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ORIGINAL ARTICLE Open Access
On the potential application of polar and
temperate marine microalgae for EPA and DHA
production
Peter Boelen1*, Roechama van Dijk1, Jaap S Sinninghe Damsté2, W Irene C Rijpstra2 and Anita GJ Buma1
Abstract

Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are
allegedly involved in the regulation of membrane fluidity and thylakoid membrane functioning. The cellular content
of EPA and DHA may therefore be enhanced at low temperature and irradiance conditions. As a result, polar and
cold temperate marine microalgal species might potentially be suitable candidates for commercial EPA and DHA
production, given their adaptation to low temperature and irradiance habitats.
In the present study we investigated inter- and intraspecific EPA and DHA variability in five polar and (cold)
temperate microalgae. Intraspecific EPA and DHA content did not vary significantly in an Antarctic (Chaetoceros
brevis) and a temperate (Thalassiosira weissflogii) centric diatom after acclimation to a range of irradiance levels at
two temperatures. Interspecific variability was investigated for two Antarctic (Chaetoceros brevis and Pyramimonas
sp. (Prasinophyceae)) and three cold-temperate species (Thalassiosira weissflogii, Emiliania huxleyi (Prymnesiophyceae)
and Fibrocapsa japonica (Raphidophyceae)) during exponential growth. Interspecific variability was shown to be
much more important than intraspecific variability. Highest relative and absolute levels of DHA were measured in
the prymnesiophyte E. huxleyi and the prasinophyte Pyramimonas sp., while levels of EPA were high in the
raphidophyte F. japonica and the diatoms C. brevis and T. weissflogii. Yet, no significant differences in LC-PUFA
content were found between polar and cold-temperate species. Also, EPA and DHA production rates varied
strongly between species. Highest EPA production rate (174 μg L-1 day-1) was found in the Antarctic diatom
Chaetoceros brevis, while DHA production was highest in the cold-temperate prymnesiophyte Emiliania huxleyi
(164 μg L-1 day-1). We show that, following careful species selection, effective mass cultivation of marine microalgae
for EPA and DHA production may be possible under low temperature and irradiance conditions.

Keywords: Eicosapentaenoic acid, Docosahexaenoic acid, Thalassiosira weissflogii, Chaetoceros brevis, Fibrocapsa
japonica, Emiliania huxleyi, Pyramimonas sp.
Introduction
Marine microalgae are key organisms in the production
of long chain (between 14 and 22 carbon atoms) polyun-
saturated fatty acids (LC-PUFAs) in marine food webs
(Harwood and Jones 1989; Guschina and Harwood
2006). The most common LC-PUFAs found in marine
microalgae are the omega-3 fatty acids eicosapentaenoic
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Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG,
The Netherlands
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acid (EPA, 20:5n3) and docosahexaenoic acid (DHA,
22:6n3), and, to a lesser extent, the omega-6 fatty acid
arachidonic acid (AA, 20:4n6). Both EPA and DHA
are particularly found in taxa belonging to the
Chromalveolata, such as diatoms, dinoflagellates and
prymnesiophytes (Volkman et al. 1989; Tonon et al.
2002; Mansour et al. 2005).
EPA and DHA are considered essential elements in

human nutrition. There are strong indications that LC-
PUFAs play an important role as membrane components
involved in our neural system (Uauy et al. 2000). Fur-
thermore, EPA and/or DHA function as hormone
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.
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precursors and are thought to play a role in the immune
system (Calder 1997; Uauy et al. 2000). Humans are able
to synthesize EPA and DHA, but only at very low rates
(Emken et al. 1994). EPA and DHA are formed from
alpha-linoleic acid (ALA, 18:3n3), which is only present
in substantial amounts in linseed oil and therefore
almost completely missing in our diet (Ollis et al. 1999).
As a result of this, there is a growing market for EPA-
and DHA-enriched products (e.g. in bread, margarine).
Although microalgae are the primary producers of EPA
and DHA in marine food webs, until now their principal
source for human nutrition is marine fish oil (Sinclair
2000). To meet the needs of this market without further
exploiting the world’s fish stocks it is necessary to search
for alternatives. Culturing microalgae is an economically
profitable option and, moreover, due to their CO2 up-
take, environmentally favorable. In addition, the produc-
tion costs of DHA or EPA from cultured algae is
potentially equal to the cost of producing EPA from fish
oil (Milledge 2011). However, the efficiency should be
further increased by selecting EPA- and/or DHA-rich
species while at the same time optimizing mass cultiva-
tion and harvest conditions.
For long chain PUFAs, such as EPA and DHA, a major

