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The mth-order upper record values of a sequence of independent random variables with common 

continuous distribution function, that are kth but not (k- l)th-order record values and that 

precede inter-record times of length j, form a Poisson process, the processes for different (k, j) 

being independent, k = 1,. . . , m, j = 1,2,. . . . The records with record epochs after r > m, have a 

similar property if we condition with respect to the mth decreasing order statistic of the sample 

for times 1, . , r. These results extend theorems by Ignatov. 

records * Poisson process * order statistics * point process * independence 

1. Introduction, notations 

Let X(l), X(2), . . . be independent random variables having common continuous 

distribution function F with 

(a, b) = {x: 0-c F(x) < l}, (1.1) 

where --co c a < b c co. Since F is continuous, removing a null set gives 

X(i)#X(j), i#i. (1.2) 

Let X,(n), . , . ,X,,(n) be the decreasing order statistics of X(l), . . .,X(n). For 

n 2 m, where m 2 1 is fixed throughout this paper unless stated otherwise, we define 

K(l)=m, (1.3) 

N,(n+l)=min{k> N,(n): X(k)>X,(N,(n))}, n> 1, (1.4) 

hn(~)=N?I(~+1)-Nn(~), (1.9 

Y,(n)=X,(N,(n)), h=l,..., m,nZl, (1.6) 

where the dependence on m is suppressed. We call the N,,,(n), n = 1,2,. . . , the 

mth-order (upper) record epochs, the v,,,(n) the inter-record times and the Y,(n) 

the mth-ordenrecord values. By ( 1.4) the N,,,(n) are the jump epochs of the Markov 
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chain {X,,,(n), n 2 m}, see Lamperti [6]. Equivalently, by (1.2), the N,,,(n) are the 

epochs at which the sets {X,(n), . . . , X,,,(n)}, n 2 m, change. It should be emphasized 

that we may have X(N,,,(n)) # X,,,(N,,,(n)). Then Y,,,(n) =X,,,(N,,,(n)) =X(i) with 

i < N,,,(n) and N,,,(n) is also a &h-order record epoch and Y,,,(n) a &h-order 

record value for one or more k < m. Let S, = 0 and S, = {X,(N,(n)): n 2 l}, r 3 1, 

so that S, is the set of rth-order record values. Also S, = {X,( Ns( n)): n 3 l}, s > r 2 1, 

since any rth-order record epoch is a sth-order record epoch and X,(j) with ja r 

is a rth-order record value. We have X,( N,(n)) = X,+,(N,(n + 1)) and N,(n) is a 

(r + l)th-order record epoch, since at time N,( n + 1) the set of the highest r + 1 order 

statistics of {X(i)} changes. So 

SrCSr+,, r-1,2,... (1.7) 

A countable random point set SC Iw” defines a point process as the family of 

random variables ]Sn Al, AE 93(lR”‘), where 93(E) denotes the class of Bore1 sets 

of E. Ignatov [7] proved the curious result that the random sets Si -Si_i define 

independent point processes on (a, b), each with intensity (or expectation) measure 

M given by 

M((a,x))=-log(l-F(x)), a<x<b. (1.8) 

The set S, - S,_, consists of those rth-order record values that are not jth-order 

values, j < r. That S, defines a Poisson process was proved by Dwass [3] and Shorrock 

[ 111. Resnick [ lo], Shorrock [ 121 and Ignatov [8] also proved that the sets of first-order 

record values with v,(n) = j for different j = 1,2, . . . form independent Poisson 

processes with intensity measures having distribution functions j-IF’(x). 

In Section 3 we extend this result to mth-order records, at the same time combining 

it with Ignatov’s first theorem. We use a different method of proof, referring directly 

to the record values and derive some new independence properties. The random 

point set {Y,(i),i=l,..., n-l, q(n),j=m ,_.., 1) is the same as 

{X(l), . . . , X(m), X(&(2)), . . . , X( N,,,( n))} and the order in time in which these 

X-values appear, determines the distribution of them over the sets Si-Si-,, i = 

m. It will be shown that this order of appearance and the random vector 

f;$),... Y,(n - 1), Y,(n), . . . , Y,(n)) are independent. 

The processes of higher-order record values have been the subject of independent 

research by several authors. After the first version of this paper was submitted, the 

author received the publication [5] by Goldie and [6] by Goldie and Rogers, giving 

still different proofs of the combination of Ignatov’s results, putting it into a wider 

context and also containing some results on noncontinuous F. Still another proof 

of Ignatov’s first theorem appeared in Deheuvels [2]. 

