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Abstract 

Exercise is known to increase hepatic glucose production. Previous studies have suggested that the sympathetic nerves only 
marginally contribute to this process. This study examined whether increased catecholamine response or increased adrenoceptor 
sensitivity might have affected previous results showing no effect of hepatic denervation on the increased hepatic glucose 
production during exercise. Hepatic sympathetic denervated rats, sham-operated rats and control rats were forced to swim against 
a counter current for 15 minutes. Denervations and sham operations were performed 9 days prior to swimming. The results show 
that denervation did not affect the changes in levels of blood glucose, plasma FFA, and catecholamines before, during and after 
swimming. Furthermore, hepatic adrenoceptor sensitivity was not altered in denervated rats, since intravenous infusions of 
epinephrine (20 ng/min) and norepinephrine (50 ng/min) similarly changed blood glucose and plasma FFA levels in liver-de- 
nervated, sham-operated and control rats. Thus, the increase in blood glucose levels during intravenous infusion of epinephrine 
and norepinephrine in the respective groups was 1.2 _+ 0.3 and 1.0 _+ 0.3 mmol/I (liver-denervated rats), 1.6 _+ 0.4 and 0.7 _+ 0.3 
mmol/l  (sham-operated rats) and 1.3 + 0.3 and 0.8 + 0.3 mmol/l  (control rats), respectively. After adrenodemedullation, however, 
the rise of glucose levels during swimming in liver-denervated and control rats was completely abolished. Thus, the glucose 
response to swimming with and without adrenodemullation was 0.1 _+ 0.4 and 1.7 +_ 0.4 mmol/l  in liver-denervated rats (P < 0.01) 
and -0 .2  _ 0.4 and 2.2 _ 0.2 mmol/1 in control rats (P < 0.001), respectively. The study therefore suggests that the peri-arterial 
hepatic nerves have a negligible influence on the glycemic response to exercise in rats. Instead, the glycemic response seems to be 
mediated mainly by the adrenal medulla. 

Introduction 

H e p a t i c  g l u c o s e  m e t a b o l i s m  is p r o f o u n d l y  in- 

f l u e n c e d  by h e p a t i c  a u t o n o m i c  n e r v e s  [7,11,22] 

a n d  exe rc i se  is a c c o m p a n i e d  by i n c r e a s e d  h e p a t i c  

Correspondence to: B. Ahr6n, Department of Surgery, Lund 
University, S-22185 Lund, Sweden. 

g lucose  p r o d u c t i o n ,  r e su l t i ng  in i n c r e a s e d  p l a s m a  

leve ls  o f  g lucose  [2]. T h e  g lycemic  r e s p o n s e  to  

exe rc i se  m i g h t  be  m e d i a t e d  by ac t i va t i on  o f  t h e  

s y m p a t h e t i c  l iver  ne rves .  E v i d e n c e  for  this  is p ro -  

v i d e d  by a s tudy  in wh ich  h e p a t i c  n o r e p i n e p h r i n e  

c o n t e n t  was  r e d u c e d  by exe rc i se  [21]. F u r t h e r -  

m o r e ,  a n o t h e r  s tudy  has  s h o w n  tha t  e l ec t r i ca l  

s t i m u l a t i o n  o f  t h e  s y m p a t h e t i c  n e r v e s  to t h e  l iver  

