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Every day, most of us interact with machines to satisfy our needs. For instance, we use phones 
for communication purposes or to surf on the internet for information. We buy sodas from 
vending machines, we operate machines at work to satisfy our bosses so that we get paid, 
and we drive our cars to get to places where we want to be or simply, because we enjoy 
driving. In other words, we often use machines to get what we need or want, and together, 
we and the machines perform the necessary tasks.

In this duo task performance situation, one could ask how the machine should behave. 
At f irst, this seems a peculiar question to which a straightforward answer can be given. 
A machine should simply respond to the human who manipulates its interfaces, such as 
buttons and pedals. In this view of human-machine interaction, a machine is essentially no 
more than a simple hand tool. However, since the rise of computer technology, machines 
have become smarter and more autonomous, and therefore, this view is getting increasingly 
out-of-date. Autopilots can f ly airplanes from take-off to landing, manufacturing plants often 
run largely automatically, driver suppor t systems may prevent unsafe driving behaviour, and 
while typing this manuscript, subroutines within the word processing software automatically 
correct spelling errors. In shor t, computer programmes nowadays assist us with performing 
mental activities in addition to physical activities, even taking over large par ts of it.

But why stop there? In human-human interaction, we continuously monitor each other. 
Not only to check how a person is performing, but we also keep a close watch on how 
this person is feeling. Body language indicating stress, overload, fatigue, tiredness, etc. are 
impor tant cues for telling how someone is doing. It can also indicate how vulnerable this 
person is to performance breakdowns. As a team member, you would hopefully intervene at 
some point, for example by assisting that person. In this way we suppor t each other. In the 
near future, technology will be available that can help us in similar ways. Sensor technology has 
progressed to the stage that large amounts of information on the internal state of a human 
being can be acquired, even while this person is engaged with a task. The main remaining 
challenge is to design the software algorithms capable of interpreting this information in a 
way that resembles, even to a limited extent, the effectiveness of the human brain. One of 
the central ideas and assumptions in this thesis is that we will be able to create user adaptive 
systems with the capacity to monitor our mental state and behave in a way that ref lects 
human-human interaction.

In its most basic form, a user adaptive system can be conceptualised as a continuous 
feedback loop between the human and the computer par t in a human-machine interactive 
system (Figure 1.1), in which both monitor and react to each other. Of course, this thesis is 
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not the f irst document in which this concept is presented. An important framework that was 
directly or indirectly involved throughout this entire thesis is the operator status model (e.g., 
Hoogeboom and Mulder, 2004) which describes how both behavioural and bodily signals can 
be acquired by a computer while the user is performing a task in order to determine the mental 
state of the user, which then leads to specif ic suppor t actions. Similarly, researchers in the 
f ield of adaptive automation have aimed at the same general goal and developed theoretical 
frameworks during the last three decades, which will be fur ther detailed in Chapter 2.

Machine/ 
Computer Human 

Machine intervention 

Sensor data 

Figure 1.1. A schematic view of a user adaptive system. The human user reacts to the task environment, both 
behaviourally (e.g., task performance) and physiologically (e.g., blood pressure). These reactions are sensed and 
analysed by a computer. If the computer infers a suboptimal user state, such as mental overload, it decides to 
intervene, for example by off loading the human user. This intervention is aimed optimizing the user state and 
so for th.

1.1 The mental state, task environment, and support triangle.

As human beings we are able to perceive and respond to a wide variety of mental states 
in a wide variety of situations. Although this high level of sophistication is the ultimate 
developmental goal of user adaptive software, the research presented in this thesis is not 
aimed at meeting such a grand challenge, simply because research in this area has not 
progressed to the stage that automated mental state assessments and subsequent suppor t 
actions can be programmed independently from the situational context. Therefore, for the 
research presented in this thesis specif ic choices were made with respect to which mental 
state to focus on, the task environment, and what type of suppor t may benef it the user. 
Making specif ic choices however, does not imply that the lessons learned from these studies 
cannot be extrapolated. In a nutshell, the research presensted in this thesis was aimed at 
investigating how mental workload may be assessed while driving on roads resembling rural 
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conditions (i.e., focussing on the task of keeping a passenger car safely on the road) and how 
these assessments may be used to avoid extreme workload levels. In this way, this thesis 
attempts to contribute to the larger vision of advanced human-machine interaction. 

Figure 1.2. Workload and performance in six regions (from de Waard, 1996). In region D (D for deactivation), 
the operator’s state is affected and the sensitivity of various measures to detect these regions for the driving 
task (depicted by the shadings in the horizontal bars). In region A2, performance is optimal: the operator can 
easily cope with the task requirements and reach a (self-set) adequate level of performance. In the regions 
A1 and A3 performance remains unaffected but the operator has to exer t effor t to preserve an undisturbed 
performance level. In region B this is no longer possible and performance declines while in region C performance 
is as a minimum level and the operator is overloaded. RSME and Activation are self-repor t measures. The 
standard deviation of the car’s lateral position (SDLP) and the standard deviation of steering wheel movements 
(SDSTW) are primary task measures. Lastly, Hear t Rate (HR), Hear t Rate Variability (HRV), and the 0.10 
component of HRV are cardiac measures.
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1.2 Mental workload

Throughout all studies presented in this thesis, mental workload is a central concept, because 
of its relevance in understanding how human beings perform in task situations. In 1996, de 
Waard def ined mental workload as ‘the reaction to demand’ (p. 97) and ‘the propor tion of 
capacity that is allocated for task performance’ (p. 51). In this thesis of de Waard (1996), the 
relationship between workload and task demands is visualised as being a U-shaped curve 
(Figure 1.2), indicating that both low and high demand may lead to high workload. In high 
demand situations, a person may invest effor t to keep up with task demands for a while 
before performance will degrade (region A3; task-related effor t). A low demand situation 
may invoke a person’s natural tendency to rest and decrease aler tness. This indicates a 
decreased capacity to perform a task and trying to stay aler t requires a lot of effor t (region 
A1; state-related effor t). When task demands are intermediate, mental workload is in fact 
lowest. In addition, de Waard (1996) visualised the sensitivity of various measures of workload 
in relation to the driving task (Figure 1.2). The sensitivity that a measure has in ref lecting the 
changes in workload level is an impor tant concept in this thesis as well, in the sense that a 
minimum level of sensitivity is required to monitor workload changes.

The underlying assumption of mental workload theory is that human beings have one 
or more limited pools of mental resources that can be directed towards a task (Knowles, 
1963; Kahneman, 1973; Wickens, 1984, 2008; Mulder 1986). Mental resources have been 
‘conceptualised  as the availability of  one or more pools of general-purpose processing 
units, capable of performing elementary operations accross a range of tasks, and drawing 
upon common energy sources’ (Hockey, 1997, p. 75). The idea of mental resource scarcity is 
an impor tant feature in mental workload theory, because it implies that a person may not 
have enough capacity to adequately perform a task and that some individuals have more 
capacity than others. For example, mental capacity or maximum effor t expenditure may 
differ from person to person as some people are better trained or more talented. This implies 
for example, that identical task demands may be more demanding for untrained individuals. 

Another impor tant par t of workload theory is that resource capacity may change as 
a function of factors related to our energy household, such as fatigue, since using mental 
resources requires energy, which is also in scarce supply. For example, a taxi driver near 
the end of a night shift might not have the energy left to be as aler t as during a day shift, 
indicating a reduced workload capacity. Finally, as human beings we are able to postpone 
the detrimental effects of depleting our resources and maintain the level of task performance 
for a while if we feel motivated to do so. However, straining ourselves to protect primary 
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performance may have affective costs such as increases in anxiety, but also compensatory 
performance costs, such as neglecting secondary tasks (Hockey, 1997,2003). 

1.3 Maintaining safe lateral control over a vehicle

Although the number of fatalities and severe injuries on roads decreased substantially over 
the past decades, traff ic accidents are still one of the leading causes of death around the 
world (World Health Organisation, 2009). A major contributor to these accidents statistics 
are categorised as single vehicle accidents or head-on collisions, especially outside build-up 
areas (UNECE, 2007), indicating inadequate lane keeping behaviour. In shor t, this shows that 
traff ic safety may benef it from an adaptive driver suppor t system aimed at improving lane-
keeping behaviour, for example, by monitoring signs of suboptimal levels of workload. 

The idea of using personalised, adaptive driver suppor t is not new. Already in the 80’s, the 
Generic Intelligent Driver Suppor t research project was aimed at determining the requirements 
for a ‘class of intelligent co-driver systems that are maximally consistent with the information 
requirements and performance capabilities of the human driver’ (GIDS; Michon, 1993, p. 3). 
The intellectual legacy of these types of pioneering research projects can be found in modern 
day cars. For example, there are vehicles on the market that can warn a driver or even 
actively steer to correct the trajectory path if an unintentional lane depar ture is detected. 
Another example is Volvo’s Intelligent Driver Information System that suppresses an incoming 
call if the driver is heavily engaged in traff ic (e.g., Broström et al., 2006). Developments in the 
area of advanced driver assistance systems are ongoing and could benef it from knowledge 
of how to assess the human mental state while being engaged in the driving task.

1.4 Thesis outline

Adaptive automation literature has had a large impact on the research in this thesis, and 
therefore, a theoretical overview of this f ield is provided in Chapter 2 before moving on to 
empirical research.

The experiment featured in Chapter 3 has set the driving stage for the other studies. 
Par ticipants drove through rural road conditions, during which lane-keeping demand was 
manipulated by changing lane width and oncoming traff ic density. The purpose of the 
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experiment was to examine if cardiovascular measures, vehicle parameters, and subjective 
ratings ref lect workload changes. The results of this study conf irmed the idea that providing 
assistance to the driver in this situation may help the driver with maintaining safe control over 
the vehicle.

 In Chapter 4 it is described how drivers experienced and were affected by a suppor t 
system that was triggered by indications of swerving behaviour within the driving lane, 
indicating suboptimal workload state. When this happened, the system provided the driver 
with information with respect to the vehicles position on the road through a head-up display, 
which the par ticipants could use to improve performance. 

In search of alternative mechanisme through which an adaptive suppor t system may 
affect driving behaviour, the effects of listening to self-rated positive and negative music on 
lane keeping behaviour, speed choice, and physiological measures during relative low and 
high demanding rides were investigated and presented in Chapter 5. 

In Chapter 6, it is repor ted how various levels of visuomotor workload, manipulated 
through speed changes and lane keeping performance targets, were classif ied through the 
use of a data-driven machine learning algorithm commonly used in brain-computer interface 
(BCI) research. This approach allowed determining subject-specif ic classif ication models from 
EEG signals. 

For the study that features in Chapter 7, the approach described in Chapter 6 was used 
to train an EEG-based classif ication model from calibration data and then apply this model 
to classify new, incoming EEG data as high, comfor table, or low visuomotor workload. 
These mental state inferences, together with vehicle indications of worsened lane keeping 
performance, triggered a cruise control to adapt driving speed, thereby compensating for 
indications of suboptimal user state.

Finally, in Chapter 8, a general discussion is provided in an attempt to bring together the 
most impor tant observations and to formulate what can be learned from them in terms of 
future research directions. 



2

Chapter



Adaptive Automation



20

2  ADAPTIVE AUTOMATION

2.1 Background

One of the oldest documented adaptive automation systems to be found in literature pro-
vided aid to a cashier whenever simulated customer queuing times were high (Rouse, 1976). 
In contrast to assigning a f ixed set of tasks to a computer, Rouse proposed a dynamic or 
adaptive approach to task division (Rouse, 1976; Chu & Rouse 1979). He advocated that, given 
the fact that there are many tasks that can be successfully performed by both a human and 
a computer, task performance responsibility should be allocated to whichever par tner that 
has time available. Later, Rouse (1988) describes how this concept had emerged in 1974 out 
of investigating how to use ar tif icial intelligence in cockpit automation.

During that era there was also a growing concern about the changing role of human 
workers, operating in ever more technologically advanced environments. Work was shifting 
from performing tasks manually to monitoring and supervising a process running automati-
cally (Sheridan, 1976a, 1976b; Sheridan & Verplank, 1978). Even though it was clear that auto-
mation had a lot of advantages over manual task performance such as: increased capacity 
and productivity, reduction of small errors, reduction of manual workload and fatigue, relief 
from routine operations, and more precise handling of routine operations, it also produced 
a number of unwanted side effects related to the operator being out of the loop. These 
included, low transparency of what the system does, increased cognitive workload, lowered 
vigilance, increased boredom, complacency, decreased situation awareness, manual skill ero-
sion, and lower job satisfaction (Wiener & Curry, 1980; Bainbridge, 1983; Wiener, 1989; Ends-
ley, 1995; Billings,1997; de Waard et al., 1999). These drawbacks challenged system’s designers 
to fur ther improve automated systems, for example by keeping the human operator in the 
loop as much as possible: adaptive automation.

One could ask if human involvement is necessary at all. In 1977, Rouse (p. 391) already 
argued that ‘If the computer can perform every task as well or better than the human, then 
the computer should do everything’. However, the unlikelihood of this scenario, for example 
when a computer encounters unexpected situations or because of technology breakdowns, 
convinced the scientif ic community that human involvement remained crucial in automation. 
Interestingly, the conditions formulated by Rouse are more realistic nowadays, as demon-
strated for example by self-driving cars (Thrun, 2010). However, assuming that human in-
volvement is still required intermittently, the challenge is how to design a technological system 
that capitalises on the humans’ creative problem solving capacities which computers are still 
lacking, while at the same time automating simple, routine, tasks as much as possible.
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The solution that adaptive automation proposes is adaptive task allocation, which means 
that tasks are given to and withdrawn from the human operator in real-time, making task 
allocations dynamic or situation dependent in nature. Initially, the motivation for adaptive al-
location of responsibilities was not strictly linked to improving performance as it was stated 
that it would provide the human operator with the oppor tunity to step in and perform par-
ticular tasks whenever deemed appropriate (Rouse, 1976). However, over time it became ac-
cepted to aim allocation policy at optimizing system performance, by keeping human work-
load or task demand within an acceptable range (Chu & Rouse, 1979; Hancock, 1988; Rouse, 
1988; Parasuraman et al., 1992). In addition, since managing task allocation is a task that needs 
to performed in addition to the primary task, it was argued that the computer should have 
the authority to at least share the responsibility of initiating task allocation (Rouse, 1977; 
Scerbo, 1996, 2001; Kaber & Prinzel III, 2006). A system in which the human operator is solely 
responsible for task allocation is often referred to as adaptable automation (Scerbo, 2001). 
In general, adaptive automation can be def ined as the dynamic allocation of tasks based on 
the state of the human-task-environment system (Kaber & Riley, 1999).

2.2 Theories

Although several theoretical overviews of adaptive automation are given elsewhere, a sum-
mary will also be provided here given the impor tance of the adaptive automation literature 
for designing the experiments in this thesis (see; Scerbo, 1996; Inagaki, 2003; Sheridan & Par-
asuraman, 2005; Kaber & Prinzel, 2006; Feigh et al., 2012). To star t with, adaptive automa-
tion theories may be divided into theories about what the technological system can do and 
theories about what conditions should trigger the system to adapt. In shor t, what to adapt 
and when to adapt.

2.2.1 What can be adapted?

Evidently, what can be adapted depends f irst and foremost on the task at hand. Driving a 
car is not the same as monitoring screens in a control room, therefore what technology can 
do to suppor t the user is task dependent. However, in the human factors and ergonomics 
literature, a number of general theoretical frameworks are present that may help to guide a 
system designer in thinking about what can be adapted, such as level of automation, dividing 
tasks into subtasks, and mapping subtasks onto the various stages of the human information 
processing system.
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2.2.1.1 Level of automation

An important notion in adaptive automation literature is level of automation. This implies 
that automation of a par ticular task does not have to be an all-or-nothing concept and 
that intermediate levels of automation are also possible. To star t with, in 1978, Sheridan and 
Verplank introduced a list of ‘levels of automation in man-computer decision making’ (p. 8-17; 
see Table 2.1). Although this list is often referenced in literature, Sheridan (2000) commented 
that this list was presented for illustrative purposes mainly and indicated that alternative 
lists of levels of automation could be constructed (see for example, Endsley & Kaber, 1999). 

Sheridan & Verplank (1978) Endsley & Kaber (1999) 

1 human does the whole job up the point of 
turning it over to the computer to implement

1 Manual control

2 computer helps by determining the options 2 Action suppor t (computer assists performing 
action, e.g., teleoperator)

3 computer helps determine options and 
suggests on, which human need not follow

3 Batch processing (computer performs tasks 
automatically as selected by the operator)

4 computer selects action and human may or 
may not do it

4 Shared control (computer and operator generate 
options, the operator selects, performance 
shared)

5 computer selects action and implements it if 
human approves

5 Decision suppor t (computer and operator 
generate options, the operator selects, computer 
performs)

6 computer selects action, informs human in 
plenty of time to stop it

6 Blended decision making (computer generates 
options, computer selects option, operator 
consents, computer performs)

7 computer does whole job and necessarily tells 
human what it did

7 Rigid System (computer generates limited 
number of options, operator consents, computer 
performs)

8 computer does whole job and tells human 
what it did only if human explicitly asks

8 Automated decision making (computer and 
operator generate options, computer selects and 
performs)

9 computer does whole job and tells human 
what it did and it, the computer, decides he 
should be told

9 Supervisory control (computer generates, selects 
and performs. Operator monitors and might 
intervene by shifting the system to a lower LOA).

10 computer does whole job if it decides it should 
be done, and if so tells human, if it decides he 
should be told

10 Full automation (the human is completely out of 
the control loop)

Table 2.1. Two lists of ten levels of automation. On the left hand side, Sheridan & Verplank (1978), on the right 
hand side, adapted from Endsley & Kaber (1999). LOA = level of automation.
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Expanding on this idea, the various levels of automation can also be described as a one-
dimensional continuum of automation degrees (Parasuraman et al., 2000), where the term 
assistance could be used when most of the task is performed by the human operator, including 
suppor t types that are not readily included in the concept of automation, such as providing 
information, warnings, and advice (Flemisch et al., 2008). Conversely, at the other end of the 
scale the term automated could be used when most of the task is automated

2.2.1.2 The human information processing system

Another way of categorizing automation is to map its tasks onto the human information 
processing system, which was proposed by several authors (see Table 2.2). 

Sheridan (2000) Parasuraman et al. (2000) Endsley & Kaber (1999)

1 Acquire information Sensory Processing Monitoring (system status)

2 Analyse & Display Perception/Working memory Generating (options for action)

3 Decide Action Decision making Selecting (deciding on a par ticular option)

4 Implement action Response Selection Implementing (carrying out the chosen 
option)

Table 2.2. Stages of the human information processing system

Within this framework, acquisition automation involves suppor ting the human sensory 
processes, such as highlighting impor tant information that is present on a computer screen. 
Analysis automation involves the suppor t of cognitive functions. For example, a computer 
may help to integrate sensory data by combining several information sources into one 
measure. Decision automation means helping a human operator with selecting from action 
alternatives, for example by indicating the most eff icient course of action. Finally, action 
automation refers to the execution of a selected action (Parasuraman et al., 2000). 

Fur thermore, Parasuraman et al. (2000) suggested that each stage of the information 
processing system may be automated to a cer tain degree. For example, system A can have 
a moderately high level of acquisition automation, but low levels of automation for the other 
stages, while system B has a high level of automation across all stages (See Figure 2.1).
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2.2.1.3 Beyond task allocation

Most literature on adaptive automation focuses on dynamic task allocation as a way to load 
or off load a human operator. However, the adaptive possibilities of a system do not have 
to be limited to (sub)task allocations. Already in the early eighties, transforming a task, such 
as changing the level of abstraction on a display was mentioned in addition to dynamically 
allocating complete tasks and task par titioning (Rouse & Rouse, 1983; see also Feigh et al., 
2012). Another example of how a system could transform the current level of automation is 
changing intensities of warnings when the user seems distracted instead of just switching on 
and off a warning system. Changing the adaptation timing parameters as a result of human 
state inference would be another option. For example, a lane keeping driver assistance 
system might always be activated but could be made to react sooner and stronger when the 
computer notices signs of fatigue.

The term meta adaptation could be used to indicate changes in the way that a system 
adapts over time as it gains experience with how a user responds. The term meta in this 
context is borrowed from Miller & Funk (2000) who argued that an adaptive system should be 

Figure 2.1. Levels of automation for independent functions of information acquisition, information analysis, 
decision selection, and action implementation. Examples of systems with different levels of automation across 
functional dimensions are also shown (From Parasuraman et al., 2000, © 2000 IEEE). 
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able to communicate what it infers and accept feedback from the human pilots which it uses 
to improve itself. This kind of communication is commonplace in human-human interaction 
and they referred to this as meta-communication. In driver assistance systems research, this 
type of high-level adaptation has also been mentioned. For example, in GIDS it was argued 
that a navigation device could gradually provide less and less route information as the driver 
gains experience with driving a par ticular route (progressive modif ication; Michon, 1993). 
Interestingly, in software engineering, it is also recognized that interactions between the 
user and the system may be differentiated in terms of timescales for system adaptation. The 
slowest adaptive time scale can be referred to as evolutionary computing (e.g., Serbedzija & 
Fairclough, 2009). Meta adaptations will not only optimise the way the computer interacts 
with its user, but may be a necessary step in the development of such systems since human 
responses may change over time. The last reason why meta adaptations could be crucial for 
real-world feasibility are behavioural adaptations by the human user. In transpor t psychology, 
behavioural adaptations (such as driving less carefully when using a seat belt) following the 
implementation of safety measures are known phenomenon and usually mean that road 
users feel safe enough to change their behaviour in a way that leaves the safety potential 
par tly unfulf illed (e.g., Brookhuis & de Waard, 2004). As phrased by Hancock & Verwey 
(1997): ‘The system developer is faced with designing for humans who themselves often 
respond in unexpected ways because they themselves are adaptive’ (p. 499). 

2.2.2 When should a system adapt?

A computer-initiated adaptive system should infer when it is time to change level of 
automation. In general, the sources that the system may use for this purpose are the task 
environment (indicating task demands), human behaviour (such as task performance), and 
the internal state of the human operator (e.g., Kaber & Riley, 1999; Hoogeboom & Mulder, 
2004). In adaptive automation literature, specif ic methods for invoking automation have also 
been formulated (see Table 2.3).

Parasuraman et al. (1992) Inagaki (2003)

Critical-Event Logic Critical-Event Strategies

Dynamic assessment of Pilot Mental workload
Measurement-based Strategies

Dynamic Psychophysiological assessment

Pilot Performance Models Model based strategies

Table 2.3 Automation invocation methods
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2.2.2.1 Critical-event driven

Critical-event logic means that aid is only triggered after the occurrence of a specif ic external 
events, such as an emergency situation. For example, the European Commission adopted two 
proposals to ensure that by 2015, all new cars will automatically call the emergency number in 
the event of a serious accident (European Commission, 2013). Although an adaptive system 
based on this strategy is directly linked to events in the real world, it is insensitive to actual 
pilot performance or workload. In other words, it will provide suppor t regardless of whether 
or not the system’s user needs or desires it when the event occurs (Parasuraman et al., 1992; 
Inagaki, 2003; Sheridan & Parasuraman, 2005). 

2.2.2.2 Performance driven

A performance driven adaptive system strategy may help to tailor the system to the individual 
user. It will react by changing the level of automation if that par ticular user performs below 
threshold levels. However, since an important goal of an adaptive system is to prevent 
performance degradation, a reactive system may not be suff icient. Also, it ignores that 
maintaining adequate performance levels may at times have negative impacts on the user’s 
wellbeing. As is clear from workload related paradigms such as the operator functional 
framework (Hockey, 1997, 2003), human beings may exhaust themselves by straining effor t 
expenditure to protect primary task performance in demanding situations. Performance 
protection is impor tant for dealing with shor t bursts of task demand. However, when 
exposed to longer periods of high workload, this will require increasingly more effor t (task-
related effor t, see Figure 1.2), which may have affective costs such as increases in anxiety, 
but also compensatory performance costs, such as neglecting secondary tasks. Hockey refers 
to this situation as a compromised system state, in which the individual is more vulnerable 
to a performance breakdown (Hockey, 1997, 2003). Frequent exposure to high demanding 
situations may elicit even more serious health issues in the long term. For instance, it has 
been suggested that repetitive activation of a cardiovascular defence ref lex, which leads to 
an immediate increase of the hear t rate and blood pressure, may also lead to hyper tension 
in the long run (e.g., Johnson and Anderson, 1990). 

2.2.2.3 Physiologically driven

Using physiological data has the potential to create a more proactive system. Since straining 
effor t expenditure as described above has a neurophysiological base, the ability to reliably 
classify workload from neurophysiological data could be used to off load a person, before 
performance effects become apparent. Monitoring galvanic skin response, hear t rate, blood 
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pressure, and electroencephalography are examples of signals that have been used to assess 
effor t investment (Pope et al, 1995; de Waard, 1996; Prinzel III et al., 2003; Wilson & Russell, 
2007; Mulder et al., 2009; Dijksterhuis et al., 2013). 

However, the fundamental problem of these measures is the complex relationship between 
mental states, such as workload, and their associated biometrical variables (Fairclough, 
2009). To star t with, a unique one-to-one relationship between the biometrical variable 
and the psychological construct would be ideal for an adaptive system, but is very rare. A 
many-to-one relationship is more complicated as several signals are needed to infer a mental 
state. In a one-to-many relationship, one biometrical signal is sensitive to more mental states. 
Lastly, a many-to-many relationship means that many signals are in fact sensitive to many 
mental states, making it very hard to reliably classify a mental state (Cacioppo et al., 2000). 
In general, in adaptive automation we have to do with this many-to-many relationship. In 
addition, there is a problem of generalising the relationship between a biometrical measure 
and a user state outside the laboratory as a mapping may not hold true or is different in the 
real world were conditions are less controlled. 

2.2.2.4 Operator modelling

Most adaptive automation research effor t has probably been directed towards developing 
operator modelling types of systems, resulting in a series of associate research programs 
(see Rouse et al., 1990 for example). Most notably, star ting in the mid-eighties, was the 
Pilot Associate in which adaptive automation was applied to air-to-air combat missions 
(e.g., Banks and Lizza, 1991). Documented spin-off programmes include the Rotocraft Pilot 
Associate, the Crewman’s Associate for battle tanks, and an associate for Unmanned Aerial 
Vehicles (Pechacek, 1991; Miller & Hannen, 1999). An important feature of these associates 
was that they tracked the pilot’s actions and then matched these onto an existing knowledge 
base containing numerous task situations and expected human actions. Automation was 
activated if there was suff icient mismatch between the current activities and the expected 
activities. 

2.2.2.5 Other concerns with respect to timing

External events such as high task demands and internal events such as stress and high 
workload may indicate a need for suppor t and subsequently determine the system’s 
behaviour. However, when implementing a user adaptive system, several other factors need 
to be taken into account (Scerbo, 1996; Hoogeboom & Mulder, 2004; Mulder et al., 2008 ). 
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A system’s responsiveness for example, refers to how fast a system responds. This depends 
par tly on the time period over which data needs to be collected before a reliable mental 
state inference can be made. On the one hand, using longer time windows may increase 
reliability. On the other hand, a slow responding system may not be effective simply because 
any extra assistance is no longer required, indicating a potential speed-accuracy trade off. Yet 
again, rapidly changing levels of automation might not be effective as an operator may have 
diff iculties adapting to a different level of automation, necessitating dead band periods during 
which additional suppor t actions are not allowed. Also, maintaining automation awareness in 
a rapidly changing system may become a burden to the human operator. Another concern 
is to avoid large oscillations in the system behaviour by limiting the loop-gain, for example 
by preventing large changes of the task as a result of task allocations. These considerations 
imply that a direct link between a human state and level of suppor t provided by the system 
may not always be possible or sensible. 
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Abstract

In this study a driving simulator was used to determine changes in mental effor t in response to 
manipulations of steering demand. Changes in mental effor t were assessed by using subjective 
effor t ratings, physiology, and the standard deviation of the lateral position. Steering demand 
was increased by exposure to narrow lane widths and high density oncoming traff ic while 
speed was f ixed in all conditions to prevent a compensatory reaction. Results indicated 
that both steering demand factors inf luence mental effor t expenditure and using multiple 
measures contributes to effor t assessment. Application of these outcomes for adaptive 
automation is envisaged.

3.1 Introduction

The task of keeping the vehicle in the driving lane is a relatively easy but continuous and 
important par t of driving. Though easy, the continuous character increases the likelihood 
of errors with time on task. Therefore, it is hardly surprising that accidents preceded by 
inadequate steering behaviour make up a large propor tion of accident statistics. In 2003 for 
example, one third of approximately 855,000 accidents involving personal injury or death in 
Canada, France, Germany, and the Netherlands were categorised as single vehicle accidents 
(24%) or head-on collisions (9%). Moreover, when outside build-up areas the percentages 
of these categories increase to 36% and 13% respectively, summing the number of lateral 
control related accidents involving personal injury or death outside build-up areas up to 
about 172,000 (UNECE, 2007).

The dangers of insuff icient lateral control have also been illustrated in literature; often 
combined with speeding. In an investigation into the nature of heavy vehicle fatal crashes in 
Victoria, Australia (n=61), it was revealed that over a third of these accidents involved leaving 
the roadway on a straight road and most crashes (44) involved just one vehicle (Brodie et 
al., 2009). In a study by Jamson et al. (2008), exper t drivers observed driving scenarios and 
judged occasional lane depar tures to reduce safety. In a UK sample of 1185 vehicle occupant 
fatalities, 44% involved going loss of control in a bend or curve (Clarke et al., 2010). Finally, 
in a survey amongst road users involved in accidents in Germany, 14% of 284 accidents 
on urban roads and 53% of 190 accidents on non-urban roads were categorised as lane 
depar ture crashes (Staubach, 2009). The large propor tion of accidents related to lateral 
control indicates the relevance of research into factors associated with inadequate steering 
behaviour.
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The vast majority of traff ic accidents can be traced back to human error and workload 
related problems. That is, when mental effor t mobilisation in service of the driving task is 
not enough to ensure adequate driving performance (e.g., Brookhuis & de Waard, 2010). 
Assessment of mental effor t investment can therefore be a valuable tool to investigate 
potential dangerous or demanding driving situations. Moreover, automated mental effor t 
assessment in real-time could be used by advanced driving assistance systems (ADAS) to 
trigger driving assistance (e.g., Mulder et al., 2009). Currently, commercially available lane 
keeping assistance systems in passenger cars use road markings to function and nearly all 
are triggered in case those markings are crossed without using the indicator signal. However, 
indications of uncomfor table levels of mental strain, even if performance thresholds are not 
yet violated may warrant the triggering of a warning or a corrective steering action by an 
ADAS as a preventive measure.

At least two broad categories of automatically detecting changes in mental effor t 
expenditure can be distinguished; performance assessment and assessing psychophysiology. 
Ideally, more effor t investment would always lead to improved performance, in which case 
performance assessment would suff ice to assess effor t expenditure. However, a linear 
relationship between these two variables does not always exist (e.g., de Waard, 1996). For 
instance, someone may already operate at a maximum performance levels and extra effor t 
expenditure will not result in performance increase. Similarly, changes in performance levels 
do not necessarily ref lect changes in mental effor t. Performance may deteriorate as a result 
of increasing task demands, without any change in effor t expenditure. For example, if a driver 
chooses to conserve energy by not increasing workload level to near maximum capacity 
and accept a lower performance standard (e.g., Hockey, 1997, 2003). This suggests that 
performance assessment by itself is not adequate for mental workload assessment.

In addition to measuring performance levels, drivers’ mental workload may be assessed 
automatically by measuring physiological reactions. In this way, changes in effor t expenditure 
may be revealed even if task behaviour does not change. Measuring cardiovascular activities 
during periods of mental effor t investment has been a subject of investigations for several 
decades. Especially hear t rate variability (HRV) has been shown to react to performing a 
mentally demanding task (Mulder, 1992). Moreover, HRV (specif ically centred around 0.1 Hz) 
was concluded to be a sensitive index of ‘invested mental effor t’ (Boucsein & Backs, 2000; 
de Waard et al., 2008; de Waard et al., 2009; Mulder, 1986). In addition to cardiovascular 
indications, several other physiological signals may be used to infer mental workload (for an 
overview of signals that can be measured in a driving simulator see for example Brookhuis 
& de Waard, 2010).
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The main purpose of the present study is to investigate the sensitivity of and relations 
between performance, subjective, and physiological indices of mental effor t expenditure for 
several levels of steering demand, mainly for the purpose of future ADAS development. For 
this, a simulator study was conducted in which driving behaviour on several narrow lane 
widths were compared with the normal lane width (3 metres) on a standard Dutch two-lane 
rural road while confronted with low density oncoming traff ic. To fur ther increase steering 
demand, (the perceived) manoeuvring space of the driver was decreased by nesting a period 
of high density oncoming traff ic in each lane width section. As a behavioural adaptation to 
increasing steering demands, drivers would be expected to decrease speed (e.g., de Waard 
et al., 2004). However, since assessing effor t investment under high load is an objective in 
the presents study, it was decided to preset and f ix the driving speed of the simulator car to 
prevent such a compensatory speed reaction.

Although lane width is a basic factor in all driving research, literature studies that have used 
this an independent variable, either physical or optical, are scarce (e.g., Godley et al., 2004; 
Lewis-Evans & Charlton, 2006; Rosey et al., 2009). Also, making clear comparisons of effects 
of lane width across studies is complicated given the wide variety of possible confounding 
factors such as shoulder width, total road width, road type, road curvature, speed limitations, 
and the presence of pavements, trees, or buildings in the direct vicinity of the road (e.g., Van 
Driel et al., 2004). As a result it is not entirely clear what behavioural results to expect from 
the current investigation.

Similarly, a stream of traff ic travelling in opposite direction is often included in driving 
simulator research as standard par t of the simulated road environment, although literature 
on a comparative study on different intensities of traff ic f low on the opposite lane was 
not found by the authors. Meeting a vehicle in the opposite lane usually results in a lateral 
displacement towards the road edge (Räsänen, 2005; Rosey et al., 2009). Hypothetically, high 
density oncoming traff ic may therefore result in a fur ther shift toward the road edge.

The lane width and oncoming traff ic conditions in this experiment are designed to 
increase task demand on the lane keeping task from normal to high. It can therefore be 
expected that drivers will increase mental effor t expenditure, as indicated by changes in the 
standard deviation of the lateral position, increased subjective effor t ratings, and changes 
in physiology associated with maintaining driving performance standards. However, there is 
also a possibility that under conditions of high steering demand, drivers are no longer able or 
willing to fur ther increase lane keeping performance. In this case, a more diffuse pattern of 
steering behaviour, ratings, and physiology is expected.
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3.2 Method

3.2.1 Participants

A total of 22 males and 8 females were recruited through posters placed around the 
University of Groningen and were paid 20 Euros for par ticipating. Age ranged from 22 to 39 
years (mean = 26.6; SD = 4.1) and par ticipants had held their licence for 4 to 20 years (mean 
= 7.9; SD = 3.4). Self-repor ted total mileage ranged from 15,000 to 500,000 km (median = 
45,000; interquar tile range (IQR) = 92,500) and the repor ted annual mileage for the past 
two years ranged from 4,000 to 40,000 km (median = 8,250; IQR = 14,750). None of the 
par ticipants repor ted using prescribed drugs that might affect driving behaviour.

3.2.2 Design

Four levels of lane width (3.00, 2.75, 2.50, and 2.25 m) were created by dividing a driving 
circuit into four main sections of uninterrupted road, stretching out for 9.1 km on average 
per section (about 7 minutes of driving time), winding through rural scenery, and separated 
by small towns (see Figure 3.1 for a screenshot of the driving environment). Oncoming traff ic 
was generated with a random interval gap between 7 and 13 seconds, resulting in 10 passing 
private vehicles (width: 1.75 m) per minute on average. However, on the last 1.4 km of each 
section, the interval gap shor tened to one to two seconds, resulting in an oncoming traff ic 
density of 40 cars per minute. Moreover, to increase lateral demand even fur ther, half of the 
passing vehicles were small lorries (width: 2.26 m). In this way, a shor t high density oncoming 
traff ic section was nested into each main section. Each par ticipant drove the simulated car 
(width: 1.60 m) through all sections creating eight periods of interest for each par ticipant: 4 
(lane width) x 2 (oncoming traff ic density). When driving on one of the main sections, speed 
was controlled by the simulator and set to 80 km/h to prevent the potential compensatory 
reaction of slowing down by the par ticipants.

Road curvature was designed to be similar within and between sections. Each section con-
sisted mainly of faint curves (85% curves, 15% straight) with a radius of 382.0 m for all curves. 
The average curve length was 193.3 m (SD = 23.5) which corresponds to a mean angle of 
29.0 degrees (SD = 3.5). The road surface was marked on the edges by a continuous line 
(20 cm), in the centre by a discontinuous line (15 cm), and outside the edges a soft shoulder 
(width: 2 m) was present for the entire experimental route. Except for oncoming traff ic, no 
objects were present on or in the direct vicinity of the road.
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Figure 3.1. Impression of the roadway environment as seen by the driver on the front screen of the simulator. 