We need some considerations on Poisson processes that may be useful in their 

own right and are given in Section 2. Section 4 studies record values with record 

epochs greater than a fixed time r. The point processes then are not Poisson but 

conditionally Poisson given X,,,(r). 
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Somenotation: N,={1,2 ,... }, E,=(l)..., m}, 

G,={x~[W”:u<x,<~~~<x,<b}. (1.9) 

For intervals Ai = [ci, di] c (a, b) we have A, x - * . X A, c G,, if and only if a < cl < 

d, <. . .<c,,<d,,<b and then write 

A,<A,<.+.<A,. (1.10) 

For measures Q and R on Iw” the notation Q(dx, - . . dx,,) = 

S(x,, . . . , xn)Ndx, - * . dx,) or dQ(x) =f(x) dR(x) means 

Q(A) = J f(x) dR(x), AE LB(R”). (1.11) 
A 

If Q is the joint probability distribution of random variables 2, , . . . , Z, we write 

P(Zi E dx,, i E E,,) for Q(dx, . - . dx,) in the above convention. 

2. Poisson processes 

Consider a Poisson process with intensity measure A on T x 23, where T = (a, b) 

with -ao<a<b<cc and DE%?(@). 

Putting 

A,(A)=A(AxD), AELB(T), (2.1) 

we assume 

A(TxD)=oo, 

A,((u,x))<q u<x<b, 

A,({c})=O, u<c<b. 

(2.2) 

(2.3) 

(2.4) 

It follows that the random vectors (Z(i), V(i)), i = 1,2, . . . are defined a.s. uniquely 

by taking them to be the coordinates of the points of the Poisson process so that 

Z(i)E T V(i) E 0, Z(i)<Z(i+ l), ieN,. (2.5) 

We see that the joint probability distribution of (Z(i), V(i)), i E E,, is restricted to 

G, x D”, see (1.9), and that for z E G,, u E D” 

P(Z( i) E dzi, V(i) E dui, i E E,) 

= expi-A,((a, z,))l dA(z,, VI) * * . dA(z,, u,). 

This gives, for z E T, u E 0, 

P(Z(l)~dz, V(l)~du)=exp{-A,((u,z))}dA(z,u), 

(2.6) 

(2.7) 
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P(Z(l)> z) = ev{-A,((a, z))), (2.8) 

P(Z( i) E dzi, V(i) E duty i E E,) 

= fi P(Z(l)Edzi, V(1)Edui)j-I’ P(Z(l)>zi). 
i=l i=l 

(2.9) 

The following lemma is a simple special case of Theorem 5.13 in Cinlar [I]. 

Lemma 1. Let (Z(i), V(i)), i EN, be a stochastic process with Z(i) E T, V(i) E D, 

Z(i)<Z(i+l), HEN, andP(Z(l)=x)=O, P(Z(l)>x)>O, XE T. Thepointsofthis 

process form a Poisson process on T x D with intensity measure A satisfying (2.2)-(2.4) 

if and only if (2.9) holds, n E N, , and then A is given by 

dA(z, v)=P(Z(l)~dz, V(l)Edv)/P(Z(l)>z), ZE T, VE D. (2.10) 

Proof. Necessity follows from the computations above. For sufficiency define the 

measures A on T x D by (2.10) and A, by (2.1). Then 

exp{-A,((a, z))} = P(Z(l) > z), z E j7 (2.11) 

It follows that A satisfies (2.2)-(2.4) and that (2.6) holds. Since the probability law 

of the point process and the probability law of the process (Z(i), V(i)) determine 

each other, the assertion of the lemma follows. 

Remark. Since the restrictions of a Poisson process to disjoint sets are independent 

Poisson processes, the points Z(i) in T with V(i) E Dk form independent Poisson 

processes in T if the Dk are disjoint subsets of D. The V(i) are independent with 

common probability distribution Pv and independent of {Z(j), j E hJ,> if and only 

if A is the product measure of A, and Pv, as is seen from (2.10) and (2.9). The 

process (Z(i), V(i)) then is called a marked Poisson process on T, i.e. the Z(i) are 

marked independently with V(i). This shows that Ignatov’s theorems may be 

formulated in terms of independent Poisson processes but also in terms of a single 

Poisson process on a product space. The first theorem states that (Y,,,(n), a,,,(n)), 

nEN,, is a marked Poisson process, with g,,,(n)=k if Y,,,(n)E&-Sk-,. 