r e su l t s  in t r an s i t i on  o f  t h e  inac t ive  p h o s p h o r y l a s e  
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complex to the active state and, consequently, in 
increased blood glucose levels [16]. On the other 
hand, a number of studies have revealed that 
hepatic denervation fails to diminish hepatic glu- 
cose mobilization under different circumstances, 
such as exercise and insulin-induced hypo- 
glycemia [8-10,17,21]. These data seemingly sug- 
gest that the physiological significance of the sym- 
pathetic hepatic nerves on peripheral glucose 
metabolism is negligible. Alternatively, it might 
be hypothesized that other mechanisms, such as 
increased epinephrine (E) release or altered 
adrenoceptor sensitivity, might have masked the 
effect of liver denervation on hepatic glucose 
production in the aforementioned studies. In par- 
ticular, high levels of plasma E, as seen during 
emotional stress and anesthesia, can directly in- 
fluence hepatic glucose production [20], poten- 
tially compensating for the effects of hepatic den- 
ervation. To test this hypothesis, we investigated 
the effect of peri-arterial hepatic denervation on 
glucose mobilization in rats well-accustomed to 
the exercise procedure. The experiment was based 
on our previous observation that rats accustomed 
to swimming have relatively low levels of circulat- 
ing E and high levels of norepinephrine (NE) in 
comparison to first time swimmers [15]. In a 
second set of experiments, the effect of hepatic 
denervation on glucose mobilization was investi- 
gated in adrenodemedullated exercising rats. 
Adrenodemedullation was performed to exclude 
a possible influence of the adrenal medulla on 
hepatic glucose production. 

Materials and Methods 

Animals and housing 
Male Wistar rats weighing 300-330 g at the 

beginning of the experiments were used. The 
animals were individually housed in Plexiglass 
cages (25 x 25 x 30 cm) at room temperature (20 
_+ 2°C), and had continuous access to food (Hope 
Farm chow) and water. The rats were maintained 
on a 12:12 h light-dark regime (0700-1900 h: 
lights on), and they were handled and weighed 
every day at 0900 h. 

Surgery 
All animals were provided with two permanent 

heart catheters two weeks before the experi- 
ments. This and all other surgery was performed 
under light ether anaesthesia. The heart catheters 
allowed blood sampling and infusion of liquids in 
freely moving, undisturbed rats. The method has 
been described extensively before [18]. One week 
after insertion of the heart catheters, eight rats 
were denervated, eight rats were sham operated 
and eight rats served as controls. 

Denervation and adrenodemedullation 
A laporatomy was performed in the midline. 

Using micro-surgical instruments under an oper- 
ating microscope (Leitz), the hepatic artery was 
denervated close to the hilum, but deliberately 
sparing the hepatic vagal nerves [6] and the sym- 
pathetic pancreatic nerves. A myelin specific dye 
(Toluidin blue) was used to stain the nerves peri- 
arterially. Sham-operated animals were treated 
similarly except for cutting the nerves. Bilateral 
adrenodemedullation was performed by flank in- 
cisions. The adrenal medullas were removed by 
surgical enucleation of the medulla. 

Physical exercise 
Exercise was performed in a pool made of 

stainless steel (length 3.00 m, width 0.40 m and 
depth 0.90 m) filled to 70% with water with a 
temperature of 33 _+ 2°C. The pool was equipped 
with a starting platform (33 × 37 cm) placed 2 cm 
above the water level. This platform could be 
lowered into the water down to the bottom of the 
swimming pool. A water pump (Loewe Silenta, 
FRG) provided a counter current of 0.22 m / s  
that forced the animal to swim continuously. At 
the end of the exercise period, a removable rest- 
ing platform (20 × 37 cm) at the upstream side of 
the swimming pool was offered to the swimming 
rat. The rats were accustomed to swimming and 
blood sampling several times to eliminate emo- 
tional stress of novelty. The rats readily learned 
to climb on this lit and warmed platform within 2 
min after presentation. 

Experimental set-up 
In experiment 1, all animals were challenged 

with an intravenous infusion of physiological doses 
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of E and NE, respectively, on the fourth and sixth 
day after hepatic sympathetic denervation to in- 
vestigate possible changes in catecholamine sensi- 
tivity. The doses of E and NE were selected to 
mimic elevated physiological concentrations in 
plasma E and NE levels [13,18]. Thereafter ,  the 
rats were submitted to exercise on the tenth day 
after hepatic sympathetic denervation (experi- 
ment II). The animals were adrenodemedullated 
on day eleven after denervation to investigate a 
possible compensatory mechanism of adrenal 
medullary origin. At day nineteen, the animals 
were again submitted to exercise (experiment III). 