role in maintaining cell membrane fluidity is assumed
(Nichols et al. 1993; Nishida and Murata 1996). For this
reason, having elevated relative EPA and/or DHA levels
could form a critical metabolic requirement for survival
in polar regions, where microalgae typically live at
temperatures near their freezing point (Thomas and
Dieckmann 2002). Furthermore, EPA or other long chain
PUFAs may play a role in the functioning of the thyla-
koid membrane and thus they are essential for photo-
synthesis (Kates and Volcani 1966; Cohen et al. 1988).
At higher irradiance algae become less photosynthetic-
ally efficient and thus less thylakoid membranes are
required. As a result, LC-PUFA content could be lower
in high light-acclimated algae (Harwood and Jones
1989). In other words, cold-adapted polar microalgae
might be good candidates for mass EPA and DHA pro-
duction, since they can exhibit high growth rates under
low temperature and irradiance conditions. Nevertheless
earlier studies (e.g. Grima et al. 1995; Otero et al. 1997;
Carvalho and Malcata 2005; Huerlimann et al. 2010)
addressing the potential for EPA/DHA mass production
focused primarily on warm (temperate) species. Al-
though, in general, cultivation under high irradiance and
temperature conditions will lead to higher growth rates
(Raven and Geider 1988; Geider et al. 1998), this may
not be optimal for LC-PUFA productivity. With respect
to the intraspecific effect of irradiance and temperature
earlier studies showed contradictive results. For example,
the effect of irradiance was found to be strongly species-
specific. In some of the studies the expected effect was
found (Thompson et al. 1990; Guedes et al. 2010; Leu
et al. 2010), but differences were often small while some-
times no or opposite irradiance effects were found
(Chrismadha and Borowitzka 1994; Tzovenis et al. 1997;
Carvalho and Malcata 2005; Zhukova 2007; Guiheneuf
et al. 2009). Similarly, with respect to temperature, no
consistent results were found (Thompson et al. 1992;
Jiang and Gao, 2004; Teoh et al. 2004; Chen et al. 2008).
Other factors influencing PUFA content suggested are
CO2 concentration, nutrient availability, growth phase and
day-night rhythm (Mayzaud et al. 1990; Yonmanitchai and
Ward 1991; Zhukova 2004; Meiser et al. 2004; Lv et al.
2010). Besides intraspecific EPA and DHA variability, it is
known that EPA and DHA content shows significant differ-
ences between and within algal classes. Each algal class has
roughly its own fatty acid composition and the EPA-DHA
content between algal classes is highly variable (Brown
2002; Guschina and Harwood 2006; Lv et al. 2010). Fur-
thermore, as mentioned above, polar species are expected
to sustain a higher EPA and DHA content, since their habi-
tat is characterized by lower average irradiance and
temperature levels (van Leeuwe 1997).
The aim of this study was first of all to get a better

insight into the intraspecific variability in EPA and DHA
content in response to irradiance and temperature. To in-
vestigate this, cellular EPA and DHA content of a polar
and a temperate diatom was followed after acclimation to
a range of irradiance levels at two temperatures. Secondly,
the interspecific EPA and DHA variability between and
within polar and temperate species was investigated. To
this end, EPA and DHA content of two polar and three
temperate species, cultured at equivalent growth condi-
tions were investigated. So far, no comparative analysis be-
tween temperate and polar algal species had been carried
out. In addition, many earlier studies reporting on EPA
and DHA variability in polar species focused on relative
variability, rather than on absolute cellular production
rates. To be able to measure true interspecific differences,
taking into account differences in total fatty acid content
relative to algal biomass, the absolute amounts of EPA
and DHA were determined, using biovolume as biomass
unit.

