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The plasmid-encoded citrate determinant of the Lactococcus lactis subsp. lactis var. diacetylactis NCDO176
was cloned and functionally expressed in a Cit- Escherichia coli K-12 strain. From deletion derivative analysis,
a 3.4-kilobase region was identified which encodes the ability to transport citrate. Analysis of proteins encoded
by the cloned fragment in a T7 expression system revealed a 32,000-dalton protein band, which correlated with
the ability of cells to transport citrate. Energy-dependent [1,5-'4Cjcitrate transport was found with membrane
vesicles prepared from E. coli cells harboring the citrate permease-expressing plasmid. The gene encoding
citrate transport activity, citP, was located on the cloned fragment by introducing a site-specific mutation that
abolished citrate transport and resulted in a truncated form of the 32,000-dalton expression product. The
nucleotide sequence for a 2.2-kilobase fragment that includes the citP gene contained an open reading frame of
1,325 base pairs coding for a very hydrophobic protein of 442 amino acids, which shows no sequence homology
with known citrate carriers.

As in members of the family Enterobacteriaceae (25), the
ability to utilize citrate is a useful metabolic characteristic
for identifying Lactococcus lactis species (6, 34). The cit-
rate-fermenting ability of these gram-negative bacteria ap-

pears to be linked to the presence of genetically unstable
determinants such as plasmids (13, 14, 18, 32, 33, 37, 38) or
transposons (15). The presence of plasmid- or transposon-
encoded citrate transport systems enables members of the
Enterobacteriaceae to utilize citrate as the sole carbon
source. In contrast, the citrate-fermenting lactococcal
strains, designated L. lactis subsp. lactis var. diacetylactis
(7, 34), require an additional source of metabolic energy for
the transport of citrate (5, 12). Although biochemical details
of lactococcal citrate metabolism have been the subject of
many studies (12, 36, 41), the energetics of citrate uptake are
not yet understood. Kempler and McKay (19) demonstrated
that the ability to transport citrate was linked to a 7.9-
kilobase (kb) plasmid that appears to be present in all
citrate-fermenting L. lactis strains analyzed. A detailed
physical map of one of these citrate plasmids, pCT176, has
been reported (10).

In the bacterial species described until now, the ability to
grow on citrate is associated with cation-dependent trans-
port systems. Na+-dependent citrate utilization is found in
Enterobacter aerogenes (16, 28) and Salmonella typhimu-
rium, which also possess a K+-dependent transport system
(1, 18, 40). In Bacillus subtilis citrate transport is coupled to
magnesium ion transport (2). Cit+ Escherichia coli strains
contain a citrate permease, which seems to be H+ dependent
(30), whereas two citrate transport systems are present in
Klebsiella pneumoniae, one being dependent on H+ (45) and
the other being dependent on Na+ (9). The genes for
H+-dependent citrate transport systems of E. coli and K.
pneumoniae have been isolated, and sequence analysis has
shown that they code for related citrate-transport proteins
(van der Rest et al., in press).

* Corresponding author.

To assess the characteristics of citrate transport in lacto-
cocci, we describe in this paper the cloning, functional
expression, and sequencing of the citrate carrier of L. lactis
NCDO176 in E. coli. Additionally, we present an initial
characterization of the mechanism of citrate uptake medi-
ated by the lactococcal citrate carrier.

MATERIALS AND METHODS

Bacterial strains and plasmids. L. lactis subsp. lactis var.
diacetylactis NCDO176 was the source of the Cit+ determi-
nant in plasmid pCT176 (11). E. coli K-12 strain DH1 [F-
recAl endAl gyrA96 thi-J hsdRJ7(r- m-) supE44 relAl
lambda-] was used for selection of Cit+ transformants. E.
coli DH1 harboring plasmid pES1 containing the citrate
carrier of K. pneumoniae (35) was the Cit+ positive control
in these experiments. E. coli NZ1021 is a derivative of
MC1061 (4) carrying plasmid pGP1 (43) and was used in T7
RNA polymerase expression experiments. E. coli BL21
(DE3) (42) (F- hsdR gal) (obtained from F. W. Studier) was
used for membrane vesicle isolations. E. coli cloning vectors
pBR328 (39) and pT75 (obtained from S. Tabor and C. C.
Richardson) were used to clone the citrate determinant from
strain NCDO176.
Media and growth conditions. E. coli strains were grown in

L-broth (24) with vigorous shaking at 37°C. When appropri-
ate, the medium was supplemented with carbenicillin (100
,ug/ml), kanamycin (20 p,g/ml), or tetracycline (12.5 ,ug/ml) or
a combination of these antibiotics.