All experiments were performed during the 
light period between 0900 and 1200 h. On experi- 
mental days, food was removed from the home 
cages 1.5 h before the start of the experiment. 
Forty minutes before the first blood sample was 
taken, the animals were connected to tubing (in 
mm: 300 length, 1.25 OD, and 0.75 ID) to allow 
blood sampling. After each sample, a transfusion 
of a similar amount of citrated donor blood was 
given to avoid diminution of the blood volume 
and related changes in haemodynamics. Donor 
blood was obtained from undisturbed rats with 
permanent  heart catheters. 

In experiment I, a second tube was connected 
for infusion of the catecholamine solution. The 
catecholamine infusion experiments were carried 
out in the home cage of the animals. Solutions of 
E (20 ng /min)  and NE (50 ng /min)  were intra- 
venously infused over a 20-min period at a rate of 
0.075 mi /min .  A small amount of ascorbic acid 
(0.01%) was added to the infusates as an antioxi- 
dant. Throughout  the experiments, seven blood 
samples (0.6 ml each) were taken for determina- 
tion of blood glucose, plasma FFA, and plasma 
catecholamine levels. After two baseline samples 
(time points t = - 1 1  and t = - 1  min), the infu- 
sion pump was switched on (time point t = 0) and 
was stopped at time point t = 20 min. During 
infusion, blood samples were taken at time points 
t = 2 ,  10 and 17 min. After the infusion two 
additional samples were taken at time points 
t = 22 and 30 min. 

In experiments II and III, 12 blood samples 
(0.6 ml each) were taken for determination of the 
glucose, FFA, and catecholamine concentrations. 

In the home cage of the rat, two blood samples 
were taken in a 10-min interval (at time points 
t = - 1 1  and t = - 1  min) to measure baseline 
levels of blood components. The animals were 
then transferred to the starting platform (time 
point t = 0 min) of the swimming pool after with- 
drawal of the last blood sample in the home cage. 
Blood samples were taken at time points t = 1.5 
min and 10 min. Immediately thereafter,  the 
starting platform was lowered to the bottom of 
the pool and the rat was forced to swim for 15 
min. Blood samples were taken at time points 
t = 11, 15, 20 and 25 min. The rats were then 
allowed to climb onto the resting platform. Blood 
samples on the resting platform were taken at 
time points t = 27, 30, 37 and 47 min. 

Chemical determinations 
Blood samples were immediately transferred 

to chilled (0°C) centrifuge tubes containing ED TA  
as antioxidant and 10 /~1 heparin solution (500 
U / m l )  as anticoagulant. Blood glucose (50 /zl 
blood) was measured by the ferricyanide method 
of Hoffman (Technicon Auto Analyzer TMII). 
The remaining volume was centrifuged for 15 min 
at 5000 rpm at 4°C. The supernatant was divided 
into two parts: 100/zl were immediately stored at 
-80°C  for catecholamine measurements and 100 
/zl were used for the FFA assay. 

Determination of plasma catecholamine con- 
centrations was performed by high-pressure liq- 
uid chromatography (HPLC) in combination with 
electro-chemical detection (ECD). This method 
has been described in detail before [13]. For 
determination of tissue NE concentrations, 10-25 
/zg of the liver were cut from frozen tissue and 
were homogenized in 300 ~1 HCIO 4 (0.1 N + 
0.05% EDTA) for 5 min (0°C). The homogenate 
was centrifuged for 10 min at 10000 rpm and NE 
concentrations were determined by H P L C / E C D .  
Plasma FFA were extracted and photometrically 
determined [1]. 

Data analysis, statistics and ethics 
Concentrations of blood components are ex- 

pressed as mean changes + S.E. compared to 
baseline levels at time point t = - 1  min. Within 
each experiment, the Wilcoxon matched-pairs 
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s igned rank  test  was used  when  the levels of  the  
b lood  componen t s  at a cer ta in  t ime dur ing  the 
expe r imen t s  were  c o m p a r e d  with base l ine  values  
in the  home  cage. Two-way analysis  of  var iance  
fol lowed by a M a n n  Whi tney  U- tes t  were  app l i ed  
to d e t e r m i n e  for each  sample  po in t  the  signifi- 
cant  d i f ferences  be tween  defini t ive expe r imen t s  
and  control  exper iments .  A probabi l i ty  level of  
P < 0.05 was r e g a r d e d  as s ta t is t ical  s ignif icance 
for all tests.  The  s tudy was app roved  by the  local 
ethics commi t t ee  for an imal  s tudies.  

