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A New Model for Generating Multimodal Referring Expressions

Emiel Krahmer lelka van der Sluis
Communication and Cognition Computational Linguistics and Al
Tilburg University Tilburg University
E.J.Krahmer@uvt.nl |.F.vdrSluis@uvt.nl
Abstract gorithm takes as input a single objec{the tar-
get objech and a set of objectdhe distractors)
We present a new algorithm for the gen- ~ from which the target object needs to be distin-
eration of multimodal referring expres- guished (borrowing terminology from Dale and
sions (combining language and deictic Reiter 1995). The task of the algorithm is to de-
gestures}. The approach differs from termine which set of properties is needed to single
earlier work in that we allow for various out the target object from the distractors. This is
gradations of preciseness in pointing,  known as theontent determination problem for
ranging from unambiguous to vague referring expressions. On the basis of this set of
pointing gestures. The model predicts  properties adistinguishing description in natu-
that linguistic properties realized in the ral language can be generated; a description which
generated expression are co-dependent  applies tov but not to any of the distractors.
on the kind of pointing gesture included. We describe a new algorithm which aims at pro-
The decision to pointis based onatrade-  gycingmultimodal referring expressions: natural
off between the costs of pointing and the  |anguage referring expressions which may include
costs of linguistic properties, where both deictic pointing gestures. There are at least two
kinds of costs are computed in empir-  motivations for such an extension. First, in vari-
ically motivated ways. The model has ous situations a purely linguistic description may
been implemented using a graph-based  gimply be too complex, e.g., because the domain
generation algorithm. contains many highly similar objects. In those
cases, including a deictic pointing gesture may be
1 Introduction the most efficient way to single out the intended

_ _ _ _ referent. Second, if we look at human commu-
The generation of referring expressions is & CeMyjcation it soon becomes apparent that referring
tral task in Natural Language Generation (NLG),expressions which include pointing gestures are

and various useful algorithms which automaticallyyather common (Beun and Cremers 1998). Various
produce referring expressions have been develyqorithms for the generation of multimodal re-

oped (recent examples are van Deemter 2002, Gafg(ring expressions have been proposed (e.g., Co-
dent 2002 and Krahmer et al. 2003). A typical al-hen 1984, Claassen 1992, Huls et al. 1995, Andr

1This paper greatly benefitted from discussions withand Rist 1996, Lester et al. 1999, van der Sluis
Mariét Theune and Kees van Deemter. Thanks are also dugnd Krahmer 200]3_ Most of these are based
to Sebastiaan van Erk, Fons Maes, Paul Piwek and &ndr
Verleg. Krahmer's work was done within the context ofthe
TUNA project, funded by Engineering and Physical Sciences  2These algorithms all operate on domains which are in the
Research Council (EPSRC) in the UK, under grant referencelirect visual field of both speaker and hearer. Throughout this
GR/S13330/01. paper we will make this assumption as well.



