

 University of Groningen

Separability versus prototypicality in handwritten word-image retrieval
van Oosten, Jean-Paul; Schomaker, Lambertus

Published in:
Pattern recognition

DOI:
10.1016/j.patcog.2013.09.006

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Oosten, J-P., & Schomaker, L. (2014). Separability versus prototypicality in handwritten word-image
retrieval. Pattern recognition, 47(3), 1031-1038. https://doi.org/10.1016/j.patcog.2013.09.006

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1016/j.patcog.2013.09.006
https://research.rug.nl/en/publications/ca3dd93d-fbd9-4ae3-bfac-90bb148ea1dd
https://doi.org/10.1016/j.patcog.2013.09.006

Separability versus Prototypicality in Handwritten
Word-image Retrieval

Jean-Paul van Oosten�, Lambert Schomaker

Dept. of Artificial Intelligence, University of Groningen, The Netherlands

Abstract

Hit lists are at the core of retrieval systems. The top ranks are important,
especially if user feedback is used to train the system. Analysis of hit lists
revealed counter-intuitive instances in the top ranks for good classifiers. In
this study, we propose that two functions need to be optimised: (a) In order
to reduce a massive set of instances to a likely subset among ten thousand or
more classes, separability is required. However, the results need to be intuitive
after ranking, reflecting (b) the prototypicality of instances. By optimising
these requirements sequentially, the number of distracting images is strongly
reduced, followed by nearest-centroid based instance ranking that retains an
intuitive (low-edit distance) ranking. We show that in handwritten word-image
retrieval, precision improvements of up to 35 percentage points can be achieved,
yielding up to 100% top hit precision and 99% top-7 precision in data sets with
84 000 instances, while maintaining high recall performances. The method is
conveniently implemented in a massive scale, continuously trainable retrieval
engine, Monk.

Keywords: image retrieval, handwriting recognition, nearest centroid,
support-vector machines, separability, prototypicality, historical manuscripts,
big data, continuous machine learning

1. Introduction

In handwriting recognition, classification is often performed using statistical
methods [1, 2]. The class indexed i with the highest posterior probability given
the sample to be classified is chosen as the result of the classifier:

HypothesisX � argmax
i

P pCi|Xq where i P t1, Nclassesu (1)

However, when the goal is word search, rather than automatic text tran-
scription, the user is more interested in retrieval of word instances. Instead of

�Corresponding author
Email addresses: J.P.van.Oosten@ai.rug.nl (Jean-Paul van Oosten),

L.Schomaker@ai.rug.nl (Lambert Schomaker)

Preprint submitted to Pattern Recognition July 12, 2013

Figure 1: First 25 instances in a hit list of the word ‘Zwolle’. Original test set
performance: Accuracy: 99.2%, precision: 97.6% and recall: 97.6%. Note the
faulty instances in the top ranks, upper row. In a realistic test condition with
12k distractors, actual precision is as low as 2.8%.

a single classification, the result is a sorted hit list H. Each instance indexed
j is ranked with respect to the prototype or class-model corresponding to the
search term:

H � sort
j
pP pXj |Cqq where j P t1, Nexamplesu (2)

Retrieval is usually performed on a large collection of instances, and only
the top of the sorted list, representing the best ranking instances, is considered
as interesting. Under such a condition, a large number of classes and a massive
data collection can pose a problem, since for each query there is a large number
of distractors, i.e., concerning instances from all classes, other than the target
class.

This becomes apparent in retrieval engines for handwritten words in his-
torical collections [3]. In the Monk system, twenty books of �1000 pages each
contain millions of word zones or word candidates, and the lexicon is in the
order of tens of thousand word class models. From the tradition of handwriting-
recognition research, it seems reasonable to start with the classification prob-
lem (Eq. 1), using good shape features and a powerful classifier, such as, e.g.,
hidden-Markov models [4, 5] or the support-vector machine [6, 7]. For a word-
mining task, such a classifier may be trained to discriminate a particular word
class, and a ranked word list may be constructed, e.g., using the signed SVM
discriminant value dSVM for sorting. The basic assumption then is, that the
distance from the margin, i.e., from the instances in the distractor classes, will
be a good criterion for constructing a ranked hit list for a target class. However,
upon applying this approach, we observed an interesting phenomenon in the re-
sulting hit lists. As an example, Figure 1 shows the top-25 instances in a hit
list for the word ‘Zwolle’. The performance for the word classifier on the entire
training set was 100% accuracy, with a 97% accuracy on an independent test

2

set (k � 7 folds, σ � �1%). Following regular testing procedures for SVMs,
the training and the test sets were of similar size, each containing a quarter
of positive examples (typically 50) and three quarters of negative or distractor
examples. However, the resulting hit list contains a number of counter-intuitive
samples (e.g., speckle images) in the early ranks, followed by a strand of correct
classifications which is followed by a transitional stage of occasional errors.