Materials and methods
Pre-experimental cultivation
Two polar and three temperate species were selected
representing different taxonomic groups (Table 1).
Cultures of the polar species were maintained at 4°C and
the temperate species at 16°C, except for Fibrocapsa
japonica, which was kept at 18°C. Fibrocapsa japonica
was cultured at an irradiance of 35 μmol photons m-2

s-1. For the other species the pre-experimental culture
irradiance was approximately 10 μmol photons m-2 s-1.
Before and during experimentation all species were



Table 1 Details of investigated species and culturing conditions

Culture conditions

Strain Class Strain# Biovolume (μm3) Temperature (°C) Irradiance (μmol photons m-2 s-1)

Chaetoceros brevis Bacillariophyceae CCMP 163 351 3 and 7 10, 25, 75 and 150

Thalassiosira weissflogii Bacillariophyceae CCMP 1049 2298 16 and 20 10, 25, 75 and 150

Pyramimonas sp. Prasinophyceae RuG collection 95 3 75

Emiliania huxleyi Prymnesiophyceae RuG collection 35 16 75

Fibrocapsa japonica Raphidophyceae RuG collection 4400 16 75
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subjected to a light–dark cycle of 16:8. Cultures were
grown in F2 medium (Guillard and Ryther 1962) based
on filtered natural sea water originating from the Canary
Basin. For F. japonica the salinity of the medium was set
at 25 PSU and for the other species at 35 PSU.
Experimental setup
Two sets of experiments were performed. Intraspecific
variability in LC-PUFA content was investigated in a
polar (Chaetoceros brevis) and a temperate (Thalassiosira
weissflogii) centric diatom. Chaetoceros brevis was cultured
at 3 and 7°C and T. weissflogii at 16°C and 20°C, both at
irradiances of 10, 25, 75 and 150 μmol photons m-2 s-1. The
irradiance levels were based on earlier experiments on
Antarctic and cold temperate phytoplankton (van de Poll
et al. 2007; Boelen et al. 2011) and simulate limiting and
saturating culture conditions in a stable water column.
Interspecific LC-PUFA variability was investigated for two
polar (C. brevis and Pyramimonas sp.) and three temperate
(F. japonica, T. weissflogii and Emiliania huxleyi) species.
For the latter set of experiments all species were cultured at
the same irradiance (75 μmol photons m-2 s-1) at 16°C for
the temperate species and 3°C for the polar species. Algae
were cultured in duplicate in Fernbach or Erlenmeyer flasks
with a working volume of approximately 0.5 L. The experi-
ments were set up in water baths, connected to Neslab
cryostats, to assure accurate temperature control (± 0.5°C).
Before samples were collected for fatty acid and pigment
analysis (see below), cultures were acclimated to the differ-
ent temperatures and irradiance levels in semi-continuous
batch mode for at least one week; fast growing cultures
were diluted with fresh medium to avoid nutrient limita-
tion. Sampling took place during exponential growth in the
middle of the light period. Cell counts were done regularly
to establish growth rates. Specific growth rates (μ) were cal-
culated from linear regressions of the natural log of cell
numbers versus time. Cell biovolumes were calculated from
microscopic images as described below.
Analytical procedures
Cell numbers were determined using a Coulter XL-MCL
flow cytometer (Beckman Coulter, Miami, FL, USA) as
described by van de Poll et al. (2005).
To determine the pigment composition, samples of
cultures (30 mL) were filtered through GF/F filters (25
mm), immediately frozen in liquid nitrogen and stored
at −80°C until further analysis. The filters were freeze-
dried (48 h) and extracted with 90% (aqueous) acetone
for 48h at 4°C. Pigments were separated and quantified
on a Waters HPLC system (model 2690) equipped
with a 996 photodiode array detector and a C18 5 μm
DeltaPak reverse-phase column as described by van
Leeuwe et al. (2006).
For fatty acid analysis, 100 mL of the culture were