Taking D = (0) we see from Lemma 1 that the Z(i) form a Poisson process if 

and only if 

P(Z(i)Edzi,itE,)=,i,P(Z(l)Edzi) “i’P(Z(l)>Zi). 
i=l 

This means that the Z(i) have the distribution of a process of first order record 

values. The proof given in Shorrock [8] used a similar reasoning. Lemma 1 shows 

that a process {(Z(i), V(i)), i E N,} defines a Poisson process on T x D if and only 
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if {Z(i)} has the distribution of an upper record value process and the dependence 

between {Zi} and { y} has the special form following from (2.9). 

Remark. The mth-order record values defined in (1.6) have the same joint distribu- 

tion as the first order record values of independent X*(i) with P(X*(i) < x) = 

1 - (1 -F(x))“. This was proved by Dwass [4], Stam [13] and it will follow from 

results in Section 3. 

3. The mth-order record process 

Let {a,, . . . , ah} be a set of h different real numbers. Then ak has rank i in this 

set if &. is the ith smallest of a,, . . . , ah. By (1.2), (1.4) and (1.6) the random 

variables rk(n), ke E,,,, n EN, are defined uniquely by 

Y,(n) =X(7,(n)). (3.1) 

For fixed m we define 6Jcn’(i) as the rank of T,(i) and 0;“’ as the rank of am in 

the Set {~,(1),~,(2) ,..., ~,(n_l),~~(n),7,_,(n) ,..., r,(n)}, iEE,_,,jEE,,,. If 

the value of n is understood, the superscript is omitted. The random vector 

e=(e(i) ,..., e(n-l),e, ,..., e,) (3.2) 

specifiestheorderofappearanceintimeofY,,,(l),..., Y,(n--l), Y,(n),..., Y,(n). 

We have 8 E 0 where 0 is the set of all sequences (3.2) of m + n - 1 different positive 

integers satisfying 

lGB(i)Gm+i-1, iE En_,, (3.3) 

l~Oj~m+n-l, jEE,, (3.4) 

so that tI,=m+n-1 for some j. All m!mn-’ elements of 0 are possible. This is 

seen from the identities between point sets 

{Ym(l),..., yl(l)l={X(l), . . . , X(m)), (3.5) 

{Y,(l), Y,(2), Ym-,(2L.. . , y,(2)) ={X(l), . . . , X(m), X(%(2))), (3.6) 

IYm(l),..., Ym(n - 11, Ym(n>, Y,-,(n), *. ., Y,(n)) 

=(X(l), . . . ,x(m), X(KG?), . . . ,X(X(n))). (3.7) 

Theorem 1. 7’he random uectors 0 and ( Y, X(N,,,(n + l)), v,(l), . . . , v,(n)), with 

Y=(Y*(l),..., Y,(n - L), Y,(n), . . . , y,(n))E G,+m-r 
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are independent with P(6 = a) = (m! mn-‘)-‘, a E 0 and 

P( Y,,,(i)Edyi, v,(i)= hi, ic E,, q(n)Edzj, jE I?,,_‘) 

{ 

n--l 
= m! m”-’ n Fhl-‘(y,) dF(y,) 

i=’ > 

~(1 -~(~n>)~~~-‘(yn) Wyn) Ii Wzj), 
j=m-I 

(Y,, . . . , Y,, ~-1,. . . , z,) E Gntrn~, . (3.8) 

Proof. From (3.7) we see that Y and 0 specify the values of X(l), . . . , X(m), 

X(%(2)), . . . , X(N,,,(n)). Prescribing v,(l), . . . , v,(n) fixes the values of 

K(l), . . . , N,(n+l).WemusthaveX(k)<X,(N,(i))forN,(i)<k<N,(i+l). 

