimated 

from the registry data along with other sources. For instance, the proportion of 

patients who use voriconazole remains uncertain even after observing the number 

of patients in each group. Due to adverse effects patients might switch from one drug 

to another drug during the treatment time. Besides, the number of patients using 

each medication might vary over time. Therefore, the proportion using voriconazole 

would need to be estimated. Since no basic estimate is available for the adoption 

proportion, we examined the effects of this variable for 4 proportions, starting from 
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the extreme point of 0% (when voriconazole is not adopted yet) to the other extreme 

of 100% (when voriconazole is completely adopted). 

Other variables can be found by observing the data from the registry are sample 

variations, costs of registry, and population registered. These parameters are mostly 

very case-specific, and it is difficult to find an approximation before implementing 

the registry process. Therefore, we examined the effects of changing the parameters 

to different values and reported the optimal time after the variations.

Effects of other variables, including the number of incidence cases, mortality 

proportions, and survivals were also tested using the univariate SA. Table 5 provides a 

list of these variables with values used for sensitivity analysis. 

The value used in the SA for the incidence rate is an estimate from an informal 

registry in the North of The Netherlands (Raw data from University Medical Center 

Groningen. 2011). Base case overall survival was taken from the study by Jansen 

(Jansen et al. 2005), and the lower bounds and upper bounds reported in the same 

reference are used in sensitivity analyses. Other references for values used for 

sensitivity analysis are listed in Table 5. 

Table 5 Base case values of input parameters which are uncertain to the decision maker, 

along with values used in SA

Parameter Basic value
Value 
in SA

Source of value in SA

Adoption proportion 50%

0 % ---
25% ---
75% ---
100% ---

Number of incidence cases per year 92 200
(Raw data from University Medical 
Center Groningen. 2011)

Ratio of sample standard deviation 
in the registry to deviation in the 
initial trial 

10-1

10-2 ---
1 ---
10 ---
100 ---

Survival time voriconazole 174.0 weeks
160.1 (Jansen et al. 2005)
188.8 (Jansen et al. 2005)

Survival time amphotericin B 116.1 weeks
104.8 (Jansen et al. 2005)
128.0 (Jansen et al. 2005)

Mortality proportion voriconazole 
(per 12 weeks)

0.29 0.38 (Denning et al. 2002)

Mortality proportion amphotericin 
B (per 12 weeks)

0.42 0.67 (Denning 1996)
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RESULTS 

Base case scenarios 

The base case ENG curve as well as the cumulative ENG for the scenario in which 

prevalent cases are registered as well as incident cases is depicted in Figure 1. As 

shown in Figure 1a, ENG is increasing during the first two stages and has a peak 

in the second stage. The prevalent cases are most likely registered in the first two 

stages, so the number of patients in the first stages is larger. This means a lot of new 

information is added in these stages. On the other hand, since the initial knowledge 

about the population is very uncertain, the information in the first stages considerably 

reduces uncertainty. Therefore, the curve peaks in the second stage. From the second 

stage onwards, the ENG curve constantly decreases over time and it reaches zero at 

stage number 21. However, since the negative numbers are very small, they are not 

distinguishable in the curve. Hence, the optimal time for making the decision in this 

case is stage 21 (~5 years). At this point, the cumulative gains are maximal (Figure 1b), 

so this would be the best time to make a definite decision. However, since the gains 

just before as well as the losses after the 21rd stage are small, the cumulative curve 

stays almost the same. So a definite decision between three and six years from the 

start would remain about optimal. 

As shown in Figure 1, for the current strategy of 4 year delay (shown by the 

dashed line), ENG of a delay for one more period is above zero. However, the total 

area under the curve after the fourth year, which is the ENG of continuing the 

registry beyond 4 years, is limited. In this case, although the current policy of 4 

years delay is sub optimal, it would not lead to huge losses. 

Considering the scenario of registering only incident cases, the ENG curve 

shows a pattern quite similar to the first scenario shown in Figure 1, but the ENG 

in this case never approaches zero (figure not shown). Since the initial estimate of 

INB is relatively uncertain, the gain in information is large in the first few stages. 

When prevalent cases are not considered at all, the information is so scarce that 

observing the data from registry for only two stages would lead to a considerable 

gain. After the second stage, some basic information on the INB of voriconazole 

versus amphotericin B is gained, so the ENG starts to decrease. However, the gain 



114

When to make a decision: The case of antifungals

5

in information is so slow that the registry may continue for a long time without 

reaching an optimal point. The cumulative ENG keeps increasing when moving from 

one stage to the next. However, the increase gets very slow, with a pattern very 

similar to Figure 1b; hence again, any decision time from year 3 onwards would be 

about optimal. 
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Figure 1 a) Expected Net Gains and b) Cumulative Expected Net Gains for the scenario of 

observing both prevalent and incident cases.

Sensitivity analysis 

Results of one-way sensitivity analysis for the parameters known to the decision 

maker are listed in Table 6. 

Table 6 indicates that higher willingness-to-pay thresholds will result in later 

time points of making the definite decision. When the system is paying more for an 

additional unit of health, a definite decision becomes more risky, hence it would be 

more appropriate to take time and observe sufficient data before deciding.  
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Reducing the treatment costs of the new drug (which mainly consist of the drug 

costs) does not affect the outcome. This shows that a discount (even as high as 90%) 

in the price of the drug during the registry period does not lead to shorter or longer 

optimal registry periods. 

Sensitivity analysis on registry population shows that when only 10% of the 

population is covered by the registry, the information arrival is so slow that the 

cumulative ENG would not reach an optimal point within the first 8 years. Hence, 

the decision must be delayed to the latest possible time. On the other hand, a large 

registry that covers 95% of the population results in a somewhat earlier optimal 

time point of 19 stages comparing to the base case result of 21 stages.

As Table 6 indicates, the results are not much sensitive to the fixed registry 

costs, while the variable cost per patient has a significant effect. When registering 

patients is more costly, the point at which costs dominate gains is reached sooner. 

Low registry costs mean that observation can be continued longer before getting 

to the decision point. Discounting the costs and monetary gains does not change 

the optimal time either. As expected, since the time scale of the disease is short, 

discount rate does not cause much variation in results.

Table 6 Results of sensitivity analysis for the input parameters which are known to decision 
maker

Parameter Basic value Value in SA
Optimal 
stage

Total population 16,000,000 ------

Willingness-to-pay threshold
(€/life year gained)

40,000 
20,000 17
60,000 26
80,000 29

Mean treatment costs for the new drug 
(voriconazole) per patient per 12 weeks

€26,800 
10-1 times the 
basic value

21

Proportion of the total population that 
is registered

75%
10% >32
95% 19

Fixed cost of the registry 

€ 125,000/ year for first 
4 years
€ 75,000/ year for 
second 4 years

+50% of basic 
value

21

-50% of basic 
value

21

Variable cost of the registry per patient € 250

+50% of basic 
value

18

-50% of basic 
value

29

Discount rate 0% 3% 21
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Sensitivity analysis for the parameters of the second category (table 5) indicates 

that results are sensitive to the standard deviation of the registry data. When the 

standard deviation is as low as 10-2 times the initial distribution, data is more 

homogeneous and that makes the information update faster. Therefore, an optimal 

time point will be reached earlier (stage 17). High deviations would make the update 

slower which results in a decision time as late as possible. 

For other parameters of this category, results are quite robust despite the high 

uncertainty in input parameters. Changing these parameters might change the 

overall ENG curves, but would keep the optimal time close to the base case result 

of 21 stages (i.e. about five years). According to results of the sensitivity analysis, 

the optimal time is not sensitive to the incidence rate and survival times. Similarly, 

it does not depend much on the prevalence of infections. Such robustness might be 

due to the fact that fungal infections are still rare in The Netherlands. Even doubling 

the number of patients per year would only increase the 12-weeks incidence rate 

from 1.4×10-6 to 3.0×10-6, which is not a considerable change in absolute terms.

DISCUSSION 

In this chapter we defined the optimal time of making a definite decision on 

reimbursement of voriconazole as the newest drug of choice for primary treatment 

of invasive aspergillosis. While the old regulations for expensive new inpatient drugs 

specified a maximum period of four years for conditional funding, we showed that 

in case of antifungal drugs the best time to make a definite decision is about the 5th 

year. However, making the decision at any point from the 3rd year on is also close to 

optimal for both scenarios considered: registering the prevalent and incident cases 

or registering only incident cases. 

Results of this study have applicability outside the Dutch regulatory settings as 

well. Coverage with evidence development admission will in general get increasing 

attention in many jurisdictions (Carlson et al. 2010). Our results show how the 

decision makers could set the length of the period for evidence development such 

as to balance information gains against costs of further delay. Although the current 

study is aiming to optimize the Dutch reimbursement system which is mainly based 
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on real-life patient registry data, it can be modified for using other data sources 

in other jurisdictions. For instance, the framework proposed in this study can be 

applied to estimate the optimal follow-up time of a clinical trial during the coverage 

with evidence development process.  

One advantage of the method used in the current study is that the duration 

of the research period is determined ex-ante. In this way, the time to make the 

definitive decision could be set at the beginning of the conditional reimbursement 

process, once a registry has started. The decision process could thus be completely 

transparent for the decision maker as well as the producer. In contrast, the problem 

of finding the optimal time for reimbursement decisions could be solved using 

methods that optimize the outcomes during the observation process. The real 

options approach (ROA) is an example of such methods, in which the optimal time 

is adjusted after observing the information in each stage (Dixit, Pindyck 1994). 

Another important and related method is the sequential analysis of trial data, in 

which the recruitment of the participants is continued until a convincing outcome 

is observed (Altman 1991). 