on the assumption that a pointing gesture is prewill enlarge the cone of light (shining on the tar-
cise and unambiguous. As soon as a pointingyet object but probably also on one or more dis-
gesture is included, it directly eliminates the dis-tractors). A direct consequence of this “Flash-
tractors and singles out the intended referent. Aight model for pointing” is that we predict that the
a conseguence, the generated expressions tendamount of linguistic properties required to gener-
be relatively simple and usually contain no moreate a distinguishing multimodal referring expres-
than a head nourik(is blocK in combination with  sion is dependent on thend of pointing gesture.
a pointing gesture. Moreover, most algorithmsimprecise pointing will require more additional
tend to be based on relatively simple, contextlinguistic properties to single out the intended ref-
independent criteria for the decision whether aerent than precise pointing.
pointing gesture should be included or not. For |n our proposal, the decision to point is based
instance, Claassen 1992 only generates a pointingh a trade-off between the costs of pointing and
gesture when referring to an object for which nothe costs of a linguistic description. The latter are
distinguishing linguistic description can be pro-determined by summing over the costs of the indi-
duced. Lester et al. 1999 generate pointing gesridual linguistic properties used in the description.
tures for all objects which cannot be referred toArguably, the costs of precise pointing are deter-
with a pronoun. Van der Sluis and Krahmer (2001)mined by two factors: the size of the target object
use pointing if the object is close or when a purely(a big object is easier to point at than a small ob-
linguistic description is too complex, where bothjects) and the distance between the target object
closeness and complexity are measured with reand the pointing device (objects which are near
spect to a predefined threshold. are easier to point to than objects that are further
The approach described in this paper differsaway). As we shall see, Fitts’ law —a fundamental
from these earlier proposals in a number of waysempirical law about the human motor-system due
We do not assume that pointing is always preto Fitts (1954)— can be used to model the costs of
cise and unambiguous. Rather we allow for varprecise pointing. In addition, we shall argue that
ious gradations of preciseness in pointing, rangFitts’ law allows us to capture the intuition that im-
ing from unambiguous to vague pointing gesturesprecise pointing is cheaper than precise pointing.
Precise pointing has a high precision. Its scope The algorithm we describe in this paper is a
is restricted to the target object, and this directlyvariant of the graph-based generation algorithm
rules out the distractors. But, arguably, precisejescribed in Krahmer et al. (2003). It models
pointing is ‘expensive’; the speaker has to makescenes as labelled directed graphs, in which ob-
sure she points precisely to the target object ifjects are represented as vertices (or nodes) and the
such a way that the hearer will be able to unamproperties and relations of these objects are rep-
biguously interpret the referring expression. Im-resented as edges (or arcs). Cost functions are
precise pointing, on the other hand, has a lowepsed to assign weights to edges. The problem
precision —it generally includes some distractorsof finding a referring expression for an object is
in its scope— but is intuitively less ‘expensive’.  treated as finding theheapestsubgraph of the
The model for pointing we propose may bescene graph which uniquely characterizes the in-
likened to aflashlight.* If one holds a flashlight tended referent. For the generation of multimodal
just above a surface, it will cover only a small areareferring expressions, the scene graph is enriched
(the target object). Moving the flashlight away with edges representing the various kinds of point-
ing gestures. Since the algorithm looks for the
3'I'_his intuition is in line with the alleged existence of neu- cheapest subgraph, pointing edges will only be se-
e e o oIt P dected when lnguisic edges are relatvely expen-
scious feedback control system, while the latter is governedIvV€ Or when pointing is relatively cheap.
by a faster and non-conscious control_ system located in the The rest of this paper is organized as follows. In
center and lower-back parts of the brain (see e.g., Smyth and . . . .
Wing 1984, Bizzi and Mussa-Ivaldi 1990). section 2 we describe the ingredients of the mul-
“This analogy was suggested by MarTheuneg.c) timodal graph-based approach to the generation
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Figure 1: An example scene. e
of referring expressions. Section 3 is devoted to

determining the costs of linguistic properties and
gestures. Section 4 describes the algorithm, and
illustrates it with a worked example. In section 5,
we summarize and discuss some of the properties
and predictions of the model. and/or relations are required to single dytfrom

its distractors This is done by creatimgferring
graphs which at least include a vertex represent-
ing the target object. Informally, a vertex(the
2.1 Scene graphs Consider the visual scene de- {arget object) in a referring grapH refers to a
picted in Figure 1, consisting of a set of objectsdiven entity in the scene gragh iff the graph H
with various properties and relations. In this par-can be “placed” over the scene graghin such

Figure 2: Example scene as a graph.

2 Generating multimodal referring
expressions

ticular scene\ = {d,...,ds} is the set of enti- & Way thatv can be placed over the vertex of the
ties, Prop = { small, large, black, white, block given entity inz and each edge frod with label
} is the set of properties of these objects Refi= | €an be “placed over” a corresponding edgéin

{ left-of, right-of } the set of relations. We repre- With the same label. Furthermore, a vertex-graph
sent a scene as labelled directed graph Let Paris _dlstmgwshlng iff it refers to exactly one

L = PropU Relbe the set of labels witRrop ~ Vertexin the scene gragh.

