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1. INTRODUCTION 

Let A, ,..., A,, x, ,..., x,, be real numbers, 

4T) = c 4, Tc [n] = {l,..., n} 
it 7 

(1) 

so that A(4) = 0 and 

A=q[n])=d,+ .” +&,x=x,+ ‘.. +x,. (2) 

Hurwitz [Z] by elementary analytical methods proved the identities 

1 (x,, - ,I( T,))‘$ n x,(x, - ,I( T,))+ ’ = (x - %)“, 

(3) 

(4) 

where the sums are over all ordered partitions (T, ,.,,, T,) of [n] with T, = 4 
admitted and tj = ( i”,l. Francon [ 1 ] proved (3) for s = 2 by combinatorial 
methods. For s = 2 and ii = ;1 the relations (3) and (4) reduce to forms of 
Abel’s generalized binomial formula. 

We extend these results by applying the theory of polynomials of 
binomial type developed in [3] and [4] from which we will cite freely. Let 
Q = DP be a delta operator on the set of all real polynomials with D = d/dx 
and P an invertible shift-invariant operator that maps any polynomial into 
a polynomial of the same degree. Shift-invariance means E”P = PE”, where 

E”f(x) = f(x + a). (5) 

Shift-invariant operators commute. To Q belongs a unique sequence of 
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basic polynomials q,, n E N, defined by qO(x) = 1, q,JO) = 0, Qqn = nq,_ , , 
n 3 1. The polynomial q, has degree n and the sequence { qn } is of binomial 
type. The explicit form of the q,, is given by theorem 4 in [3] and [4]. We 
choose the representation 

q??(x) = ,~rn(x), r,(x)=r(n;x)=P~“x”~ ‘, n>l, (6) 

which also holds for II = 0 if we allow Pox ’ = Ix ’ = x ’ so that 
Y()(X) =x ‘. In Section 2 we prove the following generalization of (3) 
and (4). 

THEOREM 1. For r(n; x) defined by (6) we have 

C fi x,r(t,;x/-A(T,))=xr(n;x-E,), 
i=l 

(7) 

Cr(t,+ 1,x,-@T,)) n xjr(ti;x,-l(T,))=r(n+ l;x-i), (8) 
,=I 

where the summations are as in (3) and (4) and ti = 1 T,I. 

It is noted that rO(x - A(b)) =x- ’ since n(4) = 0 so that both sides of (7) 
and (8) are polynomials of degree n in x’ ,..., x,. For P = I we have 
r,,(x) = x” ’ and (7), (8) reduce to (3), (4). For Q= I- Em ’ we have 
qJx) = xc”), where 

x(O)= l,x’“‘=x(x+ l)...(x+n- l), n3 1. (9) 

Then r,(x) = (x + I)‘+ “, 1~30, if we define (x+ l)‘P”=x-l and (7) and 
(8) become 

c n x,(x,+ 1 -A(T,))“l- “=x(x+ 1 -A)‘nm”, (10) 
,=I 

s- I 

c (x,~+ 1 -A(T,s))“z) ,I’, x,(xi+ 1 -Is(T,))‘“- ‘)=(x+ 1 -A)‘“‘. (11) 

A combinatorial application of (10) and (11) will be given in Section 2. 

2. PROOF AND APPLICATION 

First, we prove (7). From (6), since P- ’ also is shift-invariant, 

r(t,; xi - A( T,)) = Ep 4mp-f,x:, -1 =p~‘I~~w,~X:‘-l =p-l’(*,--(Ti))t,--~l, 

(12) 
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By Theorem 2 in [3] or [4] we have 

p-1 = f ak Dk/k!. 
k=O 

Since (x, - A( T,))“- ’ has degree smaller than n, we may replace Pp ’ in 
(12) by 

V= f hkDklk!, 
k=O 

if b, = ak, k d n. For V we take 

V(x) = ]f.(* + u) Wu), 

where F: R -+ [w is of bounded variation. We may choose F so that 

bk= ukdF(u)=ak, 
s 

k = Op.., n. 