The impression that a problem exists is confirmed by a larger-scale analysis
of the results (Table 1), also using a realistic large set containing � 12�103

distracting word instances in the test set. The results for accuracy and recall
on the realistic data set confirm the hopeful expectancies which were raised by
the regular training and test sets. However, the precision of the output drops
abysmally, to about 1% in the worst cases, notably for the classes with a limited
number of training examples (Table 1, lower right). It should also be noted that
a number of 12K distractors (1/1200) is much more realistic than a 1/4 rule
which is commonly accepted in academic testing.

It is clear that something is needed to improve on the performance. User ap-
preciation of hit lists is of paramount importance in live and continuously train-
able systems that rely on user annotation over the internet, such as Monk[3, 8].
Figure 2 shows how hit lists are used in the Monk system. Upon giving the first
handful of (bootstrap) examples, a usable machine-learning system should be
able to produce an acceptable ranking such that newly found instances of the
same class can be easily labelled. The above, concrete observation thus gives
rise to a more fundamental question: How is it possible that accuracy is not a
good predictor of precision in a retrieval context?

In this study, we will 1) analyse the reason for unexpected, low precision in

Label

Monk

Human

Label store

Learning
Retrieval
Engine

Hit list

Figure 2: Schematic overview of how users utilise the hit lists to label new word
images in a continuously learning retrieval engine (Monk). A hit list is presented
to the user, who produces a label for an unlabelled word. This label is stored
in the label store, which is then processed by the retrieval engine to produce a
new hit list. The interface facilitates the quick labelling of a large number of
instances that match the query word.

3

Table 1: Counter-intuitive, low precision results for good classifiers

Accuracy Recall Precision
Set Nexamples Mean σ Mean σ Mean σ

Test 120+ 0.98 0.02 0.97 0.05 0.96 0.07
60-120 0.97 0.03 0.95 0.10 0.91 0.13
35-60 0.97 0.04 0.93 0.15 0.85 0.19
7-35 0.96 0.04 0.68 0.42 0.57 0.40

+12K Distractors 120+ 0.99 0.01 0.97 0.05 0.26 0.26
60-120 0.98 0.02 0.95 0.10 0.06 0.12
35-60 0.97 0.02 0.93 0.15 0.03 0.06
7-35 0.97 0.04 0.68 0.42 0.01 0.05

presumably well-performing classifiers; 2) explore a number of methods to coun-
teract the precision drop and 3) present a convenient approach using nearest-
centroid matching, with results in a similar ballpark as the abovementioned
SVM approach, at the same time however, avoiding expensive training on the
tens of thousands of word classes.

2. Separability versus Prototypicality

Problem: The SVM is a discriminative classifier, optimised for classification
(Eq. 1). The class of an unknown sample X (Figure 3) is decided by determining
on which side of the decision boundary β the sample falls. For retrieval purposes,
it appears reasonable to use the distance to the boundary, dpX,βq, as a ranking
measure: the farther the instance is located from the boundary, the more certain
an SVM classifier is of the classification.

Unfortunately, this gives unexpected results, such as shown in Figure 1 for
the query word ‘Zwolle’. Instances that are ranked at the top (@speckles)
appear to be counter intuitive to a human user. It seems that there are two
problems: 1) the distance to the boundary is not an intuitive measure, and 2)
a fairly large number of distractors causes noise in a hit list, and consequently,
a lower precision. The implication is that enlarging the dataset increases the
probability that incorrect instances occur even before the first correct hit. This
has a large impact on the user appreciation and is hard to explain. More in-
formally: Many hits do not appear similar to the user’s expected, canonical
prototype for the query.

Proposed explanation: In order to give a plausible explanation of this
phenomenon, we present a schematic, two-dimensional overview. The position
of an instance X in Figure 3 has a large distance dpX,βq from the boundary β
(which is desirable). However, the instance X is not very prototypical, being
located far from the known instances of the target class A. In other words, the
distance of the instance X to the prototype, or centroid of class A, dpX,λA), is
large.

The support-vector machine training mechanism has an emphasis on
separability: the ability to categorise and separate class instances from non-

4

X?

