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Towards a dynamical view of ACT-R’s electrophysiological correlates
Marieke K van Vugt (m.k.van.vugt@rug.nl)

Dept. of Artificial Intelligence, Nijenborgh 9
9747 AG Groningen

The Netherlands

Abstract

Cognitive neuroscience could benefit from more detailed the-
ories about how different cognitive resources interact and how
those interactions unfold over time. Cognitive architectures
such as ACT-R make predictions about such interactions. Pre-
vious work has shown that the activation of ACT-R modules
(i.e., cognitive resources) is correlated with oscillatory activ-
ity, primarily in the lower frequency bands. Activation of its
visual, production, and retrieval modules is primarily associ-
ated with oscillations in occipital areas, while the activation of
its imaginal module is primarily associated with oscillatory ac-
tivity in the fronto-parietal attention network. What remained
unclear in previous work was the time courses of these oscilla-
tory correlates of ACT-R and what their role is in information
processing. Here I show by examining the changes in these
oscillatory correlates over time that the occipital effect associ-
ated with visual, production, and retrieval modules is primarily
related to stimulus identification, and the fronto-parietal corre-
late associated with the imaginal module is primarily associ-
ated with target consolidation. In addition, I demonstrate how
patterns of coherence between electrodes could be interpreted
as information transfer between the relevant ACT-R modules.
Keywords: EEG; ACT-R; attentional blink; oscillations

Introduction
The brain is a very complex system with many degrees
of freedom, which means that investigating how the brain
is involved in cognition requires a strong theory. Since
most model-based neuroscience (Forstmann, Wagenmakers,
Eichele, Brown, & Serences, 2011) focuses on simple mod-
els of a single cognitive operation, they provide little the-
ory about how different parts of the brain interact. In this
manuscript I argue that this gap could be filled by cognitive
architectures such as ACT-R, which consist of various mod-
ules (cognitive resources) that communicate and interact to
produce the modeled behaviors. As such, they could provide
a theory for how networks of different brain areas may to-
gether be involved in information processing.

Previous studies that related ACT-R to fMRI activ-
ity (Anderson, Fincham, Qin, & Stocco, 2008; J. Borst,
Taatgen, & van Rijn, 2011) have provided a good map be-
tween specific ACT-R modules and BOLD activity and devel-
oped new insights into the neural overlap between disparate
tasks (J. P. Borst & Anderson, 2013). What has been less
developed are relations between ACT-R and EEG activity,
even though EEG has the temporal resolution to reveal mod-
ule communication in real time that fMRI lacks.

I have previously developed a mapping between ACT-R
module activity and (oscillatory) EEG data during an atten-
tional blink task (van Vugt, 2012). In that study, I used canon-
ical correlation analysis (CCA) to find the electrodes and os-
cillatory frequency bands that best correlated with ACT-R’s

predicted theta
coherence

for processing "A"

Figure 1: Example of predictions for neural correlates of
interaction between modules in the attentional blink task
(adapted from Taatgen et al., 2009). When the visual and later
the production modules are identifying the letter “A,” there
should be a specific increase in coherence in the theta band
between the channels corresponding to the stimulus identifi-
cation and target consolidation variates. These sets of chan-
nels were based on Figure 3.

module activations. I showed that there were two sets of mod-
ule activations that correlated with EEG activity. First, activa-
tion of the imaginal module was associated with parietal 4–9
Hz theta oscillations, in line with previous associations be-
tween the imaginal module and the fronto-parietal attention
network (Anderson et al., 2008; J. Borst et al., 2011). Second,
activation of the visual, retrieval, and production modules was
mostly associated with 4–9 Hz theta activity in posterior elec-
trodes, in line with previous associations between the visual
module and occipital cortex in fMRI studies (J. Borst et al.,
2011).