andReldisjoint, thenG' = (Vg, E¢;) is a labelled ~ Consider Figure 3, containing a number of po-
directed graph, wher®; C M is the set of ver- tential referring graphs fod,, each time with a
tices andE; C Vg x L x Vg is the set of la- Circle around the intended referent. The first one,
belled directed edgésTwo other notions that we {71 has all the properties af, and hence can refer
use in this paper are graph union and graph exteri? da- Itis not distinguishing, however: it fails to
sion. Theunion of graphsF = (V, Er) and rule_ ou_td_7 (th_e qther large black block). Graph
G = (Vg E¢) is the graphF U G = (Vi U H, is distinguishing. Here: the circled vertex can
Ve, Ep UEG). If G = (V,E) is a graph and only be “placed over” thg intended re_ferei_lt in

e = (v,1,w) is an edge between verticesandw the scene graph. A straightforward linguistic re-
and with label e L, then theextensionof G with  alization (expressing properties as adjectives and
e (notatedG + ¢) is the graphV U {v, w}, EUe). relations as prepositional phrases) would be some-

Figure 2 contains a graph representation of th&hing like "the large black block to the left of a
scene depicted in Figure®1Notice that proper- small white block and to the right of another small

ties are represented &ops while relations are "The informal notion of one graph being “placed over”

modelled as edges between different vertices.  another corresponds with a well-known mathematical con-
struction on graphs, namefubgraph isomorphism H =

2.2 Referring graphs Suppose we want to gen- (Va, Er) can be “placed over? = (Vg, Eg) iff there ex-

_ . L . ists a subgraple’ of G such thatH is isomorphic toG’. H
erate a distinguishing description referringdg is isomorphic ta&’ iff there exists a bijection : Vi — Vg,

Then we have to determine which propertiessuch that for all vertices, w € Vi and alll € L:
SHere and elsewhere subscripts are omitted when this can (v,l,w) € Ep & (70,1, m.w) € Ber

be done without creating confusion. Given a graphH and a vertex in H, and a grapiG and a
®We only model the direct spatial relations under the as-vertexw in G, we define that the paiw, H) refers to the pair

sumption that a distinguishing description would not use a(w, G) iff H is connected and is mapped to a subgraph of

distant object as a relatum when a closer one can be selecte@.by an isomorphismr andzr.v = w.
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Figure 3: Three potential referring graphs #r Figure 4: Pointing into the scene

white block”® Generally there is more than one tiV€ Positions are known, computing the scope of a
distinguishing graph referring to an object. In fact,POiNting gesture is straightforward, but the actual
H, is not thesmallestdistinguishing graph refer- mathematics falls outside the scope of this paper.
ring to ds. This is Hs. It might be realized as “the ~ Just as properties and relations of objects can
large black block to the right of a white block”. be expressed in a graph, so can various pointing
This is a distinguishing description but not a par-gestures to these objects. All objects in the scope
ticular natural one; it is complex and arguably dif- Of & potential pointing gesture (with a certain de-
ficult for the hearer to interpret. In such cases, havdree of precision) are associated with an edge la-

ing the possibility to simply point to the intended belled with an indexed pointing gesture. Selecting
referent would be very useful. this edge implies that all objects which fall out-

side the scope of the gesture are ruled out. We
2.3 Gesture graphs Suppose we want tpoint  represent this information usingggsture graph
to ds. Clearly this can be done from various Let PG, = {P,,IP,,VIP,} be the set of point-
distances and under various angles. The variousg gestures to a target object Then, given a
hands in Figure 4 illustrate three levels of deic-scene grapl’ = (V;, E¢), a gesture graph,, =
tic pointing gestures, all under the same angle butV;, Ep) is a labelled directed graph, whevg
each with different distances to the target objectis the set of vertices from the scene graph and
precisepointing P), imprecisepointing (P) and Ep = Vi x PG, x Vg the set of pointing edges.
very imprecisepointing (VIP). We shall limitthe  Figure 5 displays a graph modelling the various
presentation here to these three levels of precisiopointing gestures in Figure 4. Notice that there is
and a fixed angle, although nothing hinges on thisone gesture edge which is only associated with
Naturally, the respective positions of the speakethe one representing precise pointing to the target
and the target object co-determine the angle unebject (modelled by edge,). No other pointing
der which the pointing gesture occurs; this in turngesture eliminates all distractors.
fixes the ‘scope’ of the pointing gesture and thus

which objects are ruled out byStif these respec- 2.4 Multimodal graphs Now the generation of
multimodal referring graphs is based on the union

