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1 Introduction

Concepts from statistical physics have been applied with success in the theory
of learning. To investigate the typical behavior of large systems an averaging
is performed over the disorder brought in by the stochastic nature of the input
training data. A detailed overview of the use of methods from statistical physics
in the field of machine learning can be found in [11], [12]. In this report we present
a detailed derivation of a framework, employed in studying the dynamics of a
class of supervised on-line learning algorithm called Learning vector quantiza-

tion (LVQ), which is used to learn the prototype vectors for nearest prototype

classification (NPC)
The NPC is perhaps the simplest classifier in pattern recognition [4]. Let

the integer c̃ > 1 denote the number of classes in a labeled dataset. Let Ω =
{w1, . . . , wc} ⊂ R

N , c ≥ c̃, be the set of prototypes, where each ωi ∈ Ω is labeled
with one of the c̃ classes. The NPC assigns any unlabeled object ξ ∈ R

N to the
class of its nearest (with respect to some distance metric) prototype. The NPC
can be regarded as a one-nearest-neighbor(1-NN) rule where the reference set
is Ω. The subtle difference between the two paradigms is that NPC assumes a
much smaller number of prototypes than the 1-NN rule, which makes it more
computationally efficient. The main problem in building an NPC is to construct a
good prototype set which will ideally be of minimal cardinality and has minimum
generalization error.

LVQ, first proposed by Kohonen ([5]) is the class of supervised on-line learn-
ing algorithms employed to find the elements of Ω which will ”best” represent
the classes. The number of classes(c̃) and the number of prototypes, (the cardi-
nality of Ω, c), are predefined. A labeled training dataset of the form (ξµ, σµ)
(where ξµ ∈ R

N is the training data vector presented to the on-line learning
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algorithm at time stamp µ and σµ is its class label) is used to learn the elements
of Ω. Various modifications of the original LVQ algorithms proposed in [3] exist
which ensure for example faster convergence, better approximation of optimal
(Bayesian) classification error, better choice and management of dimensionality
of the training data ([5], [7] [9], [6], [8], [10]). The generic structure of an LVQ
algorithm can be expressed in the following way:

wl
µ = wl

µ−1 + ∆wl
µ,

= wl
µ−1 +

η

N
f({wl

µ−1}, ξµ, σµ)(ξµ − wi
µ), l = 1 . . . c, µ = 1, 2 . . . (1)

Where η is the ”so called” learning rate, N is the dimensionality of the system.
The specific form of f is determined by the algorithm used to perform LVQ.

Statistical physics provides the tools to study the stability and convergence of
such on-line learning scenario described by expression (1) in the limit of infinite
dimensionality (N → ∞). The schema of such an analysis is as follows:

– Define the order parameters in terms of which the system dynamics will be
analyzed. The number of order parameters is typically much less than the
actual dimensionality of the system (N).

– Derive the recurrence relations for order parameter from the learning algo-
rithm similar to the generic expression (1).

– In the thermodynamic limit (N → ∞) the recurrence relations yield cou-
pled system of differential equations and the order parameters become self
averaging [1] with respect to the stochastic sequence of input training data.

– We study the dynamics of the system by solving the afore mentioned system
of differential equations.

In this report we present the detailed derivation of the above mentioned coupled
system of differential equations for three different classes of LVQ algorithms
which are described in Section 2. We consider a simple two class problem where
the number of prototypes to be learnt is also two and the classes are labelled as
±1.

In Section 2 we present the model, definitions and a brief description of the
algorithms we intend to analyze. Detailed derivation of the differential equations
is presented in Section 3. In Section 4 we discuss some further aspects of the
proposed framework. We conclude with a brief summary is Section 5.

2 The model, notations, definitions and LVQ algorithms

2.1 The model

Prototypes: ws ∈ R
N , s ∈ {+1,−1} - the prototype vectors for two different

classes.