(13) 

(14) 

It is sufficient to take F constant except for n + 1 jumps of magnitudes 
qo,..., qn. The coefficient determinant of Eqs. (14) in yap,..., q, then is Van- 
dermonde’s. If T, = (j, ,..., j,) we have from (12) and (13), 

r(t;; x, - A(T;)) = j... [ (xi+ uj, + ... + ulh - l(TJpl dF(u,,) ... dF(u,,). 

(15) 

If Ti = 4 we have r(t;; xi - A( r,)) = x; ’ . Substituting this into the left-hand 
side of (7), applying Fubini’s theorem to the integrations, interchanging 
sum and integral and applying (3) with Ai replaced by Ai- ui shows that 
the left-hand side of (7) is equal to 

X 
s s 

... (x+u,+ ... +u,-n)n-‘dF(u,)...dF(u,) 

~x~(~-~)“~~=~P~“(~-~)“-‘=~P-“E~~~”-’ 

= xE-‘P-“x”- ’ = xr(n; x - A), 

which proves (7). 
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In the proof of (8) we have (15) for ids - 1 and, if T, = (il ,..., ik), in the 
same way as above, 

r(t,+l;x-A(T,,)) 
=E- i(T,Jp-k -lxk=p-k I 

s (x,-A(T.~))~= Vk+‘(x,-A(Ts))k 

=j+xy+v+u,,+ ... +uc-~~(T,))kdF(v)dF(u,,)~~~dF(uik). 

Substituting this, together with (15), into the left-hand side of (8), applying 
Fubini’s theorem, interchanging sum and integral and applying (4) with ?I, 
replaced by X, + v and IV, by Ai- ui shows that the left-hand side of (8) is 
equal to 

s 1 ... (x+v+u,+ ... +u,-A)“dF(v)dF(u,)...dF(u,) 

z p+‘(x-~)“=p +‘(~-A)~=r(n+ l;.u-A), 

which proves (8). 
The relation (10) solves the following combinatorial problem. We want 

to construct s labeled necklaces of prescribed positive integer lengths 
aI ,..., a,y from distinguishable beads with positive integer lengths. There are 
n beads of lengths %, 3 2, i E [n] and a - 1 beads of length 1, where a = 
a, + ... +a,, d=L, + ... +A,,, so that the sum of the lengths of the beads 
fits exactly. 

A necklace does not change by circular permutation. In how many ways 
can this be done? We impose the restrictive condition 

2 6 a,, i=l s. ,..., (16) 

Without this condition the problem seems to become far more difIicult. 
First divide the n beads with lengths Li 3 2 into s subsets T, ,..., T, and 

assign T, to the ith necklace. Distributing the a - 1 remaining beads over 
the necklaces and ordering the beads in the necklaces then can be done in 

(a-l)! fi {(ai-A(Tj)+ti- l)!/(a,--A(T,))!} 
r=l 

= (a-I)! fi (a,+ 1 -A(Ti))(G-l) 
i= I 

ways with t,= IT,1 and A(Ti) given by (l), noting that (x-t l)(-‘)=x-l. 
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Summing over all ordered partitions (T, ,..., T,) of [n] shows with (10) that 
the number of ways is 

(u - /I)! u(u + 1 - 2.) ‘“-“(a,...a,~)~l=a(a-3,+n-l)! (a,Y2J’. 

This relation will be used elsewhere to solve a problem on cycles of a 
random permutation. 

If the sth necklace is replaced by a string of beads of length u,~, we find 
by (11) that, again under (16), the number of ways of distributing the 
beads is (a-i.+n)! (~,...a., ,) ‘. When two or more necklaces are 
replaced by strings there does not seem to be a simple answer. This 
corresponds to the fact that replacing more than one factor 
x,~(t,; xi- i.(T,)) in (7) by r(t,+ 1; x,- I(T,)) does not result in a formula 
like (8), as was already remarked by Hurwitz [2] for (3) and (4). 
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