filtered through pre-combusted GF/F (25 mm) filters,
frozen in liquid nitrogen and stored at −80°C until
further analysis using gas chromatography (GC) and gas
chromatography–mass spectrometry (GC-MS). The pro-
cedure is modified from the method described by Klein
Breteler et al. (2004). The samples were freeze-dried for
48 h and a known amount of nonadecanoic acid (C19:0,
Fluka) was added as an internal standard. The samples
were saponified by reflux (1 h) with 1 N KOH-MeOH
(96%). After acidifying with 2N HCl-MeOH (1:1) to a
pH of 4 the filter was removed by centrifugation and
bidistilled water was added to the supernatant in a ratio
equal to MeOH. Fatty acids were extracted from this
mixture with dichloromethane (DCM) (3×). The DCM
extract was dried over Na2SO4 and methylated with
diazomethane. The non-polar fatty acid methyl esters
were separated from the polar compounds over a small
Al2O3 column using DCM as eluent and analyzed on a
Hewlett–Packard 6890 gas chromatograph equipped
with a fused silica capillary column (50m × 0.32mm)
coated with CP Sil-5 CB (film thickness 0.12 μm).
Helium was used as carrier gas. The oven thermal gradi-
ent rose from an initial 70°C to 130°C at 20°C min-1 and
then to a final temperature of 320°C increasing 4°C
min-1, which was maintained for 10 min. Selected
samples were also analyzed by GC-MS. GC–MS was
performed with a Hewlett–Packard 5890 gas chromato-
graph interfaced with a VG Autospec Ultima mass
spectrometer operating at 70 eV, with a mass range of m/z
50–800 and a cycle time of 1.7 s (resolution 1000). The
gas chromatograph was equipped with an on-column
injection system and the same capillary column as de-
scribed for GC. The carrier gas was helium. The



Boelen et al. AMB Express 2013, 3:26 Page 4 of 9
http://www.amb-express.com/content/3/1/26
temperature program was the same as described for
GC. Long chain fatty acids (number of carbons ≥ 14)
were identified from mass spectra and retention times
and the double-bond positions were determined by
comparison with those of PUFA No.1 standard mixture
(Matreya). Quantification of fatty acids was done by in-
tegration of appropriate peak areas and using the
known concentration of the added internal standard.
To calculate the biovolume of the algae, a sample of

about 2 ml culture was analyzed using an inverted micro-
scope. The sizes of 50 cells were measured and biovolume
(Table 1) was calculated according to Hillebrand et al.
(1999) assuming a cylinder for C. brevis and T. weissflogii,
halve an ellipse for Pyramimonas sp., and a sphere for
Emiliania huxleyi. The biovolume of F. japonica was taken
from de Boer (2006).
EPA and DHA production rates (PPUFA [μg L-1 day-1])

were calculated from specific growth rate (μ [day-1]),
cellular EPA or DHA content (CPUFA [μg cell-1]) and
maximum cell density (Nm [cells L-1]) according to the
equation PPUFA = μ × CPUFA × Nm. Since maximum cell
densities were not the same at all culture conditions, the
calculations were based on averages of final cell numbers
Table 2 Chlorophyll a per cell, specific growth rate (μ), EPA a
(C. brevis, Pyramimonas sp.) and three temperate (T. weissflog
value (± SD) of two replicate cultures)

Temperature
(°C)

Irradiance
(μmol m-2 s-1)

μ (

Chaetoceros brevis 3 10 0.22

3 25 0.35

3 75 0.47

3 150 0.43

7 10 0.24

7 25 0.36

7 75 0.41

7 150 0.42

Thalassiosira
weissflogii

16 10 0.29

16 25 0.36

16 75 0.42

16 150 0.49

20 10 0.31

20 25

20 75

20 150

Pyramimonas sp. 3 75 0.14

Emiliania huxleyi 16 75 0.34

Fibrocapsa japonica 16 75 0.44

Standard culture conditions are indicated in bold. nd = no data available. * no repli
at harvest in cultures grown at standard irradiance con-
ditions (75 μmol photons m-2 s-1).

Statistical analysis
Significant differences between treatments were ana-
lyzed with a one-way analysis of variance (ANOVA)
and were considered not significant at p > 0.05. Post-
hoc tests (Tukey HSD) were performed to further
specify differences.