_ A somewhat more involved lexicalization module (us- of the scene grapl& (which is relatively fixed)
ing aggregation) might realize this graph as “The large black . _— . .
block in between the two small white blocks”. with the deictic gesture grapP (which varies

°Here, for the sake of simplicity, we assume that an objecWith the target object). Figure 6 shows three dis-
falls inside the scope of a pointing gesture if the ‘cone’ Shinestinguishing multimodal referring graphs for our
on part of it. A more fine-grained approach might distinguish . . .
between objects in the center (where the light shines brightly}arget objectly. H; is the smallest, only consist-
and objects in the periphery (where the light is more blurred)ing of an edge modelling a precise pointing ges-
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Figure 6: Three distinguishing multimodal refer-
ring graphs fowd,.

Figure 5: Deictic gesture graph is already implicit in the notion opreferred at-

tributesin the incremental algorithm of Dale and
ture. It might be realized as “this one” combinedReiter (1995), and is based on psycholinguistic ev-
with a precise pointing gesturefl, incorporates idence. If someone wants to describe an object,
an imprecise pointing gesture (of the kind shown(s)he will first describe the “type” (whaind of
in Figure 4). Since this imprecise pointing ges-object it is; a block, an animal or whatever). If
ture does not eliminate the distractaksandd;, that does not suffice, firgtbsoluteproperties like
a further edge is required, expressing thatis  color may be used, followed bglative ones such
black. This graph could be realized as “this blackas size. In terms of costs, we assume that type
one” combined with an imprecise pointing ges-properties llock) are for free. Other properties
ture. Finally, H3 is a distinguishing graph which are more expensive. Absolute properties (colors
incorporates a very imprecise pointing gesture. Insuch adblack andwhite) are cheaper than relative
cluding such an edge only rules out the distractor@nes (representing size, suchsasall or large).
di, d7 anddg. At least two additional edges are There is little empirical work on the costs of rela-
required for the construction of a distinguishingtions, but it seems safe to assume that for our ex-
graph, expressing thal; is both large and black. ample scene atomic relations are more expensive
The resulting graph might be realized as “this largg¢han atomic properties. First, relations are compa-
black one” in combination with a very imprecise rable to relative properties (they can not be verified
pointing gesture. Arguably, in the scene of inter-on the basis of the intended referent alone). In ad-
est these multimodal referring expressions seerflition, using a relation implies that a second object
preferable to the linguistic expression from sectior(the relatum) needs to be described as well and
2 (the large black block to the right of a white gne  describing two objects generally requires more ef-

fort than describing a single object.

3 Cost functions
3.2 The costs of pointing Arguably, at least two

We now have many ways to generate a distinguishfactors co-determine the costs of pointing: the

ing referring expression for an object. Cost func-size S of the target object (the bigger the object,
tions are used to give preference to some solutionghe easier, and hence cheaper, the reference), and
over others. Costs are associated with subgrapl{#) the distanceD which the pointing device (in

H of the scene grapi. We require the cost func- our case the hand) has to travel in the direction of
tion to bemonotonic. This implies that extending the target object (a short distance is cheaper than a
a graphH with an edgee can never result in a long one)!! Interestingly, the pioneering work of
graph which is cheaper thaif.!? We assume that Fitts (1954) captures these two factors in the

if H is a subgraph o, the costs offf (notated dex of Difficulty which states that the difficulty to
cos{H)) can be determined by summing over thereach a target is a function of the size of and the
costs associated with the edgedhf distance to a targetD = log,(%2). Thus with

: . each doubling of distance and with each halving
3.1 The costs of properties The idea that cer-

tain linguistic properties are ‘cheaper’ than others A third factor which seems to be relevant is sadience

- of the target. For a detailed discussion of this aspect we refer
YFormally,YH C G Ve € Eg : cos{H) < cos{H +e¢).  tovan der Sluis and Krahmer (2001). See also Section 5.



of size the index of difficulty increases with 1 bit. makeReferringExpressiortv, G) {