A

¬A

d(X, β)

d(X, λ)A

λA

p(d(X, λ))A

Decision
boundary β

Figure 3: Separability vs. Prototypicality: For an unknown instance X, a large
distance dpX,βq from a margin β does not imply a short distance, dpX,λAq
from the prototype λA

class instances. This ability is usually achieved by evaluating the computed
signed distance of an unknown sample to the decision boundary dpX,βq which
indicates on which side the instance X falls. However, by focusing on separa-
tion, an important aspect of pattern recognition is neglected: The phenomenon
of prototypicality which concerns the similarity of an instance to the canonical
class prototype, for instance, measured as the distance to the centroid or pro-
totype of the class dpX,λAq. Quantitatively, prototypicality can be defined as
ppdpX,λAqq and is also the underlying rationale for Bayesian classifiers, exploit-
ing the high density of feature values around the mode of their distribution,
as opposed to the SVM. It is important to realise that the prototypicality of
instances directly affects the ease with which new training examples can be
elicited from users in a continuously learning retrieval system. The degree of
prototypicality of the hit list directly affects the gain factor in the feedback loop
of the label harvesting system that is presented in Figure 2.

For a search and annotation tool of handwritten historical documents, sep-
arability and prototypicality need to be optimised simultaneously. It can be

5

Unknown word

Classify Rank

Model

Hit listAll instances
classified as

"April"

S1 S2

Figure 4: Schematic overview of the re-ranking process. The first stage (S1)
shows that a word is classified first, and gathered together with other instances
that have been classified the same. These instances are then ranked (S2), ac-
cording to their prototypicality, to produce a ranked hit list.

argued that similar requirements play a role in general content-based image re-
trieval, too [9, 10]. However, most classifier methods optimise for one property,
not both. The solution proposed in this study, is to combine classifiers in a two-
stage process. The classifier that optimises separability is used in the first stage
to divide the instances and produce the most likely class C for an unlabelled
instance. The goal is to reduce the number of distractors for the second stage.
More specifically, the set of distractors of an instance classified as C will be a
considerable reduction of the set of all instances.

All instances labelled as C are then gathered for the second stage, where
all instances are re-ranked or re-sorted with a secondary feature or method,
one that optimises the ability to rank instances according to prototypicality.
This ensures that if an instance is classified as class C in the first stage, but is
an atypical result (such as the first few results in Figure 1, i.e., the speckles),
the instance will end up at a later position in the hit list than other, more
prototypical examples. Similar problems will occur if reject criteria need to be
defined while using the SVM [11], or when there are very few negative examples
to train from — for example, in a machine diagnostics problem[12]. For a
schematic overview of the entire re-ranking process, see Figure 4.

The results from the SVM experiment in the introduction suggest that a
larger number of distractors has a negative effect on retrieval precision. It
should be noted that the experiments in this study are conducted in a labora-
tory setting, using only human labelled instances. In a real-world setting, the
problem of distractors will even be worse: the problem space is then heavily
populated with non-word images and other noise. For example, in Monk, over
all collections there are 22�103 classes, with over 124�106 word images, in-
cluding rejectable candidates and noise. These numbers indicate the massive

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

li
ty

 o
f

fi
nd

in
g

fi
rs

t
co

rr
ec

t
hi

t
in

 r
an

ks
 0

 t
o

r
(+

/-
 s

d)

rank r (hit list size-1)

SVM, sorted by dSVM
SVM then feature 2
SVM then feature 1

Figure 5: Probability of finding the first correct hit in ranks 0 to r for raw and
ranked SVM output (Nfolds � 7). The bars give the standard deviation, which
are only clearly visible on the SVM, sorted by dSVM results. Note the strong
improvement due to secondary ranking for all ranks but especially for the top
hit accuracy at r � 0. Feature 2 outperforms Feature 1 significantly. The circle
is used as a reference point in the text.

size of the current experimental test bed. Instead of pre-cleaning the data, we
assume a rigorous, machine-learning approach where as much of the problems
are solved by the base classifier and not by the use of overly specific hand-coded
preprocessing heuristics. That means that problematic patterns have to be la-
belled as well. In Monk, there are several classes that are indicated by a label
starting with @, and can indicate whether this is, e.g., a table-line, speckles or
other noise.

3. Methods

Figure 5 shows the probability of finding the first correct hit in the ranks 0
to r of the hit lists generated in the preliminary study from the introduction.
It is apparent that the probability of finding the first correct hit in the first
five ranks is roughly 45% (indicated by the circle in Figure 5), when using the
SVM discriminant value for initial (tier 1) ranking. By reordering the images
using a different feature, the performance can be improved, such that the first
correct hit is found in the first five ranks 80% of the time (Figure 5, upper left).