Citrate-positive recombinants of E. coli DH1 were se-
lected after overnight incubation on Simmons citrate agar
plates (Difco Laboratories).

Cloning of the citP gene. CsCl-ethidium bromide density
gradient-purified plasmid DNA from L. lactis NCDO176 was

prepared by the method of Maniatis et al. (24) with minor
variations as described previously (6) and was digested to
completion with EcoRI. The 7.9-kb linearized plasmid band
of pCT176 was isolated, inserted into the unique EcoRI site
of vector pBR328, and transformed to E. coli MC1061.
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FIG. 1. Physical map and subcloning of pCT176. A partial restriction nuclease map of the citrate plasmid pCT176 and deletion derivatives

of the fragment cloned in pBR328 and pT75 are shown. Symbols: -+, location and orientation of the citrate permease (citP) gene on pCT176;
M , regions that have been deleted in the cloned fragment. Plasmid pNZ66 contains pCT176 cloned as an EcoRI fragment (indicated by the

line) into pBR328. The direction of the promoter of the chloramphenicol resistance gene located on pBR328 in front of the cloned fragments
is indicated. Plasmid pNZ67 is a derivative of pT75. The 5-kb EcoRI-ClaI fragment of pCT176 was cloned behind the T7 promoter. The
direction of the promoter transcription is indicated. In plasmid pNZ67AB the frameshift mutation within the BamHI site of the cloned
fragment is indicated. In pNZ67AE, an EcoRV fragment was deleted from the original EcoRI-ClaI fragment. The ability to transport citrate
which is conferred by these plasmids on E. coli DH1 is shown in the right half of the figure and was determined by using Simmons citrate
indicator agar plates and by [14C]citrate uptake studies with intact cells. The amount of radioactivity found in citrate-positive cells ranged from
6,000 to 16,000 cpm, whereas in citrate-negative cells less than 3,000 cpm was detected. Symbols: +, citrate uptake or utilization; -, no citrate
uptake or utilization; n.d., not determined.

Further subcloning and other DNA manipulations were
performed as described by Maniatis et al. (24).
T7 expression experiments. For radioisotope labeling of

proteins encoded by pCT176, DNA fragments were cloned
in E. coli NZ1021 by using pT75 and the expression products
were analyzed as described by Tabor and Richardson (43) on
sodium dodecyl sulfate-12.5% polyacrylamide gels (21).
Membrane vesicle preparation. Membrane vesicles were

prepared by the method of Kaback (17) from exponentially
growing cells (A6.=0.8 to 1.0) of E. coli BL21, containing
the appropriate plasmids, after induction of logarithmically
growing cells with 400 ,uM isopropyl-p-D-thiogalactopyran-
oside for 90 min. Membrane vesicles were suspended in 50
mM potassium phosphate (pH 6.6) and stored in liquid
nitrogen.

Transport assays (whole cells and membrane vesicles). We
studied the transport of citrate in exponentially growing E.
coli cells which were washed three times with 50 mM
potassium phosphate (pH 5.5) containing 2 mM MgSO4 and
resuspended in the same buffer to 10 to 20 mg of total cellular
protein per ml. Transport was assayed over 20 min with 9
,uM [1,5-14C]citric acid (110 mCi/mmol; The Radiochemical
Centre, Amersham, England) at room temperature with
samples containing 1 to 2 mg of protein per ml.

Incubation and processing were performed as described
by Reynolds and Silver (30) for both whole cells and mem-
brane vesicles, except that for transport studies in mem-
brane vesicles we used 50 mM potassium piperazine-N,N'-

bis(2-ethanesulfonic acid) (K-PIPES; pH 6.6). Con-
trols were assayed for the transport of L-[U-`4C]proline
(154.5 mCi/mmol). The energy for citrate transport was
supplied by 10 mM ascorbate and 100 ,uM phenylmethosul-
fonate (PMS). Protein determinations were performed by the
method of Lowry et al. (22).
DNA sequence analysis. The DNA sequence of a 2.2-kb

BglII-XbaI fragment of plasmid pCT176 (Fig. 1) was deter-
mined by using the method of Sanger et al. (31). Sequence
data were analyzed by using PC/Gene, version 5.01 (Genofit,
Geneva, Switzerland), nucleic acid and protein analysis
programs and the computer facilities of the CAOS/CAMM
Center, Nijmegen University, with the National Biomedical
Research Foundation (NBRF/PIR) (release 23.0) and
SWISS-PROT (release 13.0) data bases.

