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(Received 30 April 1984; accepted 27 June 1984) 

In molecular dynamics (MD) simulations the need often arises to maintain such parameters as 
temperature or pressure rather than energy and volume, or to impose gradients for studying 
transport properties in nonequilibrium MD. A method is described to realize coupling to an 
external bath with constant temperature or pressure with adjustable time constants for the 
coupling. The method is easily extendable to other variables and to gradients, and can be applied 
also to polyatomic molecules involving internal constraints. The influence of coupling time 
constants on dynamical variables is evaluated. A leap-frog algorithm is presented for the general 
case involving constraints with coupling to both a constant temperature and a constant pressure 
bath. 

I. INTRODUCTION 

The computer simulation method of molecular dynam­
ics (MD) has become an important tool in the study of dyna­
mical properties of liquids, molecular solutions, and macro­
molecules. The usual isochoric and adiabatic simulations 
solving Newton's equations of motion at constant volume 
cannot be used if dissipative nonequilibrium systems are 
studied (e.g., to obtain transport properties). Also in equilib­
rium simulations, especially if long range interactions are 
involved and a potential truncated at a cutoff radius is used, 
unavoidable slow drifts occur that need corrections. The in­
terest to study properties as a function of temperature and 
pressure is much more extensive than the interest to use vol­
ume and energy as the independent variables. Therefore, ei­
ther as a matter of necessity or convenience, the availability 
of methods for constant temperature and/or pressure dy­
namics is of great practical significance. 

Various methods to impose external constraints on MD 
have been proposed and applied. Velocity scaling to correct 
for thermal drift has been common practice, usually rescal­
ing as infrequently as possible to minimize influence on the 
trajectories. Velocity rescaling per step in order to exactly 
maintain a reference temperature was employed by Wood­
cock, I Evans,2 and Schneider and Stoll.3 The latter tested 
this procedure on an exactly solvable system of 3200 coupled 
harmonic oscillators and found the influence on dynamical 
properties (frequencies and damping constants) to be negligi­
ble. Andersen4 proposed a Maxwellian rethermalization 
procedure by stochastic collisions. This method has been 
applied by Tanaka et al.5 Ciccotti and Tenenbaum6 imposed 
a thermal gradient by Maxwellian thermalization at two 
boundaries. Finally, Schneider and StoW and Hiwatari et 
al.8 applied stochastic coupling to a heat bath using a Lange­
vin equation. This procedure mimics frequent collisions with 
much lighter particles that have a Maxwellian velocity dis­
tribution at a given reference temperature. 

For constraining pressure, Andersen4 proposed a La­
grangian in which the volume V acts as an additional vari­
able, introducingp V as an additional potential term into the 

0) Pennanent address: Department of Chemistry. University of Rome (La 
Sapienza). p. Ie A. Moro 5. 00185 Rome. 

Lagrangian. The equations of motion lead to a coordinate 
and concomitant volume scaling, the new variable V acting 
as the coordinate of a "piston" subject to an external con­
stant reference pressure. The "mass" of the piston is an ad­
justable parameter. The method was implemented by Haile 
and Graben9 and used to evaluate the influence of the piston 
mass, simulating a Lennard-Jones fluid. Static properties ap­
pear to correspond closely to (N, V, E) simulations, but dy­
namic properties were not tested. Brownlo reformulated the 
algorithm to keep Cartesian coordinates, suitable for polya­
tomic molecules, while Ryckaert and Ciccotti ll adapted the 
method to polyatomic molecules including holonomic con­
straints. Parinello and Rahmanl2

,13 extended the method to 
include the full pressure tensor and allowing both shape and 
volume of the periodic cell to respond to the pressure tensor. 
Applications to nitrogen and carbon tetrafluoride were re­
ported by Nose and Klein. 14 Recently Andersen's method 
was extended to include long range interactions. 15 

Other constraints or driving fields have been used as 
well, in particular those concerning velocities or strain rates 
in relation to the determination of viscoelastic proper­
ties. 16-18 

The effect of ad hoc rescaling of velocities and coordi­
nates at regular intervals, driven by averages of temperature 
or pressure over the preceding interval, was evaluated by 
Broughton et al. 19 The procedure gives reliable averages but 
contains discontinuous changes at the scaling intervals. 