3.2.3 Simulator

The (f ixed-base) driving simulator used consists of a mock-up car with functional pedals, clutch, 
steering wheel, safety belt, indicator and handbrake. The simulator runs on ST Software© 
which is capable of simulating fully interactive traff ic. The three computers dedicated to 
the simulator compute the road environment and traff ic at 30Hz+, which are displayed on 
three 32-inch plasma screens and provide a total view of the driving environment of 210°. A 
detailed description of the driving simulator software used can be found in Van Winsum & 
Van Wolffelaar (1993).

3.2.4 Procedure

Par ticipants were informed about the experiment in general terms upon arrival and signed 
an informed consent. After this, the par ticipants f illed out a shor t demographic questionnaire 
before ECG electrodes and a respiration belt were placed on the body. Par ticipants were 
then given the oppor tunity to get used to the simulator by driving around on a two-lane 
practise road (lane width: 3.00 m) without any other traff ic. After this, ECG and respiration 
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were recorded for three minutes to provide physiological baseline values while the par ticipant 
was requested to relax. Thereupon, it took about 36 minutes for each par ticipant to complete 
the driving circuit. This time included the time it took the par ticipants to drive through the 
build-up areas (lane width: 3.00 m) in between the experimental main sections. In each town, 
par ticipants received the instruction to pull-over and park the car. This break lasted two 
minutes during which the par ticipants were asked to mark the effor t and risk rating scales 
for both the low and high oncoming traff ic conditions outside the build-up area. In this way, 
four ratings were requested from the par ticipants in each of the four towns. Finally, another 
three minute physiological measurement baseline period was recorded when the simulation 
was shut down, directly after rating the last low and high oncoming traff ic sections.

All par ticipants drove the circuit in clockwise direction. Therefore, given a cer tain star t 
location, the sequence in which par ticipants were exposed to the lane width conditions 
was f ixed (e.g., 3.00 m, 2.50 m, 2.25 m, and 2.75 m when par ticipants star ted in the town 
indicated in the top of Figure 3.2). However, star t location was counterbalanced over towns 
to minimise sequence effects.

Figure 3.2. Abstract representation of the route driven. Houses symbolise towns, increasing line thickness 
represents increasing lane width, and high/low represents high/low oncoming traff ic density.
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3.2.5 Measures

During the two-minute break in between experimental main sections, a rating on the one-
dimensional Rating Scale Mental Effor t (RSME; Zijlstra, 1993) was requested, separately for 
the f irst segment: low density oncoming traff ic, and the last segment: high density oncoming 
traff ic. The RSME ranges from 0 to 150 and par ticipants may use these digits to rate 
experienced effor t. In addition, several effor t indications are visible alongside the scale which 
may fur ther guide the par ticipant in marking the scale. Indications star t with ‘absolutely no 
effor t’ (RSME score of 2) and end with ‘extreme effor t’ (RSME score of 112). Experienced risk 
was rated on an identical scale, except that the word “effor t” was substituted by “risk”.

Lateral Position (LP) was sampled at 10 Hz and is def ined as the difference in metres 
between the centre of the par ticipant’s car and the middle of the (right hand) driving lane. 
Positive LP values correspond to deviations toward the left hand shoulder and negative values 
correspond to deviations toward the right hand shoulder. The sampled LP values were used 
to calculate mean LP, the standard deviation of LP (SDLP), and the propor tion of the time 
that any par t of the vehicle was outside the lane edges for each of the eight experimental 
sections.

3.2.6 Physiology

Two physiological signals were sampled, both at 250 Hz. Firstly, the electrocardiogram (ECG) 
was registered using three Ag-AgCl electrodes, which were placed on the sternum (the 
common electrode) and on the right and left side between the two lower ribs. R-peaks 
in the ECG signal were detected online with an accuracy of 4 ms and these were used to 
create inter-beat interval (IBI) time series. Ar tifacts in the IBI time series were corrected 
automatically using the CARSPAN spectral analysis program, visually inspected for deviations 
and thereupon processed for spectral analysis (Mulder, 1992). In this way, mean hear t rate 
(HR), and the power of hear t rate variability (HRV) in the mid frequencies (0.07 – 0.14 Hz) 
were derived. Variations in the mid-frequency band of 0.07 – 0.14 Hz ref lect variations in 
mental effor t. Secondly, a respiration signal was recorded by means of a respiration belt 
(Twente Medical systems, RespitraceTM principle). Spectral plots of the respiration signal 
where then used to visually determine the main respiration period in each condition.
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3.2.7 Analysis

The data were analysed using the General Linear Model for Repeated Measures analysis 
in SPSS (version 17.0). For every dependent variable, the overal main and interaction effects 
were analysed by using the multivariate approach for repeated measures. For a detailed 
assessment of lane width effects, trend analyses were carried out by using polynomial 
contrasts. Fur thermore, pairwise comparisons for both main and interaction effects were 
carried out by using SPSS simple contrasts; resulting p-values were multiplied in accordance 
to the Bonferroni method.

3.3 Results

3.3.1 Subjective ratings

To begin with, risk scores were regressed on RSME scores and the results indicate a positive 
relationship (ß = 0.83, t(238) = 7.34, p < .001). Also, risk explains a signif icant propor tion of 
variance in RSME scores (R2 = 0.695, F(1, 238) = 545.43, p < 0.001). Since risk and RSME scores 
are highly correlated and yield the same repeated measures test results, the focus in this 
section will be on repor ting average scores of the RSME.

Mean mental effor t scores range from just over the ‘almost no effor t’ mark on the RSME 
(17 for 3.00 m width / low density traff ic) to just over the ‘some effor t’ mark (46 for 2.25 m 
width / high density traff ic; see Figure 3.3). Within this range, several signif icant effects were 
revealed.

Subjective Ratings

RSME  Risk

Effect df 1, 2 F     p  η2    F   p  η2  

Traff ic 1, 29 59.88 <0.001 0.674 62.63 <0.001 0.684

Width 3, 27 6.38 0.002 0.415 12.75 <0.001 0.586

Traff ic x Width 3, 27 7.48 0.001 0.454 6.38 0.002 0.413

Table 3.1. Multivariate test results for subjective effor t and experienced risk. Width: lane width; Traff ic; oncoming 
traff ic density.
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Overall, high density oncoming traff ic conditions were rated as more effor tful than the low 
traff ic conditions. Also, lane width has a main effect on effor t ratings which increases as lane 
width decreases (linear trend: F(1,29) = 18.6, p < 0.001, η2 = 0.39). However, the differences 
in effor t ratings between the various lane width levels are not equal for both traff ic density 
conditions, creating an interaction. As can be seen in Figure 3.3, the effor t increase from the 
3.00 m to the 2.25 m lane width is small for the low traff ic condition, while a larger increase 
can be seen during the high traff ic conditions (from 26 to 46 RSME points).

Figure 3.3. Reported Mental Effor t (RSME) and perceived Risk. Low/High represent low/high oncoming traff ic 
density. Error bars represent the standard error. Maximum score for both mental effor t and experienced risk 
is 150. 

3.3.2 Vehicle parameters

Test result of the vehicle parameters are shown in Table 3.2. 

Vehicle Parameters

LP SDLP Proportion over lines

Effect df 1, 2 F p η2 F p η2 F p η2

Traff ic 1, 29 382.19 <0.001 0.929 23.13 <0.001 0.444 69.36 <0.001 0.705

Width 3, 27 3.88 0.020 0.301 15.12 <0.001 0.627 95.14 <0.001 0.914

Traff ic x Width 3, 27 4.91 0.008 0.353 <1 ns 0.055 43.66 <0.001 0.829

Table 3.2. Multivariate test results for Lateral Position, the Standard Deviation of the Lateral Position, and 
Driving time over the lane’s lines. Width: lane width; Traff ic; oncoming traff ic density.
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3.3.2.1 Lateral Position

Lateral position (LP) represents the distance between the centre of the car and the centre 
of the driving lane. In all conditions, mean LP is negative (see Figure 3.4) indicating that the 
par ticipants’ preferred a position on the right hand side of the lane centre. On average, 
par ticipants drove 0.07 m towards the shoulder during periods of low density oncoming 
traff ic. During high oncoming traff ic density, this distance increased to 0.31 m. The statistical 
analysis revealed that mean LP was not the same during all levels of lane width. However, 
analyses of lane width contrasts by doing pairwise comparisons revealed that none of the 
LP differences between levels of lane are signif icant, although two differences are ‘marginally 
signif icant’ (using an alpha of 0.1). These were the LP differences between the 3.00 m and 
2.50 m lane width conditions and the 2.75 m and 2.50 m conditions (0.03 m and 0.03 m 
respectively; F(1,29) = 7.65 and 12.48, p = 0.059 and 0.094, η2 =0.21 and 0.30).

Figure 3.4. The mean lateral position of the vehicle in the driving lane. Lateral position is def ined as the distance 
between the centre of the car and the centre of the driving lane. Negative values denote a position right of 
the lane centre. The centre of the driving lane is indicated by a thin dashed line and the centre of the car by a 
thin solid line overlaying each car icon. 3.00 m, 2.75 m, 2.50 m, and 2.25 m are driving lane widths, Low/High 
represent low/high oncoming traff ic density.

The interaction between lane width and oncoming traff ic (see Table 3.2) indicates that 
the LP differences found amongst the four levels of lane width is different for the low density 
oncoming traff ic condition when compared to the high density oncoming traff ic condition. 
When taking a closer look at Figure 3.4 and using the standard 3.00 m lane width as a 
reference, it can be seen that the largest effect difference between traff ic densities is in the 
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2.75 m lane. Compared to the 3.00 m lane width, par ticipants drove 0.02 m more towards 
the opposite driving lane in the low traff ic condition while driving 0.06 m more towards the 
right shoulder in the high traff ic condition (marginally signif icant: F(1,29) = 3.3, p = 0.08, η2 
= 0.10).

Please note that the LP values presented in Figure 3.4, do not indicate how close the car 
was to crossing the lane delineation and as such does not inform how close a driver would 
have been to a dangerous situation in a real car. In Figure 3.4, this is shown by depicting the 
car (width: 1.60 m) in propor tion to each lane width. Naturally, total manoeuvring space in 
the driving lane decreases as lane width decreases. For example, a mean LP of 0.05 m (3.00 
m width/ low density traff ic) means that par ticipants had 0.65 m manoeuvring space on 
their right hand side and 0.75 m on their left hand side in the 3.00 m width condition. The 
same LP value in the 2.25 m width condition shows that par ticipants had 0.275 m lane space 
on their right and 0.375 m on their left hand side. Similarly, the low LP value of -0.33 m in the 
narrowest lane condition during high traff ic meant that par ticipants preferred to drive 1 cm 
on the shoulder and maintained an average distance of 0.66 m between their car and the 
opposite lane.

3.3.2.2 SDLP

The standard deviation of the lateral position (SDLP) shows clear effects of both lane width 
and oncoming traff ic (see Figure 3.5a). During periods of high density oncoming traff ic, mean 
SDLP was 0.05 m lower than SDLP during the low traff ic conditions (0.20 m vs. 0.25 m). 
Moreover, the difference between high and low traff ic remains constant while the overall SDLP 
decreases about 0.01 m for each 0.25 m reduction in lane width. The consistent decrease of 
SDLP was fur ther ref lected by polynomial contrast analysis, which revealed a linear relation 
(F(1,29) = 39.7, p < 0.001, η2 = 0.58). Interaction effects were not present in the SDLP data.

3.3.2.3 Driving time over the lines.

In Figure 3.5b, the propor tion of the driving time is displayed that par ticipants allowed any 
par t of the vehicle to cross the road surface markings on either side of the driving lane. 
Overall, the propor tion ‘over the lines’ is 0.15 higher in the high traff ic conditions. Also, there 
is an overall increase of driving time outside the lane’s delineation which is ref lected by 
signif icant linear and quadratic trends (linear: F(1,29) = 286.3, p< 0.001, η2 = 0.91; quadratic: 
F(1,29) = 42.4, p<0.001, η2 = 0.59).
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Figure 3.5. Standard Deviation of the Lateral Position (a) and the propor tion of the total time driven outside 
the lane’s delineation (b). Low/High represent low/high oncoming traff ic density. Error bars show the standard 
error. 
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Moreover, the lines in Figure 3.5b diverge as lane width decreases and this is exhibited 
by an overall interaction effect. In the 3.00 m lane width condition, the propor tions for both 
traff ic conditions are closest together; 0.01 for the low and 0.05 for the high traff ic conditions. 
In the 2.25 m lane condition the difference between both traff ic densities expands to 0.34 as 
propor tions peaked at 0.18 for the low and 0.51 for the high traff ic condition.

Last, the propor tion driving time over the lines was not equally divided over both sides of 
the driving lane. In the low oncoming traff ic conditions, par ticipants drove twice as much on 
the shoulder than in the opposite lane. This share varied between 50% in the 3.00 m lane 
width condition and 72% in the 2.50 m condition. During high density oncoming traff ic, driving 
on the shoulder accounted for 99.5% of the total time over the lines; regardless of lane width.

3.3.2.4 Crashes

Throughout the experiment, six par ticipants caused a total of six accidents as they hit a 
vehicle in the opposite driving lane. All of these accidents happened on the most narrow 
driving lane and four of them during high oncoming traff ic density. To investigate potential 
differences between the six crash involved individuals and the 24 other par ticipants, the 
repeated measures analysis which results were repor ted earlier were repeated using crash 
involved individuals as a between subject factor. As it turned out, crash involved individuals 
rated experienced risk 14 points lower on average over all conditions (F(1,28) = 6.1, p= 
0.020, η2 = 0.18). Moreover, the low density conditions were rated 6 points lower while the 
high density traff ic conditions were rated 22 points lower by the crash involved individuals, 
creating an interaction (F(1,28) = 5.9, p= 0.022, η2 = 0.17). SDLP was also different for the 
two groups. Overall, SDLP was higher for the crash involved individuals (0.26 m vs. 0.22 m; 
F(1,28) = 5.3, p= 0.028, η2 = 0.16), resulting in a main effect of the group factor. However, 
the SDLP difference between groups was more distinct for the low oncoming traff ic density 
(0.31 m vs. 0.24 m) than the high density conditions (0.22 m vs. 0.19 m; marginally signif icant 
interactions: F(1,28) = 3.6, p= 0.068, η2 = 0.11). No group effects were revealed for any of the 
physiological measures.

3.3.3 Physiological measures

Test result of the (transformed) physiological measures are shown in Table 3.3.
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Physiological measures

HR HRV-M Respiration

Effect df 1, 2 F p η2 F p η2 F p η2

Traff ic 1, 29 5.76 0.023 0.166 12.78 0.001 0.306 <1 ns 0.017

Width 3, 27 1.42 ns 0.137 1.44 ns 0.138 1.845 ns 0.170

Traff ic x Width 3, 27 <1 ns 0.044 <1 ns 0.967 1.434 ns 0.138

Driving (vs. BL) 1, 29 3.03 0.092 0.095 7.238 0.012 0.200 34.29 <0.001 0.542

3.3.3.1 Effects during driving (experimental effects)

Neither HR, HRV-M, nor respiration period differed between the four lane widths. However, 
an increase in oncoming traff ic density did reveal effects on physiology. For HR, more oncoming 
traff ic resulted in a slight but signif icant decrease from 76.8 to 76.2 bpm. (see Figure 3.6a). In 
addition, power in the midband frequencies of the HR (HRV-M) decreased; from 7.04 to 6.72 
(mMI2 (ln-transformed)) on average (see Figure 3.6b). 

3.3.3.2 Driving vs. baseline

The HR difference between driving and the baseline periods is not signif icant, although a 
trend (at alpha = 0.1) was revealed (Table 3.3). That is to say, the average HR during driving 
was 76.5 bpm, which is 2.1 bpm higher than the average HR during the baseline periods (see 
Figure 3.6a). Driving-baseline effects are clearer for the other physiological measures. HRV-M 
decreases when driving (6.88 vs. 7.29 mMI2 (ln-transformed) for the baseline; see Figure 
3.6b) and par ticipants breathed faster compared to the average baseline value (3.64 vs. 5.53 
seconds main respiration period). 

3.3.3.3 Low and high density oncoming traff ic sequence

The nested one-minute period of high oncoming density oncoming traff ic at the end of each 
level of lane width creates the possibility of sequence effects. To investigate possible data 
trends prior to the high traff ic conditions, all physiological and vehicle data were cut into 
one-minute segments. Although there is variation between each minute for all lane widths, 
no trends that were consistent over all four levels of lane width could be observed for HR, 
HRV-M, LP, or SDLP.

Table 3.3. Multivariate test results for Hear t Rate (HR), Hear t Rate Variability in the midband frequencies 
(HRV-M), and Respiration. Width: lane width; Traff ic; oncoming traff ic density. HRV-M was Ln-transformed 
before statistical testing. Driving (vs. BL) represents the difference between the average (8) driving vs. the 
average (2) baseline periods. Signif icant effects (p< .05) are shown in bold.
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Figure 3.6. Heart rate (a) and hear t rate variability in the mid frequency band(b; HRV-M). A decrease in 
HRV-M ref lects more effor t investment. Low/High represent low/high oncoming traff ic density. Before/After 
represent a three-minute baseline period before/after the ride. Error bars show the standard error. 
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3.4 Discussion and Conclusions

The main aim of the experimental manipulations was to create several levels of driving 
demand to investigate how steering behaviour is affected by these manipulations and to 
associate these changes with mental effor t as ref lected by driving performance, self-ratings, 
and physiological reactions. Before discussing mental effor t or workload issues, steering 
behaviour and possible signs of performance degradation will be discussed in which Summala’s 
Multiple Model Monitor (Summala, 2005) will be used to interpret performance effects.

3.4.1 Steering behaviour

The results indicated signif icant effects of both lane width and oncoming traff ic density on 
all steering parameters (LP, SDLP, and propor tion of the driving time over the lane edges). 
As expected, the increase in oncoming traff ic during the last minute of each road section 
resulted in a deviation from the lane centre towards the shoulder. Next, in contrast to Lewis-
Evans & Charlton (2006) and Rosey et al. (2009), narrower lane widths were not associated 
with a LP closer to the road centre. Regretfully, a number of factors between these previous 
studies and the current study differ and therefore hinder formulating a clear explanation. 
These factors include lane width, shoulder width, background terrain, the implementation of 
oncoming traff ic, and road elevations which all have a potential inf luence on road position 
behaviour (e.g., Van Driel, 2004). Fur thermore, with regard to Rosey et al. (2009), there is 
a difference in methodology. In Rosey et al. (2009), LP is measured as the distance between 
the car and the road centre instead of the distance to the lane centre, which by def inition 
decreases as lane width decreases in case the vehicle maintains a position in the centre of the 
lane.

When taking a closer look at the position on the road with respect to the lane edges, it 
is striking that the mean distance between the side of the car and the shoulder continues to 
decrease during heavy oncoming traff ic. Par ticipants even preferred to drive slightly over the 
lane markings in the narrowest lane condition. In terms of safety margins, this means that 
the comfor t zone of the par ticipants must have been par tly on the road shoulder. The large 
propor tion of driving time on the shoulder conf irms this. On the one hand, these behavioural 
observations are surprising as driving on a soft shoulder in real road conditions is dangerous. 
On the other hand, given the heavy traff ic on the opposite lane, attempting to maximise the 
distance to the opposite lane might be an effective coping strategy. In the driving simulator 
used, feedback signals that are usually associated with driving on a soft shoulder, like loss of 
traction and bumpy car movements were not present, although a rumbling sound aler ted 
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the par ticipants when wandering off-road for more than 0.40 m. This made the simulated 
shoulder look like a soft shoulder but par t of it felt like a hard shoulder. Par ticipants might have 
learned to anticipate on this and use the ‘extra’ manoeuvring space. Given this possibility, the 
large propor tion of driving time that par ticipants crossed the lane markings cannot readily 
be interpreted as a mark of performance degradation. In contrast, from the perspective of 
the drivers, it is more likely that performance levels were maintained since they maximised 
the safety margin to the opposite lane. 

If lateral position ref lects the centre of a safety zone, then SDLP might show the width 
of this zone. Par ticipants swerved less as lane width decreased, which is in agreement with 
previous f indings (Godley, 2004; de Waard et al., 1995). Fur thermore, SDLP also decreased 
under conditions of heavy oncoming traff ic and this effect adds to the lane width effect. 
Apparently, drivers did cope with all levels of lateral demand by decreasing the zone in which 
they drove by improved steering performance. Never theless, six accidents occurred during 
the investigation on the narrowest lane width. The latter raises the issue of validity. Especially 
when driving behaviour is observed that would have been disastrous in real-world driving 
it makes sense to doubt the validity of the simulator in these conditions. With respect to this 
issue, a distinction needs to be made between absolute and relative validity (e.g., Blaauw, 
1982; Bella, 2008; Godley et al., 2002; Törnros, 1998). Törnros (1998) suggested that for a 
driving simulator to be a useful research tool, relative validity is satisfactory. That is, if the 
researchers seek to investigate effects of independent measures, rather than determining 
numerical values of driving behaviour. In case of the present study, par ticipants were exposed 
to a 2.25 m driving lane width for several minutes while speed was set at 80 km/h. Although 
maintaining lane keeping performance under these conditions may be viewed as challenging 
for the perceptual-motor system, the occurrence of six accidents out of a total of 256 road 
sections is an indication that this result is unlikely to ref lect real world accident statistics. 
However, this does not imply that the results of the current experiment are not valid in a 
relative sense. 

The performance of the crash involved par ticipants show the worse steering behaviour 
than the other par ticipants and the crash involved individuals might therefore be more 
prone to accidents than the others. As it turned out, the crash involved par ticipants rated 
experienced risk lower than the others and displayed a higher standard deviation of the 
lateral position. Speculatively, these individuals did not maintain the same safety margins 
as the others. In summary, the crash occurrences should be viewed as an indication of bad 
lateral control which may be the result of both driving simulator characteristics and the 
steering skills of the crash involved par ticipants.
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3.4.2 Effort

Decreased SDLP requires more intensive monitoring of the road and frequent steering wheel 
corrections and can therefore be interpreted as more demanding. Subsequently, it can be 
concluded that more effor t was put into the steering task as lane width decreased and 
oncoming traff ic density increased. These main effects are conf irmed by subjective ratings, 
although an interaction was also revealed. Par ticipants did not indicate an increase in effor t 
or risk perception as a result of increasing lane width during the low density oncoming 
traff ic periods. In de Waard’s workload model (de Waard, 1996), workload is minimal and 
performance is maximal when task demands are intermediate, whereas workload increases 
when demands either increase or decrease. Given the range of the scales (0-150) it could 
be argued that subjective effor t and experienced risk are almost absent and not sensitive 
to changes in steering demand during periods of light oncoming traff ic which in turn is an 
indication that drivers were performing optimally and relative effor tless. However, during 
periods of heavy oncoming traff ic, both ratings show a clear increase as a result of decreasing 
lane widths, indicating that steering demands were at intermediate to high levels. 

Experienced risk ref lected lateral demand in the same way as subjective effor t in terms of 
statistical signif icance, a f inding which is consistent with previous research (e.g., Lewis-Evans & 
Rothengatter, 2009). However, effect sizes as ref lected by par tial eta squared is an indication 
that experienced risk might be more sensitive to changes in steering demand.

Effect sizes on physiology were smaller than effects sizes on subjective ratings, although 
signif icant effects of oncoming traff ic on hear t rate and hear t rate variability were found. 
Hear t rate variability in the midband frequencies was lower on sections with high oncoming 
traff ic, indicating more mental effor t expenditure (e.g., Boucsein & Backs, 2000). Interestingly, 
lower hear t rate variability was accompanied a slightly lower hear t rate during high density 
oncoming traff ic. Although any explanation of this unexpected result is speculative, we 
suspect that differences between the current study and other studies might be related to the 
nature of the steering (tracking) task, which could be the topic of future research. 

3.4.3 Conclusions

For every increasing level of lateral demand, extra effor t was mobilised in service of the 
steering task as indicated by a decrease in SDLP. No clear trend was observed for lateral 
displacement of the vehicle as a result of lane width variations, although an increase in 
oncoming traff ic was associated with a position to the right of the lane centre. Although 
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lateral control, as measured by SDLP, improved for every level of steering demand, subjective 
ratings were only sensitive to different levels of lane width under conditions of high demand. 
A reduction of hear t rate variability was associated with high oncoming traff ic, indicating 
that this measure is less sensitive in detecting measuring effor t expenditure as a result of lane 
width level than the other measures. 

Based on these f indings, several suggestions can be made for developing ADAS systems. 
ADAS systems are envisioned that dynamically suppor t the driver based on the principles 
in the f ield of adaptive automation (e.g., Miller & Parasuraman, 2007; Parasuraman & Riley, 
1997; Scerbo, 1996). For instance, detection of high effor t expenditure may be utilised by 
ADAS systems to minimise distractions from other in-vehicle devices which compete for the 
driver’s attention, such as phones or navigation systems. These secondary systems could 
be automatically delayed or temporarily shut down, if the drivers’ physiology or steering 
performance indicate high or low effor t expenditure in service of the steering task. In addition, 
the primary control task of keeping the vehicle in the driving lane could be suppor ted based 
on mental effor t assessment instead of the lane depar tures which are the current standard 
for lane assist systems. Since other performance measures such as SDLP or physiological 
measures are likely to show signs of increased or decreased effor t expenditure before lane 
depar tures occur, lane assist systems could be used to prevent more serious driving errors to 
happen in the f irst place. In conclusion, the results from the present research may be used as 
a star ting point for the development of ADAS systems which assess mental effor t to trigger 
driving suppor t and determine what type of suppor t is most appropriate.
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Abstract

Objective: The aim of this study was to test the implementation of an adaptive driver support system. 
Background: Providing suppor t might not always be desirable from a safety per-
spective, as suppor t may lead to problems related to a human operator being out 
of the loop. In contrast, adaptive suppor t systems are designed to keep the op-
erator in the loop as much as possible by providing suppor t only when necessary.  
Method: A total of 31 experienced drivers were exposed to three modes of lane-keep-
ing suppor t: nonadaptive, adaptive, and no suppor t. Suppor t involved continuously up-
dated lateral position feedback shown on a head-up display. When adaptive, suppor t 
was triggered by performance-based indications of effor t investment. Narrowing lane 
width and increasing density of oncoming traff ic served to increase steering demand, 
and speed was f ixed in all conditions to prevent any compensatory speed reactions. 
Results: Par ticipants preferred the adaptive suppor t mode mainly as a warning signal and 
tended to ignore nonadaptive feedback. Fur thermore, driving behaviour was improved 
by adaptive suppor t in that par ticipants drove more centrally, displayed less lateral vari-
ation and drove less outside the lane’s delineation when suppor t was in the adaptive 
mode compared with both the no-suppor t mode and the nonadaptive suppor t mode. 
Conclusion: A human operator is likely to use machine-triggered adaptations as 
an indication that thresholds have been passed, regardless of the suppor t that 
is initiated. Therefore suppor ting only the sensory processing stage of the hu-
man information processing system with adaptive automation may not  be feasible.  
Application: These conclusions are relevant for designing adaptive driver suppor t systems.

4.1 Introduction

Enabled by technology, fully automated cars driving around in real traff ic are no longer 
science f iction. In 2010, Google announced that it is testing self-driven cars using trained safety 
drivers inside the cars to take over control when necessary (Lee, 2010; Thrun, 2010). At the 
time of the announcement, seven test cars had driven a total of 140,000 miles with occasional 
human intervention and 1,000 miles without any human involvement (Markoff, 2010). Only 
one car was involved in an accident, when it was rear-ended while waiting at a traff ic light. 
In the same announcement, it was pointed out that an automated car allows its passengers 
to spend their time more eff iciently, improves safety, and increases road capacity, since self-
driving cars respond faster than humans, have a 360° perception, do not get distracted or 
fatigued, and so on.
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Although sitting back and relaxing while the automated system handles vehicle control 
is appealing, it represents a fundamental change of the driver’s role from an active driver to 
a passive supervisor, potentially resulting in less safety (Brookhuis & de Waard, 2007). This 
change is similar to what has been seen in other high-tech task environments. Although full 
automation has many advantages, including reduction of small errors and better handling 
of routine operations (Wiener & Curry, 1980), there can be serious risks to performance 
when a manual takeover is required, as a result of reduced situation awareness, manual skill 
erosion, and late detection of automation failures (Bainbridge, 1983; de Waard, Van der Hulst, 
Hoedemaeker, & Brookhuis, 1999; Endsley, 1995). The aforementioned example shows that 
even the impressive driving performance shown by the Google test cars does not allow a 
driver at present to sit back and fully engage in other activities.

To prevent “out-of-the-loop” problems, it has been proposed to automate (sub)tasks 
only when suppor t is needed, known as adaptive automation (Byrne & Parasuraman, 1996; 
Miller & Parasuraman, 2007; Mulder, Dijksterhuis, Stuiver, & de Waard, 2009; Parasuraman 
& Riley, 1997; Scerbo, 1996, 2001). In contrast to those in nonadaptive automation, the tasks 
per-formed by an adaptive system, or the level of automation (LOA), are not f ixed but may 
change in real time. Changing LOA could be handled by the human operator in an explicit 
task allocation loop, which would add the task LOA management to the workload of the 
human operator. In contrast, LOA management could also be handled by an automated 
decision module in an implicit loop (e.g., Tattersall & Fairclough, 2003). Ultimately, a system is 
envisioned that suppor ts and interacts with the human operator in a way that ref lects social 
relationships. For instance, it could resemble a team member or subordinate (e.g., Mulder, de 
Waard, Hoogenboom, Quispel, & Stuiver, 2008). In this kind of human-machine interaction, 
the machine has the authority to initiate changes in the number of automated subtasks, the 
LOA per subtask, and the type of suppor t (e.g., Scerbo, 2001). This capability requires real-
time assessment by the system to decide when suppor t is needed.

When designing an adaptive system, one needs to establish what def ines the necessity 
for adapting task automation. As such, several broad strategies have been suggested (e.g., 
Morrison & Gluckman, 1994; Parasuraman, Bahri, Deaton, Morrison, & Barnes, 1992). For 
example, aid could be triggered by critical events in the environment that are not directly 
linked to user behaviour. In contrast, the operator’s psychophysiological signals could also be 
used to trigger task suppor t. Another user-adaptive approach is to monitor task performance 
and change LOA to prevent unacceptable performance degradation (e.g., Rouse, 1988). 
It has also been suggested that the LOA be coupled to mental workload (MWL), here 
def ined as “the reaction to demand; the propor tion of the capacity that is allocated for task 
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performance” (de Waard, 1996), which would ideally create a system in which the operator’s 
mental workload remains relatively stable (e.g., Parasuraman et al., 1992).

Stabilizing mental workload, by preventing long periods of both overload and underload, 
has great advantages for what we think should be the ultimate purpose of an adaptive 
system in safety-critical tasks: to protect the operator and other humans in contact with the 
system. According to the operator functional state framework, for example, operating with 
high MWL, even if performance levels are still acceptable at a par ticular moment, might 
warrant a change of automation since acceptable performance is increasingly diff icult or 
even impossible to sustain in demanding working conditions (e.g., Hockey, 1997, 2003). These 
considerations imply that MWL assessment could be used to decrease the probability of 
passing thresholds for unacceptable performance levels.

Although MWL assessment could be used as a trigger for task suppor t, some hysteresis 
should be present in the system (Hoogeboom & Mulder, 2004) in that not all MWL 
changes should result in a modif ied suppor t level. Dead bands will likely be necessary to 
prevent excessive, rapid switching between levels of suppor t. Also, the effectiveness of an 
adaptive system will par tly depend on the operator’s long-term acceptance of the adaptive 
system. Therefore, operator preferences in timing might temporarily overrule triggers. Last, 
behavioural adaptations when operating an adaptive suppor t system may become an issue. 
Human operators themselves control how much effor t they will invest and may f ind new 
ways to perform their task that were not anticipated by the system’s designers, which may 
potentially result in reductions or even reversals of potential safety gains (e.g., de Waard et 
al., 1999; Lee, 2008; Parasuraman & Riley, 1997). For instance, operators might try to maximize 
suppor t levels, even if there is no need to reduce effor t investment (Hoogeboom & Mulder, 
2004).

Although setting the adaptive proper ties of an automated system is a major design 
requirement, another challenge is deciding how to suppor t the human operator. Although 
available suppor t types depend greatly on the task, some general concepts are available in 
the literature. The simple binary approach of manual versus fully automated systems was 
followed by a graded classif ication of LOA, including levels such as the computer “allows the 
human a restricted time to veto before automatic execution” and “the computer offers a 
complete set of decision/action alternatives” (Parasuraman, Sheridan, & Wickens, 2000, p. 
287). Moreover, LOA may also be viewed as a unidimensional continuum of automation 
degrees (e.g., Parasuraman, Sheridan, & Wickens, 2000).
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A conceptual shift away from a decision and action execution–oriented approach to 
LOA was to include the early stages of the human information processing system, sensory 
processing and perception or working memory, as candidates for automation (Parasuraman 
et al., 2000). Another scale of automation degrees was presented in Flemisch, Kelsch, Löper, 
Schieben, and Schindler (2008). On this scale, the term assistance is used when most of the 
task is performed by the human operator and could include suppor t types that are not 
readily included in the concept of automation, such as providing information, warnings, and 
advice. Conversely, at the other end of the scale, the term automated is used when most of 
the task is automated.

One example of a task for which suppor t could be provided is steering a vehicle. Lane 
keeping (steering or tracking) is a major, but relative easy, par t of maintaining safe control of 
a vehicle (Parkes, 1991). However, the relative ease with which drivers generally keep in their 
lanes could be contrasted with accident statistics. For instance, the United Nations Economic 
Commission for Europe (2007) repor t on statistics of road traff ic accidents in Europe and 
North America shows that about one third of the accidents involving personal injury or death 
may be related to inadequate lateral control.

Steering is usually carried out in a highly automated fashion, although a driver will direct 
attentional resources to the task whenever the situation demands it and, in doing so, switch 
from the control level of operation to the manoeuvring level (Michon, 1985). In demanding 
conditions, such as decreased visibility, narrow lanes, or when drivers are fatigued, it may 
be diff icult to estimate lateral position (LP) adequately and therefore to maintain safety 
or coMfor t zones (Summala, 2005; Summala, Nieminen, & Punto, 1996). In these instances, 
a driver may benef it from more accurate and reliable LP information. Providing accurate 
and reliable information would be an example of assisting the input stages of the human 
processing system (Parasuraman et al., 2000) and would constitute a relatively low degree of 
automation (Flemisch et al., 2008).

However, using raw (not averaged) data to trigger suppor t, such as done by traditional 
lane-depar ture warning systems, may make a suppor t system too reactive. Each driver 
displays naturally occurring and unsystematic driving behaviour variations, which may be a 
primary reason for drivers to maintain safety margins (Brehmer, 1990; Ranney, 1994). A single 
(small) driving error does not necessarily imply that the driver needs suppor t immediately, 
but frequently occurring minor errors is a stronger indication that driver suppor t is needed. 
Hence, time intervals may be used to create “trigger variables.” In the case of the steering 
task, frequent or long periods of driving near the driving lane delineation could be an indication 
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that not enough effor t is being invested in keeping the car in the centre of the lane. Another 
indication of inadequate effor t investment would be lane depar tures, since these actions may 
set a vehicle in the direct path of oncoming traff ic or on a potentially dangerous shoulder.

Last, the standard deviation of the LP (SDLP) can be used to assess changes in MWL. 
For example, the SDLP turned out to be a sensitive measure for overall driving capacity 
in experiments involving drugs and driving (O’Hanlon, Haak, Blaauw, & Riemersma, 1982; 
Ramaekers, Robbe, & O’Hanlon, 2000). Also, sleep deprivation and fatigue as a result of 
prolonged driving has been shown to increase SDLP (Anund, Kecklunda, Vadeby, Hjälmdahl, 
& Åkerstedt, 2008; de Waard & Brookhuis, 1991), and in a previous study, SDLP was sensitive 
to changes in lane width and oncoming traff ic (Dijksterhuis, Brookhuis, & de Waard, 2011).

To investigate the behavioural effects of providing suppor t related to lateral control and to 
assess user experiences, we conducted a study in which a suppor t system was introduced to 
provide objective information related to the vehicle’s LP, similar to a speedometer, by means 
of a head-up display (HUD). A HUD was chosen to keep the gaze directed toward the road as 
much as possible (e.g., Tufano, 1997). The HUD provided the driver with a continuous f low of 
information on lane width and LP (see Figure 4.1 for a screenshot of the HUD). To investigate 
suppor t effects across a range of lateral control demands, lane width and oncoming traff ic 
density were varied. In addition, an adaptive driver suppor t condition was created by (de)
activating the HUD automatically when exceeding lateral control performance thresholds.

Figure 4.1. Lane position information projected on the windshield of the simulator car
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4.2 Method

4.2.1 Participants

We recruited 32 par ticipants through poster announcements and paid them €20 for 
par ticipating. However, 1 par ticipant was excluded because of insuff icient driving experience, 
leaving 31 par ticipants (26 male). Ages ranged from 23 to 44 years (M= 26.1, SD= 4.4), 
and par ticipants had held their full driving license for 5 to 24 years (M= 7.5, SD= 3.6). The 
self-repor ted total mileage ranged from 12,500 to 1,200,000 km (median = 40,000), and 
the annual mileage ranged from 2,500 to 50,000 km (median = 6,000). Finally, none of the 
par ticipants repor ted using prescribed drugs that might affect driving behaviour.