Although the framework used in this study considered all relevant costs and 

gains affecting the optimal time of the conditional reimbursement period, a robust 

estimation depends both on including the right parameters and on having reliable 

estimates for these parameters. In our study, the high level of uncertainty in disease 

conditions implied that information on some parameters was very limited. Such 

uncertainties are due to the difficulties in diagnosis, different treatment options, 

and adverse effects which make physicians change the prescribed medicine during 

the treatment. In absence of reliable estimates for incidence and prevalence 

of fungal infections, we had to make assumptions which enabled us to find only 

rough estimates. The number of new incident cases was computed considering 

seven major categories of immunocompromised patients, while more categories of 

patients might be exposed to fungal infections due to reduced immunity. Another 

assumption was made to enable calculating prevalence as a function of incidence 

and disease duration. The assumption of stability might not be completely realistic, 

but it was the only possibility to estimate a base case for prevalence. Besides the 

limited data on the disease epidemiology, lack of registry data was a limitation that 
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would also be present in actual ex ante applications of this approach. Without the 

patient registry yet in place, estimates for costs and outcomes of the patient registry 

are bound to be uncertain. However, we have tried to find best estimates and have 

analysed the effects of variations in these parameters. As shown in sensitivity 

analysis, parameters related to incidence and prevalence did have a limited effect 

on the optimal time, as did the drug costs. 

The proportion of voriconazole users is considered to be fixed over time in this 

study. However, the adoption proportion might be variable over time. It would 

usually take some time for a new drug to become widely available and accepted. 

Hence, an increase over time in usage of the new medication is reasonable. However, 

results of the sensitivity analysis illustrated that the optimal time in our case did 

not change much with the adoption proportion. Our model allows for evaluating 

changing proportions over time, but we do not expect the results to vary much for 

the current case. 

To summarize, our application shows how to arrive at a reasonable estimate 

given the limited amount of data usually available at the time of a conditional 

decision. 

From a broader point of view, the fact that the additional data is gathered using 

mainly registry data (i.e. observational study) might itself be a limitation for the 

process. Registries do not necessarily lend themselves for unbiased effectiveness 

estimate. For instance, when the new drug may be prescribed for a different patient 

population than the old one, the most efficient way of gathering additional data 

would be using an optimal portfolio of research combining different types of study 

designs including trials, epidemiological studies, surveys and patient registries 

(Conti, Claxton 2009). However, such an approach would be expensive and not 

very realistic when the new drug is already partially adopted. For the conditional 

reimbursement settings, registries are good solutions to gather additional data 

but only if they are well designed. Our study stresses the importance of carefully 

assessing registries in their early stages, thinking about their design and making 

sure that the registry data is going to provide the right evidence to support a final 

reimbursement decision. 

The case presented in this study is a first step towards a flexible length for the 
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period of additional research for any new drug. The basic requirement for using this 

approach in its current form is that a well designed registry exists or starts in which 

new patients who are using either the new drug or the standard of care are being 

observed. Having the optimal re-evaluation time for any drug which is recently 

introduced, the decision makers would know when to look at the registry data and 

make the definite reimbursement decisions. 

To conclude, due to the increasing number of new drugs and the limited 

health care resources, (conditional) reimbursement decisions urgently require 

improvement. In the current study we used the case of antifungal pharmaceuticals 

to show that decision making can be improved using a flexible approach which takes 

all the specifications of the drug and the disease into account. Thus the conditional 

reimbursement decisions can be modified for each new drug. 
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APPENDIX 1

Maximum likelihood approach

When INBk is the estimate of incremental net benefits using the simulation results 

at the end of stage k with variance of 2
ks  (k=0,1,…i and k=0 represents the start point 

of conditional reimbursement) , the maximum likelihood estimator (MLE) for INB at 

the end of stage i is:
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And the distribution of the updated INB which uses the information of the entire 

registry period until time i will be as follows:
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bi reflects the information that will be available when the registry would be used 

for i stages. 

APPENDIX 2

Value of information framework for registry data over time

If we call nAi and nBi the numbers of patients in the registry at the end of stage i 

receiving drugs A and B respectively, we have:

)()( )1()1( −− ××−×××+= iAAriAAi nmtPkrtnn

)())1(( )1()1( −− ××−××−×+= iBBriBBi nmtPkrtnn

Where t is the duration of each stage, r is the proportion of patients using the new 

drug (A) in the country, k is the incidence rate of the disease in each stage, Pr is the 

population in the registry area, and mA and mB the mortality rates for patients using 

drugs A and B respectively. At i=0 which is the conditional decision point we have:

lPrn rA ××=0

lPrn rB ××−= )1(0
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Where l is the prevalence rate. If we call the total population of the country to be 

Pc (excluding the registry area), the total number of patients that can potentially 

benefit from the results of the research at stage i can be calculated similarly:

))1(()( 111 −−− ××−×+×××−××+= iBiAcii NmrtNmrtPktNN

At the end of each stage, if the mean of the distribution of bi (appendix1) is positive 

( iθ̂ >0), the gain of waiting one more stage versus adopting A is calculated. In this 

case the Expected value of Sample Information (EVSI) in stage i is:

Where if  is the INB probability density function of A versus B in stage i. If bi is 

in favour of B ( iθ̂ ≤0), the gain of waiting for one more stage versus permanently 

adopting B would be calculated:

Total costs of waiting (including opportunity losses) in stage i when iθ̂ >0 would be 

computed as:

viBiAiiBiAi CnnbmeannTC ×++×= )()(

Where Cvi is the variable cost of being on the registry for each patient in stage i. 

And total costs in stage i when iθ̂ ≤0 would follow:

viBiAiiAiBi CnnbmeannTC ×++−×= )()(

Then the Expected Net Gain (ENG) of continuing registration rather than making a 

definite decision of the population in stage i would be:

AiAi TCEVSI − iθ̂

BiBi TCEVSI − iθ̂
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Abstract 

Objectives: Access with evidence development has been established for 

expensive intramural drugs in the Netherlands. The procedure involves a 4-year 

period of conditional reimbursement. During this period, additional evidence has 

to be gathered usually through a patient registry. Given the costs and time involved 

in gathering the data, it is important to carefully evaluate the registry. This study 

aims to develop a model for regular evaluation of patient registries during an access 

with evidence development process and finding the optimal length of the registry 

period. 

Methods: We use data from a recent registry in The Netherlands on oxaliplatin 

as a treatment option for stage III colon cancer. We add simulated further follow-

up data to the empirical data available and apply value of information analysis to 

balance the gains of extending the period and amount of data gathering against the 

costs of registering patients. 

Results: We show that given the assumptions on cohort size, follow-up time, 

and purpose of the registry, the current (partly simulated) registry was not very 

efficient. Notably, the observation period could have been stopped to make a 

definite reimbursement decision after 2 years rather than the fixed 4-year period.

Conclusions: Patient registries may be an efficient way to gather data on new 

medical treatments, but they need to be carefully designed and evaluated. For each 

purpose, data gathering can be tailored to make sure decisions are taken at the 

moment that sufficient data is available.
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INTRODUCTION

The uncertainty in costs and effectiveness of new medical technologies makes 

it risky for decision makers to decide on reimbursement right after their market-

approval by authorities. On the other hand, it is essential to keep pace with the rapid 

development of medical innovations. In recent years, the concept of “access with 

evidence development” (AED) has been introduced as a policy option to balance 

the careful evaluation of the new technologies with improvements in patient care 

by rapid access to technologies. Many developed countries have applied different 

forms of access with evidence development (Carbonneil et al., 2009; Carlsona et al., 

2010; Mohr and Tunis, 2010; Trueman et al., 2010). 

In the Netherlands, conditional reimbursement has been implemented as a 

way to ensure access while new evidence is being gathered. The current regulation 

is still under development, but previous regulation included a period of 4 years 

(Boer, 2012) in which the drug was reimbursed under the condition that during this 

period sufficient information on its cost-effectiveness would be obtained. After the 

collection of data in this period, the cost-effectiveness of the drug is to be reassessed 

in order to make a definite reimbursement decision. 

Although randomized clinical trials are considered the gold standard for 

gathering data on drug (cost-) effectiveness, in conditional reimbursement settings 

patient registries are more attractive. That is because additional clinical trials are 

difficult to organize in the same population in which a new medication is already 

adopted and reimbursed, even conditionally. Due to lack of randomisation, 

registries have a serious risk of biased outcomes. This limitation may be managed 

to some extent by good design (Dugas et al., 2008) and using analysis techniques 

like propensity scores (Indurkhya et al., 2006). This is not the focus of the current 

manuscript though.

Advantages of registries are that they reflect daily practice more closely and 

can include a larger population since they do not require patients to agree to 

randomization for their treatment. Therefore, registries may be important sources 

of evidence (Gliklich and DeFilippo Mack, 2009). The current research focuses 

on patient registries as the source of additional data gathering. Setting up and 
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maintaining a registry is usually costly and time consuming and so it is important to 

evaluate its added value, both in advance and during the registry period. If a registry 

aiming to support a reimbursement decision does not produce, or is no longer 

producing information helpful for that decision, it is not worthwhile to continue 

gathering data and further delay the definite decision. In some cases, it might even 

be better to stop the registry and to use other sources of data (e.g. international 

trials) instead, unless other purposes warrant its continuation. 

Our study gives an example of evaluating registries with the aim to support a 

reimbursement decision for the specific case of third line colon cancer treatment. We 

estimate the optimal duration of data gathering for a (partly hypothetical) registry. 

This duration could be very short or zero, actually indicating that the registry in its 

current form is not expected to add useful information for the decision concerning 

reimbursement. It might also be longer than actual follow-up, indicating that the 

follow-up time could have been longer to ensure a better decision. 

Colon and rectal cancers are among the most common causes of death from 

cancer with 447,000 new cases and 215,000 deaths in Europe in 2012 (Ferlay et al., 

2013). Since the 1990s, patients with stage III colon cancer were treated by adjuvant 

chemotherapy with 5-fluorouracil and leucovorin (5FU/LV) (Moertel et al., 1990). 

From 2005 onwards, National guidelines in the Netherlands have recommended 

the use of 6 months of treatment with 5FU/LV combined with oxaliplatin (FOLFOX) 

as the primary treatment option for stage III and possibly high-risk stage II colon 

cancer patients. As an alternative, the use of capecitabine combined with oxaliplatin 

(CAPOX) was also supported by the Dutch association for Medical Oncology (NVMO) 

(van Gils et al., 2012).