Results
Effect of temperature and irradiance
For both investigated species, C. brevis and T. weissflogii,
growth rates and chlorophyll a levels were clearly
influenced by irradiance levels; growth rates increased
at increasing irradiance levels, while chlorophyll a con-
tent per cell was significantly higher at low irradiance
(Table 2). For the polar diatom C. brevis no significant
effect of temperature on growth rate and chlorophyll a
could be demonstrated. For T. weissflogii a small but
significant effect of temperature on chlorophyll a con-
tent was found, being slightly higher at 16°C (standard
culture temperature) compared to 20°C (Table 2). The
effect of temperature on specific growth rate was not
nd DHA content (normalized to biovolume) of two polar
ii, E. huxleyi and F. japonica) microalgal species (mean

day-1) Chloroph. a
(pg cell-1)

EPA content
(fg μm-3)

DHA content
(fg μm-3)

± 0.02 0.50 ± 0.03 1.62 ± 0.03 0.04 ± 0.00

± 0.02 0.39 ± 0.02 1.56 ± 0.45 0.03 ± 0.01

± 0.01 0.15 ± 0.01 1.06 ± 0.06 0.02 ± 0.00

± 0.02 0.15 ± 0.00 1.18 ± 0.05 0.03 ± 0.00

± 0.03 0.52 ± 0.06 1.61 ± 0.14 0.03 ± 0.00

± 0.06 0.44 ± 0.11 1.19 ± 0.48 0.02 ± 0.02

± 0.00 0.13 ± 0.01 1.23* 0.03*

± 0.02 0.13 ± 0.00 1.52 ± 0.07 0.03 ± 0.01

± 0.06 9.77 ± 0.03 2.23* 0.34*

± 0.01 9.84 ± 0.70 nd nd

± 0.08 4.50 ± 1.14 2.31 ± 0.26 0.43 ± 0.05

± 0.09 3.05 ± 0.00 1.85 ± 0.13 0.35 ± 0.07

± 0.01 9.53 ± 0.06 1.61 ± 0.08 0.27 ± 0.01

nd 8.40 ± 0.33 1.83 ± 0.01 0.34 ± 0.00

nd 3.67 ± 0.38 nd nd

nd 2.93 ± 0.09 1.99* 0.40*

± 0.03 1.54 ± 0.16 0 8.75 ± 0.28

± 0.08 0.18 ± 0.00 0.89* 27.7*

± 0.04 15.99 ± 0.71 2.93 ± 0.30 0

cate.
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determined for this species. Since chlorophyll a levels
were affected by irradiance and temperature, standard
biovolume values were used as biomass units. No sig-
nificant effect of temperature and irradiance on EPA
and DHA content could be demonstrated for both
species (Figure 1, Table 2).

Interspecific PUFA variability
The fatty acid composition showed large variability
between species, cultured at standard irradiance (75 μmol
photons m-2 s-1) and temperature (3ºC and 16°C for
polar and temperate species, respectively) (Table 3).
Relative amounts of long chain PUFAs, expressed as
percent of total long chain fatty acids (number of
carbons ≥ 14), varied between 34–62%. EPA and DHA
content varied strongly between species. In F. japonica
and the diatoms C. brevis and T. weissflogii high abun-
dances (between 12–32%) of EPA were detected, while
levels of DHA were low (< 3%). In contrast, E. huxleyi
10 25 75 150
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Figure 1 EPA and DHA content (normalized to biovolume) of C. brevi
four irradiance levels. Values represent averages (± SD) based on two rep
no replicate.
contained high relative proportions of DHA (21%) and
minimal (< 1%) amounts of EPA. Other PUFAs present in
substantial amounts were a 16:4 polyunsaturated
fatty acid (C. brevis and Pyramimonas sp. only), alpha-
linolenic acid (ALA; 18:3(n-3)) (Pyramimonas sp. and E.
huxleyi). In Pyramimonas sp. also small amounts (3%) of
docosapentaenoic acid (DPA; 22:5(n-3)) were found.
The highest absolute amount of DHA normalized to

biovolume was measured in the prymnesiophyte E. huxleyi
(27.7 fg DHA μm-3), followed by the Antarctic prasinophyte
Pyramimonas sp. (8.75 fg DHA μm-3) (Table 2). Relatively
low DHA levels were observed for the Antarctic diatom
Chaetoceros brevis (0.02 fg DHA μm-3), while DHA was
undetectable in the raphidophyte Fibrocapsa japonica
(Table 2). When normalized to biovolume, absolute EPA
content was highest in F. japonica (2.93 fg μm-3). Lowest
EPA levels were found in Emiliania huxleyi (0.89 fg EPA
μm-3) while EPA was undetectable in Pyramimonas sp..
Overall, DHA levels showed the highest interspecific
10 25 75 150
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*
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s (A,C) and Th. weissflogii (B,D) grown at two temperatures and
licate cultures for each condition. nd = no data available. *