4.2.2 Simulator and driving environment

The study was conducted using an ST Software driving simulator consisting of a f ixed-base 
vehicle mock-up with functional steering wheel, indicators, and pedals. The simulator was 
surrounded by three 32-in. diagonal screens, with each screen providing a 70° view of the 
driving environment. A detailed description of the driving simulator used can be found in Van 
Winsum and Van Wolffelaar (1993).

For the experiment, a route was prepared consisting of a two-lane road winding through 
mainly rural scenery, divided into four main sections of uninterrupted road, stretching out for 
9.1 km on average (about 7 min of driving time) and separated by small villages. Roads in 
each section consisted mainly of easy curves (about 80%) with a constant radius of 380 m 
and ranging in length from 120 m to 800 m. The road surface was marked on the edges by 
a continuous line (20 cm) and in the centre by a discontinuous line (15 cm), and outside the 
edges, a soft shoulder was present. The par ticipants drove the simulated car (width = 1.60 
m) through the entire route twice, bringing the driven distance up to approximately 80 km. 
On the experimental sections, outside the villages, speed was controlled by the simulator 
and set to 80 km/h to prevent potential compensatory speed reactions to the experimental 
manipulations.
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4.2.3 Support triggers

The vehicle’s LP, def ined as the distance between the centre of the par ticipant’s car and the 
middle of the (right-hand) driving lane, was sampled at 10 Hz during the entire experiment. 
Sampled LP values were fur ther processed into three suppor t trigger variables: (a) the 
propor tion of driving time in the near-edge zones, (b) the propor tion of driving time in the 
over-edge zones, and (c) SDLP (see Figure 4.2).The near-edge zones were def ined as strips 
12.5 cm wide toward each lane edge and are illustrated by the grey areas in Figure 4.2a. 
Driving in this zone with any par t of the vehicle counted as driving near the lane’s edges, 
except if the car also entered the over-edge zone (see Figure 4.2b). Each second, the suppor t 
algorithm counted the number of LP samples values inside these near-edge zones for the 
preceding 30 s and divided it by the total number of samples during this period (300 samples). 
Driving in the near-edge zones for more than 7.5 s (25%) triggered the HUD. For the second 
trigger variable, driving in the over-edge zones, the threshold was set to 3 s (10%). Finally, all 
300 LP values were used to calculate SDLP, which triggered the HUD when more than 22 
cm. During the adaptive suppor t conditions, exceeding any of these thresholds activated the 
HUD, and suppor t was deactivated. when all trigger variables were below their threshold 
value. In addition, to prevent a high-frequency on-off switch, a minimum time delay of 10 s 
was set as a dead-band. 

Figure 4.2. Abstract representation of the trigger variables. The grey areas in Figure 4.2a represent the near-
edge zones toward the left and right lane edges, the grey areas in Figure 4.2b represent the over-edge zones on 
the left and right of the driving lane, and Figure 4.2c symbolizes the standard deviation of the lateral position.

Driving near the lane’s edges, driving over the lane’s edges, and weaving within the lane 
were assumed to be an indication of reduced lateral control, increasing the likelihood of an 
accident and therefore a reason to provide lateral control suppor t. However, for a working 
suppor t system, the exact width of the near-edge zone, the time length of the dead-band, 
and the time window used to process LP data needed to be determined in addition to 
the threshold values. For SDLP, Brookhuis, de Waard, and Fairclough (2003) proposed an 
absolute deteriorated driving criterion of 25 cm. Such clear-cut indication of threshold values 
for the other trigger variables do not exist in literature. During a pilot study (n= 8), a number 
of calibrations were tested. However, given the large number of possible calibrations, the f inal 
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values were based on the rather intuitive feeling of “rightfulness.” The suppor t system was 
therefore calibrated in a way that most par ticipants repor ted that their lateral control had 
worsened in the period before the suppor t system star ted supplying information on LP.

4.2.4 Design and Procedure

Each par ticipant completed all conditions and was instructed to drive as he or she would 
normally do and to follow automated auditory instructions when driving. The order of 
the conditions was balanced according to the Latin square method, except for the low- 
and high-traff ic-density conditions, which alternated. Approximately 6 min of low-density 
oncoming traff ic was always directly followed by a relatively shor t period of 65 s during 
which oncoming traff ic was intensif ied. Hereafter, approximately 300 m before entering a 
village, the longitudinal control was returned to the driver. In each village, the par ticipants 
received the instruction to pull over and park the car, followed by a 2-min break during which 
they were requested to complete mental effor t rating scales.

The effects of three suppor t modes were compared. On each road section, the HUD was 
either turned off (the no-suppor t mode), continuously activated (the nonadaptive-suppor t 
mode), or triggered when a threshold value was exceeded (the adaptive-suppor t mode). In 
addition, lane width was either 2.25 m or 3.00 m for each road section. During the last 1,300 
m of each road section, the average interval between oncoming vehicles decreased from 10 
s to 1.5 s. No traff ic was present on the same (driving) lane as the par ticipants’. This resulted 
in a within-subject design consisting of three repeated measures factors: suppor t mode (3), 
lane width (2), and oncoming traff ic density (2).

Before the actual experiment star ted, par ticipants were asked to read information related 
to the suppor t system; this information included a full and detailed user’s manual of the HUD 
and the exact trigger-related proper ties of the adaptive suppor t mode. The main reason 
for providing this level of information beforehand was to make sure that the par ticipants 
would understand the suppor t system and avoid “automation surprise” (e.g., Prinzel, 2002). 
Fur thermore, it was stressed that any HUD activation as a result of driving behaviour did not 
indicate bad steering behaviour but was meant to provide LP information. After providing 
informed consent, the par ticipants were given the oppor tunity to get used to the simulator 
car and all suppor t modes. The Ethical Committee of the Psychology Depar tment of the 
University of Groningen approved the study.
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4.2.5 User experience Questionnaire

After the par ticipants were informed about the functionality of the HUD in both suppor t 
modes, par ticipants were asked to complete a technology acceptance questionnaire that 
consist of nine 5-point rating items that load on two factors, usefulness and satisfaction, to 
compare both suppor t modes (Van der Laan, Heino, & de Waard, 1997). In addition, these 
expectation scores were compared with the scores given at the end of the experiment after 
the drivers had experienced both suppor t types.

To detect possible differences in the suppor t usage among the par ticipants, they were 
asked to indicate in what way they had mainly used the HUD directly after the experiment. 
Three standard options were given: (a) “I used the lateral position information provided by 
the HUD,” (b) “I used the HUD activation as a signal to improve lateral position behaviour,” 
and (c) “I ignored the HUD as much as possible.” In addition, the par ticipants could tick a 
four th option, “Different, namely . . . ,” and provide their own answer.

During each driving break, the par ticipants were asked to mark the Rating Scale Mental 
Effor t (RSME; Zijlstra, 1993) for both the f irst par t (low-density oncoming traff ic) and the 
last par t of the drive (high-density oncoming traff ic). The RSME is a single-dimension rating 
scale ranging from 0 to 150 that can be used by the par ticipants to rate experienced effor t. 
In addition, several effor t indications (calibrated anchor points) are visible alongside the scale 
that may fur ther guide the par ticipant’s rating. Indications star t with absolutely no effor t 
(RSME score of 2) and end with extreme effor t (RSME score of 112).

4.2.6 Analyses

We analysed the data using the General Linear Model Repeated Measures test of SPSS. 
Repeated-measures MANOVAs were run on the system acceptance scores (usefulness and 
satisfaction) and the lateral control variables. We tested LP, SDLP, and time in the near- and 
over-edge zones using the mean value for all time windows within an experimental condition. 
ANOVAs were run on the RSME scores. Alpha was set to 5% for all tests, and to com-pare 
individual suppor t modes, Bonferroni post hoc tests were used when appropriate.
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4.3 Results

4.3.1 User experiences

To begin with, there were differences among par ticipants in the way the HUD was mainly 
used. Of all the par ticipants, 39% indicated that they ignored the HUD as much as possible. 
Fur thermore, within the group of par ticipants who did not ignore the HUD, 79% used the 
HUD primarily as a warning signal, whereas 16% repor ted to have used it as a source of LP 
information.

Figure 4.3. System acceptance scores before and after the experiment for both suppor t modes. Error bars 
represent the standard error.

The subjective scores for both the usefulness and the satisfaction dimension (both ranging 
from –2 to +2) are shown in Figure 4.3. When looking at these two dimensions in Figure 
4.3, one can see that the usefulness scores deviate most from the neutral, zero line and that 
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adaptive suppor t prior to the experiment received the highest score. On the satisfaction 
dimension, three out of four scores are within 0.5 points of the zero line. Despite these small 
ranges, both usefulness and satisfaction show two main effects (suppor t type, and before 
and after testing). Overall, adaptive suppor t was rated higher than the nonadaptive suppor t 
on both usefulness and satisfaction dimensions: usefulness, F(1, 29) = 9.91, p< .01, ηp

2= .26; 
satisfaction, F(1, 29) = 16.02, p< .001, ηp

2= .36. Also, the par ticipants’ expectation scores on 
both dimensions were higher than were the scores after experiencing either suppor t type: 
usefulness, F(1, 29) = 10.79, p< .01, ηp

2= .27; satisfaction, F(1, 29) = 14.34, p< .01, ηp
2= .33.

The mental effor t ratings are shown in Figure 4.4. Mean mental effor t ranges from just 
over the almost no effor t mark for wide lane, no suppor t, and low-density traff ic to just 
below the some effor t mark for narrow lane, no suppor t, and high-density traff ic. Several 
effects on mental effor t were present in the data. To begin with, the wide lane conditions 
were rated signif icantly lower than the narrow lane conditions (19.9 vs. 27.6 points). Also, 
low-density oncoming traff ic was rated lower than the high-density conditions (18.3 vs. 29.1 
points). However, the differences between the suppor t modes did not result in a signif icant 
effect (10.5, 11.9, and 11.1 points for no suppor t, nonadaptive suppor t, and adaptive suppor t, 
respectively). Finally, one interaction effect is present. When par ticipants were driving on a 
wide lane, an increase of traff ic density resulted in an increase of 7.6 RSME points. When they 
were driving on a narrow lane, this increase was 14.0 points (see Figure 4.4 and Table 4.1).

Figure 4.4. Reported mental effor t for all suppor t modes. Wide = wide lane (3.00 m); narrow = narrow lane 
(2.25 m); low = low-density oncoming traff ic; high = high-density oncoming traff ic. Error bars represent the 
standard error. Maximum score for mental effor t is 150.
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Effect F(df1,df2) p ηp
2

Support (S) <1(2,58) ns 0.005

Width (W) 11.58(1,29) 0.002 0.285

Traff ic (T) 26.63(1,29) <0.001 0.479

S × W <1 (2,58) ns 0.007

S × T 1.46(2,58) ns 0.048

T × W 11.24(1,29) 0.002 0.279

S × W × T <1 (2,58) ns 0.033

Table 4.1. Univariate Test Results for Subjective Effor t (Figure 4.4). Suppor t = 
suppor t mode; width = lane width; traff ic = oncoming traff ic density. Signif icant 
effects (p< .05) are shown in bold. Degrees of freedom are Greenhouse-Geiser 
corrected when Mauchly’s test showed violation of sphericity.

4.3.2 Performance Measures

For LP, def ined as the distance between the centre of the par ticipant’s car and the middle 
of the (right-hand) driving lane, main effects for all factors were found (see Figure 4.5a and 
Table 4.2). Driving on a narrow lane and exposure to high-density oncoming traff ic were 
associated with an LP toward the shoulder. In addition, these effects strengthened each 
other, creating a signif icant interaction. Also, suppor t mode affected LP. Bonferroni post hoc 
comparisons did not reveal any signif icant differences, although the largest contributor to 
the main effect is the difference between the adaptive and the nonadaptive suppor t mode 
(mean difference = 3 cm, p = .051).

As can be seen in Figure 4.5b, driving on narrow lanes decreased SDLP values compared 
with driving on wide lanes. Also, suppor t mode yielded a main effect. A closer look revealed 
that SDLP was lower for the adaptive suppor t mode than for the no-suppor t mode (mean 
difference = 2 cm, p = .027). Increases in traff ic density did not change SDLP.

The time par ticipants drove with any par t of the vehicle within 12.5 cm of either edge of 
the driving lane (but not over the edge) was not affected by suppor t mode (see Figure 4.6a 
and Table 4.2). However, par ticipants did spend more time inside the near-edge zone when 
on narrow lanes and during high oncoming traff ic density. 

The last vehicle parameter refers to the time par ticipants drove with any par t of the 
car over the driving lane edges (Figure 4.6b), and main effects were found for all factors. 
An increase in time spent over the driving lanes was associated with both driving on a 
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Figure 4.5. Mean (a) and standard deviation (b) of the lateral position for all suppor t modes. Lateral position 
values represent the middle of the car (car width = 1.60 m) in relation to the middle of the right (driving) lane. 
Negative numbers indicate a position to the right of the lane middle and vice versa. Wide = wide lane (3.00 
m); narrow = narrow lane (2.25 m); low = low-density oncoming traff ic; high = high-density oncoming traff ic. 
Error bars represent the standard error.

narrow lane and high-density oncoming traff ic. However, these factors seemed to reinforce 
each other, resulting in an interaction. Last, a difference was found between suppor t modes. 
Bonferroni post hoc analysis revealed a signif icant difference between adaptive suppor t and 
nonadaptive suppor t (mean difference = 3%, p = .017). 

Figure 4.6. Percentage of the time spent inside the near-edge zone for wide lane (a) and over-edge zone (b) for 
all suppor t modes. Wide = wide lane (3.00 m); narrow = narrow lane (2.25 m); low = low-density oncoming 
traff ic; high = high-density oncoming traff ic. Error bars represent the standard error.
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Vehicle parameters 

Mean LP SDLP
Effect F(df1,df2) p ηp

2 F(df1,df2) p ηp
2

Support (S) 3.81 (2, 56) 0.028 0.120 3.90(2, 56) 0.026 0.122

Width (W) 31.93(1, 28) <0.001 0.533 59.59(1,28) <0.001 0.680

Traff ic (T) 183.67(1, 28) <0.001 0.868 <1(1, 28) ns 0.016

S × W <1(2, 56) ns 0.021 <1(2, 56) ns 0.005

S × T 2.63(2, 56) 0.081 0.086 1.02(2, 56) ns 0.035

T × W 9.03(1, 28) 0.006 0.244 <1(1, 28) ns 0.032

S × W × T <1(2, 56) ns 0.012 <1(2, 56) ns 0.023

Inside ‘Near-Edge-Zone’ Inside ‘Over-Edge-Zone’

Effect F(df1,df2) p ηp
2 F(df1,df2) p ηp

2

Support (S) <1(2, 37.82) ns 0.033 5.10(2, 56) 0.009 0.154

Width (W) 218.75(1,28) <0.001 0.887 146.41(1,28) <0.001 0.839

Traff ic (T) 30.40(1,28) <0.001 0.521 106.42(1,28) <0.001 0.792

S × W <1(1.5,43.0) ns 0.000 2.83(1.6,44.1) 0.068 0.092

S × T 1.16(2, 56) ns 0.040 1.14(2, 56) ns 0.039

T × W <1(1, 28) ns 0.015 94.91(1, 28) <0.001 0.772

S × W × T <1(2, 56) ns 0.027 <1(2, 56) ns 0.034

Table 4.2. Univariate Test Results for Vehicle Parameters (Figures 4.5a, 4.5b, 4.6a, 4.6b). Suppor t = suppor t 
mode; width = lane width; traff ic = oncoming traff ic density; LP = lateral position; SDLP = standard deviation 
lateral position. Signif icant effects (p< .05) are shown in bold. Degrees of freedom are Greenhouse-Geiser 
corrected when Mauchly’s test showed violation of sphericity.

4.4 Discussion

This study was designed to investigate the driving effects of nonadaptive and adaptive driver 
suppor t in a wide range of driving demands and to assess drivers’ experiences with using 
these systems. Differences between suppor t modes were smaller both in number and in 
size when compared with the effects caused by manipulations of infrastructure and traff ic. 
Effor t ratings were unaffected by suppor t mode, although most vehicle parameters did 
show a difference. On closer examination, it seems that these effects were mainly caused 
by the adaptive suppor t. Compared with either the nonadaptive or the no-suppor t mode, 
par ticipants drove more centrally, swerved less, and drove less on the shoulder. In addition, 
none of the post hoc comparisons between the nonadaptive and the no-suppor t mode were 
statistically signif icant
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Instead, there were distinct differences in the manner in which the HUD was primarily 
used. More than a third of the par ticipants indicated to have ignored the HUD. This behaviour 
might be classif ied as disusing the provided assistance, which is def ined as a failure to engage 
in automation when it could improve performance (Lee, 2008; Parasuraman & Riley, 1997). 
What has caused these differences can only be speculated. In addition to design specif ics, 
use of the system may correlate with personality traits relevant to driving behaviour, such as 
sensation seeking (e.g., Constantinou et al., 2011). Also, par ticipants were not asked about 
their driving history in terms of traff ic violations, accident involvement, and so on. For future 
research, it would be interesting to use this kind of information to establish who is more likely 
to ignore useful information. In addition, we cannot precisely discern which HUD version 
the par ticipants had in mind when answering this question because it was asked only once, 
shor tly after the experiment. However, the satisfaction and the usefulness scores indicate 
that the adaptive HUD was the most accepted.

Within the group of par ticipants who did not mainly ignore the HUD, 79% used HUD 
activation as a warning signal; we can therefore conclude that the par ticipants mainly 
appreciated the warning proper ty of the adaptive HUD and not its information provision 
proper ty. Although the par ticipants did not use adaptive suppor t as intended by the system’s 
designers, it seemed to help driving performance. It could be argued that using naive 
par ticipants might have prevented usage of the system in this way. However, this scenario is 
unlikely. If this system had been tested across a longer period, naive drivers eventually would 
have learned when suppor t is activated.

When comparing the current system with previously investigated adaptive systems, one 
can f ind several differences and similarities. Adaptive automation is usually applied to (modif ied 
versions of) complex tasks, such as the Multi-Attribute Task (e.g., Pope, Bogar t, & Bar tolome, 
1995), the Cabin Air Management task (e.g., Ting et al., 2010), the Multitask (e.g., Kaber & 
Endsley, 2004), or a simulated helicopter cockpit task (Miller & Hannen, 1999). Adequate 
performance of these tasks requires a lot of par ticipant training or trained professionals. In 
contrast, a driving simulator used for the current study closely resembles a task environment 
highly familiar to most people. Other comparisons can be made with regard to the aid 
itself. A focus of the current study was aiding the input functions of the human information 
processing system (Parasuraman et al., 2000), which it has in common with the Cockpit 
Information Manager (CIM; Miller & Hannen, 1999), even though the LOA in the current study 
must be considered lower since it did not involve organizing the data in any way.
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In other studies, the output functions (decision making and response selection) are 
suppor ted. For example, Ting et al. (2010) developed an adaptive aid that could control the 
regulation of crucial air parameters. Also, compensatory tracking, as used by Pope et al. 
(1995), was either fully automated or fully manual. Apropos, given the focus on input functions 
and a relatively low LOA, the current system could be referred to as assistance rather than 
automation on the continuum of automation degrees presented in Flemisch et al. (2008).

Another relevant feature of the adaptive system described in the current ar ticle is the use 
of task performance to trigger aid, even though many systems were designed with a different 
approach in mind (a classif ication is given in Parasuraman et al., 1992). The CIM, for example, 
uses context information and crew actions to determine current and near-future tasks to 
adjust information provision. Another alternative approach was implemented by Ting et al. 
(2010), who combined electrocardiogram and electroencephalogram data to predict error 
performance, which was subsequently used to activate task suppor t. The aforementioned 
comparisons represent just a selection of dimensions along which comparisons can be made. 
Also, more systems could have been mentioned. Regretfully, a more thorough classif ication 
of all published adaptive automated systems is beyond the scope of the current ar ticle.

A HUD was chosen as the information carrier because it increases gaze time toward the 
roadway environment compared with head-down displays. However, several problems with 
using a HUD have been mentioned in the literature. For example, the HUD’s focal distance can 
inf luence perception time of both the information on the HUD and the roadway environment 
(Gish & Staplin, 1995; Tufano, 1997). Also, cluttering of the visual f ield, superimposing of salient 
environmental information, and poor detection of unexpected peripheral events as a result 
of attentional capture can be problematic (e.g., Horrey & Wickens, 2004; Weintraub & Ensing, 
1992).These problems were probably less relevant for the present study. To star t with, driving 
in a rural environment and the HUD position (see Figure 1) minimized the superimposing 
of oncoming traff ic. Also, the visual workload demanded by the driving situation can be 
considered quite low, making it unlikely that adding the HUD overloaded visual attentional 
resources. Last, peripheral detection was not an issue in the simulator, since salient peripheral 
objects were not present. However, the issues associated with using HUDs are extremely 
relevant in a real-world application and might be overcome by using what has been called 
“conformal imagery,” a form of augmented reality (Fadden, Ververs, & Wickens, 2001).

A limitation of the study may be the calibration of the adaptive suppor t system. For 
the adaptive system, several parameters needed to be set, such as the threshold values, 
and extensive testing of the complete range of calibrations would have been a daunting 
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enterprise. To solve this problem, we specif ically aimed at avoiding a calibration that would 
make the adaptive system appear unfair or unjust as evaluated by the drivers during a pilot 
study. System calibration was par tly based on trial and error but ultimately on the feeling 
of rightfulness by the pilot test par ticipants. Using a different calibration for the adaptive 
suppor t mode may have produced different experimental results. Speculatively, using stricter 
LP-related thresholds (driving time in the near and over edge zones) could have resulted in 
more HUD activations and therefore in driving more centrally. However, it is not clear how 
(de)activation frequency would interact with the willingness to use the provided information; 
this question may be a topic for future research.

Another limitation is the implementation of the high-density oncoming traff ic conditions, 
which were shor ter than the low-density conditions and occurred in a f ixed, alternating 
order. Alternating the traff ic density levels was done to prevent interference from the high-
density condition in the quiet condition. It is unclear whether a different design would have 
produced different results. However, in hindsight, a balanced order and equal duration of 
these conditions would have been preferred to decrease the likelihood of order effects and 
to exclude the possibility that condition length confounded the large effects of increasing 
oncoming traff ic density.

Last, only lane-keeping performance was used to assess MWL changes even though a 
change in performance does not always equate to a change in MWL. Changes in performance 
levels may also be the result of changed task demands, whereby performance might degrade 
even if the MWL level is sustained. Also, a depletion of energetic and cognitive resources, 
despite intentions of good performance, might prevent fur ther increase in MWL (e.g., Hockey, 
1997). Considering the f lexibility displayed in human behaviour, one may conclude that it is 
unlikely that a reliable single measure for MWL exists and that several sources (subjective, 
performance, environment, and psychophysiology) are required for deriving a more reliable 
index (Brookhuis & de Waard, 2000; de Waard, 1996; Gaillard & Kramer, 2000; Hoogeboom 
& Mulder, 2004).

Using several sources, such as physiological triggers, for example, would have potentially 
increased the range of MWL detection to beyond the point at which performance cannot be 
increased anymore. However, as the intention was to assess changes in MWL, rather than 
absolute levels, it is carefully assumed that within a highly controlled experimental setting, a 
performance change will likely be caused by a change in resource allocation in service of the 
steering task and, therefore, a change in MWL.



71

4  A PERFORMANCE BASED ADAPTIVE DRIVER SUPPORT SYSTEM

4.4.1 Conclusion

Across a range of driving demands, driving performance was somewhat improved when 
drivers were exposed to an adaptive suppor t system that provided feedback on LP. This was 
likely caused by unexpected use of the system. Par ticipants indicated to have mainly used 
the moment of suppor t activation as a warning signal rather than using the information 
provided on the HUD itself. In this way, the system not only suppor ted the perception phase 
but suppor ted the decision-making phase as well. It seems unlikely that an adaptive suppor t 
system can be designed that will work only for the pre-decision stages; indicating that all 
perceived proper ties of an adaptive system are likely to be utilized by the human operator.
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Abstract

An adaptive driver assistance system may potentially inf luence driving behaviour through 
changing the music that the driver is listening to. Before such a system can be tested, the 
inf luence of listening to music while driving need to be examined in more detail. In the current 
study, drivers in a simulator listened to individually negatively and positively rated music while 
driving on rural roads. High demanding driving conditions were implemented by narrowing 
the lane’s width. Results indicate that when driving on a narrow lane, swerving decreased 
and subjective effor t ratings increased, indicating an increase in mental workload. Effects of 
listening to music on driving behaviour were limited to a marginal effect of music type: driving 
speed decreased as a result of listening to positively rated music compared to the no-music 
condition. In addition, breathing rate slowed down when listening to negatively rated music 
compared to the no-music condition. These results indicate that a driver assistance system 
that automatically selects music valence, is unlikely to immediately inf luence driving behaviour 
in these driving conditions. On the other hand, decreased breathing rates signal a relaxed 
state, which could be used to counter unwanted affective states.

5.1 Introduction

In Western society, music listening has become a frequent activity in the background of 
almost any activity (DeNora, 2000; North & Hargreaves, 2008). Music researchers have 
now star ted to focus on music listening in these specif ic everyday life situations to improve 
the understanding of how music can inf luence behaviour (DeNora, 2003; Juslin & Sloboda, 
2010). Driving is one of the most popular music listening situational contexts. While driving, 
people listen to music to attain enjoyment or to feel engaged when driving in solitude 
(DeNora, 2000; Walsh, 2010). It is also suggested that music listening distracts from driving 
and can therefore inf luence safety (Brodsky, 2001). Although the impact of music on driving 
performance has been given some attention (Dibben & Williamson, 2007), its impact on 
physiological measures has not. Neither has a distinction been made between the respective 
impacts of the specif ic types of music such as positive and negative valenced music. In the 
current ar ticle, these relationships between music valence, physiological measures, and driving 
performance are studied.
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5.1.1 Music and physiological measures

In the literature, several effects of listening to music can be found. To star t with, fast tempo 
music has consistently shown to increase arousal levels compared to slow tempo music (e.g., 
Krumhansl, 1997; Van der Zwaag et al., 2011). The majority of these studies have found that 
arousing music increases hear t rate compared to low arousing music (De Jong et al., 1973; 
Knight and Rickard, 2001). Still, others have found that any music, both low and high arousing, 
increases hear t rate (Krumhansl, 1997; Iwanaga & Moroki, 1999; Rickard, 2004). Respiration 
rate is found to increase in high arousing music compared to relaxing music as well (Iwanaga 
and Moroki, 1999; Krumhansl, 1997; Nyklíček et al., 1997; Gomez & Danuser, 2004). Again, in 
other studies no difference in respiration rate while listening to different types of music was 
found (e.g., Davis, 1992). Hence, inconsistent results are found on hear t rate and respiration 
rate responses to music listening.

Several explanations can be given for the inconsistent results found for the inf luence of 
music on physiological measures. A f irst explanation comes from the fact that the studied 
physiological measures are affected by regulatory effects in the autonomic nervous system, 
which is primarily responsible for keeping homeostasis (Cacioppo et al., 2000). As a result, 
physiological responses are not solely inf luenced by music listening (e.g., through an emotional 
response) but additionally, via physical activity, cognitive demand, and other psychological 
constructs (Cacioppo et al., 2000; Van den Broek & Westerink, 2009). Hence, the situational 
context should be taken into account in interpreting physiological responses to music listening. 
A second explanation can be found in the fact that most studies in music research differ to 
a great extent on important methodological aspects, such as the song selection method 
and the duration of the music presentation. For the study of physiological responses to music, 
awareness of these methodological aspects is impor tant, as is the perspective to always 
describe the impact of music in relation with personal and situational context (Blacking, 1973; 
Saarikallio & Erkkilä, 2007; North & Hargreaves, 2008; Sloboda & Juslin, 2010).

5.1.2 Music while driving

Music can be benef icial while driving as, for example, the arousal hypothesis predicts that in 
cases of boredom and drowsiness music can lead to a more optimal arousal level for driving 
(North & Hargreaves, 2008; Shek & Schuber t, 2009). However, following the distraction 
hypothesis, music can also take attention away from the driver (Shek & Schuber t, 2009). This 
distracting effect of music on driving can be disadvantageous when it decreases safety in case 
high arousing music is played during high demanding road situations (Dibben & Williamson, 
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2007). However, Wiesenthal et al. (2000) showed that one’s favourite music alleviates stress 
during high congestion drives. These authors found higher stress levels when comparing no 
music to favourite music during high congestion drives. Fur thermore, it is shown that driver 
aggression can be tempered with favourite music compared to no music in high demanding 
rides (Wiesenthal et al., 2003).

Explanations for the effects of music listening while performing a concurrent task, such 
as driving, often focus on processing capacity in service of the primary task (North and 
Hargreaves, 1999; Dalton and Behm, 2007; Pêcher et al., 2009), assuming that listening to 
music may be arousing and requires mental resources. Following the information-distraction 
approach, music adds additional irrelevant stimuli to a task which leads to increased 
cognitive load and thus can impact task performance (Konecni, 1982; North & Hargreaves, 
1999; Recar te & Nunes, 2000). Consequently, the more attention a par ticular type of music 
requires the more it competes for processing resources with the primary task of, for example, 
driving. To illustrate, North & Hargreaves (1999) manipulated cognitive load of par ticipants 
by exposing them to low or high arousing music by varying tempo and volume in a driving 
game. They found that high arousing music resulted in worse racing performance def ined as 
slower lap times, while the quickest lap times were recorded when listening to low arousing 
music. Interestingly, they also found a connection between cognitive load and music liking, 
and concluded that competition for processing resources caused par ticipants to dislike music. 
Pêcher et al. (2009) mentioned that post-experiment interviews revealed that drivers found 
happy music the most disturbing and, combined with behavioural data, took this as suppor t 
to conclude that listening to happy music resulted in deteriorated driving performance.

The impact of in-vehicle music listening on driving speed may depend on the road 
situational context. Reducing speed is found to be used as a compensatory reaction when 
faced with high load situations. Namely, it enables the driver to maintain safety margins by 
decreasing required reaction times (Summala, 2005). Fur thermore, as mentioned above, it 
can be expected that drivers allocate more attention, and thus mental resources, to positive 
music, which could result in detrimental effects on vehicular control or in a compensatory 
reaction such as slowing down.

Because task performance and music listening might compete for the same mental resources, 
the impact of musically evoked cognitive demand on performance might be dependent on 
the cognitive demand of a concurrent task (Konecni, 1982; North & Hargreaves, 1999). In low 
demand driving situations there is less competition for attentional space. Hence, it is likely 
that mental resources can more easily be divided between listening to music and driving as 
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the limits of mental resources are not reached. Therefore, listening to music should have a low 
impact on driving performance in these low-demand situations. As lane width is known to 
inf luence driver’s workload, this variable could be used to manipulate primary task demands 
when studying the relation between listening to positively and negatively rated music. Results 
repor ted in the literature show that when driving on narrow lanes, less manoeuvring space 
is available for the driver, and more attention is required to prevent driving errors such as 
drifting out of the driving lane and to maintain personal safety margins (de Waard et al., 1995; 
Dijksterhuis et al., 2011). This results in smaller deviations from the driver’s preferred lateral 
position (LP) on the road (de Waard et al., 1995; Dijksterhuis et al., 2011) and a compensatory 
speed reduction (Godley et al., 2004). 

5.1.3 Expectations

To star t with, while driving, we expect an increase in respiration rates and hear t rate during 
high (narrow lane width) compared to low (wide lane width) demanding drives. In accordance 
with Dijksterhuis et al. (2011), less swerving (i.e., reduced variation in LP) is expected on 
narrow lanes. Fur thermore, width reduction could lower driving speed to compensate for the 
higher amount of resources allocated in the more demanding drive (de Waard et al., 1995; 
Godley et al., 2004). Finally, we expect that music would inf luence driving performance in 
high demand drives, as in those conditions music competes with the limited amount of mental 
resources available. 

5.2 Method

5.2.1 Participants

The study had been approved by the ethics committee of the Depar tment of Psychology 
of the University of Groningen and informed consent was obtained from all par ticipants. 
Nineteen par ticipants, 13 men and 6 women, were paid 45 Euros for par ticipating. Age 
ranged from 22 to 44 years (mean=27.5; SD=5.2) and par ticipants had held their driving 
licence for 4 to 22 years (mean=8.8; SD=4.9). Self-repor ted total mileage ranged from 6000 
to 700,000 km (median =45,000; inter-quar tile range (IQR)=77,500 km) and current yearly 
mileage ranged from 1500 to 60,000 km (median=7000; IQR=5000).
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5.2.2 Design

Three music conditions were included: positive music, negative music and no music. In 
addition, two levels of lane width (wide 3.00 m or narrow 2.50 m) were created in the 
driving simulator, corresponding to low and high demand drives, respectively (Dijksterhuis et 
al., 2011). Par ticipants completed four sessions on separate days: one introduction session and 
three experimental sessions. In each experimental session, one music level was presented and 
both lane widths were used. This resulted in a within-subject design including two repeated-
measures factors: music (3) and lane width (2). The order of both the music and lane width 
factors were counterbalanced among par ticipants.

5.2.3 Music stimuli selection

Because music preference is highly personal (e.g., Hargreaves & North, 2010), songs used as 
stimuli were selected individually. To do so, par ticipants completed an introductory session 
prior to the experimental sessions. In this session, par ticipants rated 60 songs on perceived 
valence and energy levels on 7-point Liker t scales. The par ticipants did not have to listen 
to the entire song but were encouraged to sample each song for a few moments and 
at a few locations within the song to get a good impression of the song. The 60 included 
songs were selected to have a large range of valence and energy values and were selected 
from a database containing 1800 songs in total. The songs were selected based on energy 
and valence labels which were acquired by automatic classif ication of music characteristics 
(Skowronek et al., 2006, 2007). The order of the song presentation was randomised over 
par ticipants. 

After par ticipants had f inished the ratings, nine songs were selected per par ticipant and 
per music condition (positive/negative) in such a way that valence ratings differed as much as 
possible between the positive and negative songs while keeping energy ratings as average as 
possible. Subsequently, three of the selected songs were used for the music mood induction, 
three songs for the high demand drive, and three songs for the low demand drive. The 
duration of the three songs was adjusted, using Audacity (Version 1.2.4), to 8 min, keeping 
the average duration of each song about equal. This was done by cutting the song to about 
2.45 min and fading out the new ending of the song. 

To check the selected song stimuli on their valence and energy ratings, a repeated-measures 
ANOVA with music (positive/negative) as within-subject factor on the valence and energy 
ratings of the selected songs was conducted. Results showed a main effect of music on both 



79

5  THE POTENTIAL OF MUSIC SELECTION FOR ADAPTIVE DRIVER SUPPORT

energy and valence ratings: valence F (1,17) = 231.20, p < 0.001, ηp
2=0.93; energy F (1,17) = 

16.04, p < 0.001, ηp
2 = 0.49. This conf irmed that the selected song stimuli for the two music 

conditions were signif icantly different from each other in valence and energy. The positive 
songs showed higher valence and energy ratings compared to the negative songs; positive 
songs mean (SE) valence M = 5.8 (0.17), energy M = 4.7 (0.20), negative songs valence M = 
2.3 (1. 4 ), energy M = 3.3 (0.26), on scales running from 1 to 7.

5.2.4 Simulator and driving conditions

The study was conducted using a STSoftware© driving simulator. This simulator consists 
of a f ixed-base vehicle mock up with functional steering wheel, indicators, and pedals. The 
simulator was surrounded by three 32” diagonal plasma screens. Each screen provided a 70° 
view, leading to a total 210° view. A detailed description of the functionality of the driving 
simulator used can be found in Van Winsum & Van Wolffelaar (1993).

Par ticipants drove the simulated car (width: 1.65 m) over two sections of uninterrupted 
two-lane roads (2.50 m or 3.00 m wide lanes), winding through rural scenery, and separated 
by a small town. Roads in each section consisted mainly of easy curves (about 80%) with a 
constant radius of 380 m and ranging in length from 120 to 800 m. The road surface was 
marked on the edges by a continuous line (20 cm wide), in the centre by a broken line (15 
cm), and outside the edges a soft shoulder was present. The posted speed limit during the 
drive was 80 km/h. In addition, a stream of oncoming traff ic was introduced with a random 
interval gap between 2 and 6 s, resulting in 15 passing passenger cars (width: 1.75 m) per 
minute on average. No vehicles appeared in the par ticipant’s driving lane.

5.2.5 Measures

5.2.5.1 Subjective ratings

Subjective mood scores of valence (ranging from unpleasant to pleasant) and energy (ranging 
from tired/without energy to awake/full of energy) and calmness ratings (ranging from tense 
to calm) were assessed using the UWIST Mood Adjective Checklist (UMACL) (Matthews 
et al. 1990). This UMACL contains eight unipolar items for each dimension, which star t with: 
‘right now I am feeling. ...’, and range from 1: ‘not at all’ to 7: ‘very much’. Results of this 
checklist are not fur ther repor ted in this thesis. However, the interested reader is referred to 
Van Der Zwaag et al. (2012) for a full description of the results. 