While this previous study introduced the approach of relat-
ing ACT-R module activation to EEG activity, it did not ex-
plore in detail how EEG-derived ACT-R activations unfolded
over time. I will report here on the neural dynamics of the
EEG correlates of the different ACT-R modules introduced
in van Vugt (2012). An even more important aspect of ACT-
R dynamics is the transfer of information between different
buffers and modules, which I hypothesize may be measurable
in distinct increases in coherence of the EEG (Figure 1). Co-
herence reflects a correlation between signals at a particular
frequency, and it is thought to be a vehicle for communica-
tion in the brain (Fries, 2005). I will test whether coherence
increases selectively at time points during which ACT-R pre-
dicts communication between its modules.



Methods
Task: I re-analyzed data from an attentional blink
task (Martens, Munneke, Smid, & Johnson, 2006) to find the
electrophysiological correlates of ACT-R. In this task, partic-
ipants see a very rapid stream of visual stimuli presented for
90 ms each. Their assignment is to report whether there are
letters present in the stream, and if so, which letters those are.
The data reported here are from the subset of 11 blinkers in
the study by Martens et al. Their EEG data were collected at
the University of Groningen with a 64-channel EEG system
(Twente Medical Systems, Enschede, The Netherlands) at a
sample rate of 250 Hz.
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Figure 2: Example of module activation probabilities for the
ACT-R model of the attentional blink in one of the conditions
(lag 3, blinked). Blue: imaginal (working memory) module.
Red: visual module. Green: production (procedural) module.
Black: retrieval (from declarative memory) module. I used
such module activations to create the ACT-R regressors that I
correlated with the EEG data.

EEG pre-processing: I analyzed the EEG data with the
EEG toolbox, a set of Matlab scripts developed in the lab-
oratory of Michael Kahana (e.g, van Vugt, Schulze-Bonhage,
Litt, Brandt, & Kahana, 2010) and custom-written scripts.
I used this toolbox to extract data for every channel in our
EEG setup. I concatenated the time series for each trial
lengthwise into one long time series (“features”) to be cor-
related with the ACT-R model time series (“regressors”). I
then used Morlet wavelets (see van Vugt, Sederberg, & Ka-
hana, 2007, for a comparison of different oscillation detection
methods) to create representations of the EEG data in six dis-
tinct frequency bands: 2–4 Hz delta, 4–9 Hz theta, 9–14 Hz

alpha, 14–28 Hz beta, 28–48 Hz low gamma and 48–90 Hz
high gamma (van Vugt et al., 2010). I concatenated these
frequency-transformed EEG data in the same way as the raw
EEG data.

The regressors that I correlated with the EEG data reflected
hypothesized model dynamics (van Vugt, Simen, & Cohen,
2011; van Vugt, Simen, Nystrom, Holmes, & Cohen, 2012).
“Regressors” is fMRI terminology for a time series of inter-
est that is used as the independent variable in a regression
to find pieces of neural data that correlate with these dynam-
ics. In this case, the data patterns of interest are probabil-
ities of activation of the four modules that comprised the
ACT-R model of the attentional blink (visual, production,
retrieval, and imaginal). I ran the attentional blink ACT-R
model (Taatgen, Juvina, Schipper, Borst, & Martens, 2009)
250-350 times (corresponding to the number of trials in the
dataset) and computed the average activation for different
model conditions: lag 3 and 8, and blinked and non-blinked
responses. These average activations reflect the probability of
a module being active. ’Lag’ refers to the number of stimuli
between the first and second target (letter) in the digit stream
that the participant has to remember. An attentional blink is
likely to occur for lag 3, but not lag 8 trials. Trials in which
the first target was missed were removed from the analysis be-
cause in that case it is not clear what the reason is for missing
the second target if that occurs.