Table 3 Fatty acid composition (% of total long chain fatty acid) of the five investigated species, cultivated at standard
irradiance (75 μmol photons m-2 s-1) and temperature (polar species: 3°C, temperate species: 16°C) conditions

Fatty acid Chaetoceros brevis Thalassiosira weissflogii Pyramimonas sp. Emiliania huxleyi* Fibrocapsa japonica

C14:0 7.6 ± 0.1 7.6 ± 0.4 - 20.2 22.1 ± 0.1

C15:0 - 1.3 ± 0.1 - 1.1 -

C16:0 7.9 ± 0.1 26.8 ± 0.3 23.2 ± 0.3 6.2 18.6 ± 0.2

C16:1 2.8 ± 0.0 - 1.5 ± 0.0 - 1.5 ± 0.1

C16:1n7 26.6 ± 0.1 30.2 ± 0.4 - - 2.7 ± 0.8

C16:3 3.4 ± 0.1 11.9 ± 0.1 - - -

C16:4 14.2 ± 0.4 - 18.9 ± 1.0 - -

C18:0 - - 2.6 ± 1.8 - 1.4 ± 0.3

C18:1n5 - - 2.8 ± 0.1 3.0 -

C18:1n7 - - 5.5 ± 0.1 4.4 9.2 ± 3.0

C18:1n9 - - 2.9 ± 0.1 17.1 10.9 ± 0.4

C18:2n6 - - 3.8 ± 0.0 2.1 4.8 ± 0.0

C18:3n3 - - 17.1 ± 0.4 8.9 2.2 ± 0.2

C18:4n3 5.6 ± 0.1 5.0 ± 0.3 5.9 ± 0.2 7.9 7.8 ± 2.1

C18:5n3 - - 4.9 ± 0.2 8.4 -

C20:3 - - 2.8 ± 0.1 - -

C20:4n6 - - - - 7.3 ± 0.6

C20:5n3 (EPA) 31.5 ± 0.4 14.6 ± 0.1 - - 11.9 ± 1.5

C22:5n3 - - 2.6 ± 0.1 - -

C22:6n3 (DHA) - 2.7 ± 0.0 5.8 ± 0.3 20.7 -

Values represent averages (± SD) based on two replicate cultures. * no replicate. – < 1%.
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variability, varying two orders of magnitude on a biovolume
basis (Table 2).
Although interspecific differences in EPA and DHA

were substantial, no significant differences in relative
and absolute amounts of EPA and DHA were observed
between polar and temperate species.
EPA and DHA production rates
Volumetric EPA and DHA productivity was calculated
from cellular PUFA content, specific growth rates and
maximal cell numbers (Table 4). Although in F. japonica
EPA content per biovolume was highest (Table 2), total
biomass production was higher in the Antarctic C.
brevis leading to highest EPA productivity (at standard
culture conditions circa 174 μg L-1 day-1). The small
prymnesiophyte E. huxleyi showed the highest DHA
productivity (164 μg L-1 d-1), even though growth rate
and maximal biomass were relatively low in this
species.
For C. brevis and T. weissflogii EPA productivity was re-

duced at the lowest irradiance conditions, mainly due light
limitation leading to reduced growth rates. For C. brevis no
significant effect of temperature on EPA and DHA product-
ivity could be demonstrated.
Discussion
In this study we focused on EPA and DHA content
and productivity in polar and (cold) temperate marine
microalgae with an eye towards future high-latitude mass
cultivation. With the method we have used for fatty acid
analysis we did not distinguish between intracellular free
fatty acids or those derived from triacylglycerols (TAGs),
glycolipids or other lipid classes. This would compromise
comparison with other studies focusing on fatty acids
derived from extracted lipids (e.g. Lang et al. 2011), on
LC-PUFA production in TAGs (Tonon et al. 2002) or on
fatty acid profiles derived from specific lipid classes
(Guckert et al. 1988).
The present study demonstrates large species-specific