Treatment costs with oxaliplatin are quite high; hence the majority (80%) 

of oxaliplatin costs were reimbursed to hospitals in The Netherlands as of 2006 

while a registry was initiated to provide additional information. This registry on 

stage III colon cancer patients was set up to collect additional evidence during the 

conditional reimbursement period. It has also provided information on guideline 

implementation in daily practice with respect to treatment choice, patient 

characteristics and dosage quantities (van Gils et al., 2012). 

While the registry helps to gain new information and hence to reduce the 
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uncertainty in the decision, it also imposes costs consisting of set up costs and costs 

of registering patients. Moreover, during the conditional reimbursement period, no 

definite decision is taken and patients may receive suboptimal treatment as a result. 

In the methods and results section, it is explained how these may be balanced to 

evaluate the registry and find the best length for the period of additional data 

gathering. The discussion relates our findings to the actual data observation and 

decision process and considers how the process could be improved, changing the 

fixed 4-year period in the current regulations to a more flexible period.  

METHODS

General approach

Using a healthcare perspective, we assumed that the definite reimbursement 

decision would get informed by the distribution of the Incremental Net Benefits 

(INB). The INB was calculated as )()( cOcO CCSS −−−×λ , where λ  represents 

the willingness-to-pay threshold per disease free life year (DFLY) gained, SO is the 

estimate of the disease free life years when using oxaliplatin (FOLFOX or CAPOX), 

Sc is the estimate of the disease free life years in the control population (5FU/LV 

or capecitabine), and CO and Cc are estimates of the total costs for both types of 

treatment. Since the study aims to evaluate a partly hypothetical registry and 

decide on its optimal length, we estimated INB at several stages. Given disease 

prevalence and incidence, annual re-evaluation was assumed. Patients included 

in the registry were diagnosed in the period 2005-2006; hence the end of each 

year between 2006 and 2012 could have been a decision point (in 2012, the T=4 

decision was scheduled). Starting with an initial distribution for INB at t0 (the start 

point of conditional reimbursement period), the distribution of INB was updated 

after each year using the registry data. Having the consecutive distributions of INB, 

we calculated the gains obtained from the additional information after each year. 

Balancing these gains against the costs of the registry enabled us to evaluate the 

registry and decide on the optimal time of making a decision.  
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Patient population

A registry recorded information on stage III colon cancer Dutch patients who 

were diagnosed in 2005 or 2006, and who received adjuvant chemotherapy. The data 

was gathered retrospectively during 2008-2009. The database includes 391 patients 

that satisfy the inclusion criteria (van Gils et al., 2012), of which 281 patients had 

been treated with oxaliplatin. (FOLFOX in 136 patients and CAPOX in145 patients). 

The remaining patients received capecitabine (93 patients) or 5FU/LV (17 patients). 

Follow-up time before a relapse or censoring was reported, and used to estimate 

disease free survival (DFS). Drug costs and follow-up costs were also registered (van 

Gils et al., 2012). Since the aim of our study was to illustrate registry evaluation, we 

used the data presently available, i.e., not the final  registry data. 

Imputation of missing data

Some patients did not have a relapse and were censored at the end of the data 

collection period. However, for the purpose of this study we need to consider the 

case in which the data would have been gathered beyond 2008-2009. Therefore, 

from 2009 onwards, simulation was used to project the remainder of each patient’s 

lifetime. The simulation was based on Weibull distributions for disease free life 

days fitted to the available patient data. Using conditional survivals, the expected 

future life expectancies were computed for all patients (see appendix 1).  Medical 

costs were observed for the period 2005-2008 and used to simulate treatment 

costs and follow-up costs for the remaining years. We used constant costs per day 

for treatment phase and a gamma distribution on the proportion of total costs in 

each time interval during the follow-up phase, based on opinions of the involved 

experts (appendix 2 provides more details). This resulted in a partly empirical, partly 

simulated database covering the periods 2005-2009 and 2010-2012, containing 

information on all patients diagnosed in 2005-2006. 

Survivals, costs and INB

Since the problem to address is the evaluation of the available registry data at 

potential points of making a definite decision, we looked at the partly hypothetical 
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data at the end of each year as if there would be no more information available 

after that date. This mimics how the procedure could be done prospectively for a 

new decision. 

For each year, we filtered the (partly simulated) DFS to find the patients who had 

started treatment before the end of that year. If the patient experienced no event 

before the end of the year, the patient was censored. The costs of the censored 

patients were assumed to be the costs observed up to the censor date (appendix 

2). This resulted in 7 different datasets containing the data observed up to the end 

of each year. These were analyzed to find their overall mean and standard errors of 

survivals and costs.  

We assumed a λ  of 60,000 €/DFLY gained (≈82 €/disease free life day), and 

changed this in the sensitivity analysis. The INB at the end of each year i is:

[ ] [ ])()()()()365/( cioiciOii CECESESEINB −−−×= λ

Where Ei(X) shows the mean of parameter X at the end of the year i. Assuming 

independency between costs per day and the DFS time, the squared standard error 

of INBi then is1:

[ ] [ ]222222 )(.)(.)(.)(.)365/(. CiOiCiOiINBi CesCesSesSeses +++×= λ

This can be calculated for each year, using the number of patients in the registry 

at the end of each year (ni).  

Prior distribution of INB

The distribution for INB at t0 (the start of the conditional reimbursement 

period) reflects the information available when the original decision to set up the 

registry was made. Using the MOSAIC trial (André et al., 2004), we found a mean 

and standard error for DFS months in each arm. Cost estimates used by decision 

makers at t0 were obtained from consultations with experts involved in the registry. 

We conservatively assumed that the additional costs of oxaliplatin per patient per 

1Given that for any random variable X, we have:  nXstdXes /)()(. 22 =
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treatment at t0 had a uniform distribution with parameters (€0, €25000). Follow-up 

costs were equal for treatment with or without oxaliplatin as an initial estimate. The 

estimated INB and its standard error at t0 was then calculated as:

[ ] [ ])cos()()365/( 000 tsadditionalEsurvivaladditionalEINB −×= λ

And

2
0

2
0

22
0 ))cos(.())(.()365/(. tsadditionalessurvivaladditionaleses INB +×= λ

INB updates

Having a prior distribution for INB and expressions for its observation in each 

stage, we used a Bayesian approach to find the updated INB values after each stage. 

For notational simplicity, it is convenient to re-express the standard errors as 

the precision:

Ti
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Where n0 is the number of patients in the initial trial (2246 in total (André et al., 

2004)) and ni (i=1,…T) is the total number of patients in the registry in year i. After 

observing INBi, the updated distribution of INB with respect to INBi would be as 

follows (Christensen et al., 2010):
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Gains and costs of additional follow-up time

At each potential decision point, the decision maker has the option to stop 

getting observations from the registry and make the definite decision or to postpone 

the decision for one more year. The Expected Net Gains (ENG) of waiting for the 

past year were found as the gains of waiting minus costs of waiting. 
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Gains as EVSI

Gains of waiting for more evidence before making a decision were basically 

calculated as the reduction in opportunity losses (Eckermann and Willan, 2007, 

2008). Making a definite reimbursement decision means that either oxaliplatin 

is going to be routinely prescribed together with 5FU/LV or capecitabine for all 

patients with stage III colon cancer in The Netherlands, or it would be completely 

removed from the list of reimbursed drugs. The Expected value of Sample 

Information (EVSI) expresses the added value of gathering more information before 

taking the definite decision. The EVSI at the end of stage i was computed as the 

reduction in the opportunity loss from the end point of stage i-1 to the end point of 

stage i. The opportunity loss expresses the possible losses resulting from a wrong 

decision. When uncertainty in the INB distribution is low, the possibility of a wrong 

decision decreases and hence the opportunity losses also decrease. The reduction 

in opportunity loss could be found from the changes in the distribution of INB after 

each stage. The detailed formulations of finding the opportunity losses and EVSIs 

are in appendices 3 and 4. 

Number of patients who benefit from the decision

The number of patients in the country that can potentially benefit from a well 

informed decision after each stage multiplied by the gain per patient gives the overall 

gain of continuation of the registry. The total number of patients at the end of year i is:

))1(()( 111 −−− ××−+××−×+= inoxaliplatinoinoxaliplatiii NmrNmrPkNN

Where k is the incidence rate, P is the total population of the country, r is the 

proportion of patients who are using oxaliplatin, and m is the mortality proportion. 

Simply, we started with N0 which is the number of prevalent cases at t0, then the 

new incident cases were added and the dead cases are omitted after each year. 

Since the registry had started in 2005-2006, we used the prevalence and incidence 

rates of 2006 to estimate the total number of patients benefiting from the decision 

at each stage (Ni) (table 1). 
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Table 1 Population parameters used in the model

Parameter Value Reference 
Proportion of oxaliplatin users 0.7 The Dutch registry
Population of the country 16,000,000 ---
Number of prevalent cases in 2006 8,300
Number of incident cases in 2006 1,900

Costs of waiting

Costs of waiting include fixed costs of setting up the registry, which take place 

at t0, and the variable costs of observing patients recruited over time. Therefore, at 

the end of the first stage the total costs (TC) would be:

vCOf CnnCTC ×++= )( 111

Where Cf is the registry set-up cost, Cv is the incremental variable cost per patient 

of being on the registry per year, and n1 O  and n1 C are the number of registered 

patients for the first year in each group. From the second year onwards we have:

vCiOii CnnTC ×+= )(

Gains versus costs: Expected Net Gains 

Trading off the gains against the costs, the Expected Net Gains (ENG) of delaying 

the decision for one more year at the end of each year can be found. If the value of 

ENG turned out positive, the decision maker would know that so far gains had been 

obtained from delaying the decision, and could postpone the decision for one more 

stage. If the value appeared negative, the decision maker could stop the observation 

process because further continuation of the registry only implied more costs, unless 

the registry is providing gains for other purposes. Regardless of the latter, this would 

be the best time for the decision concerning definite reimbursement, since further 

delay would add no value. This is a rule of thumb, based on the assumption that the 

cumulative ENG shows a single peak. 
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Sensitivity analysis 

The parameters related to the data and the update in INB were considered to 

be determined by the case study at hand, being outcomes of the registry. Hence 

for the sensitivity analysis, we focused on the parameters which were chosen by 

assumption.