RESULTS

Cloning and functional expression of the Cit+ determinant
in E. coli. Cells of a derivative of L. lactis NCDO176, lacking
the 7.9-kb plasmid pCT176, were unable to take up radioac-
tively labeled citrate, indicating that this plasmid encodes a
citrate permease (results not shown). Tetracycline-resistant
transformants of E. coli DH1(pNZ66) were tested on Sim-
mons citrate agar plates, on which colonies with a Cit+
phenotype have a blue halo around the colonies. As a
positive control in these experiments, we used E. coli DH1
(pES1), a pBR325 derivative containing the K. pneumoniae

J. BACTERIOL.
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FIG. 2. Expression of the citP gene under T7-RNA polymerase
control. E. coli NZ1012 cells containing plasmids pNZ67 (lanes A to
C), pNZ67AB (lanes D to F), or pNZ67A&E (lanes G to I) are shown.
Lanes A, D, and G contain noninduced cells; lanes B, E, and H
contain 42°C induced cells with no rifampin added; and lanes C, F,
and I contain induced cells to which rifampin was added. The
arrowhead indicates the position of the induced citP gene product.
The asterisk indicates the position of the truncated citP gene
product.

citrate transport gene (35). The pCT176 fragment was found
to contain a functional citrate permease gene (citP), which
was also demonstrated by the ability of transformants to take
up citrate (Fig. 1). The Cit+ phenotype was expressed in
only one of the two possible orientations of the 7.9-kb
EcoRI-cut plasmid DNA within the vector, suggesting that
the promoter of the citrate permease gene either was not
present on the cloned fragment or was not recognized in E.

coli. The EcoRI fragment of pCT176 was further subcloned
in pBR328 to narrow down the region encoding the citP gene
(Fig. 1). Growth of these deletion derivatives in E. coli DH1
revealed that a 3.4-kb EcoRV-ClaI fragment in pNZ66-2 was
still capable of conferring the Cit+ phenotype.
T7 expression experiments. To analyze the proteins en-

coded by the cloned DNA fragments, we made additional
constructs in the expression vector pT75. One of these
recombinant plasmids, pNZ67 (Fig. 1), contained the 6.4-kb
EcoRI-Clal fragment of pCT176 under control of the T7
RNA polymerase promoter. One derivative of pNZ67,
pNZ67AB, containing a frameshift mutation in the BamHI
site of the insert, was constructed by cutting with BamHI,
filling up the protruding ends with Klenow DNA polymer-
ase, and religating the fragment. A second derivative,
pNZ67A&E, had the 2-kb EcoRV fragment deleted from the
insert. [35S]methionine-labeled proteins specified by the
recombinant plasmids were analyzed. After temperature
induction, the presence of a 32-kilodalton (kDa) protein band
was visible in preparations of cells harboring pNZ67 or
pNZ67A&E but not pNZ67AB (Fig. 2). Also, the cells showing
the 32-kDa protein band were able to take up radioactively
labeled citrate. Cells containing plasmid pNZ67/B were
unable to transport citrate (Fig. 1). This strain showed a
band of approximately 20 kDa, which was absent in cells
containing plasmid pNZ67AE or pNZ67AB. Strain NZ1021
harboring pNZ67 or pNZ67AB showed an additional protein
band of approximately 30 kDa, which was absent in cells
harboring pNZ67AE.