Data Model: (ξµ, σµ) is the model of the data. ξµ is the input data vector. µ

is the time stamp at which the data is observed, µ = 1, 2 . . ..
σµ is the class to which the observed data ξµ belongs to at time step µ, σµ ∈
{+1,−1}. We assume that ξµ is independently drawn from a dataset having a
probability density function p(ξ) which is defined as follows:
p(ξ) =

∑

σ=±1 pσp(ξ|σ), pσ is the prior probabilities of the two classes, i.e.
p+1 = P (σ = +1) and p−1 = P (σ = −1); p(ξ|σ) is the conditional probability
density of the data given the class σ. In our study we choose p(ξ|σ) to be normally
distributed with independent components (the covariance matrix is diagonal),
i.e

p(ξ|σ) =
1

(2πvσ)
N
2

exp[−1

2

(ξ − λBσ)2

vσ
], (2)

Where λ is the magnitude of the mean vector, ‖Bσ‖ = 1, Bσ specifies the
direction of the mean vector for class σ. For any x ∈ R

N , x2 ≡ x · x; · denotes
scalar product. v1 and v−1 are the variances of each component of the data
vector ξ corresponding to class labels σ = 1 and σ = −1 respectively. < . >

denotes average (expectation) over p(ξ) and can be expressed in the following
form:

< . >=
∑

σ=±1

pσ < . >σ (3)

Where < . >σ is the conditional average for class σ. We choose the input data,
ξ, in such a way that,

< ξ · ξ > =
∑

σ=±1

pσ < ξ2 >σ

= p1(Nv1 + λ2) + p−1(Nv−1 + λ2)

≈ N(p1v1 + p−1v−1)

(∵ N >> λ, < ξ2 >σ≈ Nvσ) (4)

2.2 Order Parameters and Projections

We define the order parameters (Rlm, Qlm) and the projections (bl, hl) as follows:

Rlm = wl · Bm

Qlm = wl · wm (5)

bl = ξ · Bl

hl = ξ · wl (6)

Define,

x = (h1, h−1, b1, b−1) (7)

Instantaneous projections: b
µ
l = ξµ · Bl, h

µ
l = w

µ−1
l · ξµ

Instantaneous order parameters: R
µ
lm = w

µ
l · Bm, Q

µ
lm = w

µ
l · wµ

m

Throughout this article l, m, k ∈ {+1,−1}.



2.3 Statistics of the Projections

Given that each training vector is independent of all previous ones, the statis-
tical properties of the projections are well defined for large N . Central limit
theorem yields that their joint density, p(h+1, h−1, b+1, b−1) = p(x), is normally
distributed and fully specified by the corresponding conditional averages and
covariances.

First Order Statistics of h:

< hl >k =

∫

RN

ξ · wlp(ξ|σ = k)dξ = wl ·
∫

RN

ξp(ξ|σ = k)dξ

= wl · λBk. = λRlk (8)

First Order Statistics of b:

< bl >k =

∫

RN

ξ · Bl(ξ|σ = k)dξ = Bl ·
∫

RN

ξp(ξ|σ = k)dξ

= Bl · λBk = λTlk(say) (9)

Where Tlk ≡ Bl · Bk is called the overlap parameter.

Hence the conditional means of x for two classes can be expressed in the follow-
ing way :

µk=+1 =









λR1,1

λR−1,1

λT1,1

λT−1,1









and µk=−1 =









λR1,−1

λR−1,−1

λT1,−1

λT−1,−1









(10)

Second Order Statistics of h: < hlhm >k − < hl >k< hm >k

To compute the conditional variance let us first look at the average,

< hlhm >k = < (wl · ξ)(wm · ξ) >k

=

〈(

N
∑

i=1

(wl)i(ξ)i

)(

N
∑

j=1

(wm)j(ξ)j

)〉

k

=

〈

N
∑

i=1

(wl)i(wm)i(ξ)i(ξ)i +

N
∑

i=1

N
∑

j=1,j 6=i

(wl)i(wm)j(ξ)i(ξ)j

〉

k

=

N
∑

i=1

(wl)i(wm)i < (ξ)i(ξ)i >k +

N
∑

i=1

N
∑

j=1,j 6=i

(wl)i(wm)j < (ξ)i(ξ)j >k

=

N
∑

i=1

(wl)i(wm)i

[

vk + λ2(Bk)i(Bk)i

]



+

N
∑

i=1

N
∑

j=1,j 6=i

(wl)i(wm)jλ
2(Bk)i(Bk)j

[

∵ components of ξ have variance vk,

⇒< (ξ)i, (ξ)i >k − < (ξ)i >k< (ξ)i >k= vk, ∀i ∈ {1 . . .N}
⇒< (ξ)i, (ξ)i >k= vk+ < (ξ)i >k< (ξ)i >k

and they are independent

⇒< (ξ)i, (ξ)j >k − < (ξ)i >k< (ξ)j >k= 0, ∀i, j ∈ {1 . . .N}, i 6= j.