The willingness to pay threshold was varied between €20,000/DFLY and 

€100,000/DFLY. 

The base case value for the initial distribution of INB was based on MOSAIC trial, 

which is an international multicounty study. We used a wide uninformative prior 

with the mean 0 to test how the results would change without any information 

available at t0. Population statistics show that incidence and prevalence of stage III 

colon cancer are increasing. Hence we also examined the effect of using the latest 

available data (i.e. data in 2012) on incidence and prevalence in The Netherlands. 

RESULTS

Imputation of missing data

The scale (a) parameter and the shape parameter (b) for the fitted Weibull 

distribution2 are shown in table 2. 

Table 2 Specifications of disease free survival data based on the Dutch registry.

Survival days distribution
Oxaliplatin Weibull (1290.9,3)
No oxaliplatin Weibull (1430,3.4)

Simulation of future disease free life time shows that most patients would have 

had a relapse by the end of 2012. 

Survivals, costs and INB

Table 3 presents the results for the survival calculations as well as the treatment 

costs at the end of each year, resulting in incremental net benefits (INB).  These 

2 Weibull CDF of 
baxe )/(1 −− as the probability of event up to time x.
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figures are based on actual empirical data until 2008 and after that they are based 

on simulated data. 

In the final years, due to a longer observation period, more disease free days 

are observed and hence the mean is larger. Obviously that does not imply that 

mortality is decreasing. 

Prior distribution of INB

DFS times of each arm and the incremental survival based on the MOSAIC trial 

(André et al., 2004) are reported in table 4. Expected additional costs of oxaliplatin 

had been estimated to be €12,500 for a planned treatment of 6 months. 

As a result, the INB at t0 has the following distribution:

)1370,7500(~ 2
0 −NINB

Table 3 Number of patients observed per arm, means and standard errors of disease free 
survival days, costs, and INB using the data observed up to the end of each year

Number observed
Mean disease free 
survival days (s.e)

Mean costs in Euros(s.e) INB(s.e)*

 Year Control oxaliplatin Control oxaliplatin Control oxaliplatin

2006 103 260 640(18) 590(13) 5800(400) 17900(700) -20580(870)

2007 110 280 920(29) 840(20) 8300(490) 21000(660) -25900(970)

2008 110 280 1110(43) 1020(28) 9800(600) 23000(730) -28010(1200)

2009 110 280 1150(47) 1050(31) 10900(720) 24500(810) -30650(1350)

2010 110 280 1170(49) 1050(31) 11100(740) 24600(810) -32200(1380)

2011 110 280 1170(50) 1050(31) 11200(750) 24700(810) -33210(1390)

2012 110 280 1170(50) 1050(31) 11200(760) 24700(810) -33040(1390)

* For illustrative purposes INB values are based on the available registry data combined with simulated data. When aiming to 
make an actual reimbursement decision, corrected real world data must be considered.

Table 4 Specifications of estimates at the start point of the conditional reimbursement (t0)

Mean (std) Reference
FL+Oxaliplatin survival months 30(9) (André et al., 2004)
FL survival months 29(10) (André et al., 2004)

Additional survival months gained by 
Oxaliplatin

1 (13) (André et al., 2004)

Additional costs of Oxaliplatin 12,500(720) expert opinion
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Expected Net Gains of additional follow-up time

Monetary gains of waiting for each potential decision point are reported in 

table 5. Fixed cost of set-up were by assumption €10000 and the variable costs 

€200 per patient per year. Table 5 also reports the resulting values for ENG and its 

cumulative value after each year.

Table 5 Expected Net Gains of delaying the decision after each year (numbers are rounded)

Year Expected gains Total costs ENG Cumulative ENG
2006 0 81800 -81800 -81800
2007 0 77400 -77400 -159200
2008 0 77400 -77400 -236600
2009 0 77400 -77400 -314000
2010 0 77400 -77400 -391400
2011 0 77400 -77400 -468800
2012 0 77400 -77400 -546200

The gains of the registry when considering DFS and costs as outcomes never 

exceeded zero. The ENG quickly converged to a value of -77400. This means that the 

data used in this example did not resolve the uncertainties around INB nor reduced 

the risk of the decision. Our results indicate that the efficiency of reimbursement 

decisions based on registries may be improved. The current uncorrected and partly 

hypothetical data on DFS and costs as relevant outcomes indicate that the registry 

could better have been stopped after one year of observation. 

Sensitivity analysis 

Table 6 shows the results of the sensitivity analysis. Only a willingness to pay 

as high as 100,000 €/DFLY gained implies a decision risk high enough to result in 

an optimal time of observation of 2 years. Assuming a very uninformative initial 

distribution for INB with mean zero rather than negative, also results in an optimal 

time of two year. That is, in absence of information at the time of conditional 

reimbursement decision, only two years of data observation would suffice for 

making a definite decision. Results for the prevalence and incidence rates indicate 

that the actual change in epidemiology of the disease during the period 2006-2012 
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did not affect the optimal time. Therefore, under the specific characteristics of this 

illustrative study (without inflow of new patients into the registry), a maximum of 

2 years of data observation appeared sufficient for making a definite decision on 

reimbursement of oxaliplatin. 

Table 6 Sensitivity analysis

Parameter
Base case assumption/ 
value

Assumption/ value  in 
sensitivity analysis

Optimal registry time 
in sensitivity analysis

Willingness to pay 60,000 €/DFLY*

20,000 €/DFLY 1 year

40,000 €/ DFLY 1 year

80,000 €/ DFLY 1 year

100,000 €/ DFLY 2 years

Prior distribution )1370,7500(~ 2−N )10000,0(~ 2N 2 years

Prevalence proportion 0.052 % (2006) 0.065 % (2012) 1 year

Incidence proportion 0.012 % 0.014 % (2012) 1 year

*DFLY: disease free life year

DISCUSSION

In this study we provided an example of evaluating the use of registry data to 

support the access with evidence process for reimbursement of oxaliplatin for stage 

III colon cancer treatment. We illustrated that the data observation could have been 

stopped after one or at most two years. Our study reinforces that setting up and 

continuation of a registry requires regular careful assessment of its results versus 

the expected outcomes. 

Several studies have used value of information analysis to find the optimal 

design of clinical trials (e.g.(Chen and Willan, 2013; Eckermann and Willan, 2007, 

, 2008; Willan, 2008; Willan and Kowgier, 2008; Willan and Pinto, 2006)). Bayesian 

techniques have also been widely used in sample size determination (Halpern et al., 

2001; Kikuchi et al., 2008; Pezeshk and Gittins, 2002). In contrast to these studies, 

the current study evaluates the optimal time to extract specific data from a given 

registry with a known design.  

The method proposed in the current study takes into account the value of 

information in the data and considers the decision to be taken based on the registry 
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to find its value. In that sense it differs from the usual registry design considerations 

(e.g. data sources, patient selection, comparison groups, sampling strategies)

(Gliklich et al., 2010). 

There are several considerations in setting up a registry. The first issue is that 

the aims which the registry is meant to support must be well defined beforehand. 

For example, the aim might be to gather information on implementation issues 

in daily care like actual treatment costs or survivals. It might also be supporting a 

better informed decision on effectiveness or other outcomes for patients. Very often 

registries are designed to inform more than one parameter. For instance, the data 

studied in the current chapter has been shown to be very helpful in comparing the 

guidelines to the daily use of the chemotherapy with respect to treatment choice 

(van Gils et al., 2012). However, our model uses one specific decision objective 

(INB), covering two parameters (disease free survival and costs). To deal with this 

limitation, the timing may be based on the main purpose (the most important goal), 

or optimal times could be found for all purposes and the longest of these can be 

taken. 

Like any observational study, registry data is inevitably biased. While solutions 

for this exist, for the real world data used in the current study, patient heterogeneity 

turned out to be too large to allow for appropriate correction of confounding in the 

registry data. This resulted in problems in estimating incremental cost-effectiveness 

using the registry data only (Franken et al., 2013). As a solution, a recent study (van 

Gils et al., 2013) has combined the registry data with the data from the MOSAIC trial 

(André et al., 2004) and the long term follow-up data of the trial (André et al., 2009) 

to find the cost-effectiveness of oxaliplatin. Our current case study is intended to 

illustrate the approach and hence we did not explicitly deal with these biases in 

the data and just presented the uncorrected outcomes. In real world applications, 

proper corrections should be included. Alternatively for cases that do not allow 

correction, the data could be used to confirm outcomes for the intervention arm 

only, rather than INB. That would result in net benefits being updated.  It should be 

noted that even if the registry data can be successfully corrected for bias, it might 

not yet be worthwhile to gather additional data from it. Initiation and continuation 

of a registry is costly and if the gain in information is small for the purpose(s) which 
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the registry is meant to achieve, it is better to stop the registry and avoid extra costs 

or not to start it at all. Other purposes, e.g. scientific interest into the course of 

disease might warrant further follow-up though.

The current illustrative study takes the time factor of the registry into account 

and allows finding the time point when adding more observations provides no more 

gain in supporting the final reimbursement decision. 

The registry evaluation was modeled as a so called a wait-and-see process. In 

this approach, the data gathering is stopped once a low (negative) registry net gain 

value is observed. This implies that a decision concerning registry continuation or 

cessation will be taken a posteriori, while the registry has already started. Hence, an 

a priori clear idea of the duration of the registry would not be available.  Generally 

one would strive to make the definite reimbursement decision right after the 

optimal length of the observation period, i.e., when the amount of information 

contained has been achieved and processed. This length will change for different 

drugs and conditions, and though the procedures followed would be clear, their 

timing may be indeterminate. This might cause inconvenience for the policy maker, 

registry researchers and producers applying for reimbursement. One way to avoid 

this problem might be to simulate all possible registry outcomes, find an estimate 

for the optimal registry length and announce it to all the parties involved in the 

beginning of the conditional reimbursement period. However, using an entirely 

simulated data set would increase the uncertainty in the results.  