R e s u l t s  

Table  I p resen t s  the  basal  concen t ra t ions  of  
b lood  glucose and p la sma  F F A  in control ,  sham-  
o p e r a t e d ,  and  l ive r -denerva ted  animals  in experi-  
ment  I. Basel ine  levels of  b lood  glucose and 
p la sma  F F A  were  s imilar  in the  th ree  groups.  
The  resul ts  of  expe r imen t  I, in which control ,  
s h a m - o p e r a t e d ,  and  l i ve r -dene rva ted  an imals  
were  sub jec ted  to in t ravenous  infusions of  E (20 
n g / m i n )  and N E  (50 n g / m i n ) ,  are  p r e s e n t e d  in 
Fig. 1. In the  cont ro l  group,  infusion of  E caused  
an increase  in the  concen t ra t ion  of  b lood  glucose 
of  1.3 + 0.3 m m o l / 1  ( P  < 0.01). No signif icant  
changes  were  found  in concen t ra t ions  of  p l a sma  
F F A  in cont ro l  an imals  dur ing  or  af ter  infusion 
of  E c o m p a r e d  to the  base l ine  levels. Infusion of  
N E  (50 n g / m i n )  led to an increase  in b lood  
glucose levels of  0.8 + 0.3 m m o l / l  ( P  < 0.05) and 

TABLE I 

Basal ualues of  blood glucose and plasma FFA in control, 
sham-operated and liuer-denervated rats (experiment 1) 

Infusion of E Infusion of NE 
(20 ng/min) (50 ng/min) 

Blood Plasma Blood Plasma 
glucose FFA glucose FFA 
(retool/l) (~eq/ml) (retool/l) (p~eq/ml) 

Control rats 5.9 263.5 5.7 126.7 
(n=6) _+0.2 +66.1 _+0.4 -+17.0 

Sham-operated 5.9 181.9 5.8 170.0 
rats +-0.2 +34.9 _+0.2 +26.1 
(n = 5) 

Liver-denervated 6.1 189.2 6.1 122.6 
rats +0.2 -+26.2 +0.2 +-22.9 
(n = 7) 

Values are mean+_SE of concentrations of blood glucose and 
plasma FFA as measured at t = -  1 min before infusion of 
physiological amounts of E (20 ng/min) or NE (50 ng/min). 

an increase  of  p lasma  F F A  of  75 _+ 23 Fzeq /ml  
( P  <0 .05) .  In the s h a m - o p e r a t e d  and l iver-de-  
ne rva ted  animals ,  infusion of  E and N E  resu l ted  
in s imilar  changes  in b lood  glucose and p lasma  
F F A  levels as observed  in the  cont ro l  group.  

The  resul ts  of  expe r imen t  II,  in which control ,  
s h a m - o p e r a t e d ,  and  l ive r -dene rva ted  an imals  
were  subjec ted  to exercise,  are  p r e s e n t e d  in Fig. 
2. Basel ine  levels of  b lood  c ompone n t s  a re  shown 
in Tab le  II  and  were  s imilar  in the  th ree  groups.  
C o m p a r e d  to base l ine  levels, exercise  resu l ted  in 
increases  in b lood  glucose,  p l a sma  F F A ,  N E  and 

2.0 

u ~ 1.0-1 

_o0t 
<~ 1001 

<l~_lO0 j 

20 30 
t ime (min) 

40 

2.0 

o o 1.0 ~ E  

-0. 