For every trial that a participant did, I inserted the aver-
aged module activation for the condition corresponding to
that trial. This led to an activation time series during the
whole task for every ACT-R module that, after subsampling
to the EEG sample rate (250 Hz), had the same length as the
EEG data. These were the time series that I used to regress the
EEG time series on, to obtain for every module an estimate of
how well it correlated with each frequency band, and which
channels were most strongly involved in this correlation. In-
stead of using a simple multiple regression, I used a canon-
ical correlation analysis (CCA), which finds weights on the
regressors (ACT-R time series) and features (electrode time
series) that maximize the correlation between the electrode-
and the ACT-R time series (van Vugt et al., 2012). The CCA
thus results in multiple sets of (1) a correlation value, (2) a
corresponding set of weights on electrodes; the EEG “vari-
ate”, and (3) a set of weights on ACT-R modules, the ACT-R
“variate.” Note that for this CCA, only the EEG data were
wavelet-transformed–the ACT-R activation time courses were
not.

Across-subject analysis: I combined the data across par-
ticipants by appending the time series of the different par-
ticipants in the time domain (Calhoun, Adali, Pearlson, &
Pekar, 2001; Calhoun & Eichele, 2010). Similar to previ-
ous work, I used only a subset (1/4th) of each participants’
data to run this CCA (van Vugt et al., 2012). This allowed
me to use the remaining data in a cross-validation-based test
of whether certain frequency bands showed a higher corre-
lation with the model than others (see below). I performed



Variate 1 (stim-
ulus identifica-
tion)

Variate 2
(target consoli-
dation)

2–4 Hz 4–9 Hz 9–14 Hz 28–48 Hz

Figure 3: Topographical representation of the correlation between ACT-R module activation and EEG. Variate 1 primarily
reflects stimulus identification done by the production and retrieval modules; variate 2 primarily reflects target consolidation
done by the imaginal module. Plotted are the magnitudes of the canonical correlation weights across the brain for the canonical
correlation between ACT-R time series and EEG activity in the respective frequency band. Red positive weights; blue: negative
weights.

the CCA separately for every frequency band, but allowed
linear combinations of regressors. This was helpful because
the activations of some of the ACT-R modules were highly
correlated. The CCA resulted in a set of correlations for ev-
ery frequency band, one for each linear combination of re-
gressors, and a corresponding set of electrode weights. The
frequency bands with the highest correlations and the corre-
sponding electrode weights form the EEG correlate of that
particular linear combination of ACT-R modules. I assessed
the significance of each canonical correlation by repeating the
same analysis with a set of regressors in which the activation
time courses of the respective modules were randomly dis-
placed in time. A significant canonical correlation should ex-
ceed the distribution of canonical correlations based on 100
iterations of CCA with random data.

Comparison between frequency bands: I further tested
whether the correlation in a certain frequency band was
higher than that in the other bands by using a cross-validation
vapproach. For every participant I applied the weights ob-
tained with CCA to the EEG data and ACT-R time courses
that had not been used in the CCA. As such, I obtained a dis-
tribution of regression coefficients (one for each participant)
that I could compare between frequency bands (after having
applied a Fisher transform).

Event-related averages: To compute event-related aver-
ages of the oscillatory correlates of ACT-R module activation,
I applied the electrode weights to the time courses of oscilla-
tory power and computed averages separately for each of the
four trial types (lag 3 correct, lag 3 error, lag 8 correct, lag 8
error). I removed any trial that showed a kurtosis larger than
4 (Delorme & Makeig, 2004) or an average EEG amplitude
larger than 70 µV. I verified by visual inspection that these
thresholds removed most artifacts while at the same time re-
taining most non-artifactual EEG. To remove confounds of
differences in overall amplitude between participants and be-

tween frequency bands, I z-scored all data before averaging.
Coherence analysis: To test the hypothesis that the differ-

ent ACT-R modules communicate through coherence, I com-
puted coherence at 7 Hz (centre of the theta band) between the
sets of electrodes comprising the two canonical variates over
time. I then compared coherence between the periods when
there should be communication between visual and produc-
tion modules (i.e., right after the activation peak of the visual
module and before the peak of the production module) and
when there should not be communication (i.e., during the ac-
tivation peak of the visual module). This analysis was done
within-subjects, and the across-subject t-statistic was com-
puted to summarize these within-subject effects.