Finally, a simple rule of thumb (stop a registry after showing negative expected 

net gains) was proposed for finding the stopping time. More sophisticated modeling 

could be used, applying methods from real option theory (Dixit and Pindyck, 1994). 

However, usually an analytical solution can only be obtained by imposing strict 

assumptions on the distributions of the parameters involved that will not be met 

in practice. Especially interdependence of outcomes over time (as present in the 

current dataset) is a problem.

To conclude, patient registries should not be considered a standard recipe for all 

access with evidence development procedures. Rather, they require careful design 

and should be used in the proper population and for the proper period, answering the 

proper research question. Continuation of the registry to support a reimbursement 
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decision while it is generating little gain in information can cause losses; hence it is 

essential to track its gains from the start and regularly re-evaluate it.  
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APPENDIX 1

The expected future lifetime

The probability of relapse at or before age t1+t2, given disease free survival until 

age t1: 
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APPENDIX 2

The expected future costs and the costs per year

Medical costs took place over two different phases. First, the treatment phase during 

which drug and administration costs incurred. Since these costs were completely 

observed for all patients, there was no need to simulate them for the future simulated 

disease free life years (appendix 1). 

In the follow-up phase, which starts after the treatment phase, costs are highest in 

the first two years. As follow-up continues, these costs decline and in the fifth year 

after treatment they are on average lower than €50 per patient per year. Hence, we 

fitted a gamma distribution, which describes the proportion of follow-up costs in 

each time interval after the start of the follow-up phase. The proportion of costs in 

the first w days of follow-up, P(w), is represented by the following notation:

P(w)=Gamma CDF(w, 1.5,400).

Where CDF stands for the cumulative distribution function. Using this proportion 

and the follow-up costs observed up to the data observation point, we estimated 

the costs related to the future simulated life expectancy of the patients. 

To find the costs per year, we added the costs observed up to the end of each year. As 

an example, assume a patient has the pattern shown in figure 1.

Figure 1. A hypothetical patient’s treatment and follow-up costs
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The costs observed by the end of 2006 (show here by C2006) for the patient of figure 

1 can be calculated as follows:

tstreatment
timetreatment

tC cos1
2006 ×=

By the end of 2007, all treatment costs have been observed. Using the gamma 

distribution for the proportion of costs that fall in the first t2 days of follow-up, for 

the patient of figure 1 the costs observed at the end of 2007 would be:

tsupfollowtPtstreatmentC cos)(cos 22007 ×+=

At the end of 2008, all costs of this patient would have been observed so we simply 

have:

tsupfollowtstreatmentC coscos2008 +=

In this way, for each patient in the database the costs for the end of each year 

were estimated and mean and standard deviation of costs over all patients were 

computed. 
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APPENDIX 3

Calculation of opportunity losses

Denote bi as the estimate of incremental net benefits of A versus B at stage i with 

the mean ib̂ . In case ib̂ >0, A would be adopted and the opportunity loss function 

of adopting A would be:

L(i)= 0                      if  bi ≥ 0                                   

L(i) = - bi                         if  bi < 0                                                                            

In case ib̂  ≤0, B would be adopted and the expected opportunity loss of permanently 

adopting B would be as follows:

L(i) = 0                      if  bi ≤ 0      

L(i) = bi                     if  bi  >0                                                                   

APPENDIX 4

Expected Value of Sample Information

Denote if  as the probability density function of incremental net benefits after 

stage i, b as the estimate of incremental net benefits of A versus B, and Ni is the total 

number of patients in the country who will benefit from the optimal choice at stage 

i. When mean b is positive, the gain of waiting one more stage versus adopting A is 

calculated: 

And if the mean b is negative, the gain of waiting for one more stage versus 

permanently adopting B would be calculated:
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Summary and general discussion
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In this thesis, several methods for handling uncertainty in economic evaluations 

and in policy decision making based on economic evaluations have been 

implemented, expanded and discussed. Deterministic and probabilistic sensitivity 

analyses together with different variations of value of information analysis were 

applied to analyze the uncertainty and its implications on decision making. 

Furthermore, optimal timing for making a decision was analyzed, given a situation 

of decision uncertainty and additional information becoming available over time. 

Results were illustrated using examples from different healthcare areas, namely 

prevention of depression by way of an e-health intervention, screening for presence 

of coeliac disease in patients with irritable bowel syndrome, third line treatment of 

colon cancer, and antifungal treatment for immune-compromised patients.  

MAIN OUTCOMES

After an introduction to the concept of medical decision making and the role 

of uncertainty in chapter 1, we illustrated an elaborated case of cost-effectiveness 

modelling and analysis of uncertainty in chapter 2. We evaluated the cost-

effectiveness of screening for coeliac disease in patients with diarrhoea/ mixed 

type irritable bowel syndrome (IBS) and showed that screening is a cost-effective 

way of improving quality of life/health for those patients. To get informed about 

the size and nature of uncertainty in the results, we performed scenario analysis, 

sensitivity analysis and value of information analysis. Results indicated that the 

uncertainty surrounding the cost-effectiveness estimate is limited, indicating that 

further research would not be worthwhile and deciding on implementation  was 

possible based on the available information.

In chapter 3 we examined the cost-effectiveness of opportunistic screening 

in combination with minimal contact psychotherapy (MCP), aiming to reduce the 

incidence of major depression. While the results showed that the program is cost-

effective, analysis of uncertainty indicated a high risk in the decision of adopting 

the program; meaning that further research is required before making a final 

decision. We focused on analyzing the effect of perspective on the results of cost-
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effectiveness and uncertainty analysis. In this way, we addressed an important 

methodological source of uncertainty, which is the selection of the perspective in 

the analyses. We showed that the selection of perspective has an important effect 

on the results of cost effectiveness and the value of information. Comparing the 

cost-effectiveness results from different perspectives showed that depending on the 

perspective chosen, the outcomes might significantly change and this might lead to 

an alternative decision. We estimated the expected value of perfect information 

for parameters to find the priorities for the further research, and showed that the 

selection of perspective would also affect the research priorities. When analyzing 

from a societal perspective, the priorities for future research were parameters 

related to productivity losses, while such parameters are not considered using a 

healthcare perspective. 

Chapter 4 presented a framework for modeling and resolving uncertainty over 

time in an access with evidence development (AED) scheme. The model quantifies 

the gains and losses resulting from waiting for more observations from a patient 

registry before making a definite reimbursement decision on a conditionally 

reimbursed drug. Within the limitations of the model, it selects an optimal period 

of conditional reimbursement and additional evidence gathering. This can be used 

to find a best period in reality, while taking into account the model limitations and 

using sufficient sensitivity analyse to understand how the model outcomes depend 

on inputs used. That is, the model can be used to increase flexibility in timing of 

the access with evidence development process for different drugs and conditions. 

The model was developed to help decision makers find the time period needed 

for gaining additional evidence, whether the length of the period is to be defined 

ex-ante or ex-post. We illustrated our results using a hypothetical example for the 

ex-ante case, and discussed the advantages and points for improving the approach. 

We also explained how these methods relate to similar approaches like real options 

approach (ROA), sequential sampling and multistage trials.

In chapter 5 we used the approach presented in chapter 4 and found the 

optimum time of making a definite reimbursement decision for voriconazole as the 
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newest drug of choice for primary treatment of invasive aspergillosis. We used an 

ex-ante variation of the model of chapter 4 in order to find the optimal length of 

data gathering process beforehand. Results indicated that the cumulative expected 

net gains (ENG) were maximized after 5 years of data observation. That means 

that after 5 years of gathering data from the registry, the uncertainty surrounding 

the cost-effectiveness estimate reaches an acceptable level: further delays in the 

definite decision would mean extra costs because of the opportunity losses and 

costs of the registry, while earlier points of making a decision would mean a higher 

risk in the decision due to the lack of evidence. However the increase in ENG after 

the 2nd year was not significant, indicating that a definite reimbursement decision in 

any point after 2 years of data observation was about optimal. 

Chapter 6 applied an ex-post variant of the model developed in chapter 4, 

meaning that the length of the evidence development period is to be set as the data 

is being gathered (thus a wait-and-see process). This model was used to evaluate the 

use of registry data to support the access with evidence process for reimbursement 

of oxaliplatin for stage III colon cancer treatment. We showed that, if the registry 

only aims to gather information for supporting a reimbursement decision, the data 

observation could have been stopped after one or at most two years for this specific 

case. That means the registry only contributes to solving the uncertainties in the 

estimates of costs and effects of oxaliplatin for a limited period, and further delays 

imply losses. 

Our results indicated that the approach for collecting additional data must be 

carefully chosen and constantly assessed. 

IMPLICATIONS

As set out in the introduction, some methodological problems were addressed 

by the research reported in this thesis. We now turn back to these problems 

and see how the results in the thesis added to the state of the art. Furthermore, 

several chapters in this thesis were inspired by actual Dutch policy and clinical 

questions. This holds for chapters 2, 4, 5 and 6. Hence it is very relevant to discuss 
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the implications for Dutch policy. However, the international perspective is also 

relevant and the current section attempts to generalize results and discuss their 

international relevance.  

Methodological and policy implications are not independent though. When the 

findings have a policy implication, methodology must be adapted to the new policy 

settings and when a new methodology implication is discovered, the policy settings 

might need to change to reflect the improvements in methods. 

Policy and methodological implications concerning use of value of information 

analysis 

Methodological implications

The use of value of information analysis is now described as one of the best 

practices for handling uncertainty by International Society for Pharmacoeconomics 

and Outcomes Research (ISPOR) and Society for Medical Decision Making (SMDM) 

(Briggs et al., 2012).  The methods used in this thesis are in line with the most 

recent changes in international policy settings. We used variations of the value 

of information analysis in all case studies of this thesis to address and present 

uncertainty in the most informative way. In chapter 2 we conducted value of 

information analysis alongside probabilistic sensitivity analysis to report complete 

evidence about the problem at hand (Mohseninejad et al., 2012). In chapter 3 we 

contributed to the applications of value of information analysis in policy making by 

showing that selection of perspective of the economic evaluation can significantly 

affect the expected value of information (EVPI) (Mohseninejad et al., 2013). 