⇒< (ξ)i, (ξ)j >k=< (ξ)i >k< (ξ)j >k

]

= vk

N
∑

i=1

(wl)i(wm)i + λ2
N
∑

i=1

(wl)i(wm)i(Bk)i(Bk)i

+λ2
N
∑

i=1

N
∑

j=1,j 6=i

(wl)i(wm)j(Bk)i(Bk)j

= vkwl · wm + λ2(wl · Bk)(wm · Bk)

= vkQlm + λ2RlkRmk (11)

Hence we have,

< hl, hm >k − < hl >k< hm >k = vkQlm + λ2RlkRmk − λ2RlkRmk

= vkQlm (12)

Second Order Statistics of b: Similar to (12) we get the second order statis-
tics for b as follows:

< blbm >k − < bl >k< bm >k= vkTlm + λ2TlkTmk − λ2TlkTmk = vkTlm (13)

Covariance: < hlbm >k − < hl >k< bm >k

To compute the conditional variance let us first look at the average,

< hlbm >k = < (wl · ξ)(Bm · ξ) >k

= vkwl · Bm + λ2(wl · Bk)(Bm · Bk)

= vkRlm + λ2RlkTmk

(14)

Hence we have,

< hl, bm >k − < hl >k< bm >k = vkRlm + λ2RlkTmk − λ2RlkTmk

= vkRlm (15)



The conditional density of x for class k is N(µk, Ck), where, µk is the conditional
mean vector for class k and Ck is the conditional covariance matrix for class
k. In our study the conditional density of x is a 4-dimensional Gaussian. The
covariance matrix by Ck and can be explicitly expressed as follows:

Ck = vk









Q1,1 Q1,−1 R1,1 R1,−1

Q1,−1 Q−1,−1 R−1,1 R−1,−1

R1,1 R−1,1 T1,1 T1,−1

R1,−1 R−1,−1 T1,−1 T−1,−1









(16)

2.4 LVQ algorithms

In this article we present a detailed derivation of the system of coupled differ-
ential equations in terms of order parameters, used in the dynamical analysis of
the following LVQ algorithms.

LVQ2.1: LVQ2.1 has been shown to provide good NPC classifiers ([14], [15]).
For every data point (ξµ, σµ), LVQ2.1 first selects two nearest prototypes accord-
ing to the Euclidean distance metric. If labels of such two nearest prototypes
are different and one of them is σµ, then the prototypes are updated. In the
model (two prototypes and two classes of training data) we study the LVQ2.1
algorithm can be described in the following way:

wl
µ = wl

µ−1 + (∆wl
µ)lvq2.1

= wl
µ−1 +

η

N
(lσµ)(ξµ − wl

µ−1) (17)

Robust soft learning vector quantization (RSLVQ): In this report we
deal with the ”hard” version of RSLVQ proposed in [2]. For a given training
data point (ξµ, σµ), this LVQ algorithm determines the nearest prototype, say
wl and the nearest prototype, wσµ which has the same class label as the data
class label, σµ using Euclidean distance metric. If l = σµ then no update of the
prototypes is performed, otherwise the prototypes are updated. In the model we
use this algorithm updates the prototypes when the winner (nearest prototype)
has a different class label from the class label of the input data in the following
way:

wl
µ = wl

µ−1 + (∆wl
µ)RSLV Q

= wl
µ−1 +

η

N
(lσµ)(ξµ − wl

µ−1)Θ
(

d+σµ − d−σµ

)

(18)

Where, Θ(.) is the Heaviside function, i.e.

Θ(x) =
1 if x ≥ 0
0 if x < 0

dσµ =
(

ξµ − w
µ−1
σµ

)2
(19)

We denote Θ
(

d+σµ − d−σµ) by Θσµ in short.



Winner takes all algorithms In this LVQ algorithm for every training data
point, (ξµ, σµ), only (and always) the nearest prototype is updated according to
the following prescription :

wl
µ = wl

µ−1 +
η

N
[a + blσµ]Θ

(

d−l − dl

)

(ξµ − wl
µ−1) (20)

where l ∈ {+1,−1}, a, b ∈ R. We denote Θ
(

d−l − dl) by Θl in short. The afore
mentioned competitive or winner takes all learning algorithm moves the nearest
prototype (the winner) towards or away from the current input training data
depending on the sign of [a+ blσµ]. By choosing different values for the parame-
ters a and b we can interpolate between unsupervised vector quantization (VQ)
and LVQ. Following three cases will be of special interest.
(I) a= 1, b= 0 (VQ):
The label of input training data point, σµ does not play any role in the learning
process and the winner is always moved towards the data point, ξµ. This case
corresponds to the well-known unsupervised winner takes all paradigm ([13]).
The updates can be interpreted as a gradient descent step with respect to the
cost function,