Results
ACT-R model of attentional blink
My analyses are based on Taatgen’s previously published an
ACT-R model of the the attentional blink. Figure 2 shows the
time course of activation of its different ACT-R modules. The
visual module (red) turns on and off each time a visual stim-
ulus is presented (first the fixation cross; then the 20 visual
stimuli that are each shown for 90 ms). The production mod-
ule activates right after that to instruct the retrieval module
to retrieve the identity of the stimulus, and hence its activa-
tion follows the production module activation. The imaginal
module serves to store the retrieved identity into memory if
the item happens to be a target. When the participant “blinks”
during the trial, there is only a single activation bump of this
module, indicating that the second target is never written to
memory (consolidated). The two most prominent features
of the attentional blink model are thus (1) module activa-
tion around each stimulus presentation and (2) a difference in
imaginal module activation between blinked and non-blinked
target stimuli. These should reappear in the oscillatory corre-
lates of ACT-R.



(a) Variate 1 (b) Variate 2
stimulus identification target consolidation

Figure 4: Time courses of linear combinations of ACT-R module activations that comprise variate 1 (a; on vs off-task/stimulus
identification) and variate 2 (b; target consolidation) in the 4–9 Hz theta band. The four conditions are shown in different colors:
lag 3 correct: blue; lag 8 correct: black; lag 3 blinked: red; lag 8 blinked: magenta. The times at which the first (T1) and second
target (T2) are presented are indicated in the figure with vertical lines in corresponding colors.

(a) 4–9 Hz theta (b) 28–48 Hz low gamma

Figure 5: Time courses of 4–9 Hz theta (a) and 28–48 Hz low gamma band activity (b) corresponding to the stimulus identifi-
cation canonical variate. The times at which the first (T1) and second target (T2) are presented are indicated in the figure with
vertical lines; 0 ms is the onset of the stimulus stream. Time courses for lag 3 trials are in blue (correct) and red (blinked), while
time courses for lag 8 trials are in black (correct) and magenta (blinked).



Figure 6: Time course of 4–9 Hz theta activity corresponding
to the target-consolidation canonical variate. The times at
which the first (T1) and second target (T2) are presented are
indicated in the figure with vertical lines; 0 ms is the onset of
the stimulus stream. Time courses for lag 3 trials are in blue
(correct) and red (blinked), while time courses for lag 8 trials
are in black (correct) and magenta (blinked).

Time course of first canonical variate
The canonical correlation analysis in van Vugt (2012) pro-
duced linear combinations of ACT-R modules that were cor-
related with linear combinations of EEG electrodes in differ-
ent frequency bands. The first canonical variate had ACT-
R weights that were largest for the production and retrieval
modules. Figure 4(a) shows the weighted combination of
ACT-R activations that reflects this canonical variate. There
is a clear increase in amplitude for the stimulus presentation
period and differentiates little between the conditions (lag 3
vs lag 8; blinked vs. non-blinked). It must therefore reflect
a process that is subserved by production and retrieval mod-
ules, and that happens for every presented stimulus. A plau-
sible candidate for such a process is identifying the identity
of each visual stimulus; therefore I named this the “stimulus
identification” variate.

I previously reported that this canonical variate was most
strongly associated with 2–4 Hz delta and 4–9 Hz theta activ-
ity. Figure 5(a) displays the time course of 4–9 Hz theta ac-
tivity in the set of channels associated with this stimulus iden-
tification variate. Does the 4–9 Hz dynamics differ from that
at higher frequencies? Figure 5(b) shows the corresponding
activity for the 28–48 Hz low gamma band. What is notable
is that while the theta activity is mostly sensitive to being on
or off-task (i.e., it turns on at the beginning of the stimulus
train and turns off at its end), gamma activity also appears
to be modulated by stimulus appearance (i.e., modulated by
each stimulus itself).