Implications for Dutch policy making

VOI analysis has been recommended in the Dutch guidelines as a method to 

identify the value of research and the critical parameters to be studied. Adding a 

VOI analysis allows assessing the reliability of the decisions based on the results of 

economic evaluations. This would add information compared to a (probabilistic) 

sensitivity analysis alone, since it can answer the question of whether conducting 
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additional research would be worthwhile and if so, what sort of research would be 

required. For instance, in chapter 2 of this thesis we evaluated the cost effectiveness 

of a screening program for irritable bowel syndrome (IBS) and we showed that the 

consequences of a wrong decision are marginal in monetary terms, which can be 

derived  from the low value of additional research (Mohseninejad et al., 2012). 

Such results lead to a rather fast implementation of the recommended screening 

strategy in guidelines in The Netherlands (Van der Horst et al., 2012). In contrast, 

value of information analysis in chapter 3 showed that for the Dutch population and 

settings, further research is needed before making a decision on implementing the 

depression prevention program (Mohseninejad et al., 2013). Given that the societal 

perspective is most relevant for Dutch decision making concerning this type of 

programs, VOI research must also be conducted from a societal perspective. 

Implications from an international perspective

After the first quantification of the expected value of obtaining more information 

about the intervention under study by Claxton (Claxton, 1999), interest in VOI arose, 

ultimately leading to the implementation of the method in the National Institute 

for Health and Clinical Excellence (NICE)’s technology appraisal procedure (Claxton 

et al., 2002). However, the growth in the application of VOI analyses was not as 

fast as the increase in the number of methodological studies in the beginning. 

In recent years, VOI analyses have been included in the policy procedures for 

technology appraisal in several countries and have started to be actually applied 

in reimbursement procedures. This change in the policy settings has lead to an 

increasing attention towards applying VOI in case studies of health technology 

assessment. As a result, the number of VOI case studies has reached the number 

of published methodological papers in 2010. (Steuten et al., 2013). However, even 

when included in guidelines, actual reimbursement decision making might not yet 

rely on VOI results (Claxton and Sculpher, 2006). We come back to this point and 

address the policy challenges regarding VOI analysis in the next section.

The role of perspective is also under discussion in different jurisdictions (Claxton 

et al., 2010). While many other countries, like The Netherlands, do use a societal 



156

Summary and general discussion

7

perspective, most VOI work, by its origins in the UK, still is limited to a health care 

perspective. As a general implication for policy settings, it is essential to run the value 

of information analysis considering the same relevant perspective as the economic 

evaluation. An invalid perspective could lead to unrealistic importance attached 

to additional research. Besides, as discussed in chapter 3, it is also important to 

choose the right willingness-to-pay threshold for the VOI analysis from different 

perspectives. 

Access with evidence development (AED)

In chapters 4,5, and 6 of this thesis we analyzed the uncertainty over time in 

the AED schemes and we discussed different related policy issues. In this section 

I describe some methodological and policy implications of the findings of these 

chapters. 

Implications for the Dutch practise

The AED scheme is equivalent to what is called “conditional reimbursement” in 

the Netherlands. Conditional reimbursement was firstly applied to the expensive 

drugs in the period 2006-2011, when the expensive new inpatient drugs were 

conditionally funded for a maximum period of four years. Until early 2012, the 

temporary funding of the drug costs (in which hospitals were receiving additional 

funding of 80% of drug costs) was based on available effectiveness data, a prognosis 

of cost-effectiveness and budget impact, and a plan for additional research. After 

the four years period, the drug was reassessed based on the additional information 

gathered during the period of conditional reimbursement and a definite decision 

was made. From 2012 on, the expensive drugs are part of the basic health 

insurance, but their costs are reimbursed as an add-on to a diagnosis-related group 

(DRG). This allows hospitals to ask for reimbursement of their costs in addition 

to the normal drug costs included in the DRG. Once the drug is admitted as an 

add-on, the reimbursement authorities can evaluate it and consider conditional 

reimbursement based on the research questions that have to be answered during 

the data gathering period. In the new regulation, the length of the observation 
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period is yet unspecified. In lack of any further suggestions however, 4 years still 

seems applicable. 

The increasing concern about the timing of the reimbursement decisions in the 

Dutch policy settings lead to a research proposal written by the authors of chapters 

4, 5 and 6 of the current thesis. Financial support for the studies was provided 

entirely by a grant from The Netherlands Organization for Health Research and 

Development (ZonMw) (2010). Findings of the current thesis are considered for 

the new guidelines on outcomes research, as proposed by the Dutch healthcare 

insurance board (CVZ). The goal is to find the best way to implement the model 

developed in chapter 4 of this thesis and have it integrated in the decision, with 

respect to the real world examples given in chapters 5 and 6. We are currently dealing 

with the feasibility/implementation of the approach in the regulatory process, by 

having organized discussions with CVZ and the association for innovative medicines 

in The Netherlands (Nefarma). 

Implications from an international perspective

Implementing performance based reimbursement procedures have been an 

increasing trend over the last years. Different AED schemes, varying in design and 

complexity, have been implemented in several countries over the past years. The 

length of the AED period, i.e. the time between the point at which a new drug/

technology had been launched and the point at which a policy decision was 

announced or expected to be announced ranged between 2–11 years (Stafinski et 

al., 2010) in different countries. Some of the schemes were time restricted after 

which a reassessment would take place based on the additional data generated. 

For other schemes a specific length for the data gathering period was not set in the 

beginning, but the data was subjected to periodic reviews (Carlson et al., 2010). 

In Europe reimbursement systems, the length of the additional research period is 

often not specified. In some countries (Belgium, Czech Republic, Denmark, Finland, 

and France), a fixed time, varying from 1 to 5 years, is set for all pharmaceuticals. 

In a few systems (Scotland, Sweden, and UK) the review period varies with the 

pharmaceutical (Stafinski et al., 2011) and the time for definite decision depends 
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upon the availability of the new evidence. However, the latter systems do not contain 

a robust framework for estimating the time needed for additional research. This is 

the common limitation of all AED schemes: they lack a systematic method to tailor 

the timing of either the reassessment or the periodic reviews to the characteristics 

of the technology and condition under assessment. Relaxing this limitation is an 

important policy implication of the findings of this thesis. 

We used value of information analysis to develop a method to optimize the 

length of the additional data observation period, whether it is to be determined 

before the launch date of a new product (chapters 4 and 5) or after the arrival 

of new information (chapter 6). In chapter 4, we also present a user interface to 

enable calculation of optimal observation time as a function of different drug and 

population parameters. By using this simple user interface decision makers are able 

to explore and understand the relationship between the time needed for different 

cases to report reliable outcomes and the specifications of the drug, the disease, 

and the population. 

POLICY CHALLENGES AND LIMITATIONS

Several issues need to be considered before applying the findings of this thesis 

in policy procedures. Some of the issues have already been addressed in this thesis, 

while some others are currently under discussion. Below I list some major challenges 

and I describe possible solutions. 

Challenges regarding willingness-to-pay and the perspective of the analyses

Almost all types of economic evaluation need a certain willingness-to-pay 

(WTP) threshold for analysis. Without having an idea of the monetary value of each 

additional unit of health, making a decision remains problematic. Besides affecting 

the probability of a right decision (chapters 2 and 3), WTP threshold affects the future 

research priorities (chapter 3), the gains of waiting for more evidence (chapter 4), 

and the optimal time of decision making (chapter 5). Therefore, the uncertainty in 

selection of the right WTP threshold, which is categorized under “methodological 

uncertainty”, is an important issue to consider in policy procedures. Although in 



159

Summary and general discussion

7

this thesis we have analyzed the sensitivity of all the different outcomes to the WTP 

threshold, still a clear decision would need a certain threshold value or a range of 

possible values. This is especially important to consider in the Dutch context, in 

which no explicit threshold has been defined. There are only a number of unofficial 

threshold values mentioned in the Dutch literature. For preventive interventions for 

instance, a threshold of 20,000 €/QALY has been mentioned (van den Berg et al., 

2008). This threshold was firstly used in a health care perspective setting (Casparie 

et al., 1998). However, it has also been used when considering a societal perspective 

(van den Berg et al., 2008). Attempts to find the appropriate WTP thresholds 

considering different perspectives are ongoing (Bobinac et al., 2010, , 2012). 

Selecting the right WTP threshold is not only a concern for the Dutch decision 

making context. In UK for instance, National Institute for Health and Care Excellence 

(NICE) has been reluctant to specify a certain cost effectiveness threshold to be 

used in the decision making in the past (Devlin and Parkin, 2004). However, for 

some time, the NHS is one of the few decision makers using explicit thresholds, with 

a range of £20,000 to £30,000 per QALY gained (McCabe et al., 2008). Having such a 

range for WTP threshold can greatly enhance the clarity in the decision. Therefore, 

investigating more on the suitable WTP threshold could significantly improve the 

Dutch decision making procedures.  

A potential challenge regarding the selection of a WTP threshold is the inclusion 

of the perspective of the analysis. As discussed in chapter 3, considering the same 

threshold values when analyzing from different perspectives is not very logical. 

There have been elaborative discussions on interpretation of WTP thresholds 

when considering different perspectives (Claxton et al., 2010). The requirements in 

estimating the WTP threshold value as well as the large effect that this value might 

have on the results of the analyses makes it an important element of the policy 

making process. Therefore, more attention must be given to this issue within the 

technology appraisal procedures in the future, especially in The Netherlands. 
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Value of information analysis: is it worth the trouble? 

Following the inclusion of the VOI analysis in guidelines for health economic 

evaluations, concern has arisen about whether the costs and complexity of such 

analyses are counterbalanced by the information they would add. Some argue that 

due to the analytic complexity of the VOI methods, they are not necessarily intuitive 

to the policy makers and funders of research in healthcare (Ramsey et al., 2008). 