Eµ =
1

2

∑

l=±1

Θ
(

d
µ
−l − dl

µ
)

(ξµ − wl
µ−1)2 (21)

(II) a= 0, b= 1 (LVQ1) :
In this case the nearest prototype is moved closer to (away from) the input
training at any instance if label of the nearest prototype is same (different)
as (from) the class label of the input data. With these parameter values the
expression (20) reproduces the original formulation of the LVQ, formally named
as LVQ1.
(III) a=b= 1

2 (LVQ+):
The nearest prototype is updated only if the class level of the nearest prototype is
same as the class label of the input data, otherwise no update is made. Formally
it is called LVQ+.

In the cases (II) and (III) the correct classification of the current example
is taken into account. The update of the prototypes are designed to decrease
the probability of misclassifying similar inputs in the future. These heuristic

algorithms are compromises between the unsupervised detection of structures in
the input data space and supervised learning of the classification scheme.

3 Detailed derivation of system of coupled differential
equation

Under the assumption that at each step the afore mentioned algorithms are
driven by the presentation of a single training vector which is independent of
the previous ones, the evolution of the prototypes in this paradigm can be con-
ceptually conceived as a stochastic process, to be precise a Markov process. If the



underlying distribution of the training data is simple enough the whole dynamics
of the system can be analyzed using a few order parameter {Rlm, Qlm} and in
the thermodynamic limit (N → ∞) these order parameters are self-averaging

([1]), i.e. the variances of the probability density functions of the order param-
eters vanish in this limit of infinite dimensionality. This self-averaging property
of the order parameters allows us to analyze the stochastic evolution of the
prototype vector in terms of deterministic evolution of order parameters, which
greatly helps to build a theoretical understanding of such systems. This de-
terministic evolution of order parameters is mathematically described using a
system coupled differential equations. In the following subsections we present a
detailed derivation of such system of coupled differential equation for the above
mentioned (17, 18, 20) three different LVQ algorithms.

3.1 LVQ2.1

Recurrence relations for order parameters R:

R
µ
lm = w

µ
l · Bm

=

(

w
µ−1
l + (∆wl

µ)lvq2.1

)

· Bm

= w
µ−1
l · Bm +

(

(∆wl
µ)lvq2.1

)

· Bm

= R
µ−1
lm +

η

N
(lσµ)

(

bµ
m − R

µ−1
lm

)

(22)

Recurrence relation for order Parameter Q:

Q
µ
lm = w

µ
l · wµ

m

=

(

wl
µ−1 + (∆wl

µ)lvq2.1

)

·
(

wm
µ−1 + (∆wm

µ)lvq2.1

)

= Q
µ−1
lm + wl

µ−1 · (∆wm
µ)lvq2.1 + (∆wl

µ)lvq2.1 · wm
µ−1

+ (∆wl
µ)lvq2.1 · (∆wm

µ)lvq2.1

= Q
µ−1
lm +

η

N

(

lσµhµ−1
m − lσµQ

µ−1
lm + mσµh

µ−1
l − mσµQ

µ−1
lm

+
η

N
(lm)ξ · ξ

)

(23)

Since the analysis is for very large N we neglect the terms of O( 1
N2 ) in (23).



Differential equations In the thermodynamic limit, i.e. N → ∞, the variable
α = µ

N is a continuous one and dα = dµ
N = 1

N . Hence in the thermodynamic
limit from the recurrence relation in (22) we get,

dRlm

dα
= η(l)

(

< σbm > − < σ > Rlm

)

(24)

Similarly to (24) for Q we have,

dQlm

dα
= η

(

l < σhm > −l < σ > Qlm + m < σhl >

−m < σ > Qlm + η(lm)(p1v1 + p−1v−1)

)

; (25)

∵< ξ · ξ >≈ N(p1v1 + p−1v−1)

From (24) and (25) we see that we need to calculate the following averages :
A. < σbm >

=
∑

σ=±1

∫

RN σbmpσP
(

ξ|σ
)

dξ

= p+1

∫

RN bmP
(

ξ| + 1
)

dξ − p−1

∫

RN bmP
(

ξ| − 1
)

dξ

=
∑

σ=±1 σpσλTm,σ

B. < σhm >

=
∑

σ=±1

∫

RN σhmpσP
(

ξ|σ
)

dξ

= p+1

∫

RN hmP
(

ξ| + 1
)

dξ − p−1

∫

RN hmP
(

ξ| − 1
)

dξ

=
∑

σ=±1 σpσλRm,σ

C. < σ >

=
∑

σ=±1

∫

RN σpσP
(

ξ|σ
)

dξ

=
∑

σ=±1 σpσ

Equation (24) and (25) along with expressions for averages above imply the
following differential equations which are needed to be solved to analyze the
dynamics of LVQ2.1 algorithm.