variability in EPA and DHA content, while irradiance
and temperature showed relatively little to no effect.
Highest relative and absolute levels of DHA were mea-
sured in the cold temperate prymnesiophyte E. huxleyi
and the Antarctic prasinophyte Pyramimonas sp., while
levels of EPA were high in the raphidophyte F. japonica
and the diatoms C. brevis and T. weissflogii. Similar rela-
tive EPA and DHA compositions were found before for
F. japonica (Mostaert et al. 1998; Marshall et al. 2002),
E. huxleyi (Viso and Marty 1993; Bell and Pond 1996;
Lang et al. 2011) and T. weissflogii (Viso and Marty



Table 4 Calculated EPA and DHA production rates (μg L-1 day-1) during exponential growth for five species of
microalgae based on specific growth rates and cellular PUFA content values from Table 2

Irradiance EPA (μg L-1 day-1) DHA (μg L-1 day-1)

(μmol m-2 s-1) LT HT LT HT

Chaetoceros brevis 10 125 ± 14 138 ± 31 3 ± 0 3 ± 0

25 193 ± 68 160 ± 84 4 ± 1 3 ± 2

75 174 ± 14 176 ± 0.7 3 ± 0 4 ± 0

150 175 ± 14 223 ± 20 4 ± 1 4 ± 1

Thalassiosira weissflogii 10 76 ± 17 60 ± 6 12 ± 3 10 ± 1

75 119 ± 36 nd 22 ± 7 nd

150 110 ± 27 nd 21 ± 7 nd

Pyramimonas sp. 75 0 nd 5 ± 1 nd

Emiliania huxleyi 75 5 ± 1 nd 164 ± 41 nd

Fibrocapsa japonica 75 150 ± 30 nd 0 nd

Standard culture conditions are indicated in bold. LT: culture temperature 3°C (polar species: C. brevis, Pyramimonas sp.) or 16°C (temperate species: T. weissflogii,
E. hux and F. japonica). HT: culture temperature 7°C (polar species) or 20°C (temperate species). Cell densities at harvest: C. brevis: 9.9 × 105 cells mL-1, T. weissflogii:
5.2 × 104 cells mL-1, Pyramimonas sp.: 4.5 × 104 cells mL-1, E. hux 5.0 × 105 cells mL-1, and F. japonica: 2.6 × 104 cells mL-1. Values represent averages ± standard
deviation of two replicate cultures. nd = no data available.
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1993). In contrast, Lang et al. (2011) could not detect
EPA as well as DHA in a T. weissflogii strain isolated
from a brackish habitat. Although in general green algae
do not contain high amounts of EPA and DHA, this is
not the case for some marine Chlorella (Watanabe et al.
1983) and prasinophyte species (Viso and Marty 1993;
Dunstan et al. 1992). In our study and in the study by
Dunstan et al. (1992) relatively high amounts of DHA
were found for the prasinophyte Pyramimonas sp.
Many earlier studies focused primarily on relative

PUFA composition. Yet, Viso and Marty (1993) exam-
ined absolute fatty acid abundance and C/N ratios of 28
temperate marine microalgae from nine taxonomic clas-
ses, allowing the comparison of absolute PUFA content
in terms of pg PUFA per cell. In our study EPA levels in
the (cold) temperate species T. weissflogii varied between
between 3.7 and 5.3 pg cell-1, while E. huxleyi contained
a maximum DHA amount of 1.0 pg cell-1. Our levels
were circa 10 times higher than EPA or DHA levels
measured by Viso and Marty (1993) for these species
(0.38 pg EPA cell-1 in T. weissflogii and 0.14 pg DHA
cell-1 in E. huxleyi). This implies that the potential use of
these species for future EPA/DHA production might be
higher than earlier expected.
It has been postulated that microorganisms from polar