Besides, it is not clear if prioritization of future research through VOI would increase 

the chance that the priority questions will actually be answered through the extra 

research, as VOI does not weigh feasibility (Myers et al., 2011). Such limitations 

have led some researchers to seek for less-demanding approaches to perform VOI 

analysis (Meltzer et al., 2011). Some others suggest that normal sensitivity analyses 

are sufficient to address the need for additional data collection and research priority 

setting (Corro Ramos et al., 2013). 

Several studies have suggested ways to improve the utility of VOI approaches 

for decision makers. Myers et al. (2011) suggest identifying ways to compare the 

impact of different prioritization methods on the likelihood that further research 

would actually answer the priority questions, identifying the appropriate resources 

(including technical expertise), defining the timelines and the appropriate level of 

modeling complexity. Ramsey et al. (2008) suggest that the methods of analyses 

must be transparent, flexible to accommodate a variety of endpoints, informed with 

available data that are acceptable to stakeholders and easy to interpret. Claxton and 

Sculpher (2006) argue that the separation of the remits for research prioritisation 

decisions from adoption and reimbursement is a barrier in implementation of VOI 

analyses in policy environment. They conclude that persuading decision makers 

to invest in VOI methods would be difficult before changing these circumstances. 

Hence, while the number of applications is rapidly increasing (Steuten et al.), there 

is still a need to further improve its applicability in decision making. 

Overall, VOI methods are more that just an additional analysis in the current 

policy procedures. They need careful investigation of their goals, transparency 

and the adaptability to the system before they may improve the decision making 

process. 
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Issues in timing of the reimbursement decisions 

In chapter 4, we developed a model to estimate the optimal time for making 

a definite decision on a conditionally reimbursed drug. In chapters 5 and 6, we 

applied variations of the model presented in chapter 4. However, this model is a 

first step in addressing the problem of timing in reimbursement decisions. Certain 

issues must be taken into account before applying this model in policy procedures. 

Some challenges are described in the following sub-sections. 

Ex-ante vs. ex-post

The first consideration in implementation of our model is whether the time for 

a final reimbursement decision is to be determined ex-ante (as in chapter 5) or ex-

post (as in chapter 6). Both methods have certain limitations and strengths, which 

where elaborated in chapter 4. In short, the ex-ante method is limited because it 

imposes additional uncertainty to the decision about time, while it is strong because 

it gives an idea about the length of the conditional reimbursement before hand. 

In contrast, the ex-post (wait-and-see) approach uses more reliable data to obtain 

the optimal time for a definite decision, but it makes the decision maker wait for 

data before being able to estimate a decision time.  It also requires an approach to 

approximate a solution, which might not be the global optimum. 

It real world decision making process however, the decision would not be so 

black and white. There is the need to get the advantage of both methods, while trying 

to minimize their limitations. As suggested in chapter 4, a combination of the two 

methods might improve the information they provide. For instance, an ex-post model 

can be used to evaluate the consecutive evidence gathered in the observation period 

while updating the inputs needed to run an ex-ante model. When the estimate of the 

optimal time resulting from an ex-ante approach becomes sufficiently robust, this 

estimate can be announced to the stakeholders. In this way, possible situations where 

the new evidence conflicts with the a-priori information would also be handled. 

Other strategies might also be possible, but they first need to be clearly discussed 

among different stakeholders in reimbursement decisions before they can be 

implemented. 
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Data update issues

A prerequisite for the AED schemes is the need for setting up criteria for additional 

research. Poor or uninformative data would not help solving the uncertainties in the 

final decision. While randomized controlled trials (RCTs) can be potential sources of 

evidence to support the reimbursement decisions, we do not include them in the 

model for optimal timing of the decisions (with the exception of i=0). The reasons 

for this exclusion were that 1) because the drug is already adopted, it is infeasible 

to recruit patients to RCTs, 2) there is no guarantee for existence of a relevant global 

RCT during the period of conditional reimbursement, and 3) including external RCTs 

for supporting the reimbursement decision needs translation of evidence across 

jurisdictions.

For the same reasons, many of the AED schemes carried out to date have involved 

observational studies (e.g. registries or some similar system of epidemiological data 

collection) (Claxton et al., 2011). That has several advantages: The data gathered 

in this way is more relevant for the decision making, as it reflects the real world 

practise for the patient population of the interest. Furthermore, measurements 

of effectiveness are gathered rather than efficacy, which is needed for a cost-

effectiveness analysis. It is also more ethical, given that the drug is already available 

and all patients must have the chance to benefit from it.

It has been argued that data from such studies might not be sufficient for 

making a definite decision, considering examples of mistakes made in the past 

when relying on observational with poor quality to inform definitive decisions 

(Stafinski et al., 2010). Attempts have been made to improve the registries aiming 

to provide additional information during an AED scheme as well as the data analysis 

methods used on the results. Examples show that most limitations can be overcome 

(Schluessmann et al., 2009; Tunis and Whicher, 2009). 

In line with concerns about the usefulness of registry information during an 

AED process, we proposed to use the value of information framework suggested in 

chapter 4 to assess the information provided by a registry besides fining the optimal 

time of the data observation. Our results underlined the importance of careful 

assessment of the data gathering process considering design, population and the 
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observation period. Using our framework in addition to the common methods for 

evaluation of the data quality (e.g. study design, data sources, patient selection, 

comparison groups, sampling strategies) (Gliklich et al., 2010) can be helpful to 

prevent losses resulting from poor or uninformative data collection. For instance, 

when the analysis results in an optimal time of i*=0, that would mean the registry 

must be improved in order to inform a definite decision. On the other hand, if i* is 

too large, it might imply that the registry is generating the evidence with a very slow 

rate and it could be improved to update the information faster. 

As discussed in chapter 6, several issues must be considered before the patient 

registries can be of any help for the reimbursement decisions. It is essential to set 

the aims which the registry is meant to achieve before starting one, and to design 

the registry in line with those aims. While a registry might not be helpful for one 

purpose, it might be good for other purposes, and hence should be continued. The 

time aspect is also important: even a registry which is generating helpful evidence 

to support the reimbursement decision might not be worthwhile to continue for a 

long time.   

Apart from the goal setting and the design of the registry, it must be considered 

that a patient registry might need some time before generating reliable evidence. 

During the period in which the registry is being initiated, the costs are rather high due 

to the initial set up costs, while the information is poor because of limited number 

of patients recruited. Hence, the decision makers must allow a certain period of 

time before judging the quality of the evidence. The design and the recruitment 

procedure of the registry can be supervised during this period. 

Although we justify the exclusion of RCTs from our model, we do not imply 

that the RCTs are not important in real world policy making. Evidence provided by 

RCTs is often reliable as a result of careful design and patient recruitment; hence 

they are widely used to update information supporting reimbursement decisions. 

In the Netherlands however, the main source for data observation during the 

conditional reimbursement period is patient registries. Therefore, incorporating 

the evidence from RCTs to the observations from a patient registry is a challenge 

for the timing problem of the current Dutch technology appraisal procedures. 

Overcoming this challenge requires clear knowledge about possible future RCTs and 
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their transferability (Eckermann and Willan, 2009) to the population of interest. The 

situation might sometimes become very complex though. In general, it is advisable 

to perform meta-analysis studies at consecutive points of time when an ex-post 

approach is adopted. In this way, the reduction of uncertainty over time can be used 

as a proxy for future changes. When using an ex-ante approach, predicting future 

number of patients who will be recruited to the trials might help to simulate future 

outcomes and the trend in information. 

IMPLICATIONS FOR FUTURE RESEARCH

Several sources of uncertainty were addressed and discussed in this thesis, 

using value of information methods as the basic methodological approach towards 

uncertainty. In the next sub-sections I explain how the methods can be improved in 

the future to deal with a wider range of policy issues. 

Sources of uncertainty 

While we worked on different sources of uncertainty in this thesis, we did 

not simultaneously include all the sources of uncertainty in the outcomes. That is 

because different sources of uncertainty have a distinct nature, which makes them 

difficult and sometimes infeasible to integrate. This is not a new concern though; 

some recent studies have tried nevertheless to find ways to quantify different 

uncertainty sources and integrate them in the parametric uncertainty analysis 

(Bilcke et al., 2011; Bojke et al., 2006; Price et al., 2011). Using the proposed 

methods to account for all sources of uncertainty in one integrated model can help 

to improve the uncertainty analysis in future, whether the problem is to find the 

risk in the decisions, prioritization of future research or timing of the decisions.  

However, these methods need further developments before they can address the 

uncertainty around all particular types of decision-analytic models.

Value of information methodology

Value of information methods have a great potential for improving healthcare 

research and policy in the future. The key point for future research on VOI methods 
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is to make them more consistent with the real world policy settings. That is, to make 

them more transparent, more flexible, easier to interpret and easier to apply. As 

discussed in the last section, VOI methods still need careful assessment before they 

can routinely be used to support the policy decisions. As the methods are being 

applied in health care policy making in different jurisdictions, their methodology 

must also improve in order to reflect all the complicated elements in medical 

decision making. Some of the improvement points were addressed in the last 

section. 

Uncertainty and timing of the decisions

The model presented in chapter 4 was an initial step in finding the optimal time 

for making reimbursement decisions under uncertainty. This model can be improved 

in future, in order to present a more realistic policy situation. The current model 

for instance only includes a yes/no final decision regarding the time for making 

a definite decision. This can be extended to include other options like restricted 

admission, limitation of indication or cost sharing arrangements. Furthermore, 

the initial decision of admission to the conditional reimbursement can also be 

flexible in the future extensions of our model. Including randomized clinical trials 

in the information update and accounting for the registry set-up time can also 

possibly improve the validity of the model. Finally, value of information analysis for 

parameters (EVPPI) can be used alongside the model to find the research priorities 

in each stage of time. 

CONCLUDING REMARKS

Uncertainty analysis is an essential requirement in every decision within health 

care policy procedures. No decision is free of uncertainty, and uncertainty is costly. 