dRlm

dα
= η(l)

(

∑

σ=±1

σpσλTm,σ −
∑

σ=±1

σpσRlm

)

(26)

dQlm

dα
= η

(

l
∑

σ=±1

σpσλRm,σ − l
∑

σ=±1

σpσQlm + m
∑

σ=±1

σpσλRl,σ

−m
∑

σ=±1

σpσQlm + η(lm)(p1v1 + p−1v−1)

)

(27)

3.2 RSLVQ

Recurrence relation for order parameter R:

R
µ
lm = w

µ
l · Bm



=

(

w
µ−1
l + (∆wl

µ)RSLV Q

)

· Bm

= R
µ−1
lm +

η

N
(lσµ)(bmΘσµ − R

µ−1
lm Θσµ) (28)

Recurrence relation for order parameter Q:

Q
µ
lm = w

µ
l · wµ

m

=

(

wl
µ−1 + (∆wl

µ)RSLV Q

)

·
(

wm
µ−1 + (∆wm

µ)RSLV Q

)

= Q
µ−1
lm +

η

N

(

lσµhµ−1
m − lσµQ

µ−1
lm + mσµh

µ−1
l − mσµQ

µ−1
lm

+ η(lm)ξ · ξ
)

Θσµ (29)

We neglect the terms of O( 1
N2 ) in (29).

Differential equations In the thermodynamic limit (28) and (29) becomes the
following differential equations:

dRlm

dα
= η(l)

(

< σbmΘσ > − < σΘσ > Rlm

)

(30)

dQlm

dα
= η

(

l < σhmΘσ > −l < σΘσ > Qlm + m < σhlΘσ >

−m < σΘσ > Qlm

+ (lm)η(p1v1 < Θσ >1 +p−1v−1 < Θσ >−1)

)

(31)

To compute the averages in the differential equations above (30,31) let us look
at the function Θσ.

Θσ = Θ
(

d+σ − d−σ

)

= Θ

(

(

ξ − w+σ

)2 −
(

ξ − w−σ

)2

)

= Θ

(

− 2ξ · w+σ + w+σ · w+σ + 2ξ · w−σ − w−σ · w−σ

)

= Θ

(

− 2h+σ + Q+σ,+σ + 2h−σ − Q−σ,−σ

)



= Θ

(

(

−2, +2, 0, 0
)

·
(

h+σ, h−σ, b+σ, b−σ

)

+ Q+σ,+σ − Q−σ,−σ

)

(32)

Hence we have,
Θσ = Θ

(

ασ · x − βσ

)

, (33)

Where, ασ =
(

− 2σ, 2σ, 0, 0) and βσ = −
(

Qσ,σ − Q−σ,−σ

)

As all the averages in (30) and (31) can be expressed as sum of weighted
conditional averages, c.f. identity (3), it is enough to compute the averages of the
following forms : < (x)nΘσ >σ and < Θσ >σ, where, (x)n is the nth component
of the vector x; n ∈ {1, 2, 3, 4} .

From expression (65) in the Appendix A we get the final form of the system
of coupled differential equation as follows:

dRlm

dα
= η(l)

(

∑

σ=±1

σpσ

[ (Cσασ)nbm√
2πα̃σ,σ

exp
[

− 1

2
(
β̃σ,σ

α̃σ,σ
)2
]

+(µσ)nbm
Φ
( β̃σ,σ

α̃σ,σ

)

]

−
∑

σ=±1

σpσ

[

Φ
( β̃σ,σ

α̃σ,σ

]

Rlm

)

(34)

dQlm

dα
= η

(

l
∑

σ=±1

σpσ

[ (Cσασ)nhm√
2πα̃σ,σ

exp
[

− 1

2
(
β̃σ,σ

α̃σ,σ
)2
]

+ (µσ)nhm
Φ
( β̃σ,σ

α̃σ,σ

)

]

− l
∑

σ=±1

σpσ

[

Φ
( β̃σ,σ

α̃σ,σ

]