80

5  THE POTENTIAL OF MUSIC SELECTION FOR ADAPTIVE DRIVER SUPPORT

The rating scale mental effor t (RSME) was used to assess mental effor t (Zijlstra, 1993). The 
RSME is a one-dimensional scale, ranging from 0 to 150, used to rate mental effor t. In addition 
to digits, several effor t indications (calibrated anchor points) are visible alongside the scale to 
fur ther guide rating. Indications star t with ‘absolutely no effor t’ (RSME score of 2) and end 
with ‘extreme effor t’ (RSME score of 112).

5.2.5.2 Physiological measures

Physiological measures covered reactions in the cardiovascular and respiratory domain. The 
Por tilab data recorder and its accompanying sensors were used to record these responses 
with a sample frequency of 250 Hz (version 1.10, Twente Medical Systems International, 
Oldenzaal, the Netherlands). Physiological measures were assessed continuously during the 
experiment. The MATLAB programming environment (2009, The Mathworks, Natick, MA) 
was used for the pre-processing of the respiration signals.

Cardiovascular measures were recorded using an electrocardiogram (ECG) using three 
Ag-AgCl electrodes, which were placed following the standard lead II placement (Stern 
et al., 2001). R-peaks in the ECG signal were detected automatically, after amplif ication 
and f iltering of the signal (Butterworth band pass: 0.5–40 Hz). Subsequently, the distances 
between successive R- peaks, the interbeat intervals (IBI), were calculated.

Respiration was recorded by means of a respiration belt (Respitrace TM, Twente Medical 
systems). To obtain the respiration measures, noise was excluded from the raw signal 
and movement ar tifacts were reduced by a 0.005–1.0 Hz band pass f ilter. The amount of 
respiration cycles per minute indicated the respiration rate (Wientjes, 1992; Grossman & 
Taylor, 2007).

5.2.5.3 Driving parameters

Speed and Lateral Position (LP) were sampled at 10 Hz. Lateral position is def ined as the 
difference in metres between the centre of the par ticipant’s car and the middle of the (right 
hand) driving lane. Positive LP values correspond to deviations towards the left-hand shoulder 
and negative values correspond to deviations toward the right-hand shoulder. The sampled 
LP values were used to calculate mean LP and the standard deviation of LP, or swerving 
behaviour.



81

5  THE POTENTIAL OF MUSIC SELECTION FOR ADAPTIVE DRIVER SUPPORT

5.2.6 Procedure

Par ticipants were invited four times to the driving simulator facility of the University of 
Groningen. During the f irst introductory session, the par ticipants were informed about 
the experiment, signed an informed consent form, drove a 6-minute practice drive, and 
completed the music rating. 

During the three subsequent experimental sessions, physiological sensors were attached 
and par ticipants were seated in the simulator chair. Next, physiological baseline values were 
acquired in a habituation period during which par ticipants watched a Coral Sea diving movie 
for 8 minutes (Piferi et al., 2000). Hereafter, par ticipants f illed out the UMACL. Then an 
8-minute music mood induction period star ted in which the par ticipants were asked to listen 
to the music. To remain attentive to the music, par ticipants were asked to listen to the music 
carefully to be able to answer questions regarding the music after the entire experiment. 
During the control session in which no music was presented, par ticipants were asked to sit 
and relax for 8 minutes. The par ticipants were not informed that mood induction took place 
during these 8 minutes, as this could bias the results. After 8 minutes, the par ticipants f illed 
out the UMACL. Again, the interested reader is referred to Van Der Zwaag et al. (2012) for 
a full description of the UMACL results. 

Next, the f irst simulated drive began. The par ticipants were instructed to drive as they would 
normally drive. After approximately 8 minutes, par ticipants were instructed to park the car 
and the music was stopped. During this break par ticipants were asked to complete the 
UMACL questionnaire and the RSME scale. Next up, the second 8-minute drive star ted which 
only differed from the f irst drive in lane width. After completing the ride, par ticipants f illed 
out the UMACL and RSME again. The total duration of each experimental session including 
instructions and attaching and de-attaching the physiological equipment approximated 70 
minutes.

5.2.7 Data analysis

Data were analysed using SPSS 17 for Windows (SPSS Inc., Chicago,IL) with level of signif icance 
at p<0.05 (two-tailed). Both the physiological and subjective data acquired during the music 
mood induction period were analysed to conf irm that successful mood induction took place 
using a repeated-measures ANOVA with music (positive/negative/no music) as within-subject 
variable. Fur thermore, the data obtained during the drives were analysed to show the effect 
of the music on driving using a repeated-measures ANOVA with music (positive/negative/no 
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music) and driving demand (wide/narrow) as within-subject variables. Pairwise comparisons 
were Bonferroni corrected.

5.3 Results

5.3.1 Subjective ratings

To evaluate the perceived amount of mental effor t (RSME scores) during the drives, a repeated-
measure ANOVA of music (positive/negative/no music) with driving demand (wide/narrow) 
as within-subject factors was conducted on the RSME ratings. A signif icant effect of driving 
demand was found (F (1,18) = 9.12, p = 0.007, ηp

2 = 0.34), as driving on a narrow lane was 
perceived as more demanding (M = 39.37, SE = 5.42) compared to the wide lane (M = 33.10, 
SE = 4.68). No signif icant main effects of music type were found, nor interaction of music 
type with driving demand were found; music F (2,36) = 1.96, p = 0.156, ηp

2 = 0.10; music with 
driving demand F(2,36) = 0.10, p = 0.907, ηp

2 = 0.01.

5.3.2 Physiological responses

A repeated-measures MANOVA with music (positive/negative/no music) as within-subject 
factor was conducted for both the respiration rate and the mean IBI duration obtained 
during the last 3 minutes of the baseline period. Results do not show a signif icant main effect 
of music on respiration rate and on mean IBI, indicating that the baseline respiration rates 
and IBI durations did not differ for the different sessions; respiration rate F(2,36) < 1, p = 
0.540, ηp

2 = 0.04, mean (SE) in breath/minute: positive 14.61 (0.95), negative 14.04 (0.73), no 
music 15.20 (0.76); IBI F(2,36) = 1.18, p = 0.360, ηp

2 = 0.62, mean (standard error) IBI duration 
in seconds: positive = 0.874 (0.03), negative = 0.846 (0.03), no music = 0.876 (0.03). Next, 
physiological reaction scores were created by subtracting the average values obtained during 
the last 4 minutes of the baseline period with the values obtained during the drives.

A repeated-measure ANOVA was conducted with music (positive/negative/no music) with 
driving demand (wide/narrow) as within subject factors on the respiration rate. Results show 
a main effect of music; F(2,36) = 3.25, p = 0.050, ηp

2 = 0.153. Pairwise comparisons show a 
signif icantly lower respiration rate during the negative compared to the no music condition 
(p = 0.046; see Figure 5.1) irrespective of driving demand, see also Figure 5.1. No signif icant 
effects of the driving demand or interaction effect of music with driving demand were found. 
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Next, a repeated measure ANOVA was conducted with music (positive/negative/no music) 
and driving demand (wide/narrow) as within-subject factors on the average IBI durations 
obtained during the drives. Results show no signif icant effect for music or driving demand 
(all p > 0.05) positive mean (Standard Error) = -0.017 (0.009), negative = -0.019 (0.008), no 
music = -0.022 (0.007), wide lane = -0.018 (0.07), narrow lane = -0.019 (0.07). 

Figure 5.1. The average respiration rates (RR) obtained during the wide (3.00 m) and narrow (2.50 m) lane 
drives, relative to the last four minutes of the baseline measurement. The error bars represent the standard 
error

5.3.3 Driving performance

Separate repeated-measures analyses of music (positive/negative/no music) with driving 
demand (wide/narrow) as within-subject factors were conducted for the mean of the LP, the 
standard deviation of the lateral position (SDLP, swerving), and the speed. A marginal effect 
was found for mean LP ( F(1,17) = 3.51, p = 0.082, ηp

2 = 0.20) and for SDLP a signif icant main 
effect of driving demand was found (F(1,17) = 23.80, p < 0.001, ηp

2 = 0.58). During the narrow 
lane drive, par ticipants drove more towards the shoulder, while the SDLP was reduced 
compared to the wide lane drive; see also Figures 5.2A and 5.2B. The results on speed show 
a marginally signif icant main effect of music (F(2,13) = 3.18, p = 0.075, ηp

2 = 0.33). Pairwise 
comparisons indicate that higher driving speeds during the no music condition compared to 
the positive music condition (p = 0.023); the average speed values are illustrated in Figure 
5.2C.
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Figure 5.2. The average lateral position from the centreline of the road (A), the standard deviation 
of the lateral position; swerving (B), and driving speed (C) obtained during the wide (3.00 m) and 
narrow (2.50 m) lane drives. (A) Negative values indicate a lateral position towards the right hand 
shoulder. (A-C) The error bars represent the standard error. 
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5.4 Discussion

Music listening is a very popular side-activity while driving. However, the inf luence of music 
listening on the body state and on driving performance is not yet fully understood. Therefore, 
its potential for use in an adaptive driver suppor t system is also unknown. In the current 
study it was investigated whether personally selected positive and negative music inf luences 
body state and driving performance. If it does, it could lead to applications that automatically 
select music to change driving performance.  

As expected, swerving behaviour decreased and subjective effor t ratings increased when 
driving on narrow lanes, while a compensatory speed reduction did not occur. This conf irms 
that more effor t was put into the lane keeping task to deal with decreased lateral margins 
and is in accordance to Summala’s Multiple Monitor Theory (Summala, 2005, 2007), which 
states that mental load increases when less time is available to maintain safety margins. In a 
more general sense, these results can be seen as an indication that more effor t was invested 
in the driving task to prevent performance degradation (Hockey, 1997, 2003) or that the level 
of effor t was matched to the current task demands (Hancock & Warm, 1989; Matthews & 
Desmond, 2002).

Three interesting effects of listening to music were found. Firstly, there was an indication 
that positive music reduced driving speed compared to not listening to music. This result 
suggests that selecting positive music can be used by an adaptive system to increase driving 
safety. On the other hand, this effect may have been caused because drivers like listening to 
positive music and hence devote more attentional resources to it. The speed reduction could 
therefore be a compensatory reaction, which is in line with Pêcher et al. (2009). Secondly, 
listening to negative music compared to no music while driving resulted in lower respiration 
rates irrespective of driving demand. This implies that music might be used to decrease body 
stress of the driver as respiration rate has been linked to arousal (Boiten et al., 1994; Nyklíček 
et al., 1997; Ritz, 2004; Homma & Masaoka, 2008). Thirdly, in contrast to Pêcher et al. (2009), 
listening to music did not lead to deteriorated lateral control. Therefore, our results suggest 
that music listening did not affect lateral safety. This difference in results can be explained in 
that Pêcher et al. (2009) alternated music periods with silent periods of 1 minute each. This 
alternation might have distracted the drivers and therefore increased swerving behaviour 
while listening to music. The current results thus show a more ecological valid situation and 
hence more ecologically valid results.
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5.4.1 Limitations and future research

The song stimuli varied in valence and to a lesser extend in energy levels as well. It appeared 
impossible to select songs that solely varied in mood valence and having equal energy levels. 
This implies that valence and energy ratings are not fully independent of each other in inducing 
mood with music. This result is in line with f indings of psychobiological theory of aesthetics 
(Berlyne, 1971). This theory proposes that a U-shaped relationship exists between arousal 
and liking. That is, an average arousal level has the optimal liking level, and increasing and 
decreasing arousal levels would decrease liking levels (Berlyne, 1971; Hargreaves and North, 
2008).

To cope with the large individual differences in music liking, individually selected song stimuli 
were chosen in the current study (Juslin & Sloboda, 2010). This method assured that the 
selected songs indeed induced the targeted moods. However, this method also resulted 
in stimuli that were not controlled for other music characteristics such as familiarity, or 
characteristics inherent to the music as tempo or mode, which could impact mood (Juslin & 
Sloboda, 2010; van der Zwaag et al., 2011). 

One of the aims of the current study was to assess the feasibility of using music selection 
to regulate driving performance. For example, an adaptive driver assistance system could 
change music to change physiological state and thereby the driver’s mental state and driving 
behaviour when it detects physiological or performance based indications of increased safety 
risks. This would create a feedback loop in which the system suppor ts the driver by preventing 
suboptimal mental states such as high or low mental workload. The relatively small effect of 
music listening on driving indicates the unlikeliness of using music valence selection to directly 
manipulate workload, although this conclusion may not be true for all types of music, and may 
be different for other types of road, e.g., motorways. On the other hand, the marginal speed 
reduction as a result of listening to positively rated music seems to indicate that attentional 
resources may have been drawn away from the driving task. This suggests that a suppor t 
system may automatically turn off music in high demanding driving situations to prevent this. 
Finally, effects on physiological state suggest that a suppor t system may use music selection 
to help the driver to regulate bodily/affective states such as relaxedness (respiration rate), 
which could in turn impact driving behaviour. 
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5.4.2 Conclusion

In the current study, the inf luence of listening to music on body state and driving performance 
during high and low demand drives were investigated. Listening to negatively rated music 
compared to no music while driving led to decreased respiration rate and listening to positive 
music compared to no music leads to slower driving speed. In the present study, music did 
not impair driving performance nor increase subjective mental effor t expenditure, which is 
in contrast with f indings in the literature. Finally, this study indicates that automated music 
valence selection may be an unlikely candidate mechanism through which mental workload 
can be increased or decreased directly. However, it may be applied to inf luence the driver’s 
physiological state, which could in turn positively impact driving behaviour. 
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Abstract

A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously 
produced brain activity of its user and could be used to develop interactive task suppor t. 
A human-machine system that could benef it from brain-based task suppor t is the driver-
car interaction system. To investigate the feasibility of such a system to detect changes in 
visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving 
simulator. Driving demand was manipulated by varying driving speed and by asking the drivers 
to comply to individually set lane keeping performance targets. Differences in the individual 
driver’s workload levels were classif ied by applying the Common Spatial Pattern (CSP) and 
Fisher’s linear discriminant analysis to frequency f iltered electroencephalogram (EEG) data 
during an off line classif ication study. Several frequency ranges, EEG cap conf igurations, and 
condition pairs were explored. It was found that classif ications were most accurate when 
based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on 
these factors, classif ication accuracies across par ticipants reached about 95% on average. 
The association between high accuracies and high frequencies suggests that par t of the 
underlying information did not originate directly from neuronal activity. Nonetheless, average 
classif ication accuracies up to 75–80% were obtained from the lower EEG ranges that are 
likely to ref lect neuronal activity. For a system designer, this implies that a passive BCI system 
may use several frequency ranges for workload classif ications.

6.1 Introduction

In contrast to an active Brain-Computer Interface (BCI) which allows users to engage in 
volitional thought control of a device, several BCI researchers have proposed to advance 
human-computer interaction by triggering machine actions based on inferences of the user’s 
current mental state, known as passive BCI (Cutrell & Tan, 2008; Kohlmorgen et al., 2007; 
Zander et al., 2010; Zander & Kothe, 2011). For example, Kohlmorgen et al. (2007) showed 
that it is possible to classify mental workload elicited by a secondary task mimicking cognitive 
processes in a real driving environment. Moreover, these classif ications were then used to 
switch on and off a ter tiary task that mimicked an interaction with the vehicle’s electrical 
devices that in turn improved performance on the secondary task. 

In the human factors and ergonomics literature, which traditionally focusses on overall 
system performance and safety critical tasks, the potentially detrimental effects of both mental 
underload and overload have been a major research topic for decades. Mental workload 
can be def ined as a ‘reaction to demand’ and ‘the propor tion of capacity that is allocated 
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for task performance’ (de Waard, 1996). Mental underload and overload both represent 
compromised functional states during which a breakdown of primary task performance 
is more likely (e.g., Hockey, 1997, 2003; see also Brookhuis & de Waard, 2010). Preventing 
these hazardous functional states by maintaining mental workload or task demand within 
an acceptable range in real-time has been the central goal of adaptive automation since the 
seventies (Chu & Rouse, 1979; Hancock & Chignell, 1988; Rouse, 1988; Parasuraman et al., 1992; 
Kaber & Prinzel, 2006).

A large par t of adaptive automation literature is devoted to determining the right moment 
of providing or withdrawing task suppor t, and several types of triggers may be available 
to optimize performance of a human-machine system (e.g., critical events and human task 
performance; see Parasuraman et al., 1992). Therefore, the question arises as to what 
physiological measures could offer in terms of improving the overall system’s performance. 
The most impor tant argument for the inclusion of physiological measures in a control loop is 
their potential for detecting user states that would otherwise remain hidden. Human beings 
may exhaust themselves to protect primary task performance in demanding situations. While 
performance protection is impor tant for dealing with shor t bursts of task demand, when 
exposed to longer periods of high workload, it may have affective costs such as increases 
in anxiety, but also compensatory performance costs, such as neglecting secondary tasks 
(Hockey, 1997, 2003). Since straining effor t expenditure has a neurophysiological base, the 
ability to reliably classify workload using physiological measures could be used to off load a 
person, before performance effects become apparent.

Traditional research approaches might not be well suited for uncovering the underlying 
neurophysiological mechanisms that could be used in a suppor t system. As pointed out by 
Fairclough (2009), the fundamental problem of using physiological measures is the complex 
relationship between user states, such as mental overload, and their associated physiological 
variables. Specif ically, four physiology-to-state mappings can be distinguished (Cacioppo et 
al., 2000). In the most straightforward case, there is a unique one-to-one mapping between 
a physiological variable and the psychological construct. Such a unique, one-to-one mapping 
would be ideal for an interactive system. However a one-to-one mapping that holds true in 
both the laboratory and the f ield has to date not yet been found. A many-to-one mapping is 
more complicated as several signals are needed to infer a mental state. For example, hear t 
rate, hear t rate variability and blood pressure have been combined to infer mental workload 
(e.g., Mulder et al, 2009). In a one-to-many mapping, one physiological signal responds to 
a range of user states. For instance, systolic blood pressure information was found to be 
sensitive to excitement, frustration, and stress (Cacioppo & Gardner, 1999). Lastly, the most 
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common f inding is a many-to-many mapping where many signals are in fact sensitive to 
many mental states. Ultimately, in an implicit human-machine control loop, a one-to-one 
or a many-to-one relation is required. As brief ly mentioned, another factor complicating 
the relationship between physiological measures and user state is lack of generalizability 
outside the laboratory setting where a mapping was found. Simply put, a relation between 
a physiological measure and a user state found in the laboratory may not hold true in a real 
world setting where environmental conditions are less controlled. 

Fur thermore, due to large individual differences in physiological responsiveness, traditional 
statistical tests might not be suitable to uncover relationships that are valuable for implicit 
machine control. Even in a repeated measures analysis of variance, where the variations due 
to individual differences are par tly taken out of the error term, the directions of effects within 
the individuals need some consistency across individuals to reach statistical signif icance. While 
signif icant effects on a group level are interesting from a fundamental point of view, individual 
patterns are more relevant, when physiology is applied in human-machine systems. In this 
respect, the feature extraction and classif ication algorithms used by BCI researchers offer a 
promising way of dealing with these limitations. 

As shown by Kohlmorgen et al. (2007), driver suppor t may be linked to electroencephalogram 
(EEG) signals. Given the fact that the driving task is increasingly demanding, due to increased 
complexity of the road network, increased traff ic intensity, and the availability of potentially 
distracting in-vehicle information systems, such as phones, (e.g., Carsten & Brookhuis, 2005), 
accurate assessment of user state while driving might be used to benef it driving performance. 
From driving behaviour literature, it is clear that besides mental workload, other, related 
psychological constructs might be investigated for use in a suppor t system. At this point 
there is no consensus about the exact psychological processes underlying driving behaviour. 
Depending on the theoretical framework, the level of (subjective) risk, workload, or a general 
feeling of comfor t is either maintained or avoided (e.g., risk homeostasis theory, the zero-risk 
theory, risk allostasis theory, safety margin model (Wilde, 1982; Näätänen & Summala, 1976; 
Fuller, 2005; Summala, 2005; see also: Lewis-Evans et al., 2011). To make it even more complex, 
drivers alter the level of workload in practice through behavioral adaptations. For example, 
in demanding situations with high information density (e.g., complex variable message signs), 
narrow lanes or a winding road, a driver may reduce speed, which will reduce the reaction 
time requirements, and thereby avoids high workload levels (Hockey, 2003; Lewis-Evans & 
Charlton, 2006). 
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Ultimately, we would like to provide a proof of concept for a passive brain-car interface 
that changes driving speed in response to visuomotor workload, thereby keeping workload 
levels within an acceptable range, similar to a human driver. However, in preparation for this, 
we have f irst investigated the feasibility of using EEG signals to classify between levels of lane 
keeping demand in a driving simulator. For this, we applied subject-specif ic Common Spatial 
Patterns (CSPs; e.g., Blanker tz et al., 2008). The main advantage of using the CSP technique 
is that it maximizes the difference between two conditions by creating linear combinations 
of all included electrodes; spatial f ilters used to produce CSP components. In this way, some 
electrodes contribute more to the f iltered signal(s) than others. These CSP components are 
determined per par ticipant and therefore, individual differences are accounted for. The most 
discriminative components are then used to distinguish conditions.

Lane keeping demand was manipulated by changing driving speed, mimicking drivers’ 
natural behaviour. Driving speed was set relative to the par ticipants’ comfor table speed, 
since the effor t that is required to keep the car safely on the road may vary between drivers 
for absolute driving speeds. A relative high driving speed is hypothesized to result in a relative 
high visuomotor workload. In addition, since the Standard Deviation of the car’s Lateral 
Position (SDLP) ref lects workload (e.g., Dijksterhuis et al., 2011), an individually set target 
SDLP was presented to the par ticipants on the vir tual windshield, urging drivers to show less 
swerving behaviour in the driving lane. A relative low target SDLP is hypothesized to result 
in a relative high workload level. 

6.2 Materials and Method

6.2.1 Participants

A total of 17 males and 17 females were recruited through social media and poster 
announcements throughout the University of Groningen and were paid 20 Euros for 
par ticipation. A large par t of the par ticipants were either Dutch or German students at this 
university. Ages ranged from 21 to 34 years (M=24.0; SD=3.0) and the par ticipants had held 
their driver’s license for 3 to 15 years (M=5.3; SD=2.8). Self-repor ted total mileage ranged 
from 3000 to 350,000 km (M=53,000; SD=76,000), while the repor ted average annual 
mileage over the past 3 years ranged from 1000 to 50,000 km (M=9000; SD=11,000). None 
of the par ticipants repor ted on using prescribed drugs that might affect driving behaviour. 
The Ethical Committee of the Psychology Depar tment of the University of Groningen has 
approved the study
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6.2.2 Simulator and driving environment

The study was conducted using a f ixed-base vehicle mock up with functional steering wheel, 
indicators, and pedals. The simulator runs on ST Software© which is capable of simulating 
fully interactive traff ic. The three computers dedicated to the simulator compute the road 
environment and traff ic which are displayed on three 32-inch plasma screens and provide a 
total view of the driving environment of 210°. In addition, three rear-view mirrors are pro-
jected on the screens. A detailed description of the driving simulator used can be found in Van 
Winsum & Van Wolffelaar (1993).

For the experiment a two-lane road (each 2.75 m wide) was prepared, without 
intersections and winding through rural scenery. The road consisted mainly of easy curves 
(about 80%) with a constant radius of 380 m and ranging in length from 120 to 800 m. The 
road surface was marked on the edges by a continuous line (0.20 m wide) and in the centre 
by a discontinuous (dashed) line (0.15 m wide). Outside the edges a soft shoulder was present 
and there were no objects in the direct vicinity of the road. In the driving direction of the 
par ticipants, no traff ic was present. However, oncoming traff ic, travelling between 76 and 84 
km/h, was generated with a random interval gap between 1 and 2 s, resulting in 40 passing 
private vehicles per minute on average. The speed of the par ticipant’s vehicle was controlled 
by the simulator for all rides during the experimental session, except for the initial ride during 
which the par ticipants drove the simulator car (width: 1.60 m) in automatic gear mode. 

6.2.3 Design and procedure

Upon arrival at the experimental site of the University of Groningen, a par ticipant was 
informed in general terms with respect to the experimental design, was requested to sign 
an informed consent form, and asked to f ill in a shor t questionnaire mainly related to their 
driving experience. Hereafter, the par ticipant was given some time (ca. 7 min) to practice 
driving in the simulator, before the sensors were attached. Next, a three minute baseline 
recording was made while the par ticipant sat in the simulator car chair and an aquatic movie 
played on the centre screen of the simulator. 

After this baseline recording the par ticipant completed 16 shor t rides. After each ride, 
the par ticipant was requested to park the vehicle on the side of the road and to provide an 
answer to two brief questions (on subjective mental effor t and estimated driving speed). 
During the initial ride (140 s) the par ticipant exer ted both longitudinal and lateral control 
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over the vehicle and was asked to f ind and drive at a speed that felt most natural and 
comfor table in this situation while the speedometer was turned off to prevent rule-based 
speed setting. The speedometer remained turned off for the entire experiment. The mean 
speed and standard deviation of the vehicle’s lateral position (SDLP) on the road during the 
last 110 s of the initial ride represented the par ticipant’s personal, comfor table driving style. 
These parameters were saved and used to set driving speed and target SDLP during the 15 
remaining rides. 

During these 15 rides (130 s each), speed was set relative to the par ticipant’s comfor table 
speed (either -40, -20, 0, +20, or +40 km/h). In addition, while speed was set at the comfor table 
driving speed, the par ticipant was requested to keep SDLP at either 0, -0.05, or -0.10 m 
relative to the initial SDLP, which represent a normal, hard, or very hard task. For the other 
driving speeds, the target SDLP was determined as follows. From a pilot study (n=9), using 
a similar roadway environment, it was found that SDLP naturally increases as a function of 
speed. To compensate for this effect and thereby creating f ive roughly comparable steering 
challenges across speeds, another 0.03 m per speed level was either added to or subtracted 
from the target SDLP. For example, when driving 40 km/h slower than the comfor table speed 
while the target SDLP condition was set at ‘very hard’, the numerical target SDLP was set 0.10 
+ 2 x 0.03 = 0.16 m lower than the comfor table SDLP as established during the initial ride. 
Current values of SDLP were derived from a 15 s moving window which was updated every 
second and these were projected onto the bottom of the windshield of the simulator while 
driving, adjacent to the target SDLP. In this way a driver could monitor real SDLP and compare 
it to the target. Accounting for the time window and for the time the simulator needed to get 
to the required speed, only the last 110 s of each ride was used in subsequent analyses. To be 
clear, the data used for this analysis were the raw, not averaged, vehicle parameters. In total, 
the experimental manipulations resulted in a within-subject design consisting of two repeated 
measures factors with several levels: speed (5) and target SDLP (3). The par ticipants were 
exposed to these driving conditions according to a randomized schedule. 

After f inishing the last ride, the baseline measurement was repeated once more before all 
physiological sensors were removed. Finally, the par ticipants were debriefed and were paid 
upon leaving.

6.2.4 Dealing with collisions

Occasionally, the par ticipants were challenged to the point that a collision with oncoming 
traff ic could not be avoided. In total, six par ticipants were involved in 10 collisions which is 
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1.8% of all experimental rides. Eight of these collisions occurred in a +40 km/h speed condition. 
When a collision occurred, that par ticular ride was repeated. Data acquired during the crash 
rides were not used for fur ther analyses. 

6.2.5 Data acquisition

6.2.5.1 Vehicle parameters

Driving speed and lateral position (LP) were sampled at 10 Hz. LP is def ined as the difference 
in meters between the centre of the par ticipant’s car and the middle of the (right hand) 
driving lane. Positive LP values correspond to deviations towards the right hand shoulder 
and negative values correspond to deviations towards the left hand shoulder. The sampled 
LP values were processed while driving and used to calculate mean LP and SDLP for each 
of the 16 rides. In addition, LP values were used to feed current values of SDLP back to the 
par ticipant which were calculated by using moving, overlapping time windows (see 6.2.3 
Design and Procedure for more details), representing an indication of the par ticipants lane 
keeping performance. 

6.2.5.2 Subjective ratings

After each ride, a rating on the one-dimensional Rating Scale Mental Effor t (RSME) was 
requested (Zijlstra, 1993). The RSME ranges from 0 to 150 and several effor t indications are 
visible alongside the scale which may guide the par ticipant in marking the scale. Indications 
star t with ‘absolutely no effor t’ (RSME score of 2) and end with ‘extreme effor t’ (RSME score 
of 112). The par ticipants, who did not receive speed information from the speedometer, were 
also asked to write down an estimate of the driving speed they just experienced.

6.2.5.3 Physiological measures

Physiological signals were sampled at 250 Hz. Firstly, the electrocardiogram (ECG) was 
registered using three Ag-AgCl electrodes, which were placed on the sternum (the ground 
electrode) and on the right and left side between the lower ribs. However, given the 
emphasis on brain activity in this paper, the ECG results are not repor ted here. Secondly, 
the electro-oculogram (EOG) was measured by Ag-AgCL electrodes attached next to the 
lateral canthus of each eye and above and below either the right or left eye. The EEG was 
measured using an electro-cap with 64 tin electrodes (at the following sites: FP1, FP2, Afz, 
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F7, F5, Fz, F4, F8, T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2.)1 The amplif ier was 
a REFA 8–72 (Twente Medical Systems International, Enschede, The Netherlands). Por tilab 
2 software was used to record all physiological signals. The ground electrode used for the 
ECG recording also served as the par ticipant’s ground for the EEG recording. EEG and EOG 
signals were amplif ied with a 1 s time constant (0.016 Hz high-pass). All EEG channels were 
referenced against the average activity of all channels during the registrations. In addition, a 
reference electrode was attached to each mastoid. Impedances were kept below 10 kΩ for 
all electrodes. 

6.2.6 EEG data processing

Star ting from the raw EEG signals, the sampled EEG and EOG data were f irst high-pass 
f iltered (cut-off = 0.3 Hz, at 12 dB/Oct Butterworth f ilter) before the EEG data segments of 
the 15 experimental conditions (110 s each) were corrected for eye movements and blinks, 
using Brain Vision Analyzer (Gratton et al., 1983). The corrected data segments were then 
expor ted into binary f iles. No data epochs were removed before fur ther processing.

The expor ted data f iles were processed using MATLAB R2010a (The MathWorks, Inc., 
USA, www.mathworks.com). After impor ting two data sets (two rides or conditions) of a 
par ticular par ticipant, the EEG was band-passed f iltered in the frequency domain (FFT f ilter) 
of interest, using an edge frequency of 1 Hz below and above the lower and upper frequency 
band limit respectively. The imported data (110 s for each condition) were then segmented 
into one second epochs and baselined relative to each mean activity. The f irst and last 10% of 
the epochs were omitted, leaving the 88 middle, non-overlapping, epochs per condition in the 
cross-validation design. This entailed a repeated (50 times) random por tioning of two data 
classes (a condition pair) into a set of 66 training epochs (75%) and a set of 22 test epochs 
for each data class. The training sets were used to train the par ticipant-specif ic classif ier that 
was subsequently used to classify the testing epochs of each data class. This iteration process 
was carried out for each included par ticipant, frequency band, EEG cap conf iguration, and 
data pair. The accuracies repor ted in the result section ref lect the average accuracies across 
all 50 iterations and all included par ticipants.

To improve discriminatory power of the data classif ier, the contrast between two data 
classes was optimized by using the CSP technique. This technique determines CSP f ilters in such 
a way that they maximize the variances of spatially f iltered signals for one training set while 

1 The included electrodes were based on the International 10-20 system. However, C5 was added based on literature on the 
‘engagement index’ (Pope et al., 1995). Using F3 would have been in accordance with the 10-20 system. However it is unlikely 
that using F5 instead had any consequences for the main results of the current study. 
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minimizing them for the other (Blanker tz, 2008). A CSP f ilter is a coeff icient vector by which 
the original channels can be transformed. This results in a new spatially f iltered channel (a 
CSP component) which is a linear combination of all original channels, and the total number of 
f ilters and therefore, the number of components, is equal to the number of original channels. 
The matrix of CSP f ilters is determined by solving a generalized eigen-value problem. The 
f ilter corresponding to the largest eigen-value yields a high variance signal in one condition, 
while producing a low variance signal in the other; and vice versa for the f ilters corresponding 
to the smallest eigen-value. The CSP f ilters are therefore ranked according to these eigen-
values and the f irst and last f ilters in this sor ted W matrix are usually used for fur ther 
classif ication. To be more specif ic, in the current study, the two, four, or six f ilters (always an 
equal number from each side of the sor ted W matrix) that resulted in the largest difference 
in variance between two training sets was used. Next, the total variance per training epoch 
and per CSP component was calculated and their logarithms were taken before entered into 
Fisher’s linear discriminant analysis. This analysis again transforms the data by determining the 
linear weights of the discriminant function that combines data points of the two training sets 
in such a way that maximizes the distance between them. Finally, the CSP f ilters and classif ier 
weights were used to classify the remaining testing epochs of the two conditions.

A wide range of EEG frequency bands were explored to investigate where useful discrimi-
natory information might be present. Four frequency search strategies were deployed. The 
f irst frequency search strategy was characterized by both an increasing high pass cut-off 
point (increasing 1 Hz for each iteration) and an increasing frequency bandwidth (1.5 times 
the low frequency band limit). At the f irst iteration, frequencies between 3 and 4.5 Hz were 
passed. At the last iteration, frequencies between 72 and 108 Hz were passed. The second 
strategy entailed exploring all frequencies between 3 and 70 Hz using a f ixed bandwidth of 
1 Hz. For the third strategy, bandwidth was set to 4 Hz and iterations ran from 4 to 72 Hz. 
Lastly, data was f iltered in broad bands to classify between conditions; 8-30 Hz, 32-54 Hz, 
56-78 Hz, and 80-102 Hz.

In addition, several EEG cap conf igurations were explored. To star t with, all 21 EEG chan-
nels were included. To explore whether classif ication accuracy may differ between scalp re-
gions, several subsets were def ined and tested. Firstly, a peripheral set was def ined, consist-
ing of 14 electrodes, (FP1, FP2, Afz, F7, F5, F4, F8, T7, C5, T8, P7, P8, O1, and O2). Secondly, 
a frontal set consisting of 7 electrodes (FP1, FP2, F7, F5, Fz, F4, and F8), which are associated 
with executive functions that are impor tant in driving. Thirdly, a posterior set consisting of 
7 electrodes (P7, P3, Pz, P4, P8, O1, and O2), containing electrodes associated to visuomotor 
processing. Lastly, the electrode set identif ied by Prinzell et al. (2001; P3, Pz, P4, Cz), which has 
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often been used in adaptive automation research to get the ‘engagement index’ (def ined as 
the ratio; beta/(alpha + theta)). 

Lastly, f ive condition pairs were selected from a total of 105 possible combinations (15!/2!(15-
2)!). An experimental condition can be def ined in terms of its driving speed level and target 
SDLP diff iculty level. To improve comparability one factor was kept constant for each condi-
tion pair. In this way, four speed differences for the normal target level were classif ied: -40 vs. 
+40 km/h, -20 vs. +20 km/h, -20 vs. 0 km/h, and 0 vs. +20 km/h. The normal target level was 
chosen since this target resembles the individuals’ natural driving behaviour. Focusing on clas-
sifying between speed differences in this way was done because of the envisioned application. 
A brain-based adaptive cruise control would change speeds and therefore, the effect of speed 
interventions has to be assessed. In addition, as it turned out, the very hard target conditions 
required more subjective effor t compared to the normal target level, and therefore, these 
two conditions were compared in the 0 km/h relative speed condition. 

Due to data anomalies such as missing channels, eight par ticipants were excluded from 
the off line classif ication phase of this study. Despite a smaller par ticipant pool, the number 
of condition pair comparisons is very large: 161 frequency bands x 5 condition pairs x 5 EEG 
cap conf igurations x 26 par ticipants x 3 numbers of components = 313,950. Given these 
large numbers, only a selection of aggregated classif ication accuracy values can be repor ted 
(Figure 6.2 and Figure 6.3) next to examples of scalp topographies of CSP components (see 
Figure 6.4 for an impression) ref lecting how the information sources project to the scalp (re-
trieved from the inverse of W; see Blankerz et al., 2008). 

6.3 Results

6.3.1 Vehicle parameters and subjective ratings

Subjective ratings and vehicle parameters are shown in Figure 6.1 and their test outcomes 
are listed in Table 6.1. To begin with, the par ticipants’ preferred speed during the initial ride 
ranged between 62 and 120 km/h, averaging at 90 km/h (see the black dot in Figure 6.1A). 
This is slightly faster than estimated for this ride (M =74 km/h; Figure 6.1B). This pattern of 
underestimating driving speed is present for all speed levels (Pearson’s product moment 
correlation = 0.99 over all conditions).
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Figure 6.1. Vehicle parameters and subjective ratings as a function of set driving speed condition. (A) Real 
driving speed. (B) Estimated driving speed. (C) Lateral Position (LP). (D) Standard Deviation of the Lateral 
Position (SDLP). (E) Rating Scale Mental Effor t (RSME). On the x-axes, values for the initial ride (black dots) 
are shown in addition to f ive driving speeds that were set, relative to the individual’s preferred driving speed 
established during the initial ride. Error bars represent the standard error. LP values represent the middle of the 
car (car width = 1.60 m) in relation to the middle of the right (driving) lane (width = 2.75 m). Normal, hard, 
and very hard indicate the diff iculty of keeping current SDLP values under the target SDLP: see Section 6.2.3 
for details. Positive LP values indicate a position to the right hand of the lane mid. Maximum score for mental 
effor t is 150. n=34.