Transport studies in membrane vesicles. Membrane vesi-
cles were prepared from E. coli cells carrying pNZ67 or
pNZ67AB. IPTG induction proved to be a more reproducible
and efficient method than temperature for induction of T7
polymerase-dependent citrate transport in vesicle prepara-
tions. Plasmids pNZ67 and pNZ67AB were transformed to
E. coli BL21 containing a chromosomally linked T7 RNA
polymerase gene under control of the IPTG-inducible tac
promoter (42). Membrane vesicles of BL21 cells harboring
pNZ67 or pNZ67AB accumulated proline in the presence of
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FIG. 3. Uptake studies of [14C]proline (2 ,uM) (A) and [14C]citrate (4.5 xM) (B) by membrane vesicles of E. coli BL21 with ascorbate-PMS
as the electron donor (0, A, *) and without ascorbate-PMS (0, A, OI). Symbols: 0, 0, uptake of membrane vesicles of strain BL21(pNZ67);
A, A, uptake of membrane vesicles of BL21(pNZ67AB); U, O, [14C]citrate uptake of ascorbate-PMS-energized membrane vesicles after the
addition of valinomycin (O) or nigericin (U). The values are averages of at least two separate experiments.

VOL. 172, 1990



5792 DAVID ETAL.J.BCEOL

1

121

241

RES START

NMNN H

P HS S H I G TT NV K EE I GK L DR I R I S GI G LIA Y AF NAV L LI I

361 TGGTTACAGCCGCATCAGTGTCATTGATGCTAGGCCTTTATCCCTCATTCGTAATG
A I S T K T L P N T N I G A I F A L V L K G H V F Y VY L G A H. L P I F R S V L G

G G S V F T I L L T A I L V A T N V I P K V V V T T A S G F I N G K D F L G L V

601

721

I VS L IA S S L FKKND RKK L LK AA VR F LPV A FI S NA LTA V VI G

I VG VI I G V GF NVYAI LVY lAMP IMNA GG V GA GI VPLSG I V AH A
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TGQTAGTATGTAAAAGAGACCTGCTCTGGTGGALLGGCTLTLLTNGALLTGLCWQGTVLCLG
1321 TATTGCCATCTGTATCAGTGAATGTGATTTCGTAGTCATCGAGTGCACATGTGTGAAGAC

S I V AISL ISATLGKLGFGLVFGPLYVPVAAITALTANGL'ANNSNGNG GT GN V
STOP

1441 TGCTTGCGACGAGAGATGTGGTGGAAGGATGA
A VL AA S ER NNL I AF A Q NGNR I GOGA LI LV V AG I L VTF NK-

1561

1681

1801

1921 TACTATTTTTCGAATTGTTTTAAAAATTATCTTTATTTAATGCATTAAATACAAAAGTAA

2041TCTGACATTACCCAAAATTATATCAGAATCCGCATACAATGTAACVAATTAGTTA

FIG. 4. Nucleotide sequence of the 2.2-kb BgiII-XbaI (Fig. 1) fragment containing the citP gene and deduced amino acid sequence of the
encoded protein. The putative start codons are underlined. A putative ribosome-binding site (RBS) is indicated. Atrows indicate an inverted
repeat, which could function as a terminator of transcription.

ascorbate-PMS, as expected (Fig. 3A). The differences in
proline uptake between the strains harboring either plasmid
pNZ67 or pNZ67AB may be attributed to differences in the
vesicle preparations. Similar differences were observed with
different vesicle preparations of one strain (data not shown).
Membrane vesicles from Cit' cells, containing plasmid
pNZ67, wer'e also able to take up citrate (Fig. 3B). Citrate
transport in these vesicles appeared to be driven by the
proton motive force (AP'), since dissipation of the A4' by
valinomycin or of the ApH by nigericin inhibited the accu-
mulation of citrate (Fig. 3B).
Nudeotide sequence of the eitP gene and flanking regions.

The nucleotide sequence of a 2.1-kb fragment containing the
citrate transport gene (citf) was determined (Fig. 4). There
was only one open reading frame, from positions 131 to 1557,
of sufficient size to encode a 32-kDa protein. The DNA
sequence for the open reading frame contained the single
BamHI site at position 852. Introduction of a frameshift
mutation within this site introduces a stop codon at position
872 and results in the formation of a truncated, nonfunctional
protein product (Fig. 2 and 3). The open reading frame for
citP starts with two adjacent ATG triplets. If the first
initiation codon was used (position 259), the gene would
encode a protein of 442 amino acids with a calculated
molecular weight of 46,645.