Qlm

+m
∑

σ=±1

σpσ

[ (Cσασ)nhl√
2πα̃σ,σ

exp
[

− 1

2
(
β̃σ,σ

α̃σ,σ
)2
]

+ (µσ)nhl
Φ
( β̃σ,σ

α̃σ,σ

)

]

−m
∑

σ=±1

σpσ

[

Φ
( β̃σ,σ

α̃σ,σ

]

Qlm + (lm)η
∑

σ=±1

vσpσΦ
( β̃σ,σ

α̃σ,σ

)

)

(35)

Where,

nbm =
3 if m = 1
4 if m = −1

nhm =
1 if m = 1
2 if m = −1

α̃σ =
√

ασ
T Cσασ, β̃σ,σ = ασ · µσ − βσ

3.3 Winner takes all algorithms

Following exactly similar steps as in LVQ2.1 and RSLVQ we can express the
required differential equations as follows:

dRlm

dα
= η

[

a
(

< bmΘl > − < Θl > Rlm

)



+ bl
(

< σbmΘl > − < σΘl > Rlm

)

]

(36)

dQlm

dα
= η

[

b
(

l < σhmΘl > −l < σΘl > Qlm + m < σhlΘm >

−m < σΘm > Qlm

)

+ a
(

< hmΘl > − < Θl > Qlm+ < hlΘm > − < Θm > Qlm

)

+ δlmη
[

a2 + b2lm
]

(p1v1 < Θl >1 +p−1v−1 < Θl >−1)

+ δlmab(l + m)(p1v1 < Θl >1 +p−1v−1 < Θl >−1)

]

(37)

Where,

δlm =
1 if m = l

0 if m 6= l

Similar to Θσ of RSLVQ we can express Θl in the following way,

Θl = Θ
(

αl · x − βl

)

(38)

Where αl = (2l,−2l, 0, 0) and βl = (Ql,l − Q−l,−l). To compute the averages
in (36) and (37) it is enough to compute the averages of the following forms:
< (x)nΘl >k and < Θl >k. Using averages in (65) in Appendix A we get the
following expression for differential equations,

dRlm

dα
= η

[

(bl)
(

∑

σ=±1

σpσ

[ (Cσαl)nbm√
2πα̃l,σ

exp
[

− 1

2
(
β̃l,σ

α̃l,σ
)2
]

+(µσ)nbm
Φ
( β̃l,σ

α̃l,σ

)

]

−
∑

σ=±1

σpσ

[

Φ
( β̃l,σ

α̃l,σ

]

Rlm

)

+ (a)
(

∑

σ=±1

pσ

[ (Cσαl)nbm√
2πα̃l,σ

exp
[

− 1

2
(
β̃l,σ

α̃l,σ
)2
]

+ (µσ)nbm
Φ
( β̃l,σ

α̃l,σ

)

]

−
∑

σ=±1

pσ

[

Φ
( β̃l,σ

α̃l,σ

]

Rlm

)

]

(39)

dQlm

dα
= η

(

bl
∑

σ=±1

σpσ

[ (Cσαl)nhm√
2πα̃l,σ

exp
[

− 1

2
(
β̃l,σ

α̃l,σ
)2
]

+(µσ)nhm
Φ
( β̃l,σ

α̃l,σ

)

]

−bl
∑

σ=±1

σpσ

[

Φ
( β̃l,σ

α̃l,σ

]

Qlm



+bm
∑

σ=±1

σpσ

[ (Cσαl)nhl√
2πα̃m,σ

exp
[

− 1

2
(
β̃m,σ

α̃m,σ
)2
]

+(µσ)nhl
Φ
( β̃m,σ

α̃m,σ

)

]

−bm
∑

σ=±1

σpσ

[

Φ
( β̃m,σ

α̃m,σ

]

Qlm

)

+ δlm(a2 + b2lm)η2
∑

σ=±1

σpσvσΦ
( β̃l,σ

α̃l,σ

)

+δlmη2
(

ab(l + m)
)

∑

σ=±1

σpσvσΦ
( β̃l,σ

α̃l,σ

)

+ η
(

a
∑

σ=±1

pσ

[ (Cσαl)nhm√
2πα̃l,σ

exp
[

− 1

2
(
β̃l,σ

α̃l,σ
)2
]

+(µσ)nhm
Φ
( β̃l,σ

α̃l,σ

)

]

−a
∑

σ=±1

pσ

[

Φ
( β̃l,σ

α̃l,σ

]

Qlm

+a
∑

σ=±1

pσ

[ (Cσαl)nhl√
2πα̃m,σ

exp
[

− 1

2
(
β̃m,σ

α̃m,σ
)2
]