The addition of the factor 2 in the numerator is ~ construct D;

unmotivated: Fitts added it to make sure thatin his M == DvUG;

experimental conditions thd was always posi- bestGraph= L;

tive. He performed three experiments (a tapping, H = ({v},0);

a disk transfer and a pin transfer task) and in all "étum findGraph (v, bestGraph 7, M); }

three found a high correlation between the time

subjects required to perform the task and the indef"dGraph (v, bestGraph I, M) {

of difficulty. In recent years various alternatives I [PestGraph# L and cosibestGraph < cos(H)]
for the originallD have been proposed. MacKen-  thenretum bestGraph

zie's (1991) alternative removes the unmotivated ~distr:={n # v |n € Vi A (v, H) refers to(n, M)};
2 from the numerator and starts counting from 1  f distr=0then retum £

assuring that th&D is always positive. for each adjacent edgedo
I :=findGraph (v, bestGraph H + e, M );

if [bestGraph= L or cos{I) < cos{bestGraph]
then bestGraph=T;
return bestGraph}

ID :logQ(g +1)

MacKenzie shows that this version of the fits

the experimental data slightly better. Below we
derive the costs of pointing from this index of dif-
ficulty. As argued, it seems a reasonable assump-

tion thatimprecisepointing is cheaper than precise specify a cost function. Let us assume thatis
pointing; it rules out fewer distractors, but also re-g cube with sides of 1 inch, and that 31 inches is
quires less motoric precision and effort from thethe distance from the current neutral position of
speaker. The index of difficulty allows us to cap-the hand to the target position required for pre-
ture this intuition. We do not interpret the distancecise pointing, 15 inches for imprecise pointing and
D as the distance from the neutral, current positiory inches for very imprecise pointing. Some easy
of the hand to the target object, but rather as thealculations will show that the index of difficulty
distance from the current position of the hand ton the three cases is 5 bits, 4 bits and 3 bits re-
the target position of the hand. For the imprecisgpectively. Thus, precise pointin@) costs 5.00
variants of pointing this distance will be smaller points, imprecise pointing®) 4.00 and very im-
and hence the index of difﬁCU|ty will be lower. precise pointing{IP) 3.00. The preferred order
. for attributes in the current domain is (1) type, (2)
4 Sketch of the algorithm color, (3) size and (4) relations. In terms of costs,
In this section we describe an algorithm whichlet us assume for the sake of illustration that type
outputs the cheapest distinguishing graph for &dges lock) are for free, color edges cost 0.75,
target object, and illustrate it with an example.Size edges cost 1.50 and relational edges 2.25.
Whether this cheapest graph will include pointing We call the functionmakeReferringExpres-
edges, and if so, of what level of precision, is de-sion (d4, G), outlined in figure 7. First of all the
termined by a trade-off between the costs of theleictic gesture graplv,,, adding pointing edges
linguistic edges representing properties and relasf various levels of precision tdy, is constructed
tions of the target object and the costs of pointing(see Figure 4), and merged with This gives us
The algorithm is a multimodal extension of the a multi-modal graph\/. The variablebestGraph
algorithm described in Krahmer et al. (2003), tofor the cheapest solution found so far, is initialized
which paper we refer for more details about com-as the undefined graph (no solution was found
plexity, motivation and implementation. yet), and the referring graph under constructidn
Suppose we want to generate a description fois initialized as the graph only consisting of the
d4 from the scene grapf¥ in Figure 2. Before we vertexd,. We call the functioriindGraph with as
illustrate the workings of this function we need to parameters the target objett, the best graph so

Figure 7: Sketch of the algorithm.