This gives, for intervals A’ < + . . <A, < B,_, < * * . < B, and C > A,, see (l.lO), 

P(O=cu, Y,(i)EAi,v,(i)=hi,iEE,, k;(n)cB,, 

jEE,-,,X(N,(n+l))EC) 

m-l 

Fht-‘(Yi) dF(yi) (3.9) 
j=I 

So, for (YI, . . . , Y,, L-I,. . . , zl) E G,+,,-1 and x> Y,, 

P( fl = a, Y,,,(i) E dyi, v,(i) = hi, i E E,, Yj( n) E dz,, 

jEE,_,,X(N,(n+l))cdx) 

= fi Fh~-‘(yi) dF(y,) . h dF(z,) . dF(x). 
i=l j=m-’ 

(3.10) 

The right-hand side of (3.10) does not depend on LY, so e and ( Y, X( N,,,(n + 

l)),%(l),..., v,(n)) are independent and P( 8 = a) = (m ! m”-‘)-I. Summation 

with respect to (Y and integration with respect to x over (y”, b) in (3.10) give (3.8). 

Remark. By integration in (3.8) with respect to z, , . . . , z,-1 and then summing over 

the hi we find 

P(Y,(i)Edyi, v,,,(i)=h,, iE E,) 

= m”( 1 - F(Y,))~ fi Fhl--‘(yi) dF(y;), y E G,,, 
i=l 

(3.11) 

P(Y,(i)Edy,,iEE,) 

= dFm(y’) . * . dFrn(yn) 
/ 

n-l 

II (1 -Fm(Yi)), YE Gn* (3.12) 
i=l 

with F,,,(x) = 1 - (1 - F(x))“. This proves the last remark in Section 2. 
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For rn fixed define the random variables a(n), n EN, by 

c+(n)=k if YE&-Sk_,, kE.E,, (3.13) 

i.e. if Y,,,(n) is a kth-order but not a jth-order record value, j< k, see (1.7). The 

next theorem shows that the process {a(n)} is not only independent of the mth-order 

record values but also of the mth-order record epochs. 

Theorem 2. The random vectors (a(l), . . . , a(n)) and (Y,,,(l), . . . , Y,,,(n), 

G(l),..., u,(n)) are independent, the latter with distribution given by (3.12). The 

u(i) are independent with P(a(i) = k) = m-‘, k E E,, i E E,,. 

Proof. Let t,,(n) be the rank of O’,“’ in the set {O$“‘, . . . , f32’} so that the vector 

5(n) = (5,(n), . . . , t,,,(n)) specifies the order of appearance of Y,(n), . . . , Y,,,(n). 
Since the latter are the first m order statistics of X(i), 1 =Z is N,(n) we have 

a(n) = L(n). (3.14) 

The vector 0’“’ determines f3’“-“, in fact the latter is derived from O(“) by deleting 

the component that has the value n+m - 1 and corresponds to the ‘new’ value 

X(N,,,(n)) at time N,(n). It follows that e(n) determines O(j), j = 1,. . . , n - 1, and 

(3.14) then shows that (a(l), . . . , o(n)) is a function of e(n). The first assertion of 

Theorem 2 now follows from Theorem 1. 

In Theorem 1 it was proved that the distribution of 0 is uniform on 0 defined 

in (3.3) and (3.4). This implies 

P(&(n) = ik, kE E,) = l/m! (3.15) 

for any permutation (i,, . . . , im) of (1,. . . , m). This proves with (3.14) that 

P(a( n) = k) = m-‘, kc E,. 

Now let ek(n), kE E,,_,, be the rank of b(n) in the set {t,(n), . . , , .&_,(n)} or, 

equivalently, the rank of /&“’ in { f3’,“‘, . . . , e’,“l,}, so that the vector .s( n) = 

(s,(n), . . . , Em-l(n)) specifies the relative order of appearance of 

Y,(n), . . . , Y,_,(n). We show by induction on n that t,,,(n), e(n) and 

(o(l), . . . , a(n - 1)) are independent, which by (3.14) implies the independence 

of the a(i). From (3.15) it follows that t,,,(l) and e(l) are independent. For the 

step n+n+l we note that t(n+l) is a function of E(n) and Z= 

(Y,-r(n), . . . , Y,(n), X(K(n+ l))), viz. 