A method to incorporate constraints of pressure, tem­
perature, or other properties in nonequilibrium dynamics 
into the Hamiltonian by the use of the Doll's tensor has been 
introduced both by Hoover et aUO,21 and Evans22 (the 
HMLE method). An application of this method to isother­
mal-isobaric MD was described by Evans and Morriss23

: 

Two variables a and E are added to the modified equations of 
motion for position and momenta, which are themselves 
functions of positions and momenta. The result is that pres­
sure and total kinetic energy are constants of the motion. 
This method has two disadvantages: First, inaccuracy of the 
algorithm can produce drift in p or T that is not stabilized; 
the reference pressure or temperature does not appear in the 
equations. Secondly, the Hamiltonian does not represent a 
physical system and the extent of the error introduced is not 
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easily evaluated. If it is intended to obtain realistic simula­
tions of physical systems, the use of a nonphysical Hamilton­
ian is questionable, even though mathematically consistent 
equations of motion are obtained. It is interesting, however, 
that the equations of motion are consistent with Gauss' prin­
ciple of least constraint,23 which is an expression of least 
squares local disturbance consistent with a given overall 
constraint. A principle of this kind seems a good general 
guiding principle for any kind of modified dynamics. 

Recently, Haile and GUpta24 have reformulated con­
stant temperature algorithms in terms of a generalized po­
tential or generalized force introduced into modified La­
grangian equations of motion. The generalized potential 
formalism turns out to be equivalent to velocity scaling, 
while the generalized force formalism appears to be identical 
to the HLME method. Application of both methods to a 
Lennard-Jones fluid showed no deviations from microcan­
onical results within the expected statistical and systematic 
errors. 

Finally we note that Brown and Clarke25 have listed 
practical algorithms for several constant temperature and 
pressure molecular dynamic methods. 

Instead of modifying the Hamiltonian we propose a dif­
ferent approach: weak coupling to an external bath, using the 
principle of least local perturbation consistent with the re­
quired global coupling. This approximates the perturbation 
that would occur in an ideal physical nonequilibrium experi­
ment. Moreover, since the coupling strength can be varied, 
the effect of the coupling can be easily evaluated and con­
trolled. 

In Sec. II the principles of the coupling method are dis­
cussed, while in Sec. III explicit algorithms are given, includ­
ing the use of intramolecular holonomic constraints. In Sec. 
IV we evaluate the influence of p,T coupling strength on 
static and dynamic properties ofliquid water. Finally, Sec. V 
discusses the results and applicability of the method. 

II. COUPLING TO AN EXTERNAL BATH 

We first consider coupling of a system to a heat bath 
with fixed reference temperature To. Such a coupling can be 
accomplished by inserting stochastic and friction terms in 
the equations of motion,7 yielding a Langevin equation 

mA = F; - m;y;v; + R (t), (1) 

where F; is the systematic force and R; is a Gaussian stochas­
tic variable with zero mean and with intensity 

(2) 

The damping constants y; determine the strength of the cou­
pling to the bath. This equation corresponds physically to 
frequent collisions with light particles that form an ideal gas 
at temperature To. 

Through the Langevin equation the system couples not 
only globally to a heat bath, but is also locally subjected to 
random noise. If we are interested in imposing the global 
coupling with minimal local disturbance, we should modify 
Eq. (1) such that only the global coupling remains. Let us 
therefore consider how the temperature T of the system be­
haves under the influence of stochastic coupling. For conve­
nience we choose the friction constants to be equal for all 

particles: y; = y. This is a matter of choice; different classes 
of degrees of freedom can in principle be coupled to the bath 
with different friction constants. 