Time course of second canonical variate
The second canonical variate loaded predominantly on the
imaginal module, thus potentially reflecting the process of
recognition and/or consolidation of the target stimulus. Fig-
ure 4(b) shows the weighted combination of ACT-R activa-
tions that reflects this canonical variate. For this variate, 4–9
Hz theta power does not increase and decrease with onset and
offset of the stimulus stream, but rather increases more selec-
tively after each target. For lag 3, the two target-related theta

Figure 7: Increases in coherence during model-predicted
communication between visual and production modules,
which starts the process of determining the identity of the vi-
sual stimulus (what letter or digit it is).

power peaks appear to be merged, while for lag 8, they can
be distinguished. The second target-related peak appears to
be missing for the blinked trials (red and magenta), as one
would expect if this variate is involved in consolidating tar-
get stimuli, which takes place specifically for targets in non-
blinked trials and is absent for targets that are blinked. I thus
refer to this variate as the “target consolidation variate.”

The difference in peaks between the two lags is also vis-
ible in the oscillatory correlates of this target consolidation
variate shown in Figure 6. This shows that for the lag 8 con-
dition, theta power shows 2 distinct peaks (black), while it
only shows a single peak for the lag 3 condition (blue). Fur-
thermore, theta power exhibits a narrower peak for blinked
compared to non-blinked trials in the lag 3 condition (red),
while it exhibits a single protracted peak for blinked trials in
the lag 8 condition (magenta).

Coherence between canonical variates
Finally, I examined by way of proof of concept the idea that
these correlates of ACT-R resources could be communicating
through coherence (CTC hypothesis; Fries, 2005). The CTC
hypothesis states that when neurons are coherent and their
membrane potential goes up and down together, a neuron nat-
urally sends most spikes at times when the other neuron is
most sensitive to incoming spikes. In other words, coherence
improves information exchange between neurons. Given this
CTC hypothesis, I predicted that times at which ACT-R mod-
ules exchange information, there should be an increase in co-
herence between the channels that comprise these modules.

To test this hypothesis, I generated based on the ACT-R
module time courses a set of time points at which I expected
high amounts of communication, and contrasted those with
time points at which there should be little communication.
For example, the visual module needs to transmit informa-
tion to the production module so it can ask the retrieval mod-
ule about the identity of the perceived stimuli. This means
there should be high coherence just after the peak activation



of the visual module and before the peak activation of the
production module (Figure 1). I computed coherence for a
set of electrodes in the ROIs defined by the theta topogra-
phies (Figure 3), and contrasted coherence estimates between
time points of hypothesized high communication and time
points of low communication. Figure 7 shows the channels
that have significantly (t(10)> 2) increased coherence for pe-
riods where the model predicts high communication between
these modules.

Discussion
In summary, I aimed to find out how the previously-identified
oscillatory correlates of ACT-R behaved over the course of
time. Based on visual inspection of the ACT-R compo-
nents, I defined the first canonical variate observed in previ-
ous work (van Vugt, 2012) as a “stimulus identification” com-
ponent, while the second canonical variate mostly reflected
“target consolidation.” The stimulus identification variate had
previously been identified with activity in a broad range of
frequencies, ranging from 2–90 Hz. Here I showed that the
lower band of these frequencies primarily reflected task en-
gagement, while the band of higher frequencies also exhib-
ited modulation by the appearance of each stimulus. I further
showed how the relation between ACT-R module activations
and EEG oscillations could be used to investigate the role
of oscillatory coherence in information transmission between
modules. I found that communication between the visual and
production modules was associated with increased coherence
between occipital and parietal channels that formed part of
ACT-R’s oscillatory correlates.

These findings can form the basis for more understanding
of the role of oscillatory coherence in information transmis-
sion in the brain. In addition, once ACT-R’s electrophysi-
ological correlates have been better established, they could
also potentially be used to compare different model variants.
In such model comparisons, high correlations of module ac-
tivations with oscillatory power, and high correlations of in-
formation exchange between modules with coherence could
provide evidence in favor of a model.
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