far (1), the graph under constructiaid and the tivated assumptions. The starting point is a graph-
multi-modal graphM. Now the algorithm sys- based algorithm which tries to find the cheapest
tematically tries all relevant subgraplts of M.  referring expression for a particular target object
It starts from the graph which only contains the(Krahmer et al. 2003). We assume that linguis-
vertexd, and the algorithm recursively tries to ex- tic properties have certain costs (c.f., the preferred
tend this graph by addingdjacentedges (that is attributes from Dale & Reiter 1995). And, finally,
edges which start id, or possibly in any of the we propose a “flashlight” model of pointing allow-
other vertices added later on to theunder con- ing for different gradations of pointing precision,
struction). For each grapH it checks to which ranging from precise and unambiguous to impre-
objects inM (different fromd,) the vertex-graph cise and ambiguous. The costs of these various
pair (d4, H) may refer; these are thdistractors. pointing gestures are derived from an empirically
As soon as this set is empty we have found a distinmotivated adaptation of Fitts’ (1954) law.
guishing graph referring t@,. This graphisstored  The model has a number of nice consequences.
in the variablebestGraphfor the cheapest distin- We have described two in detail: (1) we do not
guishing graph found so far. In the end the al-need ana priori criterion to decide when to in-
gorithm returns the cheapest distinguishing graplclude a pointing gesture in a distinguishing de-
which refers to the target object, if one exists, oth-scription. Rather the decision to point is based
erwise it returns the undefined null graphinthe on a trade-off between the costs of pointing and
current set up the latter possibility will never arisethe costs of a linguistic description. And (2)
due to the presence of unambiguous pointing geswve predict that the amount of linguistic proper-
tures (expensive though they may be). Which reties required to generate a distinguishing multi-
ferring graph is the first to be found depends on thenodal referring expression is dependent on the
order in which the edges are tried (clearly this is &ind of pointing gesture. One further neat conse-
place where heuristics are helpful, e.g., it will gen-quence of the model is that an isolated object does
erally be beneficial to try cheap edges before exnot require precise pointing; there will always
pensive ones). Let us say, for the sake of argumenibe a graph containing a less precise (and hence
that the first distinguishing graph which the algo-cheaper) pointing edge which has the same ob-
rithm finds isH3 from Figure 3. This graph costs jects in its scope as the more precise pointing act.
5.25. At this point, graphs which are as expensivéNotice also that the algorithm will never output
as this graph can be discarded (since due to tha graph with multiple pointing edges, since there
monotonicity constraint they will never end up be-would always be a cheaper graph which omits the
ing cheaper than the best solution found so far). Idess precise one. In most situations, it will also
the current situation, the cheapest solutioriHis  not happen that a distinguishing graph will include
from Figure 6, which costs a mere 4.%The re-  both an imprecise pointing gesture and a relational
sulting graph could be realized as “this black one”edge. Under most cost functions it will be more
combined with an imprecise pointing gesture.  ‘cost effective’ to include a precise pointing edge
than an imprecise pointing edgdus a relational
5 Discussion edgeplusthe edges associated with the relatum.

The algorithm we have described has been im-

:{Ve h?ve igscgb?d ? new model fgr the_l_%ener%lemented in Java 2 (J2SE, version 1.4). The com-
'on of muftimodal relerring expressions. The ap'putation described in section 4 requires 110 ms.

proach is based on only a few, independently MO%n a PC with a 900 mHz AMD Athlon Processor
12Note that if pointing would have been cheaper (becauséNd 128 Mb RAM. Due to the presence of precise
the distance between the current position of the hand and thgointing edges it will always be possible to single

required position for precise pointing was, say, 3 inches), th, \+ 5ne object from the others. As a side effect
algorithm would output “this one” plus a precise pointing : . .
edge (i.e.,H, from Figure 6, for 2.00). If pointing would  Of this we obtain a polynomial upperbound for the
be more expensive (because even for very imprecise pointheoretical complexit§1.3 It has been argued that
ing the distance would be substantial), the algorithmwould—_

output Hs from Figure 3, for 5.25. 13wWe know the costs of at least one distinguishing graph



some notion ofocus of attentiorcould be used to vague pointing gestures and their interaction with
tackle the computational complexity. We may as-inguistic realization. We hope to present the re-
sume that objects which are currently in the focussults of this evaluation in a sequel to this paper.
of attention are more salient than objects which are
not in focus. Now the distractor set for a target ob-
: : - ; : References
ject need not includall objects in the domain, but
only those that are at least as salient as the targéﬂdtré,. Et anlt\i/l T|'t'RiS<tj'(1|296)’ (iotpingp\lfvith .;;mporgll Con-
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