The dimensions of the vehicle and driving lane allowed for 0.58 m of swerving margin on 
both sides of the vehicle. As can be seen in Figure 6.1C, the par ticipants stayed well within their 
driving lane on average and positioned the vehicle slightly towards the right hand shoulder 
(0.07 m on average). As can be read in Table 6.1, there was a signif icant effect of speed on 
LP. The par ticipants’ mean position on the road curves toward the right-hand shoulder, both 
when driving slower and faster than the preferred speed (polynomial contrasts showed a 
quadratic trend; (F(1,33) = 15.35, p < 0.001, ηp

2 = 0.317). Next, as speed increased, so did the 
par ticipants’ mean SDLP (see Figure 6.1D), representing swerving behaviour, from 0.18 m 
during the slowest speed to 0.30 m during the fastest speed. This is mainly a linear increase 
(F(1,33) = 182.81, p < 0.001, ηp

2 = 0.847), although SDLP increases slightly more rapidly towards 
the higher speeds (quadratic trend; F(1,33) = 24.33, p < 0.001, ηp

2 = 0.424). Note that the 
factor; target SDLP, indicating the diff iculty of keeping current SDLP values under the target 
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SDLP while driving, had no effect on the actual SDLP. In addition, interactions between speed 
and target SDLP are not present in the data.

Figure 6.1E shows that the mental effor t ratings increased from between ‘a little effor t’ 
and ‘some effor t’ (a mean RSME score of 33) for the slowest speeds to between ‘rather much 
effor t’ and ‘considerable effor t’ (a mean RSME score of 34) for the fastest speeds (linear trend; 
F(1,33) = 88.48, p < 0.001, ηp

2 = 0.728). Also, similar to SDLP, this increase is stronger towards 
the faster speeds (quadratic trend; F(1,33) = 86.04, p < 0.001, ηp

2 = 0.327). In addition, even 
though target SDLP did not have an effect on vehicle parameters, there was a main effect 
on mental effor t ratings. Bonferroni corrected pairwise comparisons revealed that the ‘very 
hard’ level was perceived as more diff icult than the other two, while ‘normal’ and ‘hard’ did 
not show a difference. 

Vehicle parameters and subjective ratings

LP SDLP RSME score

Effect F(df1,df2)      p ηp
2 F(df1,df2) p ηp

2 F(df1,df2) p ηp
2

Speed (S) 4.46 (4,30) 0.006 0.373 45.40(4,30) <0.001 0.858 21.10(4,30) <0.001 0.748
Target (T) 0.26(2,32) 0.974 0.002 1.32(2,32) 0.283 0.076 8.49 (2,32) 0.001 0.347
S × T 0.77(8,26) 0.633 0.191 1.22(8,26) 0.324 0.274 1.25(8,26) 0.309 0.278

Table 6.1. Multivariate test results for vehicle parameters and subjective effor t ratings (Figure 6.1). LP = Lateral 
Position, SDLP = Standard Deviation Lateral Position. RSME = Rating Scale Mental Effor t. Signif icant effects (p 
< 0.05) are shown in bold. Speed effect relates to speed condition, Target to SDLP target.
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6.3.2 Classif ication results

6.3.2.1 Averages classif ication accuracies

In Figure 6.2, the classif ication accuracies for several condition pairs are shown. Figure 6.2 
(and Figure 6.3) only shows the average classif ication accuracies for two data pairs (-20 km/h 
vs. +20 km/h and normal performance target vs. very hard performance target). Although 
more extreme driving speed conditions could have been shown (e.g., 40 km/h vs. +40 km/h), 
we feel that more similar speed conditions better ref lect real driving circumstances and are 
therefore more relevant. Also, accuracy levels across condition pairs tended to be similar, and 
therefore the number of shown condition pairs was limited.

 The graphs in Figure 6.2 reveal several general trends. Firstly, accuracy tends to increase as 
frequency increases. This can be seen across electrode sets and condition pairs with accuracies 
reaching levels of 95% on average over all par ticipants when a relative high number of 
electrodes is included (21 and 14). This increase is most pronounced in the frequencies from 
5 to 20 Hz, after which it continues to rise more gradually indicating a ceiling effect (see for 
example Figure 6.2A). This ceiling is about 5-10% lower for the middle column of subplots 
in Figure 6.2 (displaying the 4 Hz search strategy). Secondly, a broader frequency band 
tends to yield higher accuracies, which is most apparent when comparing the middle column 
(Figure 6.2B and Figure 6.2E; 4 Hz frequency bands) to the right column (Figure 6.2C and 
Figure 6.3F; 22 Hz frequency bands). For example, when including all electrodes, the 4 Hz 
frequency bands in the 8-32 Hz range in Figure 6.2B range produced about 15% less accuracy 
when compared to the f irst broad band (8-30 Hz) in Figure 622C. Thirdly, there are distinct 
differences in accuracies as a result of using different channel sets. For example, the larger 
electrode sets (21 and 14 electrodes) yielded very comparable high accuracies, while the 
smallest (4 electrodes) consistently resulted in lower classif ication accuracies (about 15-25% 
less, depending on frequency band). Such differences can be understood in par t from the 
fact that more channels provide a richer, higher-dimension database for the CSP technique 
to extract useful discriminatory power. Note however, that the seven frontal electrodes 
outperformed the seven posterior electrodes by about 5-15%, again depending on frequency 
band. The shape of the frontal curve in all subf igures (the red lines) ref lect the upper two 
curves (all electrodes and 14 peripheral electrodes), while the posterior curves resemble the 
bottom EI curves. Finally, when focusing on the somewhat lower EEG frequency of Figure 
6.2A and Figure 6.2D ranges (e.g., 10 to 21 Hz), which are more likely to ref lect neuronal 
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Figure 6.2. Average classif ication accuracies of the Fisher’s linear discriminant analyses after spatial f iltering for 
several condition pairs. (A-F) The accuracy values represent the average subject-specif ic classif ication accuracy 
over all par ticipants that resulted from the cross-validation scheme. Classif ications were based on applying the 
two most contrasting CSP components to the EEG channels. N=26. For each row of subf igures, a different EEG 
cap conf iguration was used. For the left column (A,D), the frequency bandwidth is 1.5 times the star t frequency 
(step size 1 Hz), star ting at 3-4.5 Hz and ending at 43-64.5 Hz. For the middle column (B,E), 4 Hz bands were 
used and a step size of 4. For the right column (C,F), a broad band frequency search (22 Hz) was deployed. All 
electrodes: FP1, FP2, Afz, F7, F5, Fz, F4, F8, T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2. Peripheral set: FP1, 
FP2, Afz, F7, F5, F4, F8, T7, C5, T8, P7, P8, O1, O2. Frontal set: FP1, FP2, F7, F5, Fz, F4, F8. Posterior set: P7, P3, Pz, 
P4, P8, O1, O2. Engagement index (EI) set: P3, Pz, P4, Cz.



104

6  Classifying visuomotor workload from brain waves

activity, the mean accuracy in that range over both subf igures is 80% for the larger two 
electrode sets. The frontal set led to a classif ication of 76% on average, while the posterior 
and the engagement index set resulted in 62% en 55% respectively. 

6.3.2.2 Cumulative classif ication accuracies

In Figure 6.3, cumulative classif ication accuracies are shown for a selection of classif ication 
results. This f igure indicates the consistency of classif ication accuracies across all 26 included 
par ticipants. For instance, Figure 6.3A shows that in the high frequency range (e.g., 43-64.5 
Hz), test data from 10 par ticipants were accurately classif ied 99% of the time or better. Figure 
6.4 conf irms that higher frequencies usually yield better accuracies as the top frequencies 
in all subf igures display more red/yellow than the bottom frequencies. The green/yellow 
colours indicate that about half to two third of the par ticipants were above the classif ication 
threshold indicated on the x-axes. When viewing these colours in Figure 6.3 through the 
eyelashes, it can be seen that, especially for the larger electrode set (Figure 3A,E,I and Figure 
6.3C,G,K), data from a substantial number of par ticipants still yielded 85%+ accuracy in the 
lower (alpha and beta) frequency ranges (e.g., 10-20/30 Hz). For instance, the classif ier could 
accurately classify (85% or better) between -20 and +20 km/h in the 16-20 Hz frequency 
range for 16 out of 26 par ticipants (Figure 6.3G). For the smaller, frontal electrode set (Figure 
6.3B,F,J and Figure 6.3D,H,L) the number of par ticipants yielding highly accurate classif ications 
is somewhat less in the lower frequency range; as indicated by the larger presence of blue 
colours.

6.3.2.3 Example common spatial pattern analysis

Figure 6.4 displays several CSP f ilter-topography pairs which are meant to illustrate the 
diversity of CSP scalp topographies. A common topography across par ticipants, ref lecting 
how the neurological sources project to the scalp, was not identif ied. However, we selected 
these topographies based on their resulting classif ication accuracies and/or the fact that 
the frequencies are within the normal EEG range. To star t with, Figure 6.4A shows that 
for par ticipant 13, the perfect classif ication accuracy in the broad 72-108 frequency range 
originates mainly from the frontal electrodes (Fp1 and Fp2) which were highly specif ic for 
the -20 km/h driving condition, and from C5 which was highly specif ic for the +20 km/h 
driving condition. This is illustrative for the general f inding that the frontal electrodes were 
often the main contributors to very high classif ication accuracies. The other subf igures show 
topographies linked to frequencies below 30 Hz. In Figure 6.4B, topographies are shown that 
resulted in an unusually accurate classif ication for this relative low frequency band (98% in the 
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Figure 6.3. The cumulative frequencies of classif ication accuracies. (A-L) Colours represent the number of 
par ticipants for whom a par ticular accuracy was found or better (max = 26 par ticipants) in the accuracy 
category displayed on the x-axes. Subf igure columns are arranged by EEG cap conf iguration (all electrodes 
or the frontal set) and by classif ied condition pair. All electrodes: FP1, FP2, Afz, F7, F5, Fz, F4, F8, T7, C5, C3, Cz, 
C4, T8, P7, P3, Pz, P4, P8, O1, and O2. Frontal electrodes: FP1, FP2, F7, F5, Fz, F4, and F8. ‘-20 km/h vs. + 20 km/h’ 
indicate set driving speeds relative to the par ticipants’ preferred speed as determined during the initial ride (at 
normal target level). ‘Normal target vs. hard target’ indicate performance target diff iculty (at relative speed = 
0 km/h). For each row of subf igures, a different frequency search strategy was used. (A-D) For the top row of 
subf igures, the frequency bandwidth is 1.5 times the begin frequency (step size 1 Hz), star ting at 3-4.5 Hz and 
ending at 44-66 Hz. (E-H) For the middle row of subf igures, 4 Hz bands were used and a step size of 4. (I-L) For 
the bottom row, a broad band frequency (22 Hz) search was deployed. 
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Figure 6.4. Examples of CSP analyses. (A-D) The scalp topography of the components illustrate how the 
physiological sources project to the scalp. The components are determined such that projected signals are 
optimally discriminative. The f ilters and topographies correspond to the f irst and last vector of the sor ted W 
matrix and its inverse respectively (see Section 6.2.6 for more details). Absolute colouring is arbitrary, however 
dense red or blue areas show where the greatest differences in the projected signals’ amplitudes were found, 
between the -20 km/h and the +20 km/h set driving speed (at normal target level). These driving speeds were 
set relative to the par ticipants’ preferred speed as determined during the initial ride. Included electrodes: FP1, 
FP2, Afz, F7, F5, Fz, F4, F8, T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. A: Subject = 13, frequency band 
= 72 -108 Hz, classif ication accuracy = 100%. B: Subject = 27, frequency band = 8-12 Hz, classif ication accuracy 
= 98%. C: Subject = 21, frequency band = 24-28 Hz, classif ication accuracy = 82%. D: Subject = 25, frequency 
band = 8-30 Hz, classif ication accuracy = 74%. Please note that in the CSP literature, a scalp topography of a 
component is usually referred to as a spatial pattern. 
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8-12 Hz, alpha, frequency band). In this case, the topographies are more distributed over the 
scalp, although the left temporal and frontal regions were impor tant physiological sources for 
discriminating between the two data classes. The scalp topography for the +20 km/h condition 
in Figure 6.4C shows a central-parietal distribution, illustrating that the EI electrodes: P3, Pz, 
and P7 contributed to the 82% classif ication accuracy in the high beta range of par ticipant 21. 
The -20 km/h topography suggests that C5 was by far the most distinctive electrode when 
maximizing the variance of the projected signals in this data class while minimizing it for the 
other. Finally, Figure 6.4D shows the CSP resulting in 74% classif ication accuracy for subject 
25 in the broad 8-30 (alpha plus beta) Hz frequency band. These topographies suggest that 
discriminative power was distributed over the posterior electrodes in the -20 km/h condition 
and more evenly distributed over the scalp in the +20 km/h condition. 

6.4 Discussion

The aim of the study was to investigate the feasibility of using EEG for monitoring the level 
of visuomotor workload in a driving environment, which can potentially be used by an user 
adaptive driver suppor t system. To manipulate workload, we exposed drivers to f ive levels 
of driving speed that were set relative to their preferred driving speed. In addition, since 
increasing steering effor t normally decreases swerving behaviour within the driving lane given 
a par ticular speed, par ticipants were presented with three explicit swerving performance 
targets represented as the standard deviation of the lateral position of the car with respect 
to the driving lane. To distinguish between workload levels, subject-specif ic CSP and linear 
discriminant analysis based classif ication models were used.

To begin with, subjective mental effor t data show that driving at a higher speed is indeed 
experienced as requiring more effor t. Fur thermore, estimated driving speed was slightly 
lower than the real driving speed. Previous research has shown that driving speed in a 
simulator, when driving on straight roads or easy curves, tends to be higher than it would be 
on real roads (e.g., Bella, 2008). This effect could be caused by a difference in speed perception 
between the real world and (f ixed-base) driving simulators due to the absence of several 
speed cues, such as car movements and stereoscopic depth perception. During the current 
study these factors may also have contributed to misjudging driving speed, especially since 
the speedometer was hidden from view at all times. The standard deviation of the lateral 
position (SDLP), indicating lane keeping performance, increased as function of speed, which is 
normal (e.g., Peng et al., 2013). However, the performance target (target SDLP) did not have 
an effect on vehicle parameters, suggesting that this manipulation failed since a decrease of 
SDLP was expected if par ticipants were exposed to more diff icult target SDLPs. However, 
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par ticipants did rate the ‘very hard’ target SDLP condition as the most diff icult, perhaps 
demonstrating that par ticipants were trying hard but could not manage. Also, EEG data 
from the very hard SDLP condition could be accurately discriminated from data acquired 
during the normal SDLP condition which is another indication that par ticipants did not simply 
ignore the instructions. Since other task manipulations aimed at increasing steering diff iculty, 
such as decreasing lane width, have proven to affect SDLP (e.g., Dijksterhuis et al., 2011), the 
absence of an effect on SDLP may be explained by this par ticular manipulation. In contrast to 
the automatic nature of the steering task during normal driving par ticipants had to actively 
engage themselves in transferring numerical information about their lane keeping behaviour, 
as presented on their windshield, to steering wheel movements. 

EEG activities during the experimental conditions were classif ied, yielding several interesting 
results. Firstly, applying CSP to a variety of frequencies and frequency band widths revealed 
that, overall, broader bands and higher frequencies result in higher classif ication accuracies. 
This could be taken to suggest that neuronal gamma synchronization correlated with the 
task manipulations in which case these results are in line with other research suggesting that 
activity in the gamma frequencies ref lects sensory-motor coordination (Schoffelen et al., 
2005, see also Fries et al., 2007). However, this conclusion should be drawn with caution since 
muscle activity as represented in the EMG has power in the same frequencies, which is picked 
up by EEG electrodes as well (Whitham et al., 2007; Muthukumaraswamy & Singh, 2013). 
This view of muscular activities contributing to high classif ication accuracies in the gamma 
band is conf irmed by graphs showing the projections of the CSP components. Figure 6.4a 
demonstrates just one case where the perfect classif ication for high frequencies can mostly 
be traced to the EEG electrodes close to the eyes. However, a relative high contribution of 
the peripheral electrodes for extremely high classif ication accuracies is an emerging pattern. 
Moreover, when performing a semi-real task, such as driving in a simulator, EMG activity can 
be expected to be more dominantly present compared to more controlled laboratory tasks, 
making classif ications based on neuronal gamma activities less likely. 

High accuracies were also found for a substantial number of par ticipants in the lower 
frequency ranges, as shown in Figure 6.2 and Figure 6.3, and these are unlikely to be 
confounded by EMG activity. As shown by Whitham et al. (2007), who recorded EEG during 
paralysis by neuromuscular blockade, EMG activity is largely absent from frequencies below 
20 Hz. Therefore, we suggest that classif ications in the lower frequency ranges were likely 
determined by underlying neuronal activity.
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CSP component topographies showed no readily discernible degree of consistency 
across par ticipants, as illustrated in Figure 6.4. This indicates that the effects of changes 
in psychological construct such as mental workload on electrical activities on the scalp is 
very subject dependent, which conf irms that individually tuned classif ication approaches are 
required for accurate classif ications. In case of high frequencies this implies that the, perhaps 
subconsciously produced muscular activities, show large inter-individual variations. In case of 
the lower frequencies, it is likely that also on a neurological level, there are large variations. 
Finding consistent topographies would have been promising for future applications. For 
example, it could lead to a theory-driven pre-selection of scalp locations, thereby excluding 
possible irrelevant information from the classif ication model. Yet, it may be expected to f ind 
a large inter-individual variability when classifying rather abstract mental states compared to, 
for example, classifying the difference between left and right hand motor imagery for which 
the neuroanatomical base is much clearer.

A limitation of the current study is that the experimental conditions (rides) could not be 
randomized within each par ticipant. E.g., changing speed conditions every couple of seconds 
would have resulted in a highly unnatural driving experience. The drawback of the used 
approach is that there was an average of about 15 minutes between one condition and 
the other within each condition pair that was used for the classif ications. Since neighbouring 
epochs can be similar to each other, a difference in time may have led to an inf lation of the 
classif ication accuracies. For future research, it is advised to repeat conditions within subjects 
to assess the potential effects of time dependencies. For example, by training the classif ier on 
one condition pair and validating it on the other, identical condition pair. While it is impor tant 
to realize that time dependencies cannot be ruled out, it should also be noted that it probably 
did not affect other effects, such as the accuracy difference between the parietal and frontal 
electrode set or the difference between low and high EEG frequencies.

Overall, these f indings imply that the subject-specif ic CSP approach provides very good 
discriminatory power between visuomotor workload conditions over a large range of 
frequency bands. With respect to the high (gamma) frequency ranges it is impor tant to 
realize that major contributions from muscular activities cannot be ruled out. Moreover, this 
will probably be true for most passive BCI applications as real life tasks, such as driving a 
car, usually require a lot of motor activity. A workload classif ication strategy based on EMG 
activity would therefore be worthwhile investigating in future research, which requires a 
relative low number of electrodes. However, high classif ication accuracies were also found for 
the lower EEG frequencies, implying a large contribution of neurological activities. These high 
accuracies are promising for future applications, however, several issues need to be addressed 
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before a system is working from the user’s point of view. Some of these issues will be fur ther 
discussed below.

Even if classif ication accuracies of up to 80% may be considered quite high for one-second 
epochs, it raises the issue of applicability; especially when performing a safety-critical task, this 
seems insuff icient. However, depending on the temporal responsiveness requirements of an 
application, these accuracy levels might suff ice. For example, using longer data epochs can 
be expected to result in more accurate classif ications, since more information is available to 
the classif ier (e.g., Brouwer et al., 2012). Although not fur ther repor ted in the result section, 
increasing the epoch length from one to two seconds was found to increase accuracies with 
about 3% for the lower frequency ranges. Another option would be to combine several 
successive small data epochs. As an illustration, assuming that successive classif ications are 
independent and applying a simple binomial chance distribution, then combining f ive successive 
epochs, each having a 80% chance of accurately being classif ied, would lead to a 94% accuracy 
when using a majority vote (i.e., three or more epochs are classif ied correctly). This would 
decrease the negative effects of small periods of noisy data which may be expected in real 
life tasks and which should improve a system’s behaviour from the users point of view.

Another impor tant issue that needs to be solved before reliable applications can be build 
are the so-called non-stationarities in EEG signals, which refer to shifts in EEG signals between 
the initial calibration session during which a model is trained and online application. Non-
stationarities negatively impact the transfer of classif ication accuracies between calibration 
and application of a model (e.g., Shenoy et al., 2006). One solution to this issue could be to 
update the classif ication model from time to time by adding additional calibration periods 
when the task at hand allows for it. Another solution are adaptive classif iers, which use data 
that are acquired while the user is interacting with the system in real-time (Shenoy et al., 
2006). The drawback of using an adaptive classif ier is that it requires immediate labelling 
of new, incoming data while the user is engaged in task performance. In some active BCI 
systems, for example, when controlling a game, it is plausible that the required information 
is available. In case of a passive BCI system however, this is most likely not the case. Again, 
using longer periods of time may offer a solution to this problem. For example, assuming 
that mental workload does not vary every second, all EEG data measured over a somewhat 
longer period ref lect one par ticular level of workload. If the classif ier therefore classif ies 
most epochs as data class A, then all epochs in that period could be labelled as such and 
subsequently used to update the classif ication model. Finding acceptable and robust methods 
of updating the classif ication model is likely to be a necessary development before (passive) 
BCI systems can be applied to task situations. 
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For the viability of future applications it is also impor tant that the binary approach of 
discriminating between two data classes is expanded to the multiclass situation. For instance, 
workload levels during task performance may be either too high, too low or within an 
acceptable range. In an adaptive system, where suppor t may be changed, activated, or 
deactivated based on workload classif ications it is therefore of equal impor tance that the 
conditions for no change are def ined. Thus, in terms a passive BCI application, a homeostatic 
system aimed at keeping workload at or around optimal levels, must also ‘know’ when not 
to initiate changes. One way to accomplish multi-class analyses is to combine several pairwise 
classif ications through voting procedures (Friedman, 1996; see also Dornhege et al., 2004; 
Grosse-Wentrup & Buss, 2008).

In conclusion, depending on temporal responsiveness requirements, a system’s designer 
may have the option to either focus on high EEG frequencies and accept that muscular 
activities likely contribute to classif ication accuracies, or to focus on lower EEG frequencies 
that mainly ref lect neurological activities but accept slightly lower accuracies. Although it is 
clear that the very high classif ication accuracies found in this off line study by themselves do 
not guarantee a well-functioning online system, it is a promising star t in realizing a CSP based 
passive BCI system that can reliably be used to monitor visuomotor load in real-time. 
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Abstract

In contrast to an active Brain-Computer Interface (BCI), where users are engaged in volitional 
thought control of a device, several BCI researchers have proposed to advance human-
machine interaction by adapting computer actions to the automatically inferred mental state 
of its user: passive BCI. Future cars could use passive BCIs to monitor the driver’s workload 
and intervene to avoid extreme levels thereof for example. To investigate the plausibility of this 
statement, 18 drivers completed several simulator rides on rural roads, which varied in curve 
length to manipulate lane-keeping demand, while a BCI was monitoring their visuomotor 
workload. The BCIs were either trained on low or high frequency f iltered EEG signals acquired 
during a low, comfor table, and high load calibration ride. Common Spatial Pattern (CSP) 
f ilters and the linear discriminant functions were determined for each pair of workload levels 
and subsequently used during the application phase. During the application phase, multiple 
pairwise comparisons, a voting procedure, and an exponential weighted moving average 
were used to establish the workload level of each second of new data. In addition, vehicle 
parameters were monitored and in case indications of risky behaviour were not detected, 
the BCI loop was allowed to determine driving speed to keep visuomotor workload around 
the comfor table level. Results indicate high classif ication accuracy for the calibration data, 
especially for the high frequency models. Although a later discovered technical problem 
somewhat limits the scope of the conclusions that can be drawn from the application phase 
of this study, it can be repor ted that the system’s behaviour showed large variations from 
condition to condition. It is concluded that research into improving the transfer of classif ication 
accuracy between model training and model implementation is necessary before passive BCI 
systems can be reliably used. 

7.1 Introduction 

Interacting with technology is an integral, substantial par t of our daily lives. We usually interact 
with a device by manipulating its interfaces, such as moving pedals, levers, or by issuing voice 
commands. However, computing power has advanced to the point that huge amounts of 
additional data from other information sources may be processed and analysed in real-time. 
For example, biometrical data may be acquired while we are engaged in human-machine 
interaction (HMI) and can be used to automatically infer our emotions, cognitions, and other 
mental states. User state information could then be used by the HMI system to change its 
behaviour to accommodate us (Brusilovsky, 2001; Duric et al., 2002; Hettinger, 2003; Feigh et 
al., 2012). For example, a computer may offer extra assistance with performing a task when 
biometrical data show that a user is overloaded. One way of inferring relevant user states 
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is through the feature extraction and classifying power used by Brain-Computer Interface 
(BCI) researchers (passive BCI; Kohlmorgen et al., 2007; Cur trell & Tan, 2008; Zander et al., 
2010; Zander & Kothe, 2011). For example, Dijksterhuis et al, (2013) showed that it is possible 
to accurately discriminate between high and low visuomotor workload, elicited by speed 
changes on rural road conditions in a driving simulator. 

Inferring user state in real time has been a major topic of investigation in another subf ield 
of HMI as well. In the human factors and ergonomics literature, the potential detrimental 
effects of extreme workload levels have been well documented. While humans are often able 
to deal with shor t bursts of task demand, when exposed to longer periods of high workload 
it can lead to performance degradation, such as neglecting secondary tasks and ultimately 
to a performance breakdown of the primary task (e.g., Hockey, 2003, 2007). Therefore, 
developing task environments aimed at keeping the human workload within acceptable 
range by dynamically allocating par ts of the task between the human and computer agent 
was already proposed in the seventies: adaptive automation (Chu & Rouse, 1979; Rouse, 1988; 
Parasuraman et al., 1992). Since mental effor t investment must have a neurophysiological 
base, several researchers have investigated using brain-based measures for adapting the 
level of suppor t provided by the technological subsystem.

Most famously, several studies used the 'engagement index', derived from the EEG, to 
initiate or withdraw task suppor t. This strand of research was pioneered by Pope et al. (1995), 
who investigated several EEG frequency ratios, ref lecting task engagement, to serve as a task 
suppor t switch in a multitask environment mimicking a f light deck (the multi-attribute task 
battery; Comstock & Arnegard, 1992; Santiago et al., 2011). To validate their system and to 
compare between EEG-based triggers, these researchers looked at the system’s behaviour. 
They reasoned that a valid EEG index has a functional relation with task engagement, 
which should lead to a relative stable, oscillating, pattern of providing and removing task 
suppor t. The frequency ratio: beta/(alpha+theta), f itted this pattern best and was often 
used in subsequent research (Pope et al., 1995; Prinzel, 1997; Bailey et al., 2006; Freeman et al., 
1999; Parasuraman, et al., 1999; Freeman et al., 2000; Prinzel et al, 2000; Berka et al., 2007). 
Overviews of research based on Pope’s EEG engagement index can be found in: Prinzel 
et al. (2001), Scerbo et al. (2003), and Kaber & Prinzel (2006). Slightly different, Wilson & 
Russel (2007) showed that classifying between low and high workload during a simulated 
unmanned aerial task by feeding the electro-oculogram (EOG), EOG corrected EEG, and 
the electrocardiogram (ECG) into an Ar tif icial Neural Network (ANN), could effectively be 
used for real-time task-suppor t and improve task performance when compared to a random 
suppor t schedule (see also, Christensen & Estepp, 2013). In addition, neurophysiologically based 
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adaptive systems using cardiovascular activity have also been investigated. For example, Ting 
et al., 2010 combined the 0.10 Hz component of hear t rate variability and the alpha and theta 
frequency band of the EEG through fuzzy logic modelling to predict the risk of a performance 
breakdown. This approach resulted in a performance improvement compared to an adaptive 
system triggered by a system error. 

In essence, a user-adaptive system continuously updates a model of the user’s mental state. 
As an illustration, the operator status model concept is provided in Figure 7.1 (Hoogeboom 
& Mulder, 2004; Mulder et al., 2008). In Figure 7.1, the status model receives input from two 
sources of information: physiology and task performance to infer the operator’s current status. 

Figure 7.1. The Operator Status Model (OSM) concept. The OSM combines the operator’s physiological 
information with task performance (taken from the active applications) and application states to derive the 
user’s functional state, using generic dimensions like workload, visual task load and being occupied with a given 
task/application. The OSM information can subsequently be used by the application to change their HMI to 
optimise the direct information exchange (from Mulder et al., 2008).
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Depending on the current status, the system may decide to act by providing or withdrawing 
aid. Alternatively, it could decide not to act if all parameters are within acceptable range. 
In addition, from adaptive automation literature it is clear that developing a dynamic user 
state model is crucial, but it is cer tainly not the only factor determining the effectiveness of 
an adaptive system. For example, an immediate coupling between inferred user state and 
adaptation of the system might be inappropriate under conditions of rapid changing task 
demands, as there will be a maximum adaptation frequency above which the human user 
is no longer able to eff iciently keep up with the system (Morrisson et al., 1993; Hoogeboom 
& Mulder, 2004). This could necessitate the need to implement a ´deadband´ period when 
system-initiated adaptations are not possible. Then again, stability requirements must be 
balanced against responsiveness as a system that responds too late to workload increases 
is of little help to the human user or even leads to automation surprises because the link 
between the system change and its cause are not clear anymore (Morrison et al., 1993; 
Hoogeboom & Mulder, 2004). 

A human-machine environment that might benef it from an adaptive suppor t system is the 
driver-car system (e.g., Michon, 1992). Even though driving a car is a relative safe activity, traff ic 
fatalities constitute one of the major causes of death throughout the world, simply because 
driving is such a common activity. The risk of running into an accident correlates to a number 
of conditions, both external (road, traff ic, and environment; e.g., WHO, 2004) and internal 
(user state; e.g., Brookhuis & de Waard, 2010). Normally, an experienced driver adapts to 
these conditions, and these adaptations may be mapped onto one of three hierarchical levels 
of the driving task as described by Michon (1985; strategic level, manoeuvring level, and 
control level). On the strategic level, a driver may choose a different mode of transpor t, 
route, time of day, and so for th, to travel. On the manoeuvring level, a driver may choose 
not to over take a car for example. On the more automatic control level, a driver might 
(subconsciously) increase safety margins, for example by keeping more distance with other 
traff ic or slowing down. Through these behavioural adaptations, a driver keeps perceived 
risk, perceived workload or other related psychological constructs, at an optimum level or 
within an acceptable range (for an overview of theories of driving behaviour, see Lewis-Evans, 
2012). An adaptive system that is aware of these internal and external conditions may aid the 
driver in adapting driving behaviour, for example by providing information, issuing warnings, 
switch off secondary tasks or even take over vehicle control if necessary (for examples, see 
Michon, 1985; Kohlmorgen et al., 2007; Dijksterhuis et al., 2012). 

As stated, passive BCI is aimed at inferring user states from the electrical activities as 
measured on the scalp. For a preparatory study, we have investigated the feasibility of a 
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Common Spatial Pattern (CSP) based classif ication approach to discriminate between 
several levels of visuomotor workload elicited by manipulating speed and by providing 
driving performance targets in a driving simulator (Dijksterhuis et al., 2013). It was found 
that classif ication accuracies in high, gamma, frequency ranges, could discriminate between 
most workload levels with about 95% accuracy on average. Classif ication accuracies based 
on lower frequencies (below 20 Hz), were somewhat less, but still found to be in the 75-80% 
range.

The challenge for the current study was therefore to create and test a user-adaptive cruise 
control, which uses EEG-based workload classif ications to slow down, speed up, or maintains 
the driving speed of the vehicle, thereby altering or maintaining the workload level. The BCI 
approach in the current study requires the classif ication model to differentiate between three 
levels of workload (low, comfor table, and high). Since the CSP technique is fundamentally 
limited to discriminating between two data classes, the multi-class classif ication requirement 
was met by applying multiple pair-wise classif ications and a simple voting procedure (e.g., 
Friedman, 1996). In addition, we decided to equip the cruise control with a ‘hard’ driving 
performance loop in addition to a ‘soft’ BCI loop. In safety-critical tasks, such as driving a 
car, we feel that indications of risky driving (e.g., lane depar tures) should be prioritised over 
workload classif ications. Decisions from the BCI loop were fur ther subjected to a twenty-
second deadband after each speed change decision, during which speed could not change 
(except in case of a collision with other traff ic), which allowed the driver some time to get 
used to a new speed. Finally, since it is a well-established fact that EEG frequencies above 
20 Hz are potentially contaminated by muscular activities (e.g., Whitham et al., 2007), we 
decided to apply two classif ication model versions separately in addition to driving the car 
without a BCI loop. The f irst version was trained on a frequency range between 5-20 Hz to 
minimise the inf luence of both EOG and muscular activity. For the second version, the system 
was allowed to choose between a classif ication model trained on the 20-45 Hz and the 55-80 
Hz frequency band.

7.1.1 Hypothesis

As is common in BCI research, the classif ication models were trained on calibration data that 
were acquired directly before the application phase of the BCI system. During the calibration 
phase, EEG was sampled while the driver’s drove above, at, or below their predetermined 
comfor table driving speed. The EEG data from the calibration phase were used for an off line 
classif ication study after the study was completed to assess the extent to which accuracies 
found during the preparatory study could be replicated. 
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Linking driving speed to EEG based workload classif ications during the application phase 
of an experimental session was hypothesised to create a system that would keep the driver’s 
workload at or oscillating around a comfor table level of workload. To test if the system would 
change speed to compensate for changes in the roadway environment, which ref lected rural 
conditions, the number of curves that needed to be navigated per minute was manipulated 
by changing the curves’ length. A high number of curves correspond to the high workload 
conditions, which should trigger the BCI system to set driving speed at a relative low level 
and vice versa. At this point, it should already be noted that the link between workload 
classif ications and driving speed was delayed for several seconds for a number of par ticipants. 
As will be argued in the discussion section, this does not imply that the results of this study are 
invalid, however, conclusions will be drawn carefully.

7.2 Method

7.2.1 Participants

In total, 18 par ticipants (9 male) were recruited through poster announcements throughout 
the University of Groningen; they received 20 Euros for their time and effor t upon completing 
the experiment. A substantial par t of the par ticipants were either Dutch or German students 
at this university. Ages ranged from 20 to 44 years (median = 23, interquar tile range (IQR) 
= 4) and the par ticipants had held their driving license from 1 to 25 years (median = 4, IQR 
= 4). The par ticipants’ repor ted average annual mileage over the last three years (or less 
if their driving license was obtained less than three years ago) ranged between 800 and 
30,000 km (median = 1900, IQR = 5000) and self-repor ted total mileage ranged between 
2000 and 800,000 km (median = 7000, IQR = 36,000). None of the par ticipants repor ted 
on using prescribed drugs that might affect driving behaviour. The Ethical Committee of the 
Psychology Depar tment of the University of Groningen has approved the study

7.2.2 Design and procedure

Upon arrival at the experimental site of the University of Groningen, a par ticipant was informed 
in general words with respect to the experimental design, requested to sign an informed 
consent form, and asked to f ill in a shor t questionnaire related to general demographic 
information and to their driving experience. Hereafter, the par ticipant was given some time 
(ca. 5 min) to practice driving in the simulator, before the sensors were attached. During the 
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experiment, a par ticipant completed 14 shor t rides; an initial ride to establish a par ticipants’ 
comfor table driving speed, three calibration rides to sample the data that were used to 
train the BCI classif ication models, and nine application rides during which these BCI models 
were used to classify new, incoming EEG data. After each ride, the simulator slowed down 
and stopped the car before the par ticipant was requested to f ill in a shor t questionnaire. 
The three calibration rides, when driving speed was set below, at, or above the par ticipant’s 
comfor table speed (each lasted 140 s), followed directly after the initial ride and the order 
of these rides were balanced across par ticipants. This resulted in a within subject-design 
with one repeated measures factor: driving speed (3) for the calibration phase. Then, two 
predictive BCI models (a low-frequency and a high-frequency model) were determined for 
fur ther use during the application phase. During this phase, a par ticipant drove on a road 
section consisting of either long, mid, or shor t curves, thereby creating three levels of lane 
keeping diff iculty. In addition, driving speed control through the BCI system could be absent 
to create a control condition. In total, these manipulations resulted in a within-subject design 
consisting of two repeated measures factors: BCI-model (3) and curve length (3). The order 
of these nine conditions was balanced across par ticipants according to a randomized Latin 
square. After f inishing the last ride, the physiological sensors were removed, the par ticipants 
were debriefed, and were paid 20 Euro upon leaving. In total, an experimental session lasted 
about two hours. 