7

This is hopeful, but this is not enough and the hit list still contains counter
intuitive results in the top ranks. There are other ways of improving the tier-
1 performance. For example, multiclass SVMs, using decision trees [13], could
improve the classification accuracy before ranking, which seems to be beneficial,
but it has the downside of requiring a large number of training instances for
each of the more than 104 classes. Approaches like Gaussian mixture models
(GMMs) or hidden Markov models (HMMs) can also improve the classification
accuracy, but also require a large number of training examples. Benefits such as
multi-peak distributions can be achieved with more simple techniques, such as
(k-means) clustering. The Monk system is a continuous, ‘24/7’ training system:
Labels are continuously added or changed, and it would be too time consuming
and require human monitoring to train and retrain SVM classifiers when the
system is updated. Nearest-centroid classifiers, on the contrary, can be easily
updated with new knowledge by just adding a new feature vector to the set of
training samples and averaging the samples to get the centroid. Rather than
constituting a simplistic old-fashioned method, nearest-neighbour approaches
are at the core of important advances in computational linguistics [14] and
image retrieval [15, 16]. The principle of central tendency leads to an intrinsic
settling of centroid models as more examples are added. In case of multimodal
distributions, occurring for example when there are multiple writing styles per
class, clustering can be used to represent the class variants, e.g., by the k-means
algorithm. Considering these multiple arguments, in this study, we will use a
nearest-centroid classifier for the classification stage, instead of SVMs.

The choice of word-based image retrieval instead of character-based ap-
proaches is based, firstly, on the observation that in some historical document
collections contractions and loops are used to suggest characters in order to
speed up writing (see the marked images in Figure 6). This makes creating a
mapping between letter identity and character shape non-trivial. Secondly, due
to the large variety of scripts and languages, most character-based approaches
would need to be fine-tuned for each script and language, leading to long projects
to process new collections (“each book its PhD project”). Our goal is to collect
huge numbers of labelled word images first over several collections and histori-
cal periods in order to develop character-based classifiers at a later stage, when
necessary.

As discussed in the introduction, classification is performed by finding the
class with the highest probability given the data. Since nearest neighbour clas-
sifiers are distance-based, the class with the highest probability is the class with
the smallest distance to the instance:

argmax
i

P pCi|Xq � argmin
i

dpCi|Xq (3)

Similarly, retrieval is performed by ranking all instances based on their distance
to a class-model. Two features were experimentally chosen from a set of features
to be used in the experiments. The exact implementation of both features is
outside the scope of this article; different feature methods could be used instead
without changing the actual re-ranking process. The first feature is based on the

8

Figure 6: This variety of styles and shapes in a realistic collection illustrates that
‘optical character recognition’ of handwriting, by some form of sliding window
over a word, is only applicable to a small subset. Many patterns are abbre-
viations, linguistic contractions or suffer from deformed, ‘suggested’ characters
(marked with asterisks). In the absence of character models, the total-word
image on the contrary provides a rich and redundant pattern in all cases, and
can be labelled easily by volunteers.

biologically inspired features introduced in [3], and the second is a more simple
feature consisting of the normalised and scaled image. The dimensionality of
the former feature is 4358, while the scaled image has a size of 100�50, yielding
a comparable dimensionality of 5000. In both feature types, the feature vector
consists of probability values, adding up to one.

Two methods of retrieval will be compared: 1) direct retrieval: ranking,
in a single step, all instances from the test set with the distance of the image
to the centroid of the target class, and 2) the two stage re-ranking method as
described in the previous section: do recognition on all instances first, then for
each class C rank its candidates. The re-ranking method can be done in four
ways using the two features: recognition with either feature and ranking with
either feature. All four combinations are used to study the effect of using a
different, secondary feature in the re-rank phase.

There are a number of measures to be used for comparing recognition and

9

retrieval: (a) For recognition, we define top-1 recognition accuracy as: The
probability that the nearest-centroid is of the correct class. For retrieval, the
standard measures (b) precision and (c) recall will be considered, as well as (d)
the average edit distance in the top-7 of each hit list.

Accuracy (a) is defined as the percentage correctly classified instances:

Accuracy �
Ncorrect
Ntotal

(4)

with Ncorrect is the total number of correctly classified instances (in the top-
1), and Ntotal is the total number of instances. We are interested in accuracy
because it can show which feature is a good choice for the first stage: features
and methods with a high accuracy are well suited for classification.

Precision (b) is defined as the proportion of correctly retrieved instances of
class C in a fixed hit list H, with target size n, and can be computed with

Precision in top-n �
Ncorrect

minpn, |H|q
(5)

where Ncorrect is the number of instances with the correct label in the top-n
and |H| is the number of items in the hit list1. The minimum of n and |H| is
used because the hit list can be smaller than the target size of n items.