Analysis of the deduced amino acid composition of the
presumed citrate catrer indicates that this protein is highly

hydrophobic, with 12.4% polar and 87.5% nonpolar amino
acid residues. The ratio of basic (lysine, arginine, and
histidine) to acidic (glutamate and aspartate) residues is 2.1:1
and indicates that citP encodes a basic protein with a
calculated isolectric point of 9.97. The deduced amino acid
sequence of the citrate catrer contains segments of high
hydrophobicity that alternate with short hydrophilic seg-
ments (data not shown, 20). Both N- and C-terminal ends of
the amino acid sequence are more hydrophilic, as is the
region between residues 240 and' 280.
There was no homology between the Lactococcus citrate'

carrier protein and other known citrate catrers, such as
those of E. coli (32) and K. pneumoniae (45). Also, a search
of the NBRF and SWISS, data bases with the predicted
primary sequence of cit? failed to detect s-ignificant homol-
ogy to any of the published sequences.

DISCUSSION

We describe the cloning, expression in E. coli, and nudle-
otide sequence of the plasmid-encoded cit? gene of L. lactis
NCDO176. Transport of ('4C]citrate by whole cells and
membrane vesicl'es, of E. coli harboring citP? expressing
plasmiids was demonstrated.
The cit? gene product is' a protein with a gel electropho-

resis rate corresponding to an apparent molecular mass of 32
kDa (Fig. 2). The 32-kDa protein band is probably the cit?

J. BACTERIOL.
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gene product, and the 20-kDa band visible in strains carrying
pNZ67AB may represent a truncated derivative of the citP
gene product. The 30-kDa protein band encoded by
pNZ67AE may be a second protein encoded by the EcoRV
fragment that has no apparent function in citrate transport.
The results were supported by citrate uptake studies in
membrane vesicles of E. coli cells carrying citP-expressing
plasmids (Fig. 3). These studies show that citrate transport is
driven by the AP. More extensive studies are needed to
reveal the nature of the cations symported with citrate and
the contribution of the components of the AlP in the transport
process.
The nucleotide sequence of citP (Fig. 4) was identified

which starts with two ATG codons. At this stage we do not
know which initiation codon is actually used. A putative
ribosome-binding site (GGAG at position 247), complemen-
tary to the 16S rRNA of E. coli (AG' of -7.2 kcal/mol [ca.
-30.1 kJ/mol], calculated by the method of Tinoco et al.
[44]) is present 9 nucleotides preceding the first of the two
possible initiation codons. However, regions that are similar
to E. coli (26) or L. lactis (8) consensus promoter transcrip-
tion initiation sequences were not found. An inverted repeat
97 base pairs downstream of the stop codon at position 1557
showed homology to typical p-independent terminators of
transcription (29) (Fig. 4). It was also found that in other
citrate carrier genes of E. coli (32) and K. pneumoniae (45),
no promoter sequences were present in the region preceding
the sequence encoding the citrate carrier. A second open
reading frame, located 54 base pairs in front of the citrate
carrier gene, is proposed to be necessary for undelayed
citrate utilization in E. coli (32). In K. pneumoniae no such
open reading frame has been detected, although the inability
to obtain functional expression in some deletion derivatives
has been interpreted as evidence for the presence of such an
open reading frame (45). There are no indications of a similar
structure in L. lactis, since deletion of a region upstream of
the citP gene, such as in pNZ67AE, did not show any
delayed growth or delayed uptake of labeled citrate into
whole cells (Fig. 1 and results not shown).
The hydropathy profile of citP resembles those of other

membrane-associated proteins. For instance, the citrate
transport proteins of both E. coli and K. pneumoniae also
contain a central hydrophilic region as well as hydrophilic N
and C termini. The hydropathy profile of a hydrophobic
protein may be a good description of the folding structure of
the protein (27). The hydrophobic regions of the sequence
may well represent membrane-spanning domains. These
results strongly suggest that the L. lactis citrate permease is
an integral membrane protein; this is in agreement with the
location of the citP expression product in the cytoplasmic
membrane.
The molecular mass calculated from the deduced primary

sequence of the putative citrate carrier is 46.6 kDa, larger
than the molecular mass of 32 kDa estimated from the
mobility of the citP gene product on a sodium dodecyl
sulfate-polyacrylamide gel. Such an aberrant migration on
sodium dodecyl sulfate-polyacrylamide gels is well docu-
mented for a variety of hydrophobic proteins (3, 23).
The lack of homology between the citrate carriers of

gram-negative bacteria and the lactococcal CitP suggests
that the L. lactis citrate permease belongs to a different class
of carriers. The observation that the citP gene can function-
ally complement E. coli suggests that all information for
citrate transport is contained in its gene product.
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