< ~  1001 

~;-looJ 
50 2o 4o 

t ime (min) 

Fig. 1. Effect of infusion of epinephrine (20 ng/min) (left graph) and norepinephrine (50 ng/min) (right graph) on concentrations 
of blood glucose and plasma FFA in liver-denervated rats (o o; n = 7), sham-operated rats (o .-o; n = 5) and control 

rats (+ - - + ; n = 6). Data are expressed as mean + S.E. The infusion period is depicted by a black bar at the bottom axes. 
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TABLE II 

Basal ualues of blood glucose, plasma FFA, NE and E in control, sham-operated, and liver-denervated rats before (control swimming) 
and after adrenodemedullation (admx swimming) (experiments H and III) 

Blood glucose Plasma FFA Plasma NE Plasma E 
(mmol / l )  (/.~eq/ml) (nmol/1) (pmol/ l )  

Control swimming 
Control rats 5.9 + 0.1 153.3 + 15.6 1.28 5:0.16 203 _+ 40 

(n = 6) 
Sham-operated rats 5.5 + 0.1 212.7 + 41.7 1.50 _+ 0.13 332 + 78 
(n = 5) 
Liver-denervated rats 5.8 + 0.1 120.5 _+ 32.6 1.73 _+ 0.14 410 + 148 
(n = 6) 

Admx swimming 
Control rats 5.6 _+ 0.2 176.0 _+ 40.7 1.78 _+ 0.27 n.d. 
(n = 6) 
Sham-operated rats 5.5 + 0.2 171.0 _+ 20.4 1.85 _+ 0.40 n.d. 
(n = 5) 
Liver-denervated rats 5.6 + 0.2 145.0 + 17.6 2.12 + 0.21 n.d. 
(n = 7) 

Values are mean + S.E. of blood glucose, plasma FFA, NE and E as measured at t = - 1 min in the home cage before the rats 
were placed on the starting platform in swimming pool. n.d. = not detectable 

O ~  

~ E  t ~ w  
<I _IJ 

= 2 0 0  

o°o -2 J 

z o  

OJ 

3ooo l 
 OOOl 
,OOOO j 

o 20 
t ime(ra in)  

6b 

Fig. 2. Effect of swimming exercise on concentrations of blood 
glucose, plasma FFA, norepinephrine (NE), and epinephrine 
(E), in liver-denervated rats (e e; n = 7), sham-oper- 
ated rats ( o  o ;  n = 5 )  and control rats ( + - - - + ;  
n = 6). Data are expressed as mean_+S.E. The swimming 

period is depicted by a black bar at the bottom axes. 

E. The exercise-induced changes were similar to 
alterations in previously performed studies [13,14]. 
The increases in concentrations of blood glucose, 
plasma FFA, NE and E in control animals were 
not different from the levels observed in sham- 
operated and liver-denervated rats. 

The results of experiment III, in which adren- 
odemedullated, sham-operated, and liver-de- 
nervated animals were subjected to exercise, are 
presented in Fig. 3. Baseline levels of blood com- 
ponents are shown in Table II and were similar in 
control, sham-operated and liver-denervated rats. 
Plasma concentrations of E were below detection 
levels (lower than 25 pmol/ l ) .  In the control 
group, adrenodemedullation markedly reduced 
the exercise-induced increase of blood glucose 
(significant at time points t = 20, 25, 27, and 
t = 32 min). The exercise-induced changes from 
baseline levels in plasma FFA and NE in the 
control group were not different from the changes 
in the sham-operated and liver-denervated group. 

Tissue NE levels in whole liver were 0.031 + 
0 .008/zg/g  in denervated and 0.076 + 0 .012/xg/g  
in controls, at day 19 of the study, which corre- 
sponds to a 60% reduction by the denervation 
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Fig. 3. Effect of swimming exercise on concentrations of blood 
glucose, plasma FFA, norepinephrine (NE) and epinephrine 
(E) before, during and after swimming in adrenodemedullated 
liver-denervated rats (e o; n = 7), adrenodemedullated 
sham-operated rats (o .. o; n = 5) and adrenodemedul- 
lated control rats ( + - - - + ;  n = 6). Data are expressed as 
mean + S.E. The swimming period is depicted by a black bar 

at the bottom axes. 

( P <  0.05). Tissue NE levels in the superficial 
liver tissue were 0.007_+ 0.002 / zg /g  in dener- 
vated and 0.042 + 0.005 / zg /g  in controls, which 
corresponds to 84% reduction by the denervation 
(P  < 0.05). 