+(µσ)nhl
Φ
( β̃m,σ

α̃m,σ

)

]

−a
∑

σ=±1

pσ

[

Φ
( β̃m,σ

α̃m,σ

]

Qlm

)

(40)

Where,

nbm =
3 if m = 1
4 if m = −1

nhm =
1 if m = 1
2 if m = −1

α̃l,σ =
√

αl
T Cσαl, β̃l,σ = αl · µσ − βl

α̃m,σ =
√

αm
T Cσαm, β̃m,σ = αm · µσ − βm

4 Further Aspects

4.1 Generalization Error

For evaluation of any classification algorithm one of the most important criteria
used is the generalization error. In the following we show how the generalization



error can be expressed in terms of order parameters. We define generalization
error as the sum of TYPE-I and TYPE-II statistical error. Mathematically we
define it as follows,

εg ≡
∑

k=±1

p−k < Θk >−k (41)

where, Θk = Θ
(

(

ξ − w−k

)2 −
(

ξ − wk

)2
)

and pk is the prior probabilities of

the class k.

To compute the averages < Θk >−k let us look at the Θ-function in this
case.

Θk = Θ
(

(

ξ − w−k

)2 −
(

ξ − wk

)2
)

= Θ
(

− 2ξ · w−k + w−k · w−k + 2ξ · wk − wk · wk

)

= Θ
(

− 2h−k + Q−k,−k + 2hk − Qk,k

)

= Θ
(

(

− 2, 2, 0, 0
)

·
(

h−k, hk, bk, b−k

)

+ Q−k,−k − Qk,k

)

(42)

Hence we have,

Θk = Θ
(

αk · x − βk

)

(43)

Where, αk =
(

2k,−2k, 0, 0
)

and βk = (Qk,k − Q−k−k).

Defining, α̃k,−k =
√

αkC−kαT
k and β̃k,−k = αk · µ−k − βk, using (65) in

Appendix A we have,

< Θk >−k= Φ
( β̃k,−k

α̃k,−k

)

(44)

Hence,

εg ≡
∑

k=±1

p−kΦ
( β̃k,−k

α̃k,−k

)

(45)

Another interesting quantity for studying the evolution process of the prototypes
along the learning steps is the Euclidean distance between the prototypes and
class mean vectors, which can also expressed in terms of order parameters as
follows:

dl,k =
(

wl − λBk

)2

=
(

wl · wl − 2λwl · Bk + λ2Bk · Bk

)

=
(

Ql,l − 2λRl,k + λ2
)

∵ Bk · Bk = 1 (46)



4.2 Ineffectiveness of the window rule for LVQ2.1 algorithm for
N → ∞

If the prior probabilities are skewed the prototype vector corresponding to the
class with lower probability gets push far away in the course of training process
in the case of LVQ2.1. In practice this divergence problem is tackled by using a
window. The prototypes are updated iff the data point ξµ at time stamp µ if it
falls into a window, i.e the following holds [2]:

min
( d(ξµ, wσ)

d(ξµ, w−σ)
,
d(ξµ, w−σ)

d(ξµ, wσ)

)

> s, s =
1 − γ

1 + γ
, 0 < γ ≤ 1 (47)

where, d is the Euclidean distance metric. Since,

lim
N→∞

min
( d(ξµ, wσ)

d(ξµ, w−σ)
,
d(ξµ, w−σ)

d(ξµ, wσ)

)

= 1 (48)

for very high dimensionality of the data the above mentioned window does not
work.

4.3 Best linear decision boundary and corresponding generalization
error

Computing the Bayes optimal error for unequal class variances is a hard problem
since the optimal decision surface is in general quadratic. However for a two class
problem the generalization error can be approximated using Chernoff bound or
Bhattacharya bound [4].

For a two class problem the decision boundary given by any LVQ algorithm
is always linear or piece wise linear if we consider more than one prototype per
class. In the model we use in this study the decision surface is always a linear one.
Hence it is more logical to compare the performance of the algorithms (in terms
of generalization error) with that of a best possible linear decision surface. To
compute the generalization error for the best linear decision surface we consider
the configuration depicted in Fig. 1 and parameterize the prototype vectors in
the following way:

w1 = (d + g)B1 and w−1 = (d − g)B−1.