The recall measure (c) is defined as the proportion of instances of class C
that can be found in the hit list; formally, it can be defined as

Recall for class C �
Nobtained
Ntargets

(6)

where Nobtained is the number of instances retrieved with class C, and Ntargets
is the total number of instances with class C in the given test set. The reported
precision and recall are accumulated over all classes as proportions.

The concept of prototypicality cannot be seen in isolation from the applica-
tion context. More specifically, users of a retrieval engine for historical hand-
written words will have an evaluation of the quality of a hit list. In other words,
P pXj |Cq must reflect an underlying measure of similarity. In information re-
trieval, relevance feedback is used to estimate user appreciation[17]. Relevance
feedback is outside the scope of this study, but to estimate the user appreciation,
we use average edit distance as the fourth performance measure. The assump-
tion is that if the text distance (in ‘ASCII’) between the query and the actual
label of an instance is small, the hit list will be intuitive, meaning that it reflects
the users measure of similarity well. The specific edit distance implemented in
this study is the Levenshtein distance[18].

The data set is drawn from the historical document collection from the
Dutch Queen’s Office (see also [3]), or “Kabinet der Koningin” (KdK). The

1According to the Wikipedia article on precision and recall (http://en.wikipedia.org/
wiki/Precision_and_recall, last accessed 23 January 2013), this is also called “precision at
n” or “P@n”

10

Table 2: Top-1 accuracy (Nfolds � 7)

Feature Nexamples

7-35 35-60 60-120 120+
Mean σ Mean σ Mean σ Mean σ

f1 0.62 �.02 0.93 �.01 0.92 �.01 0.94 �.00
f2 0.62 �.01 0.86 �.01 0.87 �.01 0.93 �.00

complete data set has over 13�103 classes. However, in order to do a 7-fold
cross-validation experiment, only the 1404 classes with seven or more human
labelled word instances will be considered. These classes will be divided into
four categories, based on the number of instances: 7 up to 35 instances, 35 up to
60 instances, 60 up to 120 instances and 120 or more instances, similar to what
has been done in [3]. This division is useful to compare performances when there
are few labelled instances, a lot of labelled instances or in between. In total,
there are more than 84�103 instances used. The experiments are performed
on a cluster of eight Linux machines with 54 cores in total, connected to a 1.6
petabyte storage, of which the Monk system will use roughly 0.5 petabyte.

For each line strip, a number of word candidates are selected, based on
the number and size of connected components. This means that the line is
usually oversegmented, which leads to overlap between images. To avoid that
multiple image renderings belonging to the same word instance end up in both
the training and test set, the fold sets are compiled from exclusive page sets:
fold � page number pmod Nfoldsq, Nfolds � 7. This has the additional, realistic
benefit that trained words, which are written in a consistent style within one
page, but inconsistently over the entire collection will not end up in the test
set of a fold. Each fold holds 84 288 instances, of which the test set will hold
1{7th � 12 041 instances on average.

4. Results

We look at two types of comparisons: between re-rank methods (choice of
features) and between average re-rank performance and direct retrieval (i.e.,
without re-ranking). Table 2 shows the top-1 recognition accuracy, averaged
over all seven folds for both features. Feature 1 (f1) outperforms the second
feature (f2), especially in the categories of 35-60 and 60-120 examples. Fur-
thermore, the table shows that to accurately classify an instance, the nearest-
centroid classifier needs around 35 training instances. Since feature 1 performs
better than feature 2, it seems to be the best candidate for the classification
step, as is confirmed below.

Figures 7a, 7b and 7c compare the average of the re-rank methods to the
direct retrieval methods. The bars on the averages show the minimum and max-
imum value of the re-rank methods. These results show the gain in performance
when using the re-ranking methods instead of direct retrieval. As was expected,
reducing the number of distractors has a positive impact on performance.

11

 0.4

 0.6

 0.8

 1

7-35 35-60 60-120 120+

P
re

ci
si

o
n

avg. of reranking methods
direct-retrieval with feature 1
direct-retrieval with feature 2

(a) Precision performance in top-1

 0.4

 0.6

 0.8

 1

7-35 35-60 60-120 120+

R
ec

al
l

(b) Recall performance

 0

 2

 4

 6

 8

7-35 35-60 60-120 120+

E
di

t
di

st
an

ce

Number of instances per class

(c) Average edit distance in top-7

Figure 7: Precision and recall performances (at N � 1700 and α � 0.01, confi-
dence is �3%) and average edit distance of re-rank vs. direct retrieval. The bars
on the re-rank lines show the minimum and maximum performances of different
feature configurations. All measures are averages over 7 folds.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

li
ty

 o
f

fi
nd

in
g

fi
rs

t
co

rr
ec

t
hi

t
in

 r
an

ks
 0

 t
o

r
(+

/-
 s

d)

rank r (hit list size-1)

classifier=feature 1, rank=feature 2
direct, feat=feature 1
direct, feat=feature 2
SVM then feature 2