Discussion 

Peri-arterial hepatic nerves are supposed to be 
predominantly sympathetic efferent nerves. Stim- 
ulation of these nerves leads to hepatic glucose 
release by activation of glycogenolysis [7,12,22]. 
Peri-arterial denervation might therefore impair 
the glycemic response to exercise. 

In the present experiment, the glycemic re- 
sponse to exercise was similar in denervated, 
sham-operated and control rats (experiment II). 

Identical blood glucose responses were also seen 
in the three groups of animals during peripheral 
infusions of physiological amounts of NE and E 
(experiment I). These results suggest that the 
influence of the peri-arterial hepatic nerves on 
the glycemic response to exercise is negligible. 
Instead, adrenal E proved to be a much more 
powerful mediator  of hepatic glucose production, 
since adrenodemedullat ion abolished the glycemic 
response to exercise in rats (experiment III), 
which confirms previous reports [14,17]. Finally, 
no differences in the blood glucose levels were 
observed between the denervated, sham-operated 
and control rats after adrenodemedullat ion.  
Again, this suggests that peri-arterial hepatic 
nerves are of minor importance for hepatic 
glycogenolysis during exercise. The data from the 
catecholamine infusion experiments revealed also 
that a counterregulatory mechanism leading to 
hepatic adrenoceptor  hypersensitivity cannot ex- 
plain the identical glycemic responses during ex- 
ercise in denervated rats and control rats. 

The difference between the results of this study 
and previously reported data might be attributed 
to species-specific variations in the importance of 
the sympathetic innervation of the liver for glu- 
cose production. Thus, direct sympathetic inner- 
vation to the liver seems less important for hep- 
atic glucose production in rats in comparison with 
other species. This might be due to considerable 
species differences in the pattern of sympathetic 
innervation of the liver parenchymal cells. For 
example, in guinea pigs, all liver parenchymal 
cells are separately innervated whereas in rats 
only a few cells are innervated. It has been hy- 
pothesized that signal transduction in rat liver 
cells mainly occurs indirectly via gap junctions 
[4,7]. In other species, such as the dog [3] and the 
rabbit [16], evidence for a role of hepatic sympa- 
thetic mechanisms in this respect is well docu- 
mented. In humans, a dense sympathetic innerva- 
tion of the liver has been demonstrated,  and 
electrical stimulation of the liver sympathetic 
nerves has been shown to stimulate hepatic glu- 
cose production in patients undergoing abdomi- 
nal surgery [12]. However, whether these nerves 
are of importance for hepatic glucose production 
during exercise in humans is not known. 



This study thus suggests that a major role for 
the hepatic sympathetic nerves in the regulation 
of hepatic glucose production seems unlikely in 
the rat. Nevertheless, a possible additive contri- 
bution of hepatic sympathetic nerves to other 
control mechanisms, like glucagon, cannot be ex- 
cluded. For example, it is possible that the effi- 
cacy of glucagon is potentiated by peri-arterial 
liver denervation [9], which might account for a 
compensation for the reduced stimulatory effect 
of the sympathetic liver nerves in the present 
study. Such compensatory mechanisms have been 
described in other situations, e.g. in hypoglycemia 
[5]. 

It might be argued that the hepatic denerva- 
tion was not complete in the present study, since 
the denervation of the peri-arterial hepatic nerves 
diminished average hepatic norepinephrine con- 
tent by only 60%. On the other hand, nore- 
pinephrine was almost completely absent in the 
superficial part of the liver after denervation, 
indicating that the peri-arterial denervation 
caused a substantial reduction of the hepatic sym- 
pathetic innervation. 

In conclusion, the results of the present study 
do not favor the idea that peri-arterial sympa- 
thetic nerves innervating the liver play an impor- 
tant role in hepatic glucose production during 
exercise in rats. Furthermore, the catecholamine 
infusion experiments indicate that the effects of 
hepatic denervation are not counteracted by in- 
creased adrenoceptor sensitivity in the liver. 
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