The time dependence of T can be derived from the deri­
vative of the total kinetic energy Ek : 

dE [{ 3N 1 3N 1 }P ] _k = lim L -m;v~(t + ~t) - L -m;v7(t) iit ,(3) 
dt «11-0 ;=12 ;=12 

where N is the number of particles, and 

~v; = vi(t + ~t) - v;(t) 

1 11
+«11 

= - [F;(t') - m;rvi(t') + R;(t ')]dt. 
m; 1 

(4) 

Using the fact that R;(t') is uncorrelated with vi(t) and R;(t) 
for t ' > t and using the relation [from Eq. (2)] 

3N (+«11 (1+«11 

;~I )1 dt' )1 dt" R;(t ')R;(t") = 6NmykT ~t, 

(5) 
we obtain 

dE 3N (3N ) __ k = Lv;F; +2y -kTo-Ek . 
dt ;=1 2 

(6) 

The first term on the right-hand side equals minus the time 
derivative of the potential energy; the second term is an addi­
tional term describing the global coupling to the heat bath. 
In terms of temperature this extra term reads 

( dT) = 2y(To - T). 
dt bath 

(7) 

We note that the time constant 7" T of this coupling is equal to 
(2y)-I. 

Returning to Eq. (1), it is clear that the global additional 
temperature coupling [Eq. (7)] is accomplished by the equa­
tions 

(8) 

without adding local stochastic terms, since from Eq. (8) it 
follows that 

dE 3N 

_k = ~m;viv; = L v;F; + 3Nyk (To - T), (9) 
dt ;=1 

which is equivalent to Eq. (6) 
Thus we have arrived at Eq. (8) as our modified equa­

tion of motion. It represents a proportional scaling of the 
velocities per time step in the algorithm from v to A.V with (to 
first order) 

/1.=1+---1. 1 ~t (To ) 
2TT T 

(10) 

The change in temperature per step can also be made exactly 
equal to (To - T).Jt ITT' yielding 

(11) 

It is interesting to note that proportional scaling mini­
mizes ~m;(~v;)2, while ~~ (~mv2) is constrained to a given 
value, as can be easily shown using a Lagrange multiplier. 
Thus proportional scaling gives a least squares local distur­
bance satisfying a global constraint. The principle of least 
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squares local disturbance has originally been introduced by 
Gauss in the context of imposing constraints while minimiz­
ing l:(v; - F;lm;)2. However, it seems a matter of choice 
which local deviation is minimized: Our choice ofl:m;(Av;)2 
is the geometic mean offorce l:m;(Av;)2 and velocity l:(Av; f 
and has the advantage that the Maxwellian shape of the ve­
locity distribution is conserved. 

Coupling to a constant pressure bath can be accom­
plished according to the same principle. An extra term is 
added to the equations of motion that effects a pressure 
change 

(
dP) Po-P 
dt bath = ----;;- . 

The pressure is given by 

P=-b!Ek-E), 
3V 

(12) 

(13) 

where E is the internal virial for pair-additive potentials: 

E= - ~ t:rij.Fij' 
1<) 

(14) 

and F ij is the force on particle i due to particle j. Since intra­
molecular contributions to the pressure vanish, in molecular 
systems Eqs. (13) and (14) can be evaluated using only the 
center of mass coordinates and velocities and forces acting 
on the centers of mass. A pressure change can be accom­
plished by changing the virial through scaling of interparti­
cle distances. This is similar to the scaling that occurs in the 
constant pressure algorithm of Andersen. 4 A simple propor­
tional coordinate scaling, concomitant with volume scaling, 
minimizes local disturbances. So an extra term in the equa­
tion of x = v is added, proportional to x: 

x=v+ax, (15) 

while the volume changes accordingly: 

V=3aV. (16) 

The pressure change is related to the isothermal compress­
ibility 13: 

dP 1 dV 3a =---= 
dt PV dt {3 

With Eq. (12) this determines a: 
a = - 13 (Po - P)/31"p. 

Thus the modified equation of motion is 

(17) 

(18) 

x = v - 13 (Po - P)x. (19) 
31"p 

It represents a proportional scaling of coordinates and box 
length / (assuming an isotropic system in a cubic box) per 
time step from x to f..tX and / to f..t/ with, to first order in At, 

f..t = 1 - PAt (Po - Pl. (20) 
31"p 

An equivalent expression to the same order is 

[
At ]1/3 

f..t = 1 - -:;:;(Po - P) . (21) 

The compressibility, that may not be accurately known, oc-

curs in the expression for the scaling factor f..t. Since an inac­
curacy in {3 only influence the accuracy of the noncritical 
time constant 1"p, the imprecision of 13 is of no consequence 
for the dynamics. If 13 is not known for the potential model 
that is used in the simulation, it is sufficient to use an experi­
mental value for the physical system that is approximated by 
the simulation. 