Figure 8: Probability of finding the first correct hit in ranks 0 to r for the re-
rank method using feature 1 for classification and feature 2 for ranking, and the
direct methods (Nfolds � 7). The bars giving the standard deviations, are barely
visible due to the large numbers of test instances in each fold (� 1700). The
lines for both direct ranking methods are very close together and therefore not
distinguishable from each other. The results show a considerable improvement
in comparison to the raw, non-reranked results (Figure 5), especially for non-
ranked SVM: The error at rank 0 is reduced from 29% to 4%, here.

Analogous to Figure 5, Figure 8 shows the probability of finding the first
hit in ranks 0 to r for the re-rank method using feature 1 as the classification
feature and feature 2 as the re-rank feature. The re-ranked method shows a
considerable improvement from the direct ranking and the ranked SVM output
(the best performance as reported in Figure 5). The probability of finding the
first hit in the first four ranks even approaches 100%.

Table 3 and 4 show the precision (in the top-1) and recall figures. In general,
these results show that re-ranking with a different feature can boost perfor-
mance. The precision in top-7 for the re-rank methods is even higher than the
precision in top-1 for the direct method, especially in the 7-35 category. Using
feature 1 as a classification feature and feature 2 for ranking works best for this
data collection, even getting a top-1 precision of 1.0 (i.e., 100%) with a standard
deviation of 0 in the 120+ category.

Overall, the results show that all methods perform roughly the same when
there are enough labelled samples (i.e., in the 120+ category).

13

Table 3: Precision results (Nfolds � 7, σ ¤ 0.03)

Method Nexamples

7-35 35-60 60-120 120+

Precision in top-1
Direct, rank with f2 0.42 0.89 0.93 0.97
Direct, rank with f1 0.46 0.92 0.94 0.97
Re-rank, classify with f2, rank with f2 0.76 0.97 0.98 0.99
Re-rank, classify with f2, rank with f1 0.76 0.97 0.98 0.99
Re-rank, classify with f1, rank with f1 0.79 0.98 0.97 0.99
Re-rank, classify with f1, rank with f2 0.82 0.99 0.99 1.00

Precision in top-7
Direct, rank with f2 0.14 0.52 0.71 0.90
Direct, rank with f1 0.15 0.57 0.75 0.91
Re-rank, classify with f2, rank with f2 0.64 0.87 0.91 0.97
Re-rank, classify with f2, rank with f1 0.68 0.91 0.94 0.98
Re-rank, classify with f1, rank with f1 0.69 0.93 0.94 0.97
Re-rank, classify with f1, rank with f2 0.69 0.93 0.95 0.99

Table 4: Recall results (Nfolds � 7, σ ¤ 0.03)

Method Nexamples

7-35 35-60 60-120 120+

Direct, rank with f2 0.35 0.70 0.71 0.74
Direct, rank with f1 0.39 0.77 0.77 0.75
Re-rank, classify with f2, rank with f2 0.63 0.84 0.84 0.88
Re-rank, classify with f2, rank with f1 0.63 0.84 0.85 0.89
Re-rank, classify with f1, rank with f1 0.67 0.90 0.89 0.90
Re-rank, classify with f1, rank with f2 0.69 0.91 0.90 0.91

5. Conclusions

In the design of a large scale retrieval engine for historical handwritten
manuscripts it was observed that classifier accuracy is not a good predictor of
retrieval precision. Very low precision performances occurred on good classifiers
when using a realistic number of distractors. In retrospect, the choice of using
the signed distance dSVM from the margin for ranking was evidently subopti-
mal, but it elucidated two separate functions to be performed: 1) data reduction
by optimal separation and 2) ranking instances in terms of their prototypicality
with respect to their class.

The re-ranking method has two main advantages: the focus on both sepa-
rability and prototypicality increases the probability that the top of a hit list is
more similar to the user’s expectation than otherwise. Secondly, the reduction
of distractors lowers the number of noisy instances in a hit list and is advanta-
geous in terms of processing demands. As the results presented in the previous
section show, reducing the number of distractors in a retrieval experiment im-
proves precision and decreases average edit distance in the hit list, which we
assume will increase the user appreciation of hit lists. We think that a simulta-
neous solution of separability and prototypicality will suffer from a performance
reduction that is typical of Pareto curves in multi-objective optimisation, but

14

this is a matter of future research. To investigate whether we can optimise both
separability and prototypicality in the SVM paradigm, we performed some pre-
liminary tests. These tests show that weighing the discriminant value dSVM
with the distance to the centroid of positive examples e�dpλ,Xq does not have
positive effects on precision. Future research will look into other multi-objective
approaches involving both separability and prototypicality.