7.2.3 Simulator and driving environment

The experiment was carried out using the University of Groningen’s StSoftware© driving 
simulator (http://www.stsoftware.nl), which consists of a f ixed-base passenger car mock up 
with full controls. The computers that are dedicated to the simulator compute the road 
environment and traff ic at 30Hz+, which are displayed on three 32-inch plasma screens and 
provide a total view of the driving environment of 210°.

For the experiment three 5.3 km and one 8 km two-lane road sections were prepared, 
consisting of two lanes (each 2.75 m wide), curving through rural scenery. The road surface was 
marked on the edges by a continuous line (0.20 m wide) and in the centre by a discontinuous 
(dashed) line (0.15 m wide). Outside the edges a soft shoulder was present and there were 
no objects in the direct vicinity of the road. Other traff ic was not present in the par ticipant’s 
driving lane. However, oncoming traff ic, travelling between 76 and 84 km/h, was generated 
with a random interval gap between 1 and 2 s, resulting in 40 passing private vehicles per 
minute on average. All sections consisted only of easy curves with a constant radius of 380 m. 
The curves’ length differed per road section, creating a shor t, mid, and long curve condition. 
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The mid curve length was set to 125 m and the shor t and long curve length were set at 
respectively 75% and 125% of the mid curve length (94 m and 156 m). The 8 km road section 
consisted of 125 m curves only. Speed was set by the simulator during all rides, except for the 
initial ride during which the par ticipants drove the simulator car (width: 1.60 m) in automatic 
gear mode. During this ride, par ticipants drove on the long road section for three minutes 
and were asked to f ind and drive at a speed that felt most natural and comfor table in this 
situation while the speedometer was hidden from view. The average driving speed during 
the last two minutes of this initial ride was used as a reference point throughout the rest of 
the study. 

7.2.4 Data acquisition

7.2.4.1 Vehicle data

Driving speed and lateral position (LP) were sampled at 10 Hz. LP is def ined as the difference 
in meters between the centre of the par ticipant’s car and the middle of the (right hand) 
driving lane. Positive LP values correspond to deviations towards the right hand shoulder 
and negative values correspond to deviations towards the left hand shoulder. During the 
nine application rides, sampled LP values were processed while driving and used to track how 
often any par t of the vehicle swerved outside the driving lanes edges, by using a moving, 
overlapping time window of 20 seconds (which is equal to the system’s deadband period), 
updated every 100 ms, and used to control driving speed in addition to a physiological loop 
and timing parameters (see Figure 7.2 for a full description of the system).

7.2.4.2 Subjective ratings

After each ride, a rating on the one-dimensional Rating Scale Mental Effor t (RSME; Zijlstra, 
1993) was requested. The RSME ranges from 0 to 150, which can be used to rate experienced 
effor t. In addition, several effor t indications are visible alongside the scale, which may fur ther 
guide the par ticipant in marking the scale. Indications star t with ‘absolutely no effor t’ (RSME 
score of 2) and end with ‘extreme effor t’ (RSME score of 112). In addition, par ticipants were 
asked to f ill in three questions with regard to the set driving speeds on 7-point liker t scales. 1) 
“I felt comfor table with the vehicle´s speed.” 2) “ I felt that I could safely control the vehicle´s 
position on the road.” 3) “I felt that the driving speed closely resembled the speed I would 
have chosen.”
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7.2.4.2 Physiological measures

All physiological signals were sampled at 250 Hz. The EEG at all scalp locations in the 
International 10-20 system were measured using an electro-cap with 64 tin electrodes (at 
the following sites: FP1, FP2, Afz, F7, F5, Fz, F4, F8, T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, 
and O2.) The amplif ier was a REFA 8-72 (Twente Medical Systems International, Oldenzaal, 
The Netherlands). This device amplif ies all channels against the average of all connected 
inputs (average reference). Registrations of the EEG were made using the build in functions of 
BCILAB. An Ag-AgCl electrode placed on the sternum served as the par ticipant’s ground. In 
addition, an Ag-AgCl electrode was attached to each mastoid. Impedances were kept below 
20 kΩ for all electrodes.

7.2.5 The BCI approach

The BCI setup, both for off line and online purposes, was developed using a MATLAB toolbox 
for designing brain-computer interfaces: BCILAB 1.0 (Kothe; http://sccn.ucsd.edu/wiki/BCILAB). 

7.2.5.1 The calibration phase

Calibration data was acquired during three rides that immediately followed the initial ride. 
During these rides (140 s each), driving speed was either set below (75%), at, or above (125%) 
the previously determined comfor table speed, thereby creating a low, comfor table, and high 
visuomotor load condition. EEG data collected during the last 120 sec of each load-condition 
were divided into 1 s segments and used to train the BCI model. For this, the Common Spatial 
Pattern (CSP) technique, Fisher’s Linear Discriminant Analysis (LDA), a voting procedure, and 
a model parameters search algorithm were applied.

7.2.5.2 The Common Spatial Pattern

In general, the CSP technique improves discriminatory power of the data classif ier by maximizing 
the contrast between two data classes. That is, CSP f ilters are determined in such a way that 
they maximize the variances of spatially f iltered signals for one (workload) condition while 
minimizing them for the other (Blanker tz, 2008). A CSP f ilter is a coeff icient vector by which 
the original channels can be transformed. This results in new, spatially f iltered, EEG signals 
(the CSP components), each of which is a linear combination of the original channels. The 
total number of f ilters and therefore, the number of components is equal to the number of 
original channels. The matrix of CSP f ilters is determined by solving a generalized eigen-value 
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problem. The f ilter corresponding to the largest eigen-value yields a high variance signal 
in one condition, while producing a low variance signal in the other; and vice versa for the 
component corresponding to the smallest eigen-value. The CSP components are therefore 
ranked according to these eigen-values. To reduce dimensionality, either the f irst and last or 
the f irst two and last two f ilters in this sor ted f ilter matrix were used for to transform the 
data in the current study (the number of used f ilters depended on an optimisation procedure, 
which will be described in more detail below).

7.2.5.3 Fisher’s Linear Discriminant Analysis

The next step in training a BCI model was to enter the log-transformed total variance of 
the CSP components of each of the 120 data segments (1 s each) per data class into a LDA. 
This analysis again transforms the data by determining the linear weights of the discriminant 
function that combines data points of the two data sets in such a way that maximizes the 
distance between them. 

7.2.5.4 Searching model parameters

For the current study, a comparison was made between a low and a high EEG frequency 
based classif ication model. The low range (5-20 Hz) was set to minimize contamination from 
electrical activity caused by eye movements and blinks in low frequencies and from muscular 
activities in high frequencies (e.g., Whitham et al., 2007). In addition, since higher frequencies 
proved to yield very good predictive results during a preparatory study (Dijksterhuis et al., 
2013), either the 20-45 Hz or the 55-80 Hz frequency band was selected for use during the 
application phase. The selection criterion was classif ication accuracy as yielded by BCILAB’s 
default optimization scheme for searching model parameters: a 5-fold block-wise cross-
validation with f ive data segments as safety margin. This entails par titioning the data into 
5 equal intervals, leaving a safety margin in between them, which was not used during the 
cross-validation procedure. A single interval was kept as validation data, while the classif ier 
was trained using the other intervals. This was repeated until all intervals were used for 
validation exactly once. The prediction accuracy over these f ive folds represented the model’s 
performance in a frequency band. Using a more elaborate validation scheme at this stage 
was considered but the idea was rejected to prevent unnecessary time delays before star ting 
the application phase. Similarly, the program was allowed to select either one or two most 
contrasting component pairs from the CSP component matrix for both the low and high 
frequency BCI model. Again, BCILAB’s default optimization scheme for searching model 
parameters was used. 
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7.2.5.5 Voting

Since data classif iers are limited to classifying between two labelled data classes, a voting 
procedure was used to extend the model parameter optimisation procedure to three data 
classes (low, comfor table, and high workload). That is, for every optimisation fold, the 
classif ied workload level was determined by three pairwise classif ications (high vs. low load, 
high vs. comfor table load, and comfor table vs. low load). Then, the probabilities that the 
classif iers assigned to each workload condition were summed and the condition to which the 
highest summed probability was assigned was the classif ication outcome.

7.2.5.6 Calibration summary

In summary, two main BCI models were determined per par ticipant, each consisting of three 
pairwise BCI sub-models. For the low frequency BCI model, a matrix of CSP components and 
linear weights for the LDA was determined per sub-model. These were used to classify the 
data. To allow for multi-class classif ication, a voting procedure was used. The performance of 
the multi-class classif ier was retrieved through a mini cross-validation procedure. To optimize 
model parameters, the entire classif ication procedure was carried out twice, f irst using one 
and then using two component pairs, to determine which number of pairs resulted in the 
best accuracy. All model parameters: the number of included component pairs, the CSP 
component matrices for each data pair, the LDA weights, and frequency f ilter settings were 
then saved for use during the application phase. The parameter setting for the high frequency 
main BCI model was identical, except that the frequency band (20-45 Hz and 55-80 Hz) was 
also par t of the parameter search procedure.

7.2.5.7 Off line validation 

To assess how well the trained BCI models classif ied the calibration data classes, results from 
an off line leave-one-out cross-validation (LOOCV) scheme will also be provided in the result 
section. This type of cross validation involves par titioning all data segments into one test-
segment, while the remaining segments are used to train the classif ier. This is repeated until 
all segments have been used to validate the classif ier once. 

7.2.5.8 The application phase

The low and high frequency BCI classif ication models were applied to monitor workload 
while driving. That is, the model parameters as determined during the calibration phase were 
used to transform new data segments (1 s) into the probabilities that the new data segment 
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resembles EEG data from the high, comfor table or low workload condition of the calibration 
phase. In addition, these classif ication probabilities, which were updated every 100 ms, were 
combined and smoothed using an exponentially weighted moving average (EWMA; alpha = 
0.01). The data class to which the highest weighted probability was assigned, constituted the 
classif ication outcome. Finally, these outcomes were used as a control signal to set the car’s 
driving speed in addition to several vehicle and timing parameters. For example, a classif ication 
‘high workload’ was used to advise the decision module of the simulator software to set 
driving speed at 75% of the current driving speed.

7.2.6 Speed change decisions – the system architecture

As mentioned before, in addition to the BCI system, vehicle parameters were also involved 
in determining the car’s driving speed. This effectively created two feedback loops: a ‘hard’ 
safety loop based on lane keeping performance and a ‘soft’ physiological loop based on 
workload classif ications. The safety loop advised the decision module that lateral control 
was either safe or unsafe, while the physiological loop advised that workload was either 
high, comfor table, or low. In case lateral control was unsafe, driving speed was reduced, 
regardless of workload classif ication. Lateral control was def ined as the percentage of driving 
time that any par t of the car swerved outside the driving lane during the last 20 s and this 
percentage was updated at 10 Hz. The criterion for unsafe lateral control was set at 40%. 
The main reason for implementing a control loop based on driving performance was to 
prevent that misclassif ications could speed up the car to the point that loss of vehicle control 
can be expected. In case the safety loop advised safe vehicle control, a high, comfor table, or 
low workload classif ication could lead to a decrease, maintenance, or increase of the current 
driving speed. In addition, the decision module locked current driving speed for 20 seconds 
after a speed change had been initiated. Next, collisions needed to be handled. Although a 
lateral performance loop was implemented to prevent such unfor tunate events, it did not 
actively intervene with steering to prevent a par ticipant from colliding with oncoming traff ic. 
In case of a collision, the simulator car did not actually crash, but continued to drive at a 
reduced speed after it was positioned back on the driving lane by the simulator software. 
Finally, an absolute minimum and maximum for a new driving speed was set (40 km/h and 
160 km/h), which was equal for all par ticipants. That is, a new, lower or higher driving speed 
was not allowed if current driving speed was already outside this range, but a new speed 
could in fact be set outside these limits (e.g., a speed change from 50 to 37.5 km/h). The 
absolute speed limits were set to prevent the system from setting new speeds that are clearly 
outside the range of normal driving speeds given the rural road environment. In summary, 
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5 factors were taken into account by the decision module to set driving speed (in order of 
priority): an absolute minimum and maximum driving speed, the occurrence of a collision, 
the speed change deadband, the vehicle parameter feedback loop, and the physiological 
feedback loop. The entire system is schematically presented in Figure 7.2.

Figure 7.2. An overview of the system’s architecture. Five factors could possibly initiate or prevent a change 
in driving speed (see (D)). 1) Driving at very low or very high speeds. 2) The occurrence of a collision. 3) The 
speed change ‘deadband’, 4) The vehicle’s advice with respect to lane keeping behaviour. 5) The BCI advise 
with respect to the level of current workload. These factors are listed in order of priority and speed changes 
always occurred as 25% of the current driving speed. A par ticipant’s lateral position (LP) on the driving lane (A) 
was sampled at 10 Hz (B) which was used to track the percentage that any par t of the vehicle swerved outside 
the driving lane in the last 20 s (C). If over 40%, the (C) module advised the decision module (D) to decrease 
speed. The decision module would then set speed at 75% of the current driving speed if 1) current driving speed 
was below 160 km/h and over 40 km/h and 2) the last speed change had occurred more than 20 s before. A 
speed change affects driving behaviour (A) and EEG activity (B). EEG activity was amplif ied (F) and sampled at 
250 Hz (G), before the predetermined Common Spatial Pattern (CSP) and Fisher’s Linear Discriminant (LDA) 
coeff icients per data class pair were combined, using a voting procedure, to assign the probability that a new 
data segment (one second) belonged to low, comfor table or high workload. In addition, these probabilities 
were updated at 10 Hz and smoothed using an exponentially weighted moving average (EWMA; alpha = 
0.01), which resulted in an BCI advise to the decision module (D). Low, comfor table, and high load resulted in 
a ‘speed up’, ‘maintain speed’, and ‘slow down’ advise respectively, which was used by the decision module to 
change speed if all other factors allowed for it. For example, the occurrence of a collision or a vehicle advise 
to slow down had priority over the BCI loop. The occurrence of a collision resulted in a 25% decrease of set 
driving speed. 
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7.2.7 Statistical testing

For all tested variables, repeated measures ANOVA’s were performed using IBM SPSS Statis-
tics 20 to test the differences between the various experimental conditions. In case Mauchly’s 
test for sphericity showed a signif icant effect, the degrees of freedom were adapted accord-
ing the Greenhouse-Geisser method. Polynomial contrasts and Bonferroni corrected pairwise 
comparisons were used to explore the nature of signif icant main effects.

7.3 Results

7.3.1 Classif ication delays – Technical diff iculties

After the experiment was completed, it was discovered that for a number of rides, it is likely 
that the weighted classif ications that were send from the PC running BCILAB to the PC run-
ning the simulator software, may have had a time delay. This was discovered after all classif i-
cations were reconstructed by carrying out a pseudo-online classif ication procedure, in which 
the EEG data that was recorded during the experiment was again classif ied and compared 
to the classif ications as recorded and used by the simulator software. Since the data and pro-
cedure from the online and the pseudo-online study are identical, the classif ications over time 
should also be identical. This was not the case for substantial por tion of the data. However, 
this did not affect result from the calibration phase.

7.3.2 The calibration phase

7.3.2.1 Vehicle and subjective data

The results related to vehicle parameters and subjective ratings are shown in Figure 7.3 and 
their test results are listed in Table 7.1. As can be read from Table 7.1, all variables shown in 
Figure 7.3 changed signif icantly as a function of driving speed. To star t with, lateral position 
on the driving lane (see Figure 7.3A) shifts in an almost straight line from 0.10 m towards the 
right hand shoulder during the fast ride to 0.03 m during the slow ride (polynomial contrasts 
showed a linear trend: F(1,17) = 6.36, p =0.022, ηp

2 = 0.27). Given that the dimensions of the 
vehicle and driving lane allowed for 0.58 m of swerving margin on both sides of the vehicle, 
this shows that drivers stayed well within their driving lane on average. 
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Figure 7.3. Vehicle parameters and subjective ratings as a function of driving speed condition. (A) Mean Lateral 
Position (LP). LP values represent the middle of the car (car width = 1.60 m) in relation to the middle of the right 
(driving) lane (width = 2.75 m);negative values ref lect a deviation towards the right hand shoulder. (B) Standard 
Deviation of the Lateral Position (SDLP) ref lects swerving behaviour. (C) The percentage of the total time that 
any par t of the vehicle strayed left of the driving lane. (D) Mean Driving Speed. (E) Rating Scale Mental Effor t 
(RSME). Maximum score for mental effor t is 150. (F) The percentage of the total time that any par t of the vehicle 
strayed right of the driving lane. On the x-axes, values for the initial ride (ini) are shown in addition to three 
driving speeds that were set, relative to the individual’s preferred driving speed established during the initial ride; 
either 125%, 100%, or 75% of the preferred, comfor table speed. These driving speeds ref lect high, comfor table, 
and low visuomotor workload. Error bars represent the standard error. n=18.

However, occasionally the drivers did allow the car to swerve outside the driving lane (see 
Figure 7.3C and Figure 7.3F). The vehicle drifted (par tly) onto the opposite driving lane for 
about 4% during the fast ride (see Figure 7.1C) but this percentage was lower for the two 
slower rides (quadratic trend: F(1,17) = 15.64, p = 0.001, ηp

2 = 0.479). The time that any par t 
of the car strayed over the right lane edge was about 8% of the total time, but as can be seen 
in Figure 7.1F, this percentage decreased strongly as speed decreased (linear trend: F(1,17) = 
14.93, p = 0.001, ηp

2 = 0.468). The standard deviation of the lateral position (SDLP), ref lect-
ing swerving behaviour, decreased as driving speed decreased (linear trend: F(1,17) = 46.00, 
p < 0.001, ηp

2 = 0.479). However, this increase was slightly more pronounced from fast to 
comfor table speeds, creating a quadratic trend as well (F(1,17) = 5.39, p =0.033, ηp

2 = 0.241). 
Subjective effor t shows a clear linear trend (F(1,17) = 37.93, p <0.001, ηp

2 = 0.691), as drivers 
rated each faster speed category about 16 RSME point higher than the slower one. Effor t 
ratings range from a little over ‘a little effor t’ (RSME = 28) for the slow speed condition to a 
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little over ‘rather much effor t’ (RSME = 60) for the fast speed condition. Finally, Figure 7.1D 
shows driving speeds. The average speed chosen by the par ticipants during the initial ride is 
95 km/h, ranging from 71 to 116 km/h. Not surprisingly, since driving speeds during the other 
calibration rides were set by the driving simulator, speed shows a large signif icant effect (see 
Table 7.1)

Effects of set driving speed on vehicle parameters and subjective effort

Variable F(df1,df2)  p ηp
2

Lateral Position (LP) Fig 7.3A 4.90 (1.5,28.2) 0.020 0.224

SDLP Fig 7.3B 32.31 (2,34) <0.001 0.655

Outside Lane (left) Fig 7.3C 5.95 (1.4,24.6) 0.013 0.259

Speed Fig 7.3D 1037.17 (1.5,17.0) <0.001 0.984

Subjective effort Fig 7.3E 29.35 (1.5,25.8) <0.001 0.633

Outside Lane (right) Fig 7.3F 13.33 (1.0,22.1) 0.001 0.440

Table 7.1. Univariate test results for vehicle parameters and subjective effor t ratings (Figure 7.3). LP = lateral 
position, SDLP = standard deviation lateral position. Degrees of freedom were Greenhouse-Geisser adjusted if 
Mauchly’s test of sphericity showed that sphericity could not be assumed. 

7.3.2.2 Model training

As described in the method section, the BCI computer program searched between several 
model parameters during the calibration phase to optimise classif ication performance. To 
star t with, the optimisation procedure could choose from using one or two CSP f ilters to 
transform the original EEG channels and the most accurate BCI model would be selected 
for fur ther using during the application phase. As summarised in Table 7.2, BCI models using 
two f ilter pairs usually yielded superior classif ication accuracies compared to BCI models that 
used just one pair, as these were selected about three times more often for both the low and 
high frequency model. In case of optimising the high-frequency model, when the optimisation 
procedure was allowed to choose between the 20-45 Hz and 55-80 Hz frequency band to 
classify the data, the higher frequency band resulted in a better accuracy for most par ticipants 
(15 vs. 3). 

Model selection was based on a mini cross-validation that was carried out between the 
calibration and application phase of each experimental session. However, a more extensive 
procedure is more common when validating how well a classif ication model classif ies the 
data. For this purpose, a leave-one-out cross-validation procedure was carried out, using 
the same model parameters that were selected through the optimisation procedure. As can 
be read from Table 7.3, the average classif ication accuracy when using the high frequency 



130

7  A brAin And performAnce bAsed AdAptive cruise control

Table 7.2. An overview of selected model parameters. For the low frequency version, only the number of 
f ilter pairs are relevant in the optimisation procedure. For the high frequency version, frequency band was 
also included. Model selection was based on classif ication accuracies that resulted from a mini cross validation 
procedure during the experimental sessions. n=18.

Number of filter pairs 1 2

Low frequency model 5-20 Hz 5 13

High frequency model 1 20-45 Hz 1 2

High frequency model 2 55-80 Hz 3 12

‘Low’
Overall Accuracy

68%
‘High’

Overall Accuracy

90%
Prediction Prediction

(%) High Com Low (%) High Com Low

Ta
rg

et

High 71 18 12

Ta
rg

et

High 92 5 3

Com 14 65 20 Com 2 89 9

Low 14 18 67 Low 2 7 90

Table 7.3. Average workload classif ication accuracies for the calibration data. The percentages are the result 
of a post-experimental, exhaustive leave-one-out cross validation procedure (119 one-second segments for 
each target data class). The model parameters (number of component pairs and frequency band) that were 
used to produce the accuracies are identical to those selected during the experiment. Per one-second segment, 
the workload classif ication is determined by combining three pairwise classif ications (high vs. low load, high 
vs. comfor table load, and comfor table vs. low load). The probabilities that the classif iers assign to each class 
are summed. The data class, to which the highest summed probability is assigned, is the winner of this voting 
procedure. Note that chance level is 33% given three data classes. N=18. Low = low frequency BCI model (5-20 
Hz). High = high frequency BCI model (20-45 Hz or 55-80 Hz depending on the parameters search outcome).

models is 90%, which is 22% higher than the average low frequency models’ output. The 
accuracies differ somewhat between the data classes (high, comfor table, and low visuomotor 
load), as the average accuracy for the comfor table workload level is lower than the other 
two classes, and the high visuomotor load was best classif ied.

To get an indication of the consistency of classif ication accuracies across par ticipants, 
cumulative accuracies are displayed in Figure 7.4. For instance, for 16 out of 18 par ticipants, 
classif ication accuracy is 80% or better when using the high frequency BCI model. In the low 
frequency range, this is true for only three par ticipants. Similarly, one par ticipant scored better 
than 95% when classif ications were based on the low frequency band, while f ive par ticipants 
scored higher than this when classif ications were based on the higher frequency bands.
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Figure 7.4. The cumulative frequencies of classif ication accuracies. The number of par ticipants for whom a 
par ticular accuracy was found or better (max = 18 par ticipants) in the accuracy categories on the x-axes, for 
both the low frequency BCI model and high frequency BCI model which were determined during the calibration 
phase. Note that chance level is 33% given three data classes.

7.3.3 The application phase

During the application phase, the low and high frequency BCI models that were trained and 
selected at the end of the calibration phase were used to classify new, incoming, EEG data 
while the par ticipants were driving. These workload classif ications (low, comfor table, or high) 
were subsequently used to change or maintain driving speed. Since several other factors also 
contributed to the f inal speed decision (namely, absolute driving speed, the occurrence of a 
collision, a speed change deadband, and indications of worsened lane keeping behaviour), 
the behaviour of the total system will f irst be described. 

As explained above, the system responded to workload classif ications that are now sus-
pected to have had time delays. Mostly, these were shor ter than 1 s, but occasionally grew to 
about 5 s. Given that the system responsiveness was not very fast due to the 20 s deadband, 
these delays may have been relatively harmless for the system’s behaviour from the perspec-
tive of the driver. Therefore, examples of time-on-task results are still provided, representing 
several categories of system behaviour. 
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7.3.3.1 System behaviour – setting driving speed

The total driving time over all par ticipants, during which the brain-car interface was 
monitoring workload (either the low or high frequency BCI model), added up to 6 h, 42 
min, and 10 s. During this time, the system changed speed 726 times, which is once every 
33 seconds on average and 13 seconds on average when subtracting the dead-band period 
(20 s) during which speed was only allowed to change in case of a collision. Please note that 
these average periods are just a rough indication of the system’s speed setting behaviour, 
since the driving speed was set below the absolute minimum speed criterion (below 40 
km/h) for about a third of the total driving time, which disabled any fur ther speed decreases. 
In addition, there were 20 collisions, which also happened in a dead-band period, and there 
were a number of speed changes within 20 s before the end of an experimental condition. In 
total, speed was increased 365 times, which only happened if the BCI loop advised this while 
all other factors allowed for it (see Figure 3D for details). Speed was reduced 361 times: 20 
times as a result of the occurrence of a collision, 108 times because the threshold for unsafe 
lane keeping behaviour was passed, and 233 times because the BCI loop indicated high 
workload. 

The system behaviour, as seen from the driver’s perspective (i.e., the speed changes as 
they occurred over time), showed a large amount of inter-individual differences. Therefore, 
making general statements that are true for everyone or most is diff icult. However, some 
general differences in the way the system behaved may be discerned. A couple of examples 
will be described below.

Example 1. Stable system, driving at minimum speed

To star t with, during a number of rides, driving speed was stable for large par ts of the ride. 
This behaviour could be caused in several ways. For example, during a number of rides, 
the aforementioned speed threshold level below which changing to a lower speed was not 
allowed was reached during some point. This pattern occurred during 18 out of a total of 105 
conditions (18 subjects * 6 conditions during which the BCI feedback loop was active, minus 
3 missing data points). When this happened, driving speed typically remained very low for 
large por tions of a ride (65% on average). Figure 7.5 illustrates such a case. New EEG data 
was consistently classif ied as ‘high workload’ (Figure 7.5B) and, taking into account the dead-
band period of 20 s, this caused driving speed to drop three times in the beginning of the ride 
(Figure 7.5A and Figure 7.5B). Subsequent speed decreases were not allowed and therefore 
no more decisions to change speed were made for the remainder of the ride.
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Figure 7.5. An illustration of the system’s behaviour over time for subject 11, condition 7 (applying the high 
model / long curved road section). (A) Driving speed. The horizontal red dashed lines represent the absolute 
minimum and maximum speed (40 and 160 km/h). The horizontal green dashed line represent the par ticipant’s 
comfor table driving speed as established during the initial ride (102 km/h). (B) The weighted workload 
classif ications that were used to advise driving speed. (C) The f inal speed decision, taking into account all 
decision factors (absolute min/max, collisions, dead-band period, propor tion of driving time outside the driving 
lane, and the EEG advice. In general, the BCI advice can be either to increase, maintain, or decrease speed. The 
lane keeping advice can only be to maintain (‘safe’ lane keeping behaviour), or decrease (‘unsafe’) driving speed. 
The occurrence of a collision immediately results in a speed decrease, which did not happen during this ride. 

Example 2. Stable system, comfortable level

Another example of a stable system, which occurred a number of times, is illustrated in 
Figure 7.6. In this case, new EEG data was always classif ied as being the result of comfor table 
workload level. Therefore, it is advised to maintain the current, comfor table, driving speed for 
the entire ride. The speed decrease at about 162 s was the result of the par ticipant drifting 
over the lane edges for over 12 s during the preceding 20 s. However, this did not affect 
workload classif ications. 
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Figure 7.6. An illustration of the system’s behaviour over time for subject 10, condition 8 
(applying the high model / mid curved road section). 

Figure 7.7. An illustration of the system’s behaviour over time for subject 7, condition 5 
(applying the low frequency model / mid curved road section).
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Example 3. Oscillating system, unsafe lane keeping

Another main category of system behaviour may be described as ‘oscillating speeds’. Again, 
several underlying advise patterns may have caused this type of system behaviour. For 
example, for a number of rides, incoming EEG data was largely labelled as ‘low workload’ 
(see Figure 7.7). Therefore, it mostly advised to increase speed. Whilst driving at high speeds, 
par ticipants regularly crossed the threshold for unsafe lane keeping behaviour, which was 
prioritised over the BCI advice. The driving speed was subsequently decreased and locked 
for the next 20 s, after which lane keeping behaviour had recovered and the BCI loop again 
advised to increase speed and so for th. 

Example 4. Oscillating system, longer periods of high and low workload

Another example of an oscillating system is given in Figure 7.8. In this example, vehicle 
parameters were not involved in changing speed at all (see Figure 7.8C). During the f irst third 
of this ride (up until about 110 s), workload classif ications are mostly ‘high’, causing driving 
speed to drop several times, even below the criterion after which more speed decreases are 
not allowed. However, at that point, workload classif ications shift to ‘low’ for about 80 s, 
leading to multiple speed increases. This pattern was then repeated for the remainder of the 
ride. 

Example 5. Variable patterns

Finally, there are a number of rides for which, a stable or oscillating pattern do not really 
apply. For instance, driving speed could be relative stable for one par t of a ride, but shows 
unstable, non-oscillating pattern for the other. During the course of the f irst half of the 
ride that is illustrated in Figure 7.9, driving speed remained at or around the comfor table 
driving speed, and peaked at about 110 s when the par ticipant could not prevent a collision 
with oncoming traff ic. Hereafter, workload classif ication star ted to go to ‘high’, causing 
four subsequent drops in driving speed to under 40 km/h. Not until the end of the ride, did 
workload classif ications change again. 

7.3.3.2 Subjective ratings.

Figure 7.10 displays the effects of model type and curve length on the subjective data. To star t 
with, curve length did not affect the scores on any of the variables (see Table 7.4). However, 
model type did have a main effect on all variables. Upon taking a closer look in all subf igures 
of Figure 7.10, it appears that in conditions without BCI feedback, subjects rated subjective 
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Figure 7.8. An illustration of the system’s behaviour over time for subject 17, condition 5 
(applying the low frequency model / mid curved road section).

Figure 7.9. An illustration of the system’s behaviour over time for subject 18, condition 4 
(applying the low frequency model / shor t curved road section).
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effor t lower (Figure 7.10A), felt more comfor table with the driving speed (Figure 7.10B), felt 
that they could control the vehicles position on the road more safely (Figure 7.10C), and felt 
that driving speed resembled the speed that they would have chosen themselves more closely 
(Figure 7.10D). This is conf irmed by pairwise comparisons (Bonferroni corrected), where the 
difference between BCI-absent and the other two are signif icant but the difference between 
the low and high frequency model does not differ signif icantly, for any of the variables.

7.4 Discussion and conclusions

The aim of this study was to investigate a proto-typical adaptive system aimed at keeping 
visuomotor workload within a normal range in a driving simulator. Per par ticipant, two 
versions of a BCI classif ication model were trained on calibration data. During the application 

Figure 7.10. Average subjective data for all experimental conditions. (A) Subjective effor t (RSME). The RSME 
scale ranges from 0 to 150. (B-D) The average scores on 7 point liker t-scales. (B) ‘I felt comfor table with the 
vehicle’s speed.’ (C) I felt that I could safely control the vehicle’s position on the road.’ (D) ‘I felt that the driving 
speed closely resembled the speed I would have chosen.’ The error bars represent the standard error. 
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Table 7.4. Univariate test results for subjective effor t ratings. RSME = rating scale mental effor t. Signif icant 
effects (p < 0.05) are shown in bold. Mauchly’s test for sphericity was not signif icant for any of the factors, so 
sphericity was assumed.

Subjective data

RSME Q1 (Comfortable?) Q2 (Safely?) Q3 (Resemble?)

Effect F p ηp
2 F P ηp

2 F p ηp
2 F p ηp

2

Model (M) 9.01 0.001 0.35 18.12 <0.001 0.52 8.31 0.001 0.33 23.63 <0.001 0.58

Curve length (L) 0.60 0.554 0.03 1.12 0.338 0.06 0.01 0.862 0.09 0.26 0.772 0.02

M x L 2.31 0.066 0.12 0.18 0.947 0.01 0.73 0.573 0.04 1.07 0.379 0.06

phase of the experiment, these models were used to classify workload levels from incoming 
EEG data which were then used to alter driving speed. The effects of the various experimental 
manipulations, both during the calibration and application phase of the study, on driving 
behaviour, subjective ratings, workload classif ications, and driving speed will be discussed. 

To star t with, speed was set below, at, and above the comfor table driving speed during 
the calibration phase, which was established during the initial ride. The effect of driving speed 
on subjective data and vehicle parameters were as expected. That is, the standard deviation 
of the lateral position (SDLP), indicating swerving behaviour, increased as speed increased, 
which has been found in other simulator studies as well (e.g., Dijksterhuis et al., 2013; Peng et 
al., 2012). The average lateral position on the road shifted from the centre of the driving lane 
towards the right hand shoulder as speed increased. The reason that drivers increase their 
lateral distance from oncoming traff ic may be related to maintaining safety margins by the 
driver (Summula, 2003). As speed increases, a driver has less time to carry out small steering 
wheel corrections to keep the vehicle on the lane. Increasing the distance to oncoming 
traff ic is a way to compensate. As a consequence of driving towards the right and increased 
swerving behaviour, the time that the vehicle drifted outside the lane’s edges also increased. 
Also, higher speeds were rated as being more effor tful (similar to Dijksterhuis et al., 2013), 
which indicates that workload level was successfully manipulated. 

After the calibration rides were completed, the computer trained several classif ication 
models and selected two of them using a parameter optimisation procedure. To validate 
how well the trained models classify the three data classes, an off-line leave-one-out cross 
validation procedure was carried out, using the model parameters selected during the 
experimental sessions. As it turned out, the classif ication model accurately assigned 90% of 
the 1 s segments to the correct data class for the high-frequency model version on average. 
The low-frequency model accuracy was remarkably lower at 68%. A fur ther conf irmation 
that higher frequencies tend to yield higher classif ication accuracies is the fact that the 
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optimisation procedure in most cases (15 out of 18) selected the highest frequency range for 
the high frequency BCI model. This replicates results from a preparatory off-line classif ication 
study (Dijksterhuis et al., 2013). 

Regretfully, the interactive system during the application phase responded to workload 
classif ications that are now suspected to have had time delays. Mostly, these were 
shor ter than 1 s, but occasionally grew to about 5 s. An immediate link between workload 
classif ications and driving speed can therefore not be assumed when interpreting the results 
of the application phase, even if all other factors allowed for it. Despite this technical problem, 
we argue that these delays may have had a relative low impact on the driving experience, 
because the system’s responsiveness was already relative slow due to its dead-band. As a 
consequence, the results did not lose all validity, even if it limits the conclusions we can draw 
from this study.

The subjective effor t ratings from the application phase suggest that the curve length 
manipulation did not result in the intended visuomotor workload levels (see Figure 7.10), nor 
did any of the other subjective ratings differ as a result of this manipulation. A priori, it was 
wrongfully assumed that a 25% change per curve length level during the application phase 
would evoke changes in subjective effor t ratings that were similar to the 25% change in 
driving speed during the calibration phase. The absence of this effect may be due to the fact 
that a speed change does not only change the number of curves that needs to be navigated 
per minute, but also decreases the available time for making steering wheel correction, e.g., 
before a lane depar ture occurs. In hindsight, it may be concluded that this latter factor was 
dominant for the effor t ratings. 

Next, par ticipants experienced the two versions of the classif ication model (high and 
low frequency) very similarly and rather negatively compared to the ride without a BCI 
loop. This indicates that par ticipants found driving with a BCI loop more effor tful, did not 
really feel comfor table driving with a BCI loop, nor felt that the system resembled their 
own speed choices. Par tly this may have been caused by the fact that, unlike existing cruise 
controls, the par ticipants could not turn off the device. Another reason for these unfavourable 
scores may be related to the specif ic system’s behaviour, which allowed for a large range of 
speeds, which at times was clearly under or above the driver’s comfor table speed and will be 
discussed in more detail below.

As it turned out, system behaviour varied immensely from ride to ride as a result of the 
interacting decision factors: the absolute minimum and maximum driving speed, the occurrence 
of a collision, the dead-band period, the vehicle’s advice, and the BCI advice. However, upon 
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closer inspection, two major distinctions between system behaviour can be made. First, a 
relative stable system could be the result of stable comfor table workload classif ications 
combined with ‘safe’ lateral control, resulting in speeds at or close to the comfor table driving 
speed. Second, for a number of rides, the BCI loop continuously advised to decrease speed. 
This would cause the simulator to slow down to the absolute minimum driving speed, since 
none of the other decision factors could trigger a speed increase. Although this resulted in 
driving at slow speeds, it did not result in unsafe driving. On the other hand, during a number 
of rides, the BCI loop continuously advised the decision module to increase driving speed. This 
resulted in an oscillating system, since driving at high speeds almost unavoidably triggered the 
lateral vehicle control loop to advise to slow down the vehicle. Typically, these speed changes 
occurred every 20 s, immediately after the dead-band period had passed. However, oscillating 
speeds were also observed as a result of oscillating workload classif ications, although they 
were not always directly linked. That is, several speed decreases could be observed before the 
majority of workload classif ications changed to ‘low workload’ and vice versa. 