5(n+ 1) = (e,(n), . . . , b,(n), m> if X(%(n + 1) < Ym-l(n>, (3.16a) 

5(n+l)=(s,(n), . . ..&i(n).m,&i+~(n),...,E,-l(n)) 

if Yi+,(n)<X(N,(n+l))< Yi(n), lGi<m-2, (3.16b) 

5(n+ 1) = (m, e,(n), . . . , e_,(n)) if X(N,(n+l))> Y,(n). (3.16~) 
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From Theorem I, noting that (I, (T(I), . . . , a(n)) is a function of O’“‘, we see 

that Z and (I, a(l), . . . , a(n)) are independent. By (3.14) and the induction 

assumption s(n) and (a(l), . . . , u(n)) are independent. So Z, .e(n) and 

(o(l), . . . , a(n)) are independent and (3.16) shows that t(n+ 1) and 

(u(l), . . . , a(n)) are independent. But [(n+l) and (&,,(n+l), &(n+l)) determine 

each other completely, whereas &,,(n + 1) and s(rr + 1) are independent by (3.15). 

This proves the assertion for n + 1. 

Theorem3. 7llepoints( Y,(n), u,,,(n), u(n)), neFU, formaPoissonprocessin (a, b) x 

N, x E,, with intensity measure A given by 

A((a,x)x{j}x{k})=j-‘F’(x), a<x<b, jEN,, kE E,. (3.17) 

Remark. From (3.17) and the remark following Lemma 1 we see that the Y,(n), 

nEN,, with v,(n) = j, v(n) = k for different (j, k) form independent Poisson 

processes on (a, 6) with intensity measures Ajk given by Ajk((a, x)) = j-IF’(x), 

a <x < b. Since this holds for any m, it implies the independence of the point 

processes S, - Si-1, i 2 1. It also follows that the numbers of the mth-order inter- 

record times of length j are independent Poisson random variables with parameters 

mj-’ ,j=1,2 ,.... 

Proof of Theorem 3. We apply Lemma 1 with D =N, x E,,,. From Theorem 2 

and (3.11) 

P( Y,,,(l) E dy, v,,,( 1) = h, (~(1) = k) = Fh-‘(y)( 1 -F(y))” dF(y), (3.18) 

P(Y,(l)Edy)=m(l-F(y))“~‘dF(y), 

P(Ym(l)>Y) = (1 -HY))“. (3.19) 

The relation (2.9) now becomes, by Theorem 2, 

m-“P( Y,,,(i)Edyi, v,(i)= hi, iE E,,) 

= i P(Ym(l)Edyi, ~~(l)=hi,~(l)=ki) fI P(Ym(l)>Yi), 
i=l I i=l 

and that it is satisfied, follows from (3.11), (3.18) and (3.19). From (2.10) (3.18) 

and (3.19) 

A(dy x(j) x(k)) = F’-‘(Y) WY) 

and this gives (3.17). 

4. The mth-order records after time r 

For fixed r> m let us denote the mth-order record epochs N,,,(n) with N,,,(n) > r 

as Nh( 1) < Nk(2) <. * . , and let us put YL(n)=X,,(Nk(n), r&(n)= N’,(n+l)- 

Ni(n)anda’(n)=kif Y’,(n)E&-Sk-,, kEE,,,. 
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For fixed m and n we define the random vector 8’= (O’(l), . . . , O’(n - I), 

ek,..., 13;) with respect to Y;(l), . . . , Y;(n), . . . , Y;(n) in the same way as 0 in 

(3.2) with respect to Y,(l), . . . , Y,,,(n), . . . , Y,(n), so that 8 determines the order 

of appearance of YX( l), . . . , Y’,(n), . . . , Y;(n). We may have Yk(h)=X(i) or 

Y;(n) = X(j) with is r or j< r. We have f3’~ 0, with 0 defined by (3.3) and (3.4), 

all 8’ E 0 being possible. This is seen from the identities between point sets, 

cf. (3.5)-(3.6): 

{xl(l),..., Yi(l)l=IXl(r),..., X-l(r>, X(Ndl))l, 

{Y’,(l), x?zm Y’,-,(2), . . . , y;(2)} 

= {Xl(r), . . . , -G-,(r), X(%(l)), X(K&9)1, (4.1) 

1 Y’,(lL Y’,(2), . - . , Y’,(n), Y’,-,(n), Y’,-,(n), . . . , K(n)1 

= {X,(r), . . . ,X-l(rL X(Xdl), . . . ,X(X(n))). 

We need the distribution function F.,,, of X,,,(r). It is given by 

dF,,,,( u) = r (4.2) 

Theorem 4. Under the condition X,,,(r) = u, a < u < 6, the points Yk(n), v;(n), 

u’(n), n EN, , form a Poisson process on (u, b) xN, x E,,, with intensity measure A, 

given by 

A,((u,x)X{j}X{k})=j-'(Fj(x)-Fj(u)). (4.3) 

Remark. The theorem implies that either under X,,,(r) = u or unconditionally the 

points with a’(n) = k for different k E E, form independent point processes, the 

points ( YQn), z&(n)) being marked independently with a’(n) from the uniform 

distribution on E,. 