It appeared to be beneficial for retrieval performance to use different features
in the separate stages. While the processing order is fixed — separation first,
ranking second — the selection of optimal features and machine learning algo-
rithms will depend on the material. In the KdK data set, precision benefited the
most by using a strong, robust feature for recognition first, and a secondary fea-
ture with a strong image-based component that works well on collections where
words are written fairly consistently. On data sets where the writing varies a
lot within a class, other features or classifier methods may prove to be more
advantageous, including (k-means) clustering to capture the different writing
styles. A system like Monk will have several tool libraries and approaches for
diverse material. The optimality of the parameters for a complete processing
pipeline depends on the ink deposition process, writing style and physical mate-
rial. Improving the recognition accuracy using linguistic models and contextual
information is difficult due to the nature of the material. While linguistic mod-
els offer improved transcription performances for contemporary texts, previous
efforts of using contextual information[19, 20] proved not to be robust enough
for use in our system because there are no useful corpora available for the doc-
ument collections we deal with. This is due to the abundance of abbreviations,
contractions and named entities that are not found in corpora of contempo-
rary text. Furthermore, in certain document collections, several languages are
used, sometimes even in the same paragraph. Corpora for transcription systems
for contemporary texts usually contain millions of words gathered from various
sources[21, 22], which we can not provide for the bootstrapping of handwriting
recognition for the document collections in Monk.

When a class has enough instances (i.e., the 120+ category), choice of feature
does not seem to have much effect on retrieval performance. On the other hand,
reducing the number of distractors by a two-step approach is still beneficial. In
the bootstrapping phase of a retrieval system (i.e., the category of 7-35 training
examples), the choice of feature does have a big impact. Even small accuracy
performance increases have large consequences in this stage, helping the user
to label new instances with little effort (since Monk presents hit lists in its
web-based labelling interface).

The methods presented in this paper can use all kinds of classifiers. Cur-
rently, nearest-centroid classifiers are used due to the nature of ‘24/7’ learning,
where new labels are being added frequently. It would be cumbersome to re-
train classifiers such as SVMs every time a new label was added. The SVM
has one benefit in the bootstrap phase: its recognition accuracy is better than
the performance of a nearest neighbour classifier. However, the 7-35 category
in this experiment has the most classes by far, which would be very incon-
venient for the training of tens of thousands multi-class SVMs. This touches

15

on the fundamental difference between SVMs and Bayesian classifiers. While
Bayesian classifiers, including nearest centroid classification, will incorporate
the retention of the degree of prototypicality in the “1 out of N” choice itself
(i.e., ppdpX,λqq), a tree of SVMs capitalizes on separability, only.

The Monk project has a large number of collections with different script
types: 15th (mixed languages, frequent use of word contractions) and late 19th

century texts (cursive with a lot of abbreviations and variation), Qumran scrolls
(isolated characters), captain’s logs (cursive) and even Thai[23] and Bangla[24]
texts. The different shapes and writing styles have different requirements of the
features; For each script, features will be selected to optimise both separability
and prototypicality.

Summarising, we found that the assumption that a good recognizer will also
be good at ranking is not intrinsically tenable. Two requirements need to be
fulfilled. First, a method (feature and classifier) is selected based on its ability
to separate class instances from non-class instances. Subsequently, a method
(feature and classifier) is selected on the basis of its ability to rank instances
according to prototypicality, such that the final ranking is similar to the users
expectation. This stepwise approach yielded very substantial improvements in
precision, substantial improvements in recall as well as a substantial reduction
of the edit distance, a measure of word-match intuitiveness. Finally, the insight
that separation and ranking of instances both need to be optimised may have a
broad applicability beyond handwriting recognition.

References

[1] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, 2001.

[2] Bunke, H., Recognition of cursive Roman handwriting: past, present and
future, in: Document Analysis and Recognition, 2003. Proceedings. Sev-
enth International Conference on, IEEE, 2003, pp. 448–459.

[3] T. van der Zant, L. Schomaker, K. Haak, Handwritten-word spotting using
biologically inspired features, Pattern Analysis and Machine Intelligence,
IEEE Transactions on 30 (2008) 1945–1957.

[4] U. Marti, H. Bunke, Handwritten sentence recognition, in: Proceedings
of the 15th International Conference on Pattern Recognition, volume 3,
IEEE, 2000, pp. 463–466.

[5] T. Artières, S. Marukatat, P. Gallinari, Online handwritten shape recogni-
tion using segmental hidden Markov models, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 29 (2007) 205–217.