Expressions (20) or (21) apply to an isotropic system. 
The equations can be modified to anisotropic triclinic sys­
tems. Now the pressure P becomes a tensor 

P =..!.. {~m;v;v; + t:rijF~}, (22) 
V I l<} 

where a row vector is denoted as transpose of a column vec­
tor. The volume Vis the determinant ofthe matrix h formed 
by the column vectors a, b, c that represent the edges of the 
unit cell in a space-fixed Cartesian coordinate system: 

V = det h = a· (bXc). (23) 

Assuming{3 to be a scalar, Eq. (20) now becomes a tensorial 
equation: 

f.L = 1- {3At (Po - Pl. 
31"p 

Particle coordinates r; are scaled as 

while the unit cell is scaled as 

h' =f.Lh. 

This implies that 

V' = (det f.LW 

(24) 

(25) 

(26) 

(27) 

Equations (24H27) reduce to the isotropic case if f.L = f..t 1. It 
is possible to use a tensorial{3, but this has only consequences 
for the time constants with which the various component of 
P relax to the reference value Po. The case of orthorhombic 
symmetry is particularly simple because all tensors remain 
diagonal. We note that the equations are much more simple 
if one adheres to Cartesian coordinates, instead of using con­
travariant relative coordinates that imply a metric tensor in 
the equations of motion. 

III. ALGORITHM FOR P, T COUPLING 

The scaling terms for velocities and coordinates can 
most easily be incorporated into a leap-frog algorithm26 for 
solving the equations of motion. The following scheme ap­
plies to a general algorithm involving temperature coupling 
(T),pressurecoupling(P),andinternalconstraints(C).Astep 
denoted by T or P applies only if temperature coupling or 
pressure coupling is used. Steps denoted by C apply only in 
the presence of constraints. Through the procedure 
SHAKE27

- 29 distance constraints are satisfied in a way con­
sistent with the Verlet algorithm, which is equivalent to the 
leap-frog scheme. SHAKE changes an unconstrained con­
figuration x into a constrained configuration y with displace­
ment vectors in a direction given by a reference configura­
tion xref ; this is denoted by 

SHAKE(x~y;xref ). 

J. Chern. Phys., Vol. 81, No.8, 15 October 1984 
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For cases without P or T scaling or without constraints, the 
steps denoted by P, T, or C can be omitted. 

A. P, T coupling algorithm 

(Isotropic case, suitable for polyatomic molecules in­
cluding internal constraints.) 
Given: configuration x(t) and velocities v(t - ¥:it) for all 
atoms, box length / (t), volume V(t). 

(1) Evaluate (unconstrained) forces F(t) on all atoms: 

aj(t) = Fi(t)/mi· 

Note: Forces of periodic images within the cutoff range (if 
applicable) are to be included. 

(2P) Evaluate the pressure from the virial E and kinetic ener­
gy based on centers of mass: 

(2S) 

where RaP = Ra - Rp is the relative position vector of the 
centers of mass of molecules a and /3 and F aP = ~ia,jP FiaJp 
is the sum of all pair interactions of atoms ia of molecule a 
with atoms j/3 of molecule /3. Nonpair interactions (angles, 
dihedrals) are omitted from the sum. 

Ek;,!(t - ~ .1t) = ~ ~ Ma V!(t - ~ .1t), (29) 

whereMa is the total mass of molecule a and Va = M a- I ~i 
mia Via the center of mass velocity of molecule a; 

PIt) =_I_[E=(t-~At) -E(t)]. 
3V(t) 2 

(30) 

The pressure scaling factor becomes 

Jl = {I + ~: /3 [P(t) - Po] f/3. (31) 

Note 1: The kinetic energy is not available at time t, but the 
use of Ekio at t - ¥:it does not introduce a significant error 
because the coupling time constant is long compared to At. 

Note 2. The pressure evaluation must be based on the centers 
of mass in the case that forces on atoms involve internal non­
pair-additive contributionsY The virial expression (14) is 
only valid for pair-additive forces. Internal contributions to 
the virial are cancelled (on the average) by the internal kinet­
ic energy. If all interactions are pair additive, the pressure 
calculation may be based on atomic interactions, but this 
introduces additional fluctuations in the pressure. 