On the other hand, new technologies are emerging every day while healthcare 

resources are limited. Therefore, underestimating the effect of uncertainty in 

decisions would on average impose extra costs to the healthcare system and 

society at large. Analyzing different types of uncertainty would give the health care 

stakeholders ideas about the probability of a wrong decision, the consequences of 
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a mistake in decision making, the priorities for research when aiming to solve the 

uncertainties, and the optimal period to wait before making a decision. 

Theoretical improvements in the analysis of uncertainty must be in line with 

the policy requirements in medical decision making. Including all aspects of the 

real world decisions in the analyses would help the methods to adjust better to the 

policy decisions.  
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Dit proefschrift gaat over onzekerheid rond de resultaten van economische 

evaluaties in de gezondheidszorg. In de verschillende hoofdstukken worden diverse 

methodes om onzekerheid in kaart te brengen en om de consequenties ervan te 

analyseren toegepast en uitgebreid. Een belangrijke rol daarbij speelt de analyse 

van de gevolgen van onzekerheid voor besluitvorming. De centrale vraag daarbij 

is wat het risico is van een bepaalde beslissing en hoe daarmee om te gaan. Een 

ander belangrijk onderwerp is het juiste tijdstip voor het nemen van een beslissing, 

gegeven dat de mate van onzekerheid in de loop van de tijd verandert. 

De theoretische concepten zijn toegepast op concrete voorbeelden uit 

uiteenlopende hoeken van de gezondheidszorg, namelijk preventie van depressie 

door een “e-health” behandeling, screening op Coeliakie bij mensen met een 

prikkelbare darm, behandeling van gemetastaseerde darmkanker en behandeling 

van schimmelinfecties bij mensen met een ernstig verminderde afweer. 

Belangrijkste bevindingen 

Hoofdstuk 1 bevat een inleiding op het proefschrift. Dit hoofdstuk start met 

een korte uiteenzetting over economische evaluatie met besliskundige modellen. 

Vervolgens komen de belangrijkste methodes om onzekerheid te analyseren aan 

de orde, en manieren om zo goed mogelijke besluiten te nemen, gegeven een 

situatie met onzekerheid. Daarnaast wordt kort de beleidsachtergrond geschetst. 

Een aantal onduidelijkheden en omissies vormen vervolgens de aanleiding tot de 

vraagstellingen in dit proefschrift: hoe om te gaan met “value of information” vanuit 

een maatschappelijk perspectief, en hoe het tijdstip van besluitvorming te bepalen 

voor her evaluatie bij een voorwaardelijke vergoeding. 

Hoofdstuk 2 is een toepassing van een economische evaluatie op basis van 

een besliskundig model met uitgebreide onzekerheidsanalyse. Het gaat over 

Coeliakie bij mensen met een prikkelbare darm. Ter ondersteuning van de richtlijn 

“Prikkelbare darmsyndroom” zijn verschillende screeningsstrategieën geëvalueerd. 

Algemene screening is vergeleken met helemaal niet screenen en met uitsluiten 
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van de groep met obstipatie van de screening. Bij deze mensen is Coeliakie namelijk 

niet te verwachten. Gerichte screening bij mensen met diarree/gemixte vormen van 

prikkelbare darm syndroom blijkt het meest kosteneffectief. Gevoeligheidsanalyses, 

zowel univariaat als probabilistisch, zijn gebruikt om de onzekerheid in kaart te 

brengen. Vervolgens is “value of information” analyse gebruikt om na te gaan 

of extra onderzoek toegevoegde waarde zou hebben. De onzekerheid bleek 

beperkt, zodat de waarde van extra onderzoek om de onzekerheid te reduceren 

marginaal was. (Mohseninejad et al., 2012). Dit betekent dat het redelijk is om de 

huidige resultaten te gebruiken voor besluitvorming. De nieuwe richtlijn bevat de 

aanbeveling voor gerichte screening. (Van der Horst et al., 2012). 

Hoofdstuk 3 gaat over de toepassing van “value of information” analyse 

vanuit maatschappelijk perspectief. Bij de evaluatie van opportunistische screening 

op beginnende depressie gevolgd door “minimal contact psychotherapy”, (een 

gedragsinterventie met behulp van e-health) om ontstaan van een depressie 

te voorkomen is de omvang van de besparingen op productiviteitskosten 

zowel relevant als erg onzeker. Bij een maatschappelijk perspectief tellen deze 

besparingen uitdrukkelijk mee, terwijl een gezondheidszorgperspectief ze negeert. 

De meerderheid van de “value of information” analyses is uitgevoerd vanuit dit 

gezondheidszorgperspectief. 

In deze toepassing heeft het perspectief veel invloed op zowel de kosten-

effectiviteit als de waarde van extra onderzoek. De prioriteiten voor onderzoek zijn 

ook afhankelijk van het gekozen perspectief. Vanuit maatschappelijk perspectief 

blijken dit vooral parameters te zijn die met de productiviteitskosten te maken 

hebben.

De discussie betreft issues voor het vergelijken van de resultaten vanuit 

verschillende perspectieven, zoals de gebruikte drempelwaarde. Die is niet zonder 

meer gelijk wat vergelijking bemoeilijkt.

 

Hoofdstuk 4 geeft een theoretisch kader voor de analyse van onzekerheid in de 

loop van de tijd, in het kader van voorwaardelijke vergoeding en zogeheten “access 

with evidence development” constructies. Dit type overeenkomsten waarbij 
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middelen voorlopig worden vergoed, op voorwaarde dat aanvullend onderzoek 

plaatsvindt, is in opkomst bij vergoedingsbesluiten. Het is de vraag wanneer een 

her-evaluatie het beste kan plaatsvinden. In de oorspronkelijke regeling voor dure 

intramurale geneesmiddelen stond een periode van 3 jaar voor her-evaluatie, welke 

later is verlengd tot 4 jaar. Het is echter de vraag of dit voor ieder middel de juiste 

periode is. 

Door systematisch de opbrengsten en kosten te kwantificeren van langere 

observatie van gegevens uit een patiëntenregistratie en verder uitstel van 

besluitvorming kan het tijdstip gevonden worden waarop de additionele baten 

van verder uitstel niet meer opwegen tegen de kosten. Dit kan zowel ex-ante, 

door simulatie te gebruiken, als ex-post, door herhaalde analyse van empirische 

data. Gevoeligheidsanalyse geeft vervolgens inzicht in de factoren die dit tijdstip 

beïnvloeden. Met inachtneming van de beperkingen van een dergelijk model kan 

deze aanpak bijdragen aan meer flexibiliteit en maatwerk in de opzet van trajecten 

van voorwaardelijke vergoeding. 

In de discussie relateren we onze aanpak aan verwante technieken uit de 

economie, namelijk “real options analysis” en uit de epidemiologie, namelijk 

sequential sampling en multistage trials. 

Het onderzoek voor dit hoofdstuk en de twee volgende werd gefinancierd uit 

een subsidie van ZONMW, binnen het programma Dure Geneesmiddelen (2010). 

Mogelijk zijn de resultaten bruikbaar voor de nieuwe leidraad uitkomstenonderzoek 

van CVZ. 

In het onderzoek dat ten grondslag lag aan hoofdstuk 5 is de benadering uit 

hoofdstuk 4 toegepast op het antischimmelmiddel voriconazol voor behandeling van 

invasieve aspergillose. In dit hoofdstuk wordt de beste periode voor her-evaluatie 

ex-ante bepaald, met een simulatiemodel. Dit simuleert de uitkomsten van een 

patiëntenregistratie op basis van gegevens over kosten van patiëntenregistraties en 

epidemiologie van schimmelinfecties. Het model is geprogrammeerd in MATLAB en 

beschikbaar gemaakt als los te gebruiken applicatie. 

De resultaten laten zien dat de cumulatieve verwachte netto baten van extra 

observaties maximaal zijn na 5 jaar. Dat wil zeggen, na 5 jaar data verzamelen is 
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de onzekerheid rondom een kosten-effectiviteitsschatting gebaseerd op deze 

data van een zodanig laag niveau dat verdere onderzoek niet opweegt tegen de 

kosten. Die kosten bestaan uit registratiekosten en uit opportuniteitskosten, omdat 

patiënten mogelijk een suboptimaal middel gebruiken. Echter, al na 2 jaar is een 

forse afvlakking van de netto baten curve te zien, die aanduidt dat ook besluiten op 

enig moment na 2 jaar zo goed als optimaal is. 

Hoofdstuk 6 onderzoekt de toepassing van de benadering uit hoofdstuk 4 bij 

gebruik van ex-post besluitvorming. Analyse van de (ongecorrigeerde) empirische 

gegevens uit een bestaande patiëntenregistratie van darmkanker is gebruikt voor 

evaluatie van het middel oxaliplatin voor de derdelijns behandeling. Het onderzoek 

laat zien dat -puur vanuit het perspectief van besluitvorming over vergoeding van 

oxaliplatin, en op basis van ongecorrigeerde data- de registratie in zijn huidige 

vorm kon worden gestopt na een of hooguit twee jaar. Dat wil zeggen, na deze 

periode was de bijdrage van de data aan het verminderen van de onzekerheid in de 

besluitvorming beperkt en woog niet op tegen de kosten van verder uitstel.

Deze resultaten benadrukken het belang van een goede opzet van 

patiëntenregistraties die worden opgezet om vergoedingsbesluiten te ondersteunen. 

Uiteraard hebben dergelijke registraties ook andere doeleinden. Ook dan blijft het 

echter belangrijk om de juiste observatieduur van gegevens uit de registratie ten 

behoeve van de her-evaluatie te bepalen. In bredere zin onderstrepen de resultaten 

van deze toepassing een weloverwogen inzet van extra onderzoek en de juiste keuze 

van parameters voor aanvullend onderzoek en bijpassende studie opzet. In de 

uiteindelijke her-evaluatie bleken namelijk aanvullende resultaten uit internationale 

klinische trials minstens zo belangrijk als de resultaten uit de patiëntenregistratie.  

Het proefschrift sluit af met een Discussie (hoofdstuk 7), die de uitkomsten van 

de hoofdstukken relateert aan internationale literatuur en in hun beleidscontext 

plaatst. 
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