[6] V. Vapnik, Estimation of Dependencies Based on Empirical Data, Springer-
Verlag, New York, 1982.

[7] B. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin
classifiers, in: Proceedings of the fifth annual workshop on Computational
learning theory, ACM, 1992, pp. 144–152.

16

[8] T. van der Zant, L. Schomaker, S. Zinger, H. van Schie, Where are the
search engines for handwritten documents?, Interdisciplinary Science Re-
views, 34 2 (2009) 224–235.

[9] R. Datta, D. Joshi, J. Li, J. Z. Wang, Image retrieval: Ideas, influences,
and trends of the new age, ACM Comput. Surv. 40 (2008) 5:1–5:60.

[10] L. Schomaker, E. de Leau, L. Vuurpijl, Using pen-based outlines for object-
based annotation and image-based queries, in: Proceedings of the Third
International Conference on Visual Information and Information Systems,
VISUAL ’99, Springer-Verlag, London, UK, UK, 1999, pp. 585–592.

[11] H. Mouchère, Étude des mécanismes d’adaptation et de rejet pour
l’optimisation de classifieurs: Application à la reconnaissance de l’écriture
manuscrite en-ligne, Ph.D. thesis, l’Institut National des Sciences Ap-
pliquées de Rennes, 2007.

[12] D. Tax, One-class classification, Ph.D. thesis, Technische Universiteit Delft,
2001.

[13] F. Takahashi, S. Abe, Decision-tree-based multiclass support vector ma-
chines, in: Proceedings of the 9th International Conference on Neural
Information Processing, volume 3, IEEE, 2002, pp. 1418–1422.

[14] W. Daelemans, A. van den Bosch, Memory-based language processing,
Cambridge Univ Pr, 2005.

[15] G. Giacinto, A nearest-neighbor approach to relevance feedback in con-
tent based image retrieval, in: Proceedings of the 6th ACM international
conference on Image and video retrieval, ACM, 2007, pp. 456–463.

[16] H. Jégou, M. Douze, C. Schmid, Improving bag-of-features for large scale
image search, International Journal of Computer Vision 87 (2010) 316–336.

[17] G. Salton, C. Buckley, Improving retrieval performance by relevance feed-
back, Readings in information retrieval 24 (1997) 5.

[18] V. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, in: Soviet physics doklady, volume 10, 1966, pp. 707–710.

[19] M. P. Ritsema van Eck, L. Schomaker, Formal semantic modeling for hu-
man and machine-based decoding of medieval manuscripts., in: Digital Hu-
manities, Hamburg, 2012. URL: http://www.dh2012.uni-hamburg.de/

conference/programme/abstracts/formal-semantic-modeling-for-

human-and-machine-based-decoding-of-medieval-manuscripts/.

[20] S. Zinger, J. Nerbonne, L. Schomaker, Text-image alignment for historical
handwritten documents, in: IS&T/SPIE Electronic Imaging, International
Society for Optics and Photonics, 2009, pp. 724703–724703.

17

[21] M. Zimmermann, H. Bunke, N-gram language models for offline hand-
written text recognition, in: Frontiers in Handwriting Recognition, 2004.
IWFHR-9 2004. Ninth International Workshop on, IEEE, 2004, pp. 203–
208.

[22] J. Devlin, M. Kamali, K. Subramanian, R. Prasad, P. Natarajan, Statistical
machine translation as a language model for handwriting recognition, in:
Frontiers in Handwriting Recognition (ICFHR), 2012 International Con-
ference on, IEEE, 2012, pp. 291–296.

[23] O. Surinta, L. Schomaker, M. Wiering, Handwritten character classification
using the hotspot feature extraction technique, in: Proceedings of the
First International Conference on Pattern Recognition Applications and
Methods, 2012, 2012, pp. 261–264.

[24] T. Bhowmik, J. van Oosten, L. Schomaker, Segmental K-means learning
with mixture distribution for HMM based handwriting recognition, Pattern
Recognition and Machine Intelligence (2011) 432–439.

18

Lambert Schomaker is professor of artificial intelligence at the University
of Groningen, The Netherlands. He has produced over 140 publications, pre-
dominantly in pattern recognition, is member of IEEE and IAPR, and received
the IBM Faculty Awards (2011,2012) for the Monk word retrieval system in
historical manuscript collections using high-performance computing.

Jean-Paul van Oosten received the MSc degree cum laude in artificial intelli-
gence from the University of Groningen, The Netherlands, in 2010. He received
the IAPR Best Paper award at the ICFHR 2012 conference and is currently a
PhD student at the Institute of Artificial Intelligence and Cognitive Engineering
in Groningen.

19