(3T) Evaluate 

T(t - ~At) = 2k Ekin(t - ~At), (32) 
2 3N-M-3 2 

where N is the number of atoms, M the number of con­
straints, and 

Ekin (t - ~ .1t ) = 2: ~ mivf(t - ~ .1t ). (33) 

The temperature scaling factor becomes 

A = [1 + ~{ To _ I}] 112 
TT T(t-!At) . 

(34) 

(4) Compute velocities 

v(t + !At) = v(t - ¥:it) + a(t )At. 

(ST) Scale v: v(t + !At )+-AV(t + ¥:it). 

(35) 

(36) 

Note. Although A is based on the temperature at t - !At, its 
value can be used to scale the velocity at t + ¥:it because of 
the slow variation of A. 

(6) Compute new (unconstrained) positions: 

x(t + At) = x(t) + v(t + !At )At. 

(7C) Apply constraints to coordinates: 
SHAKE [x(t + AtJ-x(t +At);x(t)]. 

(SC) Compute constrained velocities: 
v(t+!At)= [x(t+At)-x(t)]lAt. 

(9P) Perform pressure scaling on coordinates and box size: 

x(t + At )+-Jlx(t + At), 
I(t +At) =Jl/(t), 
V(t + At) = Jl3 V(t). 

Note 1. Whether scaling is performed on atomic coordinates 
or on centers of mass is a matter of choice. If scaling is per­
formed on the centers of mass, each particle has to be recon­
structed after the scaling by applying a translation equal to 
the translation of the center of mass. Center of mass scaling 
is to be preferred for small molecules with internal con­
straints, for large molecules with internal flexibility atomic 
scaling yields a smoother response to pressure changes. 
Atomic scaling slightly affects the constraints, but this is of 
no consequence for the stability of the algorithm because the 
application of SHAKE in the next step prevents the propa­
gation of constraint errors. 

Note 2. It is not correct to interchange steps (SC) and (9P) 
because according to Eq. (19) the pressure scaling should not 
influence the velocities. Interchanging steps (SC) and (9P) 
leads to instability of the algorithm. Hence it is also nat pos­
sible to apply SHAKE [step (7C)] after the pressure scaling, 
because step (SC) must follow step (7C). 

(10) Replace coordinates of particles that have moved out of 
the box limits by the coordinates of their images within the 
box. Depending on how forces are evaluated, this resetting 
may be done on the basis of centers of mass, molecular 
centers, or atomic group centers. 

We note that the addition of coupling to an external 
bath does not perceptibly increase the required computer 
time, because only a minor calculation proportional to the 
number of particles is added. The algorithm remains gen­
eral: inserting values for TT and Tp much larger than the 
length of the dynamic run reduces the simulation to a micro­
canonical and isochoric one. The algorithm can be easily 
modified to introduce temperature, pressure, or velocity gra­
dients and thus is suitable for general nonequilibrium molec­
ular dynamics (NEMD). 

IV. EVALUATION 

We have applied coupling to a temperature and pres­
sure bath to simulations of 216 molecules of liquid water 
using the SPC modeJ3° in order to test the effect of the cou­
pling constants. Simulations of water with its long range di-
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ENERGY FLUCTUATION 

o .2 .1. .6 .8 1 
TIME Ips 

FIG. I. Fluctuations of kinetic, total, and potential energy in two 1 ps mo­
lecular dynamics runs of216 water molecules, starting from the same initial 
conditions (T = 300 K). a isochoric, microcanonical simulation (T T = 00), b 
isochoric simulation with weak coupling to constant temperature bath 
(T T = 0.4 ps). The vertical scale respresents I kJ Imol per division. Horizon­
tal lines represent averages for each curve. 

polar interaction normally produce a cutoff noise and drift 
[Fig. l(a)]. Using T coupling the drift is removed but the 
average temperature is slightly larger than the reference 
temperature ofthe bath. In Fig. l(b) a 'Tr of 0.4 ps was used: 
With this time constant the opposing fluctuations in kinetic 
and potential energy remain similar to those of the uncou­
pled simulation. Even the details of the fluctuations repro­
duce for times up to 0.4 ps. When 'T r is reduced below 0.1 ps, 