regions contain relatively high (long chain) PUFA levels
to maintain cell membrane fluidity (Nichols et al. 1993;
Nishida and Murata 1996), but this was not confirmed
by our study. For example, biovolume normalized
EPA levels were higher in the polar diatom C. brevis
than in the temperate diatom T. weissfloggii, whereas
DHA levels were higher in the latter species. Also, no
significant intraspecific effect of temperature on EPA
or DHA content was found for the two investigated
diatoms C. brevis and T. weissflogii. Thompson et al. (1992)
studied the effect of temperature over the range from 10 to
25°C on fatty acid composition of eight species of marine
phytoplankton, including Thalassiosira pseudonana and
three species within the genus Chaetoceros. Pooled data
from all species indicated a weak trend towards ele-
vated PUFAs at lower temperature. However, only for T.
pseudonana the percentage of the essential fatty acid DHA
decreased linearly with increasing temperature. In addition,
other studies (e.g. Teoh et al. 2004; Rousch 2003) showed
varying results. Here a complicating factor could be that in
many studies, including the present study, the distribution
of PUFAs into the different lipid classes was not deter-
mined. Chen et al. (2008) suggested that low temperature
could change the distribution of PUFAs in phospholipids,
which contain high percentages of EPA and DHA, while at
the same time not significantly affecting their total amount.
Since PUFAs play a role in the functioning of the

thylakoid membrane, irradiance might theoretically
affect (LC)-PUFA content in marine microalgae. In some
studies light intensity indeed was negatively correlated
with PUFA content (Thompson et al. 1990; Guedes et al.
2010; Leu et al. 2010), but the effect was often small,
while sometimes no or a positive irradiance effect was
found (e.g. Chrismadha and Borowitzka 1994; Tzovenis
et al. 1997; Carvalho and Malcata 2005; Zhukova 2007;
Guiheneuf et al. 2009). In our study no significant
effect of irradiance on LC-PUFA content could be
demonstrated for the two investigated diatoms C. brevis
and T. weissflogii, while for both species chlorophyll a
levels were clearly influenced by irradiance, indicating
photoacclimation to the applied irradiance levels.
PUFA composition and production rate were found to

be strongly species specific in our study. For example,
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the highest daily EPA production rate was found in the
Antarctic diatom Chaetoceros brevis, while DHA produc-
tion was highest in the cold-temperate prymnesiophyte
Emiliania huxleyi. These results are consistent with earlier
findings that EPA and DHA content differs systematically
between taxonomic groups (Brown 2002). This implies that
EPA and DHA productivity in algal mass cultures first of all
benefits from thorough species selection: Mass cultivation
at low temperature would benefit greatly from the relatively
high growth rates exhibited by polar species at these low
temperatures (C. brevis: 0.47 d-1 at 3°C, compared to T.
weissflogii at 16°C: 0.49 d-1), while having similar LC-PUFA
contents. Secondly, EPA and DHA production will gain
primarily from the enhancement of growth rates or cell
densities rather than from temperature or light-induced
shifts in cellular EPA or DHA. EPA and DHA production
rates determined in this study were lower than values
reported elsewhere. For example, Meiser et al. (2004) cul-
tured Phaeodactylum tricornutum in a flat panel airlift
photobioreactor at high irradiance (1000 μmol photons m-2

s-1, 24 h day-1) and increased CO2 concentration resulting
in a maximal EPA productivity of 118 mg L-1 day-1, which
is circa 700 times higher than maximal productivity values
from this study. Carvalho and Malcata (2005) reported a
maximal productivity in Pavlova lutheri of 3.6 mg L-1 day-1

for EPA and 1.3 mg L-1 day-1 for DHA, which is circa 8
times higher than the DHA productivity values we deter-
mined for E. huxleyi. However, in our study we did not
aim to optimize growth rates and cell densities for the
individual species under study: our goal was to compare
temperature and irradiance effects on PUFA composition
in dilute cultures under standardized, nutrient replete
conditions at sub-optimal temperatures.
We conclude that effective, low temperature mass

cultivation of marine algae for EPA and DHA produc-
tion would benefit from careful target species selection.
Subsequently, for optimizing EPA/DHA yield merely
specific growth rate needs to be considered rather than
intracellular PUFA variability. In this respect, polar
species cannot be ruled out per se since cold adapted
algal species can exhibit high growth rates while at the
same time synthesizing high EPA and/or DHA levels.
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