The above parameterization leads to parameterization of {Rlm, Qlm}. Hence the
generalization for the configuration shown in Fig. 1 can be computed to be the
following:

εg = p1Φ
(g − λ√

v1

)

+ p−1Φ
(−g − λ
√

v−1

)

(49)

And the generalization corresponding to the best linear decision surface is cal-
culated as follows:

εg,bld = min{εg|g ∈ R} (50)



g

B1

w1

o

d

d

Best Linear Decision Surface

B−1

w−1

Fig. 1. Best linear decision boundary and corresponding generalization error.

We should note that though in the configuration illustrated Fig. 1 we have
taken B1 = −B−1 yet the generalization error is independent of the directions
of the mean vectors provided we properly scale the magnitude (λ) of them i.e.
we keep the distance between class centers constant. We also emphasize that
εg,bld matches with the Bayes optimal generalization error for v1 = v−1.

5 Summary and conclusions

For a simple and well behaved probability density function of the training data
the dynamics of very high dimensional learning vector quantization (LVQ) al-
gorithms can be theoretically analyzed using a few order parameters. Under the
Markovian assumption these order parameters becomes self-averaging ([1]) and
descriptions in terms of mean values are sufficient. The crucial step of such an
analysis is the construction of solvable (analytically or numerically) system of
coupled differential equations in terms of the order parameters, solving which
we get an analytical description of the dynamics of the system. In this report
we presented a detailed derivation of such differential equations for three differ-
ent LVQ algorithms. The analysis is presented in a generic way, so that it can
be helpful to use the same derivation and analysis for other types of learning
algorithms.
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A < (x)nΘs >k and < Θs >k

< (x)nΘs >k

=
1

(2π)4/2
(

det(Ck)
)

1

2

∫

R4

(x)nΘ
(

αs · x − βs

)

exp

(

− 1

2

(

x − µk

)T
C−1

k

(

x − µk

)

)

dx

=
1

(2π)4/2
(

det(Ck)
)

1

2

∫

R4

(

x
′

+ µk

)

n
Θ
(

αs · x
′

+ αs · µk − βs

)

exp

(

− 1

2
x

′T
C−1

k x
′

)

dx
′



(51)

x
′

= x − µk. Substitute, x
′

= Ck
1

2 y. Where Ck
1

2 is defined in following way,

Ck = Ck
1

2 Ck
1

2 . Since Ck is a covariance matrix, it is positive semidefinite, hence

Ck
1

2 exists. Hence we have dx
′

= det(C
1

2

k )dy = (det(Ck))
1

2 dy. Hence (51) =,

=
1

(2π)2

∫

R4

(C
1

2

k y)nΘ
(

αsC
1

2

k y + αs · µk − βs

)

exp
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− 1

2
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2
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)

dy + (µk)n < Θs >k
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Where
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(2π)2

∫

R4

4
∑

j=1

(

(C
1

2

k )nj(y)j

)

Θ
(

αsC
1

2

k y + αs · µk − βs

)

exp

(

− 1

2
y2

)

dy (53)

Define Ij =
∫

R
(C
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2

k )nj(y)jΘ
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αsC
1

2
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)

exp
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− 1
2 (y)2j
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To compute Ij we use integration by parts, (
∫

udv = uv −
∫

vdu).
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u = Θ
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αsC
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Hence,
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Define,
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Θ
(

αsC
1

2

k y + αs · µk − βs

)

)

=

4
∑

i=1

(αs)i(C
1

2

k )i,j

(

δ
(

αsC
1

2

k y + αs · µk − βs

)

)

(56)

Where δ(.) is the Dirac-delta function. Hence,
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exp

(

− 1

2
y2

)

dy (57)

exp
[

− 1
2y2

]

dy is a measure which is invariant under rotation of the coordinate
system. We rotate the coordinate system in such a way that one of the axes, say

ỹ is along the vector C
1

2

k αs. Since 1√
2π

∫

R
exp

[

− 1
2z2
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dz = 1,
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ỹ2
]

dỹ (58)

‖C
1

2

k αs‖ =
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αsCkαs = α̃s,k, (say) and αs · µk − βs = β̃s,k (say), then

I =
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Since
∫

R
δ(x − a)f(x)dx = f(a),
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Where,

α̃s,k =
√

αT
s Ckαs (61)

β̃s,k = αs · µk − βs (62)

Next we compute the following required average:
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Θ
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(64)

Where Φ(.) is the standard normal (N(0, 1)) (cumulative) distribution func-
tion. Hence finally we have the required averages as follows,

< Θs >k = Φ
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(65)

Where,
α̃s,k =

√

αT
s Ckαs

β̃s,k = αs · µk − βs