ENERGY FLUCTUATION I kJ .mol-1 

30 

20 

10 

o .001 .01 

o ,-
0"0 

-+- + + 
_v liE pot 

.1 

./ ,-

1 
1T/ps 

FIG. 2. Root means square fluctuations in kinetic, total, and potential ener­
gies, measured over several 0.1 ps simulations of liquid water. 

the fluctuations in the kinetic energy are reduced at the ex­
pense of increasing fluctuation in the total energy (Fig. 2). 
The fluctuations in potential energy are not sensitive to the 
value of the coupling time constant. 

Coupling to a constant pressure bath introduces vol­
ume (density) fluctuations, while the low frequency compo­
nents of the pressure fluctuation are reduced. Pressure fluc­
tuations are not significantly reduced for 'Tp >0.1 ps, while 
for'Tp = 0.01 ps pressure fluctuations are reduced by an or­
der of magnitude. Volume fluctuations increase by almost an 
order of magnitude when 'T p is decreased from 0.1 to 0.01 ps. 
We have observed that further reduction of'T p to values ap­
proaching the time step (0.001 psI leads to instability of the 
algorithm with increased pressure and volume fluctuations. 
It is recommended to use pressure coupling time constants of 
0.1 ps or larger. 

Although short coupling time constants greatly influ­
ence fluctuations, average thermodynamic quantities are not 
disturbed even for time constants as short as 0.01 ps. Table I 
shows the results for average potential energy and density 
for various values of 'T r and 'T p. Observed differences can be 
traced to differences in average values of temperature and 
pressure; the deviations from reference temperature and 
pressure depend on the coupling time constants. If Epot andp 
are corrected to T = 300 K and P = 1 bar using values 
derived from simulations of the SPC water model for specific 
heat cv =76 Jmol-1K-t, (aEtoJaP)r=0.5Jmol- t 

bar-I, expansion coefficient a = 5.7x 10-4 K- 1
, and iso­

thermal compressibility P = 4.9 X 10-5 bar-I, the potential 
energy and density are the same within experimental error 
for all simulations. Also radial distribution functions do not 
differ significantly, only the isochoric simulation at p = 1 
(run 9 in Table I) is slightly less structured, but this is related 
to the density difference only. 

We conclude that static average properties are not sig­
nificantly influenced even for time constants as small as 0.01 
ps. Fluctuations of global properties, however, are strongly 
influenced for time constants less than 0.1 ps; the intensity of 
such fluctuations cannot be used to derive thermodynamic 
properties. 

Dynamic properties of individual particles are not sig­
nificantly altered, although the velOcity autocorrelation 
function shows some deviation for very short time constants . 
Figure 3 shows the velocity correlation functions and their 
spectral densities for 'Tr = 'Tp = 0.1 and 0.01 ps. For values 
above 0.1 ps these functions are the same as for 0.1 ps; small 
observed differences can be related to temperature differ­
ences. Diffusion constants are not significantly different 
from values expected when the temperature differences are 
taken into account. Correlation times 'T 1 and 'T2 for the first 
and second order spherical harmonics of the dipole vector 
agree within experimental error for the various simulations 
('Tt = 3.3 ± 0.3 ps, 'T2 = 1.4 ± 0.2 psI, except for 
'Tr = 'Tp = 0.01 ps, where values of 3.8 and 1.7 ps were 
found. Although these deviations may not be significant, 
they indicate the possibility of a deviation in dynamic prop­
erties for time constants as low as 0.01 ps. We conclude that 
reliable dynamic properties can be derived for coupling time 
constants above 0.1 ps. 
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TABLE I. Thermodynamic quantities for water using coupling to a P, T bath.' 