Stable workload classif ications at the comfor table level was expected for some rides 
since the mid curve length conditions of the application phase was identical to the conditions 
of the calibration phase. In other words, continuous low and high workload classif ications, 
despite substantial changes of the driving speed, were not expected. It is possible that the link 
between driving demand and the individual’s workload levels altered during the course of an 
experimental session, since time-on-task related effects may inf luence workload regardless 
of task demand (see e.g., Hockey, 2003). However this seems insuff icient to explain these 
misclassif ications. Many other possible sources may have contributed to the degradation of 
BCI classif ication performance over time, which is usually referred to as non-stationarity of 
the BCI features or the underlying EEG signals (e.g., Shenoy et al., 2006; Lotte et al., 2007; 
Krauledat, 2008). In other f ields of human-machine interaction, time and context dependency 
are referred to as issues of psychophysiological reliability (e.g., Brookhuis & de Waard, 1993; 
Prinzel, 2001; Hoogeboom & Mulder, 2003; Fairclough, 2009; Hockey et al., 2009; Mulder et 
al., 2009). 

To illustrate one case of non-stationarity, during an experimental session, one of the 
peripheral EEG electrodes star ted to display large amplitude activities after two calibration 
rides, and remained to show this activity for the remainder of the experimental session. What 
may have caused this noisy signal is not entirely clear, however, since the CSP technique used 
in this study assigns the highest weight to the most discriminating EEG channels, it classif ied all 
incoming data into the data class that was last experienced during the calibration ride. This 
caused the system to be biased towards ‘high workload’ classif ications. This also illustrates the 
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vulnerability of using data-driven machine learning algorithms. The CSP uses all information 
it receives to distinguish between one data class and the other. In this way, it may have been 
accidentally trained on non-task-related physiological factors, such as muscular activities. 

Yet another explanation for misclassif ications may be related to the range of speeds that 
the classif ication models used as input. During the calibration phase, speeds were set at 
75%, 100%, and 125% of the initial driving speed. During the application phase, speed could 
increase or decrease over a much broader range (from about 40 km/h to 160 km/h). This 
approach was preferred over designing an interactive system that could only vary between 
three driving speeds, and over expanding the number of calibration speeds to a high number 
of data classes. As a consequence, it was assumed that driving at speeds below the low-
speed condition of the calibration phase would naturally lead to a low-workload classif ication 
as well and vice versa. However, this might not be necessarily the case. For example, if a 
change in visuomotor workload qualitatively changes the underlying neural patterns (e.g., 
different areas of the cor tex become important as workload increases) then the CSP f ilter 
as determined during the calibration phase is inaccurate, since it assigned the most extreme 
linear weights to other scalp locations. 

From this study it is clear that the transfer of classif ication accuracy between the calibration 
and the application phase needs to be improved. One way of accomplishing this is by using 
adaptive classif iers, which use new, incoming data to update the classif ication model (Shenoy, 
2006; Galan, 2008). The disadvantage of this approach is that it requires immediate labelling 
of this data, which in turn requires knowledge of the monitored mental state through different 
information sources. One way to get this information would be to simply ask the user if 
workload classif ications are accurate. However, adding a task to the primary task is usually 
not recommended by researchers from the adaptive automation literature (e.g., Scerbo, 
1996). Alternatively, discrepancies between expected performance levels and classif ied 
workload could be used to update the model. For example, good lane keeping performance 
combined with a slow moving car and high workload classif ications, should be an indication 
that these data segments have to be labelled anew. Another way of improving accuracy 
transfer between a calibration and an application phase may be to preselect signals that the 
classif iers can use, thereby excluding sources of non-stationarity. In other words, theory- and 
data-driven approaches could be combined to create an optimally reliable system. 

As is clear, workload classif ications often did not seem to ref lect the actual workload 
as experienced by the drivers. Therefore, the system did not react as expected, which is 
ref lected by user experience ratings. Several lessons can be learned for future research. From 
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an ergonomic point of view, including performance based decision criteria (the ‘hard’ safety 
loop) is critical for preventing a physiology based loop from setting extreme system states 
(e.g., driving very fast), as long as physiology cannot be used to assess the mental state of the 
system’s user reliably. Alternatively, monitoring workload could be used by different types of 
suppor t. For example, it could inform the driver of his/her inferred workload or use these to 
formulate an advice to the driver. In this way, the system would suppor t the earlier stages 
of the human information processing system (e.g., Parasuraman et al., 2000; Prinzell et al., 
2002) but keep the ultimate decisions and vehicle control in the hands of the human users. 
Speculatively, drivers may sooner accept a somewhat less reliable system if it is not directly 
coupled to vehicle control. 

In conclusion, while the classif ication models that were trained on different levels of 
visuomotor workload could accurately classify between three data classes of the calibration 
phase, results from the application phase indicated a low transfer of calibration accuracy. 
However, during the application phase, the vehicle parameter loop that monitored lane-
keeping performance, prevented the system at large to increase speed to extreme speeds. 
This study conf irms that substantial advances are required before workload can be reliably 
monitored in these conditions. 
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Sensor technology and computing power have progressed to the stage that systems 
developed for inferring emotions, intentions, and mental capacities may be used to suppor t 
our activities. As these systems evolve, the experience of interacting with this new generation 
of technology will increasingly resemble human-human interaction. The rationale behind 
these developments is that technology capable of recognising our mental state is better able 
to help us achieve goals by adapting to our changing wishes and needs (Brusilovsky, 2001; 
Brusilovlsky and Millán, 2007; Duric et al., 2002; Feigh et al., 2012; Hettinger, 2003; Fairclough, 
2009). The research presented in this thesis aims at contributing to this vision of adaptive 
human-machine interaction by focussing on a specif ic mental state and task performance 
environment. To be precise, mental workload changes as a result of driving a car on roads in 
rural conditions and subsequently, how these inferences may be used by a driver assistance 
system in real-time to aid the driver. In this chapter, the most impor tant f indings from the 
studies presented in this thesis will be summarised and discussed separately, before providing 
a general discussion and formulating the main challenges for future research.

8.1 Chapter 3. Steering Demand and Mental Workload

The main objective of this study was to explore how various levels of lane keeping demand, 
which were created by manipulating lane width and oncoming traff ic density on bendy, rural 
roads, affect mental workload as measured by steering behaviour, subjective effor t ratings 
and hear t rate indices. The f indings of this study indicated differences between measures 
with respect to sensitivity. That is, how well a change in mental workload also results in a 
change of the measure, and with respect to the range of tasks demands for which measures 
are sensitive.

To star t with, the lateral position (SDLP), indicating the level of engagement of the human 
visuomotor system in keeping the vehicle at the preferred lateral position on the road, turned 
out to be sensitive to all levels of lane keeping demand. SDLP decreased about 0.01 m per 
0.25 m decrease in lane width from 3.00 m to 2.25 m. A stream of high oncoming traff ic 
density (40 passing cars per minute vs. 10) fur ther decreased SDLP by about 0.04 m. This 
effect on swerving behaviour can be seen as a behavioural adaptation by the par ticipants in 
a (subconscious) attempt to maintain safety margins across driving situations (e.g., Summala, 
2007). A low SDLP, especially combined with a shift of the car’s lateral position towards the 
shoulder, which was also found, minimises the number of close proximities to oncoming traff ic. 
Subsequently, a driver can feel comfor table again. According to mental workload theories 
(e.g., de Waard, 1996), maintaining safety margins in conditions of increasing task demand can 
only be realised at the cost of simultaneously increasing mental effor t. This was also ref lected 
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by mental effor t ratings and hear t rate variability, but not in the same way. 

Mental effor t ratings increase ref lected both increases in traff ic density and decreases in 
lane width. However, the increase as a result of the lane width manipulation only occurred for 
the high-density traff ic condition, which indicates that the sensitivity of experienced mental 
effor t ratings is in a somewhat different range than SDLP. This divergence is in accordance 
with mental workload theory, which suggests that workload is hardly felt for intermediate 
levels of task demand. The effor t expenditure that is required for task performance is only 
experienced outside this range (see also de Waard, 1996). An explanation for the effor t rating 
f indings is therefore that the increase in traff ic density, which had clear effects on mental 
workload related driving behaviour, pushed task demand outside the optimum range, after 
which the additional lane keeping demand increases were also felt. 

Finally, the 0.10 Hz component of hear t rate variability, which has been used extensively 
in mental workload research (e.g., Mulder et al., 2009), differed as a result of different traff ic 
densities. However, the expected power decrease in this frequency band (0.07 - 0.14 Hz) as 
a result of increased lane widths was not found, which indicates that this measure was the 
least sensitive to variations in mental workload. The observation that different measures 
differ in sensitivity has been seen in other driving contexts as well (e.g., de Waard, 1996) and 
therefore conf irms that using multiple types of measures is probably required for reliable 
mental workload assessment over a wide range of task demands when designing a suppor t 
system. 

8.2 Chapter 4. A Performance Based Adaptive Driver Support System

Given that vehicle parameters turned out to be the most sensitive to changes in mental 
workload, it was decided to focus on SDLP and related parameters to design and test an 
interactive driver suppor t system. This required that general knowledge at the group level, 
attained from the f irst empirical study, needed to be implemented at the individual level. 

For this study, par ticipants received information about the car’s lateral position through 
a head-up display, but only when deemed necessary by the system. In terms of adaptive 
automation systems, this system suppor ted the driver in the f irst stage of the human 
information processing system: acquiring information, and not in later stages such as making 
decisions or controlling the vehicle (e.g., Parasuraman, 2000). The roadway environment was 
very similar to the roadway environment of the previously discussed study. That is, lane-
keeping demand was varied by manipulating oncoming traff ic density (10 vs. 40 passing 
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cars per minute), and driving lane width (2.25 m and 3.00 m wide). The system kept track 
of vehicle parameters over a 30 s moving window and activated the head-up display when 
SDLP was over 0.22 m, or when the par ticipants drove either too near or outside the lane 
edges for more than 7.5 s or 3 s respectively. 

The results indicated that driving with this user adaptive system slightly improved driving 
performance compared to driving without suppor t and driving with a continuously activated 
(non-adaptive) suppor t system. However, these effects were small compared to the lane 
width and oncoming traff ic manipulations. Also, effor t ratings did not differ between suppor t 
type conditions. User experiences may provide a way to explain these results. Surprisingly, 
almost one third of the par ticipants chose to ignore the projected information, presumably 
because they did not f ind it useful or satisfactory. This behaviour might be classif ied as disusing 
the provided assistance, which can be considered as a failure to engage in automation when 
it could improve performance (Parasuraman & Riley, 1997; Lee, 2008). 

However, simply observing why such a large group chose to ignore the information does 
not explain why it happened. The effective implementation of visual aid may depend on 
many factors, for instance HMI, including the actual visual aspects (such as attractiveness, 
colouring, size, location on the windscreen, etc.), the exact triggers and trigger values (e.g., 
a strict vs. a tolerant system), and it may also take some time for a driver to learn how to 
use a system and to optimally acknowledge its advantages. A thorough investigation of all 
factors involved may provide options to improve the user experience substantially. However, 
it should be noted that, even in its current form, 16% of the par ticipants did actually indicate 
to have used the information as intended. Considering the large propor tion of the population 
that engages in car driving, this shows that there already is already a substantial group of 
drivers that may benef it from the setup in the present context.

Fur thermore, par ticipants indicated that the adaptive system was appreciated more than 
the non-adaptive version, because the moment of suppor t activation was perceived as a 
warning signal that lateral control should be improved. This points to the fact that the system 
did not only suppor t the information acquisition stage, as was the intention of the designers, 
but also a later stage of the human information processing: making a decision with respect 
to driving style. This should be kept in mind when designing a user adaptive system. Users of 
a system will probably think about how the system “thinks” and use this information to adapt 
their behaviour.



149

8  Main Results and discussion

8.3 Chapter 5. The Potential of Music Selection for Adaptive Driver Support

In search of alternative ways of inf luencing driving behaviour, the feasibility of using negatively 
and positively rated music by an adaptive driver system was investigated. Two opposite 
effects of music listening while driving could be expected from the literature. On the one hand, 
an arousing effect in monotonous driving circumstances may counter a decreasing workload 
capacity due to under-arousal (e.g., Nor th & Hargreaves, 2008). On the other hand, music 
may capture attention resources, which should be used for keeping the vehicle safely on 
the road, and have a negative impact on driving behaviour (e.g., Shek & Schuber t, 2009). 
During this study, par ticipants were therefore exposed to a relative high demanding drive in 
addition to a relative low demanding drive. Similar to the previously discussed chapters, these 
conditions were implemented by exposing each par ticipant to a 2.50 m and a 3.00 m wide 
driving lane condition.

Since musical preference is highly personal, a par ticular piece of music may be perceived 
very differently across individuals. To compensate for this variability, par ticipants f irst rated 
about 60 songs from a broad musical spectrum during an initial session. A compilation of 
negatively rated and a compilation of the positively rated songs were then created while 
attempting to match for rated energy levels. As it turned out, the selected songs indeed 
differed in valence, but they also differed to a lesser extent in energy levels. Within the range 
of songs used for this study, it was impossible to select songs that solely varied in mood 
valence showing that valence and energy ratings were positively correlated.     

In the original paper of this study (Van der Zwaag et al., 2012) the central question was 
whether or not a specif ic mood could be successfully induced and maintained during driving 
through music listening, to which the answer was a modest yes. However, the effects of 
listening to music on driving behaviour, physiological measures, and mental effor t ratings 
were limited to marginal effects on speed and respiration rate. Speed was somewhat lower 
during driving while listening to positively rated music compared to the no-music condition. 
In general, decreasing driving speed gives the driver more time to read signs, assess traff ic 
situations, but also to make steering wheel corrections. An explanation for this result may 
therefore be that drivers listened intently to positively rated music, drawing attention away 
from the driving task, causing a (subconscious) compensatory speed reaction (e.g., Summala, 
2007). Respiration rate also showed an effect of music as it slowed down when drivers 
listened to negatively rated music. This could indicate that listening to music may have had a 
relaxing effect on drivers.
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In conclusion, it seems unlikely that automatic music valence selection by a driver suppor t 
system could be used to directly change mental workload under the driving conditions of this 
study. However, the speed reduction due to listening to positively rated music is an indication 
that attention resources are captured by music, and therefore, switching off music in high de-
manding situations could be considered for future research. The inf luence of listening to music 
on respiration rate could indicate a more direct effect on bodily and affective states such as 
arousal level. This suggests that automatic selection of in-vehicle music could aid the driver 
in regulating arousal or relaxation levels, which could in turn affect driving safety. However, 
more research is required to conf irm the effectiveness of these suggested adaptive strategies.

8.4 Chapter 6. Classifying visuomotor workload from brain waves

This study was, again, aimed at f inding sensitive measures of mental workload on rural road 
conditions albeit through a very different data analysis approach than the approach used in 
the previous studies in this thesis. 

Par ticipants of this study completed f ifteen shor t rides, with varying levels of steering 
demand. Steering demand was manipulated by changing driving speed (5 levels) and by pro-
viding the par ticipant with performance target levels (3 levels), all relative to the individual’s 
comfor table driving style as established during an initial ride. For all rides, traff ic interaction 
was limited to a stream of 40 passing oncoming passenger cars per minute on average. 
Performance targets of swerving behaviour (SDLP) were projected onto the windscreen of 
the vehicle in addition to current values of SDLP, as measured during a 15 s moving window. 
Unexpectedly, the steering performance target manipulation did not affect the actual swerv-
ing behaviour as was the case with lane width and traff ic density manipulations during the 
previous studies (see chapter 3 and 4). On the one hand, this indicates that the intended 
mental workload manipulation failed, since SDLP proved to be the most sensitive measure in 
similar driving circumstances. On the other hand, the most diff icult performance target was 
rated as more effor tful, suggesting that drivers were trying but  unable to comply with the 
task instructions. It may be that such an explicit instruction is diff icult to translate to activities 
of the largely automated visuomotor system. To the very least it shows that SDLP was not 
sensitive to this type of task demand, which again conf irms that a single measure may not 
suff ice to assess mental workload over a broad range of task demands.

While driving, the par ticipant’s EEG was recorded additionally for an off line workload 
classif ication study on the individual level instead of on the group level. The other main feature 
of this approach is that it is data-driven. That is, EEG data were transformed through the use 
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of machine learning algorithms in such a way that the discriminability between experimental 
conditions was maximised.

The workload classif ication procedure used in this study involved four main steps, which 
were carried out for each par ticipant individually. Firstly, the eye-movement corrected EEG 
data were segmented into one-second epochs. Secondly, the Common Spatial Pattern 
(CSP) technique created a unique linear combination of the EEG data from two selected 
experimental conditions. This maximises the difference in the signals’ variance between one 
condition and the other (Blanker tz et al., 2008). Thirdly, the variance values of each data-
epoch were entered into a Fisher’s Linear Discriminant Analysis (LDA), which again transforms 
the data in such a way that the distance between data points between conditions are 
maximised. These three f irst steps, of training the classif ier, were carried out over a randomly 
selected, large por tion of data epochs, leaving the remaining data for testing the classif ier. 
Finally, these steps were repeated a large number of times in a cross validation procedure to 
avoid a data selection bias.

The results of this study showed that this technique is highly sensitive to changes in mental 
workload as classif ication accuracy increased to 95% on average across par ticipants for the 
higher frequency bands when discriminating between experimental conditions. This was a 
promising f inding, conf irming that this data analysis method may be used to develop EEG-
based adaptive suppor t systems. 

However, the superior classif ication performance resulting from high EEG frequencies 
raised the question of the neurophysiological mechanisms underlying these classif ications. 
From the literature, it is known that EEG frequencies above 20 Hz are often contaminated by 
electrical activity resulting from muscular activity. The association between high accuracies 
in high frequency bands therefore suggests that par t of the underlying information did not 
originate directly from neuronal activity. This holds especially in case of a semi-realistic task 
such as driving in a simulator, which requires a lot muscular activities compared to more 
strictly controlled laboratory tasks. Also when looking at scalp topographies, which ref lect 
how the CSP-transformed signals project to the scalp, it is clear that peripheral electrodes, 
which are most likely to pick activities from facial muscles, were often involved in case of very 
high accuracies. Nonetheless, for EEG frequencies below 20 Hz, which are less likely to be 
contaminated by EMG activities (Whitham et al., 2007), an average accuracy of up to 80% 
was still found, indicating that a user adaptive suppor t system that is largely based on neural 
activities may still be feasible (e.g. passive BCI).  



152

8  Main Results and discussion

Distinguishing between workload levels through the classif ication technique described 
above differs from more traditional statistical approaches, which hinders a clear comparison 
between workload measurement techniques. As mentioned, the CSP-based procedure 
transforms data at the individual level to maximise discriminability. In addition, it is 
fundamentally limited to classifying between two data classes (i.e. two workload levels). 
Nonetheless, such high accuracies do indicate that the EEG classif ication technique is more 
sensitive to a broader range of mental workload changes than either SDLP or subjective 
ratings.

8.5 Chapter 7. A Brain and Performance Based Adaptive Cruise Control

For this study, two versions of a proto-typical passive BCI system were implemented in a 
driving simulator, which were aimed at maintaining workload levels by increasing, maintaining, 
or decreasing driving speed. Strictly speaking, this system cannot be def ined as adaptive 
automation, since it did not shift tasks back and for th between the human user and a 
technological subsystem (see Chapter 2 for more details on adaptive automation). However, 
it was cer tainly designed to be user adaptive and f its well within the general philosophy of 
adaptive automation to keep workload levels within an optimal range.

The reason for using two versions of a BCI was our interest in creating a BCI that is largely 
based on neuronal activities, as well as creating a BCI that simply performs best in terms 
of classif ication accuracy. In the literature there are clear indications that EEG frequencies 
above 20 Hz are contaminated with electrical activities as a result of muscular activities. 
However, electromyogram (EMG) activity is largely absent from EEG frequencies below 20 
Hz (Whitham et al., 2007). Therefore, a low frequency BCI system version was tested in 
addition to a high frequency BCI version, while par ticipants drove through rural scenery that 
varied with respect to curve length to manipulate steering demand. 

Since this brain-based adaptive cruise control needed to distinguish between three levels 
of workload during the application phase, the binary workload classif ication procedure 
described in Chapter 6 needed to be expanded to a multiclass classif ication procedure. This 
was accomplished through a pairwise voting procedure (e.g. Friedman, 1996). That is, during 
the calibration phase, data from three workload levels were acquired (low, comfor table, and 
high), relative to the individuals’ comfor table workload level as established during an initial 
ride. Next, three CSP-based classif iers were trained (per BCI version), one classif ier for each 
condition pair. Subsequently, during the feedback phase, all three classif iers were deployed 
simultaneously and assigned probabilities to each new one-second EEG segment indicating 
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the likely hood that data should be classif ied as A or B. In other words, all data classes (low, 
comfor table, and high workload) received two probabilities, which were then added up. The 
data class that received the highest summed probability “won” the vote, resulting in a speed 
change advice after applying a moving average for these probabilities to fur ther enhance 
classif ication accuracy.

As a precautionary measure, vehicle parameters were also monitored during the 
application phase, using a 20 s moving window, allowing the speed regulation protocol to be 
expanded with vehicle-based interventions. In addition, an absolute minimum and maximum 
driving speed was set and a change dead-band (10 s) was implemented, which prevented 
very rapid speed changes and allowed the driver some time to get used to a new speed. 

The calibration data were not only used for model training, they were also assessed off line 
after the experiment had f inished and accuracy levels roughly replicated the accuracy as 
found during the preparatory study (Chapter 6). However, before discussing the results from 
the feedback phase, it should be noted that the workload classif ications that were used by 
the adaptive system are now suspected to have had time delays for a number of par ticipants. 
This delay could range from about 1 s to a maximum of about 5 s. Even if the actual impact 
of these delays may have been relatively low due to the dead-band that limited the system’s 
responsiveness, an immediate link between workload classif ications and driving speed cannot 
be assumed. This limits the conclusions that can be drawn from this study.

Having said that, upon applying the trained classif ication models to new EEG data in 
real time during the application phase, a wide variety of (sometimes erratic) speed setting 
behaviours were observed, indicating that classif ication accuracy had dropped substantially. 
For example, for several rides, the BCI system constantly advised the driving simulator to reduce 
speed. As a result, driving speed was maintained at the absolute minimum level.  Another 
example is an oscillating speed pattern caused by workload classif ications that continuously 
advised to increase speed but was subsequently overruled by the vehicle parameter loop, 
which signalled worsened lane keeping performance. However, workload classif ications of 
comfor table levels and an oscillating pattern around this level were also observed, indicating 
that for some of the rides, the system behaved as expected. Systematic differences in system 
behaviour between the BCI version and curve lengths were not observed.

It must be concluded that the CSP-based classif ication model, as implemented for this study, 
turned out to have low transferability going from the calibration to the feedback phase, which 
severely impaired the technique’s ability to reliably monitor mental workload. In general, the 
time and context dependency of psychophysiological measures is a known issue, both within 
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the f ield of BCI and in the wider human-machine interaction f ield (e.g., Shenoy et al., 2006; 
Fairclough, 2009). In case of passive BCI it shows that substantial improvements of accuracy 
transfer, for example by updating the classif ication models in real-time while they are being 
applied, should continue to be one of the main research topics in this f ield.

8.6 General discussion 

The main goal of this thesis was to f ind ways to monitor changes in mental workload levels 
as elicited from the lane-keeping task when driving on rural roads. So far in this chapter, the 
studies aiming at this general goal were discussed separately. Upon arriving at this point in 
this thesis however, I will address some of the more general issues that, in my opinion, may 
be relevant for a broader range of research into advanced human-machine interaction. This 
range of research is mainly def ined by its goal: create applications that can act on what they 
infer from the user. 

Monitoring mental workload requires knowledge of the associations between a construct 
that is def ined in psychological terms and the sources of information that may be available 
to the workload monitor. It could be argued that there are two basic research paradigms 
through which this knowledge may be attained: the off line and the online paradigm. Firstly, 
in off line studies the effects of experimental manipulations are analysed when the data 
from all par ticipants are recorded. Off line studies can be divided into studies using statistical 
approaches aimed at drawing conclusions at the group level and at the individual level. 
Secondly, there are online studies during which the on-going state-changes of the user are 
monitored while a par ticipant is exposed to the study’s conditions; and usually also a form 
of feedback is included. That is, a detected change in the user state can lead to a machine 
action, such as providing information, warnings, or taking control of the task (e.g., adaptive 
automation; see Chapter 2 for an overview). Of course, online monitoring can also be carried 
out without any form of interaction, but this type of study was not par t of this thesis and will 
not be discussed any fur ther. 

In the human factors literature in general and also more specif ically in the transpor t 
psychology literature, the off line paradigm at the group level is most commonly used. 
Examples of investigated mental states include fatigue, distraction, aler tness, perceived risk, 
workload, emotions and so for th (Åkerstedt, 2004; Thomas & Walton, 2007; Brookhuis &  de 
Waard, 2010; Lewis-Evans, 2012; Zhao et al., 2012; Strayer et al., 2013;  and many more). Also 
the f irst, third, and four th study of this thesis (Chapters 3, 5, and 6), f it into this paradigm. 
These experiments showed which of the included measures (subjective, performance, and 
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physiological) ref lected mental workload and in what way. A performance measure, the 
standard deviation of the lateral position, turned out to be highly sensitive to most task 
demand manipulations, but not all. These differences in the measures’ sensitivity show there 
is no single measure that will ref lect all levels of mental workload under all driving conditions, 
not even when the task is restricted to driving on rural roads in a simulator (de Waard, 1996; 
see also Figure 1.2). In other words, a many-to-one measures-state mapping is required to 
establish a reliable relationship (see Fairclough, 2009; Cacioppo and colleagues, 1990, 2000 
for different types of measure-state mappings, albeit in the context of psychophysiological 
measures only).   

So far, what these off line analyses have in common, is that they rely on traditional 
statistical inference, which is arguably not the best approach for uncovering relationships 
that can be directly used in online studies. In a nutshell, traditional statistical analyses usually 
compare the differences between experimental conditions (e.g. workload levels) to the 
differences within these conditions, to infer the likelihood of the found differences between 
conditions. The differences between individuals are thereby marked as error variance. Even in 
a repeated measures analysis of variance, where the variations due to individual differences 
are par tly taken out of the error term, the directions of effects within the individuals need 
some consistency across individuals to reach statistical signif icance. In other words, traditional 
statistical approaches are designed to draw conclusions at the group level. When the research 
goal is to generalise to the larger population, for example to advise policy makers in sectors 
such as transpor tation, health care, and industry, group-level statistics may be the most 
appropriate approach. However, when we are mainly interested in the individual’s emotional 
or cognitive state, the individual differences are exactly what we have to deal with.

One way of dealing with individual differences is through the feature extraction and 
classif ication algorithms that are commonly used in BCI research. The main advantage of 
these machine learning approaches is that they are data driven in the sense that data from 
one individual can be used to classify between mental states, such as mental workload levels, 
without any preconceptions of the fundamental (neurophysiological) mechanisms underlying 
the differences between data from one mental state and the other (e.g., Blankerz et al. 2008; 
Müller et al.; 2008; Zander et al., 2011). Apropos, that is not to say that assumptions of the 
underlying mechanisms are not implicitly or explicitly inser ted by the researcher through the 
selection of input data channels or the selection of EEG-frequency bands. 

Both in the ergonomic and BCI related literature, examples of various types of machine 
learning algorithms for off line analysis can be found, ranging from ar tif icial neural networks 
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to relative simple linear classif iers (e.g. de Waard et al., 2001; Wilson and Russel, 2003; Müller 
et al., 2008; Hockey et al, 2009; Wang et al, 2012). The EEG analysis described in Chapter 
6 also f it into this research approach, as the CSP technique was applied to extract the 
most relevant features before applying Fisher’s linear discriminant analysis. This approach was 
highly sensitive to all levels of mental workload elicited during the experiment. Given these 
outcomes and the individual nature of the technique, this approach seemed very promising to 
investigate during an online study.

For online studies, the main research goal is to determine the condition of the individual 
on the f ly, which poses several challenges to the researcher compared to off line studies 
on the group level. Firstly, similar to off line classif ication studies, the relational direction is 
reversed. It is now necessary to assess the level of the independent variables through the 
response pattern of the dependent variables. Secondly, an online measurement technique 
requires more robustness. The usefulness of assessments does not just depend anymore on 
the existence of a reliable and sensitive association between the two types of variables, it is 
also required that the measure is selective. Selectivity of a measure refers to the degree that 
a measure only changes if the mental state changes, and is not dependent on other factors 
(de Waard, 1996; see also Fairclough, 2009). 

Thirdly, monitoring needs to be carried out at the individual level and therefore knowledge 
that was gained from group-level analysis needs to be translated to online mental state 
inferences. In the literature, several methods to accomplish this can be identif ied. To star t with, 
a distinction can be made between absolute and relative criteria (Brookhuis et al., 2003). 
Absolute criteria are identical for all individuals, but are nonetheless applied at the individual 
level. For example, Brookhuis et al. (2003) published a paper providing absolute criteria for 
driver impairment (in addition to relative criteria), which could be used to trigger a machine 
action. Also in this thesis (Chapter 4 and 7), absolute lane keeping performance criteria were 
used to time the provision of driving suppor t, which are signs of inadequate mental effor t 
expenditure leading to unsafe driving behaviour. Relative criteria refer to baselined measures. 
In this case, mental state inferences are based on the measure’s differences between a control 
situation and the current situation. For example, the bio-cybernetic system used by Prinzel et 
al., (2001) compared the values of the so-called ‘engagement index’ while performing a task, 
which is a ratio between several EEG frequency powers (beta / (alpha + theta)), to baseline 
(i.e. resting) values of the same index. Slightly different, in the original engagement index 
study, the decision to provide or withdraw automation was based on the slope of the index, 
which was updated every couple of seconds (Pope et al., 1995). 
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The various methods of criteria setting described above are still characterised by very 
general threshold rules, identically applied to all users. Machine learning algorithms on the 
other hand, are able to transform input channels in such a way as to maximise the differ-
ences between mental states at the individual level. In essence, a new set of criteria is derived 
for every individual. Several examples of online systems that were geared up with a machine 
learning approach can be found in the literature (Kohlmorgen et al., 2007; Wilson & Russell, 
2009; Ting et al., 2010; Christensen & Estepp, 2013), although their number is limited com-
pared to the number of off line classif ication studies. In general, online classif ication studies 
are characterised by a training phase and a feedback phase. During the training or calibra-
tion phase, data are acquired while a mental state is manipulated through variations in task 
conditions, similar to off line studies. In other words, input data are labelled as ref lecting a 
par ticular state, such as low, comfor table, and high mental workload. Then, the param-
eters of the classif ication model are determined, based on the data from two of these task 
conditions (e.g., weights are added to the original EEG channels to maximise discriminability 
between high and low workload). During the subsequent feedback or application phase, the 
same classif ication model parameters are again used to transform new, incoming segments 
of EEG data into mental state classif ications. 

This approach was also used for the online study described in Chapter 7, when online 
workload classif ications were linked to a cruise control. The results from this study showed 
that very high off line classif ication accuracy as found during online studies does not mean 
that the same accuracy is transferred to the online paradigm. This is a common f inding, and 
often attributed to non-stationarities in the EEG signal (Shenoy et al., 2006; Lotte et al., 2007; 
Krauledat, 2008; Borghini et al., In Press). Another way of framing this problem is to say that 
the machine learning algorithms that enable us to construct the much needed individually 
trained classif ication models, are also trained by differences in the EEG signal that are caused 
by factors that are unrelated to the relevant mental state, such as time-of-day differences. 
As mentioned before, tackling this problem, for example by using adaptive classif iers that 
are updated during a feedback phase, is required to develop reliable state monitors. To 
accomplish this, fur ther cooperation and integration between the f ields of Physiology, Human 
Factors and Ergonomics, and Computer Science is strongly needed.

When designing an adaptive system for an online study, one is quickly faced with the necessity 
to implement precautionary measures to deal with unlikely events. Even if online workload 
classif ication accuracy could be increased to 95%, there would still be 5% misclassif ications, 
which could have detrimental effects on task performance, user acceptance, and in case 
of driving, on traff ic safety. For example, complacency is often mentioned in the literature 
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to indicate that a human user will tend to over rely on a technological system that is not 
completely reliable, and will therefore be more likely not to notice when the system is at fault. 
Similarly, automation bias may lead human operators into making decisions that are strongly 
inf luenced by the technological system’s advice for example, instead of thinking critically for 
themselves (e.g., Parasuraman & Manzey, 2010). Needless to say, these human tendencies will 
have to be factored in when designing a suppor t system that is linked to a user monitor that 
has some degree of unreliability, as is the current state of affairs. One way to deal with this 
problem is to combine physiological data with other data sources such as task performance 
to prevent extreme system states (e.g., very fast driving speed). In general, the added value 
of this type of user adaptive systems will likely depend on the combination of monitoring 
reliability and the specif ic application which the systems are connected to.

So far, this general discussion has only dealt with issues with regard to monitoring the mental 
state of the human user. However, as is clear from the adaptive automation literature, this 
is just one par t of the equation towards user adaptive systems. The other par t entails issues 
with regard to the machine actions. Especially, the way that the user reacts to an adaptive 
system is a necessary research direction. Behavioural adaptions from the human user can be 
expected as users gain experience with the system, or through misuse, disuse, or abuse of the 
system, facilitated by human capacity to adapt to new situations (e.g., Parasuraman & Riley, 
1997; Hancock & Verwey (1997). However, developing reliable state monitors for the online 
situation should be seen as prerequisite before investigations into behavioural adaptations to 
these systems make sense.

Now, f inally, upon nearing the end of this thesis, what else may be said? In the introduction, 
it was stated that this thesis is dedicated to the advancement of human-machine interaction. 
How can we reliably monitor human mental state and how can monitoring aid the human 
user? It is clear that we can use many sources of information and many data analysis techniques 
to monitor the mental state, and none of them are perfect. However, by investigating a 
number of these possibilities, such as several driving behaviours, physiological measures such 
as hear t, breathing, and brain activities, by analysing these on the individual level and using 
these insights to create two user adaptive systems, this thesis should be seen as another step 
forward towards user adaptive systems. Based on the research in this thesis, the next step 
would be focussed on increasing the monitor’s accuracy over time and between situations. 
This may be accomplished by fur ther exploring data-driven techniques.  However, at the 
same time we should continue to investigate which input data-channels are in fact informative 
of the mental state that we are interested in, to be able to pre-select information sources for 
a mental state monitor, since it may very well be that a purely data-driven approach that 
combines as much measures as possible will turn out to be too specif ic to be helpful. I hope 
that these considerations may be benef icial in formulating future research effor ts. If so, this 
thesis will have truly accomplished its goal. 
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Hoofdstuk 1. Introductie

Het centrale thema in dit proefschrift is gebruikers-adaptieve mens-machine interactie. Dit 
type systemen wordt ontwikkeld vanuit de visie dat in de nabije toekomst technologie in 
staat zal zijn onze emoties, intenties en mentale capaciteiten af te lezen en dat de omgeving 
daardoor f lexibel aan te passen is aan onze voor tdurend veranderende wensen en behoeften 
(Brusilovsky, 2001; Brusilovlsky and Millán, 2007; Duric et al., 2002; Feigh et al., 2012; Hettinger, 
2003; Fairclough, 2009). In f iguur 1.1 is dit idee in de meest eenvoudige conceptualisatie 
weergegeven, als een soor t regelsysteem, verglijkbaar met een centrale verwarming waarbij 
een thermometer de verwarmingsinstallatie doet aan- en afslaan. Op een vergelijkbare 
manier gebruikt een gebruikers-adaptief systeem informatie om te bepalen of de gebruiker 
bijvoorbeeld overbelast is en daarom behoefte heeft aan ondersteuning. Deze optionele 
ondersteuning zorgt er vervolgens weer voor dat de belasting voor een gebruiker op een 
aanvaardbaar niveau komt, enzovoor t. Een toepassing van dit concept is een auto met een 
vermoeidheidsdetector, die de bestuurder suggereer t een pauze te nemen.

Het onderzoek dat in dit proefschrift beschreven is, werd opgezet met als doel bij te 
dragen aan deze visie van adaptieve mens-machine interactie. Deze bijdrage werd geleverd 
door de nadruk te leggen op een bepaalde mentale toestandsverandering in een specif ieke 
taakomgeving. In het bijzonder ging het bij dit onderzoek om het detecteren van mentale 
inspanningsveranderingen als gevolg van autorijden (in een rijsimulator) op verschillende 
wegen. De vervolgvraag was hoe informatie over deze inspanningsveranderingen gebruikt 
kan worden om de bestuurder te ondersteunen terwijl hij aan het autorijden is. 