Proof of Theorem 4. Noting that X,,,(r) = X,,, ( N,,, (h)) = Y,(h) where N,,,(h) is the 

last mth-order record epoch in {m, . . . , r} and Y;(i) = Y,,,(h + i), a’(i) = a(h + i), 

the statement in the remark follows from Theorem 2 by specifying h. Therefore we 

restrict our attention to the points (Y;(n), z&(n)) in (a, b) xN, . 

Still we begin the proof making use of the vector 0’. We have (X,,,(r), Y’) E G,,,, 

with Y’= (Y;(l), . . . , YL(n), Y;_,(n), . . . , Y;(n)). From (4.1) we see that Y’ and 

0’ specify the values of X,(r), . . . ,X,,-,(r), X(NL(l)), . . . , X(NL(n)) and the 

relative order of appearance of X,(r), . . . , X,_,(r). For T,, . . . , T,,, with X,(r) = 

X(T~), i E E,, then there are r(Al’,) possibilities. So for A0 < A, < * . . <A, < B,_, < 
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. . * <B, and (Y’E 0 we have 

Fr-m+k-‘( u) dF( u) Fhn-‘(y,)(l - F(Y,)) dF(y,) 

m-l 

Summing over k and the m ! m”-’ values of cx’ we see that for 

(%Yl,.. .,Y*,=m-l,..., =I) E G+, 

P(X,,,(r) E du, Y;(i) E dy,, v’,(i) = hi, i = 1,. . . , n, 

Y;(n)Edz,,j=m-l,...,l) 

= m!mn-‘r ( > :I’, Frpm( U)( 1 - F( U))-‘( 1 - F(y,)) i Fh’-‘(yi) 
i=l 

. dF( u) dF(y,) . . - dF(y,) dF(z,_,) . . . dF(z,). 

By integration with respect to z, , . . . , z,,,_, we find, for a < u < y, . . . < y. < b, 

P(X,,,(r)Edu, Yk(i)Edyi, vL(i)=hi, iEE,) 

= mnr 
( > 

;;l1 F’-“(u)(1-F(u))-‘(1-F(y,))” 

. ifi, Fh’-‘(yi) dF(u) dF(Y,) * . * dF(Yn). (4.4) 

Denoting conditional probability given X,(r) = u by P,,, we see from (4.2) and (4.4) 

thatfor u<y,<**.<y,<b 

P,( Yk( i) E dy,, z&(i) = hi, i E E,) 

= m"( 1 - F(u))-“( 1 - F(y,))“’ i Fhc-‘(yi) dF(yi). 
i=l 

(4.5) 

We apply Lemma 1 with T = (u, b), II = E,. From (4.5), for u <y < b 

PU( Yk(1) E dy, v’,(l) =j).= m(1 - F(u))-“(1 - F(y))“F’-‘(y) dF(y), 

(4.6) 

PU( Y’,(l) > y) = (1 - F(y))“( 1 -F(u))_“. 

From (4.5), (4.6) and (4.7) 

P,( Y;(i) E dyi, &(i) = hi, i E E,) 

= fj P,(YA(l)Edyi, uk(l)=hi) ‘fi’ Pu(Yk(l)>yi), 
i=l I i=l 

(4.7) 
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and this is the relation (2.9) for the process ( Yk( n), v;(n)), n E N under X,(r) = U, 

so that it is a Poisson process on (u, b) xN, with intensity measure A, given by 

(2.10) as 

A,(dy x(i)) = r@-‘(y) dF(y), 

n,((u,X)X{j})=mj-‘(F’(x)-F’(u)). (4.8) 

Remark. It follows from Theorem 4 that the points (Y;(n), v;(n)), n EN,, form 

a weighted Poisson process. In particular by (4.2) and (4.8) the numbers Mj, j E N, , 
of mth-order record epochs N,,,(n) > r with v,(n) =j, are weighted independent 

Poisson with 

i (zj-l)mj-‘(1 -F’(u)) 
j=l 

(1- f)m-‘fr-m exp i (zj - l)mj-'(1 - tj) dr. 
j=l 
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