TC p. Epo, b Epo,(T= 300, P= 1) 
Run TT Tp (K) (bar) (kJ/mol) (kJ/mol) pC p(T=300,P= I) 

1 0.5 00 307(1) 420(200) -41.6 - 41.8 0.987(0) 0.970(10) 
2 0.1 00 300(1) 240(150) -41.9 -41.8 0.987(0) 0.975(7) 
3 0.01 00 298(0.1) 40(100) -42.0 -41.9 0.987(0) 0.984(5) 
4 0.5 0.4 305(0.5) 20(20) - 41.7 - 41.9 0.981(5) 0.983(7) 
5 0.5 0.2 303(0.5) 9(20) -41.8 - 41.9 0.981(5) 0.983(5) 
6 0.5 0.1 306(0.5) -4(20) - 41.5 - 41.8 0.971(10) 0.974(10) 
7 0.1 0.1 300(1) 7(20) - 41.8 - 41.8 0.971(10) 0.971(10) 
8 0.01 0.01 198(0.1) 2(1) -42.1 -42.0 0.977(12) 0.976(12) 
9 Rescaling 300(0.5) 470(100) -42.2 -42.0 1.000(0) 0.977(5) 

every 200.:1t; 
.:1t=0.5 fs 

"216 molecules during 10 ps (25 ps for runs 4 and 5);.:1t = lfs; cutoff range 0.9 nm; reference temperature 298 K, reference pressure 1 bar. 
b Accuracy is ± 0.1 kJ/mol in Epot> ± 0.5 K in T. 
C Accuracy in last digit given between parentheses. 

v. CONCLUSIONS 

The method described here to couple a simulated sys­
tem loosely to a constant temperature and/or pressure bath 
has proved to be reliable and easy to implement. It provides a 
stable algorithm that allows smooth changes to new values 
of pressure or temperature without the need for intermediate 
adjustments. The method was used by US

31
•3Z to increase the 

temperature of a circular dodecapeptide in order to generate 
new conformations. The temperature of the bath was sud­
denly increased, first from 300 to 600 K and lOps later to 
1200 K, with a coupling constant of 0.1 ps. The kinetic, po­
tential and total energies reached new equilibrium values 
within 2 ps after the jumps, with smooth nonoscillatory tran­
sitions. 
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FIG. 3. Autocorrelation function and spectral density for center-of-mass 
velocity of water molecules for various values of coupling constants to tem­
perature bath (TT) and pressure bath (rp). All curves coincide for 
TT>O.1 ps and Tp>O.1 ps (drawn curves). Broken curves: TT = Tp = 0.01 
ps. 

The coupling method has two distinct advantages 
above methods that are based on Lagrangians modified to 
include certain constraints. First, the coupling can be made 
as weak as desired to minimize the disturbance of the system, 
and the strength of the coupling can easily be varied to suit 
the needs of a given application. Traditional microcanonical 
or isothermal-isochoric conditions are just limiting cases, 
requiring no change in the algorithm. Second, the algorithm 
is numerically stable and truncation errors will not develop 
undesired deviations that need ad hoc corrections. This is of 
considerable practical value when conditions are adjusted to 
new values, as well as for long "unattended" runs. 

The aperiodic coupling to a pressure bath through a 
first order process has the advantage above Andersen's 
method4 that responses to pressure changes are nonoscilla­
tory. 

The method is ideally suited to NEMD (nonequilibrium 
molecular dynamics). Gradients of temperature, pressure, 
velocities, etc. are easily incorporated in such a way that the 
best compromise between disturbing the physical behavior 
of the system and maintaining the desired gradients is ob­
tained. Coupling to unorthodox constraints is possible: In a 
simulation of protein dynamics in the crystalline state we 
have applied a weak coupling of the atomic positions to the 
positions known from x-ray diffraction: This allows local 
motional freedom while systematic deviations due to inac­
curate potentials are corrected on a long time scale. 

We have not been able to prove the exact nature of the 
ensemble generated by the coupling method, and hence no 
useful equations can be given that will allow the use of mea­
sured fluctuations in the ensemble. We do not consider this a 
disadvantage because in cases where coupling to an external 
bath is required, i.e., either in nonequilibrium conditions or 
in the presence of nonnegligible truncation errors, ensemble 
fluctuations are generally insufficiently accurate to be useful 
as a source for the derivation of macroscopic properties. 

The method has been used in polypeptide and protein 
simulations,31-34 in the determination offree energy of cav­
ity formation in waterS and in the study of hydration of 
dioxane.36 It has been incorporated as standard into the 
GROMOS program library. 37 
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