Hoofdstuk 2. Theoretische achtergronden

Het algemene idee van gebruiker-adaptieve technologie vond zijn oorsprong in de 
jaren zeventig van de vorige eeuw, zoals beschreven wordt in de vakliteratuur van een 
subcategorie van het ergonomisch onderzoeksveld: de adaptieve automatisering. Deze 
tijd werd gekenmerkt door de opkomst van de automatisering, die vele voordelen bood 
ten opzichte van de handmatige taakuitvoering. Echter, men constateerde ook een 
aantal negatieve effecten die gerelateerd waren aan de nieuwe rol van de mens in dit 
geautomatiseerde systeem. Volautomatische systemen moeten gemonitord worden door 
een menselijke supervisor voor het geval er noodsituaties ontstaan. Kor tgezegd, de rol van 
de mens veranderde van een actieve taakuitvoerder naar een passieve observant, die slecht 
uitgerust is om de sporadisch optredende fouten in het automatische systeem op te vangen, 
bijvoorbeeld doordat de eentonigheid van deze taak de aler theid verminder t (Sheridan, 
1976a, 1976b; Sheridan & Verplank, 1978; Wiener & Curry, 1980; Bainbridge, 1983; Wiener, 
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1989; Endsley, 1995; Billings,1997; de Waard et al., 1999). Dit nadeel leidde tot het idee dat 
het beter is om automatisering f lexibel in te zetten. Namelijk, op een zodanige manier dat 
de menselijke uitvoerder alleen ondersteund wordt indien hier toe voldoende aanleiding is, 
waardoor de betrokkenheid bij het primaire taakproces zo groot mogelijk blijft. 

In de literatuur over adaptieve automatisering staan twee onderzoeksvragen centraal. 
Ten eerste: wanneer moet een adaptief systeem iets doen? En ten tweede: wat kan een 
adaptief system doen? Anders gezegd, wat moet aangepast worden en wanneer?

Wat aangepast kan worden wordt met name bepaald door de specif ieke taaksituatie. 
Er zijn twee veelgebruikte theorieën die een ontwerper kunnen helpen hier over na te 
denken. Om te beginnen zijn er meerdere automatiseringsniveaus denkbaar waar tussen 
geschakeld kan worden, waardoor de taaklast van de uitvoerder dynamisch kan worden 
aangepast. Dat wil zeggen, een automatisch systeem hoeft niet perse volautomatisch te 
zijn. Ten tweede, taakuitvoering wordt veelal gekarakteriseerd door een aantal fasen, zoals 
informatie-acquisitie, informatie verwerking, beslissen dat een bepaalde handeling nodig is en 
als laatste, de uitvoering van een handeling. De automatisering of taakondersteuning van elk 
van deze fasen kan ook f lexibel van aard zijn. Een adaptief systeem kan bijvoorbeeld worden 
ingezet om op het ene moment alleen de handeling uit te voeren waar toe de mens (operator) 
besloten heeft, maar op het andere moment kan het systeem ook handelingssuggesties 
geven (Endsley & Kaber, 1999; Parasuraman et al., 2000; Sheridan, 2000). 

Deze veranderingen van automatiseringsniveaus zouden door de menselijke taakuitvoerder 
geïnitieerd kunnen worden. Het gevolg hiervan is echter dat deze een extra taak krijgt, 
namelijk het aansturen van het f lexibele ondersteuningssysteem. Het alternatief is dat het 
systeem zelf besluit wanneer het tijd is actie te ondernemen. Dit laatste type staat centraal in 
dit proefschrift. Voor een goede timing kan een systeem informatie gebruiken uit drie soor ten 
bronnen. Ten eerste, informatie uit taakomgeving kan aangeven wat bijvoorbeeld iemands 
taaklast is (bijv. verkeersdrukte) of dat er zich een kritieke gebeur tenis heeft voorgedaan 
waardoor extra taakondersteuning zinvol is (bijv. een f ile verderop). Ten tweede kan in 
sommige taakomgevingen het menselijk gedrag een indicatie zijn van de taakprestatie. 
Gedragsobservatie kan ook bepalen of de handelingen die iemand uitvoer t naar verwachting 
zijn. Indien de prestatie beneden de maat is of iemands handelen aangeeft dat de uitvoering 
suboptimaal verloopt, kan de computer ondersteuning aanbieden. Ten derde, kennis van 
de interne toestand van de mens, zoals stress of het mentale inspanningsniveau, kan een 
indicatie geven dat de taakuitvoering suboptimaal dreigt te worden, wat de aanleiding kan 
zijn voor het adaptieve systeem om een preventieve actie te initiëren. Kennis van de interne 
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toestand kan onder meer verkregen worden door fysiologische metingen uit te voeren met 
behulp van sensoren op het lichaam (voor overzichten zie: Parasuraman et al. 1992; Kaber & 
Riley, 1999; Hoogeboom & Mulder, 2004).

Hoofdstuk 3. Sturen en Mentale Inspanning 

Deze studie was opgezet om te onderzoeken hoe rijmoeilijkheid de mentale inspanning 
beïnvloedt op bochtige, rurale wegen. Mentale inspanning werd afgeleid aan de hand van het 
stuurgedrag, subjectieve oordelen van de bestuurders en de fysiologie. Dit geeft, met andere 
woorden, verschillende maten voor mentale inspanning. Rijmoeilijkheid werd gemanipuleerd 
door de bestuurders bloot te stellen aan verschillende wegbreedten en door de dichtheid van 
het tegemoetkomend verkeer te variëren. De bevindingen van deze studie tonen aan dat de 
gevoeligheid voor veranderingen van mentale inspanning niet gelijk zijn voor alle gebruikte 
maten. 

Allereerst bleek dat de standaard deviatie van de laterale positie die het voer tuig innam op 
de weg (SDLP; het slingergedrag op de weg), gevoelig te zijn voor alle niveaus van rijmoeilijkheid. 
SDLP verminderde met ongeveer 0.01 m per 0.25 m versmalling in rijstrookbreedte (van 
3.00 m tot en met 2.25 m). Een hoge dichtheid van de tegemoetkomende verkeerstroom 
op de andere weghelft (40 passerende auto’s per minuut in plaats van 10), resulteerde in 
een extra afname/vermindering van SDLP van 0.04 m. Dit effect op het slingergedrag van 
de bestuurder kan gezien worden als een (onbewuste) poging om de veiligheidsmarges in 
alle rijsituaties gelijk te houden (Summala, 2007). Een lage SDLP, met name in combinatie 
met een verschuiving van de gemiddelde laterale positie op de weg richting de berm 
(wat ook gevonden werd), minimaliseer t de frequentie dat de auto van de bestuurder 
dicht bij het tegemoetkomend verkeer komt. Hierdoor voelt de bestuurder zich weer op 
zijn of haar gemak. Volgens theorieën over mentale inspanning (zoals De Waard, 1996), is 
het handhaven van veiligheidsmarges (met andere woorden, de taakprestatie), gegeven 
verzwaarde taaklasten, alleen mogelijk indien de mentale inspanning evenredig toeneemt. 
Deze toename van mentale inspanning werd ook gezien in de subjectieve oordelen en in de 
har tslagvariabiliteit, maar niet op dezelfde manier.

De bestuurders scoorden hoger op de subjectieve mentale inspanningsschaal bij een 
toename van de verkeersdichtheid en daarnaast bij een afname van de rijstrookbreedte. 
De gevoeligheid van deze subjectieve maat voor de strookbreedte manipulaties beperkte 
zich echter tot de hoge verkeersdichtheid condities, wat aangeeft dat de gevoeligheid van 
deze maat in een ander bereik zit dan SDLP. Dit afwijkende patroon is in overeenstemming 
met theorieën van mentale inspanning, waarin gesuggereerd wordt dat mentale belasting 
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(of inspanningseis) nauwelijks als inspannend wordt ervaren indien de taaklast middelgroot is 
(niet te licht en niet te zwaar). Inspanning wordt pas als zodanig ervaren wanneer de taaklast 
buiten dit optimale bereik komt (De Waard, 1996). Een verklaring voor het gevonden effect 
op de subjectieve scores is dus dat de toename van verkeersdichtheid, wat duidelijke effecten 
had op de SDLP, de taaklast verhoogde tot voorbij het optimale taaklastbereik, waardoor 
de additionele eisen aan de stuurprestatie ook bewust werden ervaren.

Verder, de 0.10 Hz component van de har tslagvariabiliteit, een veel gebruikte maat 
in onderzoek naar mentale inspanning (bijvoorbeeld Mulder, et al., 2009), reageerde op 
de toename van verkeersdichtheid. Echter, de verwachte afname van energie in deze 
frequentieband (0.07 – 0.14 Hz) als gevolg van minder brede rijstroken werd niet gevonden. 
Dit is een indicatie dat deze maat het minst gevoelig was voor deze veranderingen van 
mentale inspanning. De observatie dat inspanningsmaten verschillen in gevoeligheid is ook 
gevonden voor andere rijomstandigheden. Deze studie bevestigt hiermee het beeld dat er 
voor een gebruikers-adaptief systeem waarschijnlijk meerdere maten nodig zijn om een 
betrouwbare en gevoelige meting van mentale inspanning in een breed bereik van taakeisen 
te bewerkstelligen.

Hoofdstuk 4. Adaptieve rijondersteuning op basis van rijprestatie

Uit de vorige studie bleek dat voer tuigparameters het meest gevoelig zijn voor mentale 
inspanningsveranderingen. Daarom werd besloten om SDLP en andere, daaraan gerelateerde 
voer tuigparameters te gebruiken voor het ontwerp van een rijondersteuningssysteem. Dit 
betekende dat de algemene kennis (op groepsniveau) verkregen uit de eerste empirische 
studie, nu toegepast diende te worden op de individuele gebruiker.

De rijondersteuning bestond uit informatievoorziening. Deelnemers aan deze studie 
kregen informatie te zien over de laterale positie van het voer tuig op de weg, maar alleen 
indien het automatische systeem dat nodig achtte. De informatie werd geprojecteerd 
op de vir tuele voorruit in de vorm van een ‘head-up display’. In termen van adaptieve 
automatisering kan gezegd worden dat dit systeem de eerste fase van het menselijk 
informatieverwerkingssysteem ondersteunde: informatie-acquisitie, en niet de latere 
fases zoals het nemen van beslissingen of het controleren van het voer tuig (Parasuraman, 
2000).  De vir tuele wegomgeving was in grote lijnen gelijk aan die van de vorige studie. 
De stuur-moeilijkheid werd gemanipuleerd door de dichtheid van de verkeersstroom uit 
tegenovergestelde richting te variëren (10 en 40 passerende auto’s per minuut) en door 
de rijstrookbreedte te veranderen (2.25 m en 3.00 m). Om tot de beslissing te komen of 
ondersteuning nodig was, gebruikte het ondersteuningssysteem alleen de meest recente 
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halve minuut aan voer tuigdata, dat gesampled werd met 10 Hz. Met elke nieuwe sample, 
schoof deze periode 0.1 s op in de tijd: een ‘lopende’ tijdsperiode, die telkens 29.9 seconden 
overlap had met de vorige periode. De informatievoorziening werd geactiveerd indien 
SDLP groter was dan 0.22 m, indien een deelnemer in totaal meer dan 7.5 s dichtbij de 
rijstrookgrenzen reed, of indien een deelnemer in totaal meer dan 3 s met (een deel van) het 
voer tuig over de rand van de rijstrook reed.

Het bleek dat rijprestatie enigszins verbeterde met dit gebruikers-adaptieve systeem, in 
vergelijking met rijden zonder ondersteuning en rijden met continue informatievoorziening 
(non-adaptieve ondersteuning). Dit effect was echter klein vergeleken met de effecten 
van de wegbreedte- en verkeersstroomdichtheidsmanipulaties. De subjectieve mentale 
inspanningsoordelen lieten geen verschil zien tussen de drie ondersteuningscondities. De 
gebruikservaringen bieden een mogelijke verklaring voor deze resultaten want verrassend 
genoeg bleek dat bijna één-derde van de deelnemers de geprojecteerde informatie zoveel 
mogelijk had genegeerd, omdat deze niet als bruikbaar of bevredigend werd ervaren. 

Alleen constateren dat een groot deel van de deelnemers er voor koos de informatie 
te negeren, geeft echter nog niet aan waarom zij dit deden. Effectieve implementatie 
van visuele ondersteuning hangt van allerlei factoren af, zoals de visuele aspecten van de 
interface (waargenomen aantrekkelijkheid, kleurgebruik, grootte, locatie op de voorruit, 
enzovoor t). Ook hangt de ingeschatte bruikbaarheid van de ondersteuning af van de 
precieze drempelwaarden die bepalen wanneer ondersteuning geactiveerd wordt. Door 
deze aan te passen kan bijvoorbeeld een ‘streng’ of een ‘tolerant’ systeem gemaakt worden. 
Bovendien kan het zijn dat bestuurders simpelweg meer tijd nodig hadden om bekend te 
worden met het systeem en dus ook voordat de voordelen hiervan zouden worden ingezien. 
Een grondig onderzoek naar al deze factoren zou aanknopingspunten kunnen geven voor 
de verbetering van gebruikerservaringen. Tegelijker tijd mag niet onopgemerkt blijven dat 
16% van de deelnemers aangaven dat zij het huidige, onderzochte systeem wel gebruikt 
hebben als bron van informatie. Omdat een groot deel van de bevolking wel eens auto rijdt, 
betekent dit dat een substantiële groep baat zou kunnen hebben bij een systeem van de 
huidige vorm. 

Verder bleek dat het adaptieve systeem meer gewaardeerd werd dan de andere twee, 
niet-adaptieve, ondersteuningscondities, omdat het moment van ondersteuningsactivatie 
werd ervaren als een waarschuwingssignaal, namelijk, dat men zich meer diende te 
concentreren op de rijtaak. Dit geeft aan dat het systeem niet alleen de informatie-acquisitie 
fase ondersteunde, zoals de bedoeling was van de ontwerpers, maar ook een latere fase 
van het menselijk informatieverwerkingssysteem. Deze waarschuwing hielp de bestuurder 
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namelijk met de beslissing wanneer zij voor hun gevoel hun rijstijl moesten aanpassen. Een 
technologisch systeem anders gebruiken dan de bedoeling was wordt in de literatuur onder 
de noemer van gedragsadaptaties geschaard. Gebruikers van een adaptief systeem zullen 
nadenken over instellingen van het systeem en deze informatie vervolgens gebruiken om hun 
eigen gedrag aan te passen. Immers, de mens is zelf ook een (biologisch) adaptief systeem. 

Hoofdstuk 5. De potentie van automatische muziekselectie voor adaptieve 
ondersteuning

Zoekend naar een alternatieve manier om rijgedrag te beïnvloeden, werd onderzocht of een 
gebruikers-adaptief systeem wellicht muziek zou kunnen gebruiken. Hiervoor werden twee 
typen muziek gebruikt. Muziek die een positieve- en muziek die een negatieve stemming bij 
de desbetreffende individuele bestuurder opriep. Op basis van de literatuur konden twee 
tegenovergestelde effecten van muziek luisteren tijdens het autorijden verwacht worden. 
Aan de ene kant zou het stimulerende effect een middel kunnen zijn tegen de afname van de 
mentale inspanningscapaciteit als gevolg van onder-activatie in monotone rijcondities, en dus 
een positief effect op rijgedrag kunnen hebben (North & Hargreaves, 2008). Aan de andere 
kant kon verwacht worden dat muziek aandacht vraagt die eigenlijk gebruikt moet worden 
om het voer tuig veilig op de weg te houden; een negatief effect (Shek & Schuber t, 2009). 
Daarom werden deelnemers aan deze studie blootgesteld aan zowel weinig- als veeleisende 
rijomstandigheden. Deze omstandigheden werden weer gecreëerd door wegstrookbreedte 
te manipuleren in de rijsimulator (2.50 m en 3.00 m).

Muziekvoorkeur is erg persoonlijk. Ieder individu zal een bepaald muzieknummer anders 
ervaren. Ter compensatie van deze variabiliteit, beoordeelden de deelnemers 60 nummers, 
tijdens een initiële sessie en werd geselecteerd uit een breed muzikaal spectrum, op de 
ervaren ‘stemmingsgevoeligheid’ van elk nummer (positief of negatief en in welke mate) en 
op het ervaren energieniveau. Vervolgens werd een compilatie van tien negatief beoordeelde 
nummers en een compilatie van tien positief beoordeelde nummers gemaakt, waarbij het 
energieniveau zo constant mogelijk werd gehouden. Achteraf bleek dat de compilaties 
inderdaad verschilden in stemmingsgevoeligheid, maar ook, zij het in mindere mate, in 
energieniveau. Het bleek niet mogelijk om nummers voor de compilatie te selecteren die 
alleen varieerden in stemmingsgevoeligheid, wat aantoont dat deze twee dimensies van 
emotie en stemming samenhangen.

Voor het oorspronkelijke ar tikel van deze studie (Van der Zwaag et al., 2012), was de 
centrale vraag of een stemming geïnduceerd en gehandhaafd kon worden tijdens het 
autorijden, door middel van muziek, waarop een voorzichtige bevestiging kon worden 
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gegeven. De effecten van het luisteren naar muziek op rijgedrag, fysiologische maten en 
subjectieve mentale inspanningsmaten beperkten zich echter tot marginale effecten op 
rijsnelheid en ademhalingsfrequentie. In vergelijking met de condities waarin de deelnemers 
niet naar muziek luisterden, lag de gemiddelde rijsnelheid tijdens het beluisteren van positief 
beoordeelde muziek iets lager. In het algemeen blijkt dat bestuurders bij veeleisende weg- 
of verkeersomstandigheden vaak iets langzamer gaan rijden om zichzelf meer tijd te geven 
om bijvoorbeeld verkeersborden te lezen, een verkeerssituatie te overzien, maar ook 
om meer stuurcorrecties te kunnen maken. Een verklaring van het gevonden resultaat is 
dan ook dat de deelnemers aandachtig naar de positieve muziek luisterden, waardoor zij 
minder aandacht besteedden aan de rijtaak. Dit heeft mogelijk geleid tot een (onbewuste) 
compensatoire rijsnelheidsverandering (Summala, 2007). De ademhalingsfrequentie nam af 
(men ging langzamer ademen), wanneer men luisterde naar negatief beoordeelde muziek. 
Dit zou kunnen duiden op een ontspanningseffect. 

Samenvattend lijkt het onwaarschijnlijk dat een automatische selectie van positief of 
negatief beoordeelde muziek door een adaptief systeem gebruikt kan worden om direct 
de mentale inspanning te veranderen in de rijomstandigheden die hier getest werden. De 
snelheidsverlaging bij positieve muziek duidt er echter wel op dat aandacht kan worden 
opgeëist. Een adaptief systeem dat automatisch de muziek uitschakelt wanneer er sprake is 
van veeleisende omstandigheden zou daarom een interessant onderwerp voor toekomstig 
onderzoek kunnen zijn. De invloed van muziek luisteren op ademhaling suggereer t een direct 
effect op de lichamelijke toestand en bijvoorbeeld het aler theidsniveau. Muziekselectie in 
de auto zou de bestuurder daarom kunnen helpen bij het reguleren van zijn aler theid en 
ontspanning. De effectiviteit van deze mogelijke adaptieve strategieën moet echter nog wel 
verder uitgezocht worden. 

Hoofdstuk 6. Het classif iceren van visueel-motorische inspanning uit hersengolven

Met deze studie werd weer teruggekeerd naar de primaire lijn in dit proefschrift: het vinden 
van gevoelige maten voor mentale inspanning tijdens het rijden op rurale wegen. Een groot 
verschil met de vorige studies is dat in dit onderzoek gebruik is gemaakt van een andere data-
analyse benadering. Traditionele vormen van data-analyse worden altijd worden uitgevoerd 
op groepsniveau. Een vereiste van een gebruikers-adaptief systeem is echter dat deze op 
individueel niveau kan bepalen wanneer iemand behoefte heeft aan ondersteuning. Met 
andere woorden, een mentale toestandsmonitor kan geen gebruik maken van traditionele 
statistische (groeps-)methoden, terwijl de data-analyse methode die voor deze studie 
gebruikt werd wel op individueel niveau inzetbaar is.
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Deelnemers aan dit onderzoek reden vijftien kor te ritjes, die varieerden in stuur-
moeilijkheid. Stuur-moeilijkheid werd gemanipuleerd door de rijsnelheid, die door de simulator 
bepaald werd, te variëren (op 5 niveaus) en door de deelnemers een prestatiedoel op te 
leggen (3 niveaus van moeilijkheid). De specif ieke rijsnelheden en geëiste rijprestaties werden 
individueel ingesteld, op basis van de individuele, comfor tabele rijstijl die tijdens een initiële rit 
bepaald werd. De interactie met ander verkeer was wederom beperkt tot een stroom van 
tegemoetkomende auto’s (40 passerende auto’s per minuut). Prestatiedoelen, uitgedrukt 
in een SDLP waarde (bijv. 25 cm), werden geprojecteerd op de voorruit, samen met de 
meest recente SDLP waarde die wederom berekend werd door middel van een ‘lopende’ 
tijdsperiode (vijftien seconden en tien maal per seconde opnieuw berekend). 

Tegen de verwachting in bleek dat deze prestatiedoelen voor slingergedrag geen effect 
hadden op het eigenlijke slingergedrag. Aan de ene kant geeft dit aan dat deze manipulatie 
niet werkte, omdat SDLP juist heel gevoelig bleek voor andere manipulaties tijdens de andere 
studies. Aan de andere kant lieten de mentale inspanningsoordelen zien dat de bestuurders 
het zwaarste prestatiedoel wel degelijk als meer inspannend ervoeren dan de twee lichtere 
niveaus. Dit suggereer t dat de deelnemers het wel probeerden, maar niet in staat waren 
de doelen te halen. Wellicht is zo’n expliciet prestatiedoel (getallen op de voorruit) moeilijk 
te ver talen naar de activiteiten van het grotendeels geautomatiseerde visueel-motorische 
systeem. Dit resultaat toont in ieder geval aan dat SDLP niet gevoelig was voor deze vorm 
van taakeisen, wat weer bevestigt dat één enkele maat meestal niet voldoende informatie 
geeft om de mentale inspanning te bepalen.

Tijdens het rijden in de simulator werd bij de deelnemers elektro-encefalogram (EEG) 
activiteit opgenomen. Het EEG is de graf ische weergave van elektrische activiteit die gemeten 
wordt op de hoofdhuid. Deze wordt veroorzaakt door de onderliggende hersenactiviteit, 
maar ook door bijvoorbeeld oogbewegingen en het aanspannen van de gezichtsspieren. 
Deze data werden na af loop van het experiment gebruikt voor een classif icatieonderzoek 
op individueel niveau. Tot dusver werden analyses juist gedaan op groepsniveau, waarmee 
de vraag werd beantwoord of mentale inspanningsmaten gemiddeld genomen onderscheid 
konden maken tussen verschillende inspanningsniveaus. Een andere eigenschap van de 
gebruikte analysemethode is dat deze data-gedreven in plaats van theorie-gedreven is. Dit 
betekent dat de EEG data van deelnemers zelf werden gebruikt als basis om f ilters in te 
stellen, bijvoorbeeld door sommige EEG kanalen (21 in totaal), zwaarder te laten wegen dan 
anderen. Deze instellingen (lees: het classif icatiemodel), werden bepaald door wiskundige 
algoritmen waardoor verschillen in EEG data tussen experimentele condities gemaximaliseerd 
kon worden. Hierdoor werden de oorspronkelijke verschillen uitvergroot en kon makkelijker 
onderscheid gemaakt worden tussen bijvoorbeeld weinig of veel mentale inspanning.



170

NederlaNdse sameNvattiNg

De classif icatieprocedure in dit onderzoek bestond uit vier stappen, die voor elk individu zijn 
uitgevoerd. Eerst werden de voor oogbewegingen gecorrigeerde EEG data gesegmenteerd 
in stukjes van één seconde. Daarna creëerde de Common Spatial Pattern (CSP) techniek 
een unieke lineaire combinatie van EEG data uit twee geselecteerde experimentele condities. 
Deze techniek maximaliseer t het verschil in variantie van de EEG signalen tussen de ene 
conditie en de andere (Blanker tz et al., 2008). Vervolgens werden de variantiewaarden 
van elk datasegment gebruikt voor Fisher’s Lineaire Discriminanten Analysetechniek (LDA), 
waardoor de data opnieuw getransformeerd werden om verschillen tussen condities te 
maximaliseren. Dit eerste deel van de aanpak (eerste drie stappen), oftewel het trainen 
van het classif icatiemodel, werd uitgevoerd op een willekeurig geselecteerd deel van de 
datasegmenten (75%). De overige segmenten werden gebruikt om de accuratesse van 
het model te testen (‘weet’ het classif icatiemodel of een bepaald EEG segment uit de ene 
of de andere conditie komt?). De vierde en laatste stap was de cross-validatie procedure. 
Dat wil zeggen, de eerste drie stappen werden een groot aantal keren herhaald om te 
voorkomen dat de willekeurige selectie van de segmenten had kunnen leiden tot toevallige, 
niet representatieve testuitkomsten.

De resultaten van het classif icatieonderzoek tonen aan dat deze techniek zeer gevoelig 
was voor veranderingen in mentale inspanning. Dit was af te lezen aan de stijging van de 
classif icatieaccuratesse tot gemiddeld 95%, wanneer gekeken werd naar hogere frequenties 
in het EEG. Dit was een veelbelovende uitkomst van het onderzoek en bevestigt dat dit type 
data-analyse methode gebruikt zou kunnen worden door gebruikers-adaptieve systemen.

Deze superieure classif icatieprestatie van met name de hoge EEG frequenties deed ook 
de vraag rijzen naar de neurofysiologische mechanismen die hieraan ten grondslag liggen. Uit 
de literatuur is bekend dat EEG frequenties boven 20 Hz veelal ‘besmet’ zijn met elektrische 
activiteit vanuit de spieren. De hoge nauwkeurigheid van het classif icatiemodel in de hoge 
frequentiebanden suggereer t daarom dat een deel van de onderliggende informatie niet 
direct afkomstig was van neuronale activiteit. Dit beeld wordt versterkt door de semi-
realistische testomgeving van deze studie. Het besturen van de simulator vereist relatief veel 
spieractiviteit in vergelijking met de meer gecontroleerde laboratoriumopzet die normaal 
gesproken gebruikt worden voor EEG onderzoek. 

Ook de schedelverdelingen, die laten zien hoe de getransformeerde EEG signalen 
geprojecteerd worden naar de schedel, laten zien dat de perifere EEG kanalen, die het meeste 
last hebben van activiteiten van de gezichtsspieren, vaak in sterke mate betrokken waren bij 
heel goede classif icatieprestaties. Desalniettemin, ook voor EEG frequenties beneden de 20 
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Hz grens, welke in veel mindere mate beïnvloed worden door spieractiviteiten (Whitham et 
al., 2007), werd een gemiddelde accuratesse gevonden van tegen de 80%. Dit geeft aan dat 
gebruikers-adaptieve ondersteuning ook mogelijk is op basis van informatie afkomstig van 
voornamelijk neuronale activiteit,.

De gebruikte meettechniek, waarbij onderscheid gemaakt wordt tussen verschillende 
inspanningsniveaus door middel van de beschreven classif icatietechniek, verschilt behoorlijk 
van de meer traditionele statistische aanpak, waardoor een goede vergelijking met andere 
meettechnieken lastig is. Zoals gezegd, de CSP procedure is een individuele aanpak waarmee 
verschillen tussen twee dataklassen (bijvoorbeeld twee inspanningsniveaus) gemaximaliseerd 
worden. Toch suggereren de zeer hoge classif icatieprestaties dat deze techniek gevoeliger is 
voor veranderingen in mentale inspanning dan zowel de SDLP en de subjectieve maten.

Hoofdstuk 7. Een op hersengolven en rijprestatie gebaseerde adaptieve cruise 
control

In dit onderzoek werden twee versies van een passief BCI systeem in een rijsimulator 
geïmplementeerd, gericht op het in stand houden van een comfor tabel inspanningsniveau 
door de rijsnelheid aan te passen. De term passieve BCI wordt gebruikt om systemen aan 
te duiden waarbij hersenactiviteit wordt gekoppeld aan computeracties, echter op een 
onbewuste, impliciete manier. Dit in tegenstelling tot actieve BCI systemen waarbij gebruikers 
door middel van bewuste, vrijwillige gedachtecommando’s een systeem proberen aan te 
sturen. 

De belangrijkste reden om twee versies van een BCI te onderzoeken was om zowel 
een systeem te maken dat alleen reageer t op neuronale activiteiten, als een systeem dat 
simpelweg de beste prestatie lever t in termen van classif icatie accuratesse, waarbij ook de 
informatie van mogelijk met spieractiviteit besmette kanalen en frequenties wordt gebruikt. 
Vanwege de bevinding dat frequenties in het EEG boven de 20 Hz vrijwel altijd mede bepaald 
worden door spieractiviteiten (Whitham et al., 2007), werden zowel een laagfrequentie als 
een hoogfrequentie BCI systeem getest. Er werd weer gereden op een rurale weg, waarbij 
bochtlengte werd gemanipuleerd om verschillende niveaus van stuur-moeilijkheid te creëren. 

De adaptieve cruise-control, gebaseerd op EEG activiteit, moest drie niveaus van mentale 
inspanning kunnen onderscheiden om mentale inspanning constant te kunnen houden. Het 
systeem moest weten wanneer het tijd was om de rijsnelheid te verhogen in geval van weinig 
mentale inspanning, de rijsnelheid te verlagen in geval van veel mentale inspanning, en tot 
slot diende het te weten wanneer de rijsnelheid niet moest worden veranderd. Voor dit doel 
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werd de binaire classif icatie procedure die in hoofdstuk 6 beschreven staat uitgebreid naar 
een multipele classif icatie procedure. Dit werd gedaan door middel van een paarsgewijze 
stemprocedure (Friedman, 1996). Dit houdt in dat voor aanvang van de daadwerkelijke 
applicatie van het BCI systeem, EEG data werd opgenomen uit drie kor te ritten (dit wordt de 
kalibratiefase van het experiment genoemd). Deze ritten verschilden in de moeilijkheidsgraad 
en waren wederom geënt op het comfor tabele inspanningsniveau, zoals bepaald in een initiële 
rit. De EEG data uit deze drie ritten vormden drie dataklassen (laag, comfor tabel, en een 
hoog mentaal inspanningsniveau). Vervolgens werden per BCI versie, drie classif icatiemodellen 
getraind; één model per dataklasse paar (laag vs. comfor tabel, laag vs. hoog, comfor tabel vs. 
hoog). Tijdens de daadwerkelijke toepassing (de applicatiefase van het experiment), werden 
alle drie de modellen gebruikt om waarschijnlijkheden toe te kennen aan binnenkomende, 
nieuwe EEG datasegmenten van één seconde. Deze waarschijnlijkheden gaven aan hoe 
zeker het model was of een datasegment het beste paste bij dataklasse A of B (bijvoorbeeld, 
20% kans dat de deelnemer zwaar belast was tegenover 80% kans dat de deelnemer juist 
heel licht belast was). Met andere woorden, aan elk van de drie dataklassen werden twee 
waarschijnlijkheden toegekend, welke vervolgens opgeteld werden. De dataklasse die de 
hoogste gesommeerde waarschijnlijkheid ontving ‘won’ de stemming. Deze ‘conclusie’ van 
het BCI systeem resulteerde vervolgens in een snelheidsadvies aan de cruise control.

Uit voorzorg werden ook voer tuigparameters gemonitord, waarbij gebruik werd 
gemaakt van een ‘lopende’ tijdperiode van twintig seconden. Hierdoor kon het protocol dat 
de rijsnelheid bepaalde, uitgebreid worden met interventies op basis van het rijgedrag. Ook 
werd in de simulator een absolute minimale en maximale rijsnelheid ingesteld. Als laatste 
werd na elke snelheidsverandering het systeem tien seconden ‘op slot’ gezet, waardoor snelle 
f luctuaties in de rijsnelheid voorkomen werden en de bestuurders de tijd werd gegund te 
wennen aan de nieuwe rijsnelheid.

De EEG data uit de kalibratiefase werden niet alleen gebruikt om de verschillende 
classif icatiemodellen te trainen, maar ook om achteraf vast te stellen in hoeverre de 
resultaten uit het vorige onderzoek (hoofdstuk 6) gerepliceerd konden worden. Hieruit 
bleek dat de classif icatieprestaties inderdaad vergelijkbaar waren. Voordat verder wordt 
gegaan met de bespreking van de resultaten uit de applicatiefase van deze studie, moet 
echter opgemerkt worden dat de dataclassif icaties die door het adaptieve systeem gebruikt 
werden, waarschijnlijk enige ver traging hadden. Dat wil zeggen, tussen de tijd dat een 
EEG segment was gesampled en de tijd dat de uiteindelijke classif icatie invloed had op de 
snelheidsbeslissing, zat voor een substantieel deel van de deelnemers één tot vijf seconden 
ver traging. Hoewel de impact van deze ver traging waarschijnlijk beperkt was doordat het 
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systeem na elke verandering op slot ging, kan niet worden uitgegaan van een onmiddellijke 
koppeling tussen het momentane EEG en de rijsnelheid. Dit beperkt de conclusies die uit de 
applicatiefase van dit onderzoek getrokken kunnen worden.

Dit gezegd hebbende, bleek dat er tijdens de applicatiefase grote variaties waren in 
de manier hoe het systeem de rijsnelheid reguleerde, zowel tussen de deelnemers als ook 
tussen de verschillende condities binnen elke deelnemer. Deze grote verscheidenheid in 
(soms ook wispelturig) systeemgedrag, is een sterke indicatie dat de classif icatieprestatie 
in de applicatiefase sterk teruggelopen was in vergelijking met de kalibratiefase. Het kwam 
bijvoorbeeld verschillende keren voor dat het BCI systeem telkens een snelheidsvermindering 
adviseerde, waardoor de rijsnelheid vrijwel de gehele rit op het absolute minimum lag. Het 
kwam ook regelmatig voor dat het BCI systeem altijd een snelheidstoename adviseerde. 
Hierdoor werd op deze basis de rijsnelheid vaak verhoogd, maar tegelijker tijd vaak weer 
verlaagd doordat voer tuigparameters aangaven dat bestuurder de controle aan het verliezen 
was. Het beslisalgoritme gaf daarbij het advies op basis van rijgedrag altijd prioriteit boven 
het advies op basis van EEG activiteit. 

Op basis van deze resultaten kan niet anders dan geconcludeerd worden dat er een 
grote afname was in classif icatieprestatie tussen de kalibratie- en applicatiefase van 
de meeste experimentele sessies, wat het vermogen van het systeem om betrouwbaar 
mentale inspanning te monitoren ernstig heeft benadeeld. In de literatuur zijn tijd- en 
contextafhankelijkheid van fysiologische maten een bekend probleem, zowel binnen de BCI 
onderzoeksveld als binnen het bredere onderzoeksveld van mens-machine interactie (Shenoy 
et al., 2006; Fairclough, 2009). In lijn hiermee toont dit onderzoek aan dat substantiële 
verbeteringen nodig zijn, bijvoorbeeld door het classif icatiemodel te blijven updaten tijdens 
de applicatiefase, voordat BCI technieken kunnen worden ingezet om mentale inspanning te 
reguleren tijdens de taakuitvoering.

Hoofdstuk 8. Algemene discussie.

In de introductie werd gesteld dat dit proefschrift is gericht op de vooruitgang van mens-
machine interactie. Hoe kunnen we iemands mentale toestand betrouwbaar monitoren en hoe 
kan met deze informatie de gebruiker ondersteund worden? Het is duidelijk dat hiervoor vele 
informatiebronnen gebruikt kunnen worden, maar ook dat geen van deze bronnen afzonderlijk 
een volledig, goed beeld geven. Met het onderzoek dat beschreven is in dit proefschrift zijn 
een aantal van deze opties bestudeerd. Door verschillende soor ten rijgedrag te meten, door 
fysiologisch metingen te doen zoals als har tslag, ademhaling en hersenactiviteit, en als laatste 
door te vragen naar subjectieve ervaringen van de deelnemers werd onderzocht in hoeverre 
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deze maten geschikt zijn voor gebruik door een gebruikers-adaptief systeem. Hierbij werd 
zowel gebruikt gemaakt van de traditionele statistische analyse methode, alsmede analyses 
uit te voeren op individueel niveau. De inzichten die hieruit voor tvloeiden werden vervolgens 
gebruikt voor de creatie van twee adaptieve systemen. Kor tom, dit proefschrift kan gezien 
worden als een stap in de ontwikkeling van gebruikers-adaptieve systemen. De resultaten 
uit de besproken onderzoeken laten zien dat, ten minste voor een systeem gebaseerd op 
fysiologische maten, het vervolgonderzoek zich zou moeten richten op het verbeteren van 
de monitorbetrouwbaarheid door het verlagen van de tijds- en contextafhankelijkheid. 
Bijvoorbeeld door verdere exploratie van de eerder genoemde data-gedreven data-analyse 
technieken. Tegelijker tijd moeten we blijven onderzoeken welke databronnen het meest 
informatief zijn om een preselectie van deze bronnen mogelijk te maken. Het is namelijk 
niet onwaarschijnlijk dat een puur, data-gedreven, mentale toestandsmonitor, die simpelweg 
zoveel mogelijk databronnen gebruikt, uiteindelijk te specif iek blijkt te zijn om van nut te zijn 
voor een breed scala van toepassingen.
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