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ABSTRACT
We have developed spherically symmetric dynamical models of dwarf spheroidal (dSph)
galaxies using Schwarzschild’s orbit superposition method. This type of modelling yields
constraints both on the total mass distribution (e.g. enclosed mass and scale radius) and on
the orbital structure of the system (e.g. velocity anisotropy). This method is thus less prone to
biases introduced by assumptions in comparison to the more commonly used Jeans modelling,
and it allows us to put reliable constraints on their dark matter content. Here we present our
results for the Sculptor dSph galaxy, after testing our methods on mock data sets. We fit both
the second and fourth velocity moment profiles to break the mass–anisotropy degeneracy. For
an Navarro, Frenk & White (NFW) dark matter halo profile, we find that the mass of Sculptor
within 1 kpc is M1 kpc = (1.03 ± 0.07) × 108 M�, and that its velocity anisotropy profile is
tangentially biased and nearly constant for radii beyond ∼100 pc. The preferred concentration
(c ∼ 15) is low for its dark matter mass but consistent within the scatter found in N-body
cosmological simulations. When we let the value of the central logarithmic slope α vary, we
find that the best-fitting model has α = 0, although an NFW cusp or shallower is consistent
at the 1σ confidence level. On the other hand, very cuspy density profiles with logarithmic
central slopes α < −1.5 are strongly disfavoured for Sculptor.

Key words: galaxies: dwarf – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

The existence of dark matter has been invoked to explain discrepan-
cies in the observed kinematics of (systems of) galaxies. Especially
in the last 30 years it has become a key ingredient of our current
cosmological model, the � cold dark matter (hereafter �CDM)
paradigm. N-body simulations have made clear predictions on how
dark matter should be distributed in the Universe. Navarro, Frenk
& White (1996) showed that simulated dark haloes have a univer-
sal internal density distribution, now known as the NFW profile.
Although there have been some revisions, the general form has re-
mained, and the inner regions of simulated dark haloes are found
to be cusped with logarithmic slopes in the range −1.2 to −0.75
(Navarro et al. 2010). CDM simulations have also revealed the ex-
istence of a universal spin distribution and of relations between the
characteristic parameters of a dark halo such as concentration and
mass (e.g. Bullock et al. 2001b).

� E-mail: breddels@astro.rug.nl

The predictions of the �CDM model may be tested using kine-
matic data. Cleaner tests are generally obtained using tracers located
at large distances, i.e. in the regions that are dominated by the dark
matter (e.g. Romanowsky et al. 2003; Battaglia et al. 2005, 2006;
Xue et al. 2008). In these examples, a relatively accurate measure-
ment of the mass contained within a given radius can be obtained,
but constraints on the density profile depend on good knowledge
of the spatial distribution of the tracers, which may be somewhat
uncertain. Another possibility is to use galaxies that are dark mat-
ter dominated at all radii, such as low-surface-brightness systems
(de Blok 2010).

An example of the latter class is the dwarf spheroidal (dSph)
galaxy satellites of the Milky Way (Mateo 1998). These appear to be
the most dark matter dominated galaxies with total dynamical mass-
to-stellar light ratios of the order of 100–1000 M�/L� derived
under the assumption of dynamical equilibrium (e.g. Wolf et al.
2010). The nearby dSph galaxies have the additional advantage that
individual stars can be resolved, and their red giant branch stars are
bright enough to measure line-of-sight (los) velocities with errors of
a few km s−1 (Mateo et al. 1991). The dynamical modelling of these
objects is relatively simple since they are rather round, pressure
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supported and show little or no rotation. Their high dynamical mass-
to-light ratios make these systems ideal to study dark matter haloes,
especially their internal structure and to constrain their inner density
profiles.

Most of the Milky Way dSph satellites have been modelled using
the spherical Jeans equations (e.g. Kleyna et al. 2001; Battaglia
et al. 2008; Strigari et al. 2008; Łokas 2009; Walker et al. 2009c),
while for more distant objects, such as the dSph satellites of M31,
masses have been derived from the average velocity dispersion and
projected mass estimators (Collins et al. 2010; Kalirai et al. 2010). In
Jeans models one has to specify (i) the form of the light distribution,
(ii) the density profile (or equivalently the gravitational potential) of
the dark matter component and (iii) velocity anisotropy of the stars.
These characterize a given Jeans model, from which the second
velocity moment projected along the los can be computed. This is
then compared to the measured los velocity dispersion of the stars
at different locations across the galaxy to establish the performance
and characteristic parameters of the specific model.

Jeans modelling suffers from a number of limitations. First, the
functional form of the velocity anisotropy has to be specified a
priori while it is generally unknown. This is because precise mea-
surements of the proper motions of stars in dSph are well beyond
reach with current instrumentation. Also inherent to the method
is the comparison between the moments of the model to those of
the data which requires binning of the data and generally implies
loss of information. It is also important to note that there is no
guarantee that the resulting distribution function is non-negative
everywhere, a requirement for it to be physical. Nonetheless, there
have been interesting discoveries based on the use of the Jeans
equations and which are robust to assumptions of the underlying
anisotropy profile. These include, for example, the existence of a
possible common mass scale of dSphs (e.g. Strigari et al. 2008) and
the tight constraints on the total mass within the half-light radius of
these systems (Walker et al. 2010; Wolf et al. 2010).

Recently, An & Evans (2009) demonstrated that if the tracer
population is supported by a spherical dark halo with a core or a
cusp (less steep than a singular isothermal sphere), then the central
value of the logarithmic slope γ 0 of the light profile and the central
velocity anisotropy β0 are related as γ 0 = 2β0. This is valid if
σ r(0) > 0, i.e. only if the stars are not dynamically cold in this
region. This would imply that the derived existence of a cusp or
core at the centre could merely be a consequence of the assumptions
alone, if just the second velocity moment is modelled using Jeans
equations (see also Ciotti & Morganti 2010, who show that a density
slope–anisotropy inequality γ > 2β holds at all radii, at least for a
specific class of distribution functions for spherical systems). Thus,
care is required in interpreting the outcome of this type of models.

The above discussions show clearly that there is a need to go
beyond the modelling of the second moment using Jeans equations.
For example, Łokas (2002) proposed to use higher moments to
constrain the internal dynamics of dSphs since the kurtosis profile
depends mostly on anisotropy while the velocity dispersion depends
on both mass and anisotropy (Łokas, Mamon & PradaŁokas et al.
2005); hence, this lifts some of the degeneracies. Other possibilities
would be to use parametrized phase-space distribution functions
as pioneered by Kleyna et al. (2001), Kleyna et al. (2002) and
Wilkinson et al. (2002) (see also Amorisco & Evans 2012a) or the
made-to-measure technique (Syer & Tremaine 1996; Long & Mao
2010).

In this paper, we take a different approach and use Schwarzschild
modelling (Schwarzschild 1979) to probe the internal dynamics and
characterize the dark matter content of the Sculptor dSph galaxy.

The basic steps of the Schwarzschild method are to integrate a set
of orbits in a given potential, to calculate the predicted observ-
ables for each orbit and then to weigh the orbits (with non-negative
weights) to obtain a model that fits the observed data well in a
χ2 sense. This approach guarantees that the distribution function
(which is reflected in the orbit weights) is non-negative. This method
was originally used by Schwarzschild (1979) to prove that a self-
consistent solution in dynamic equilibrium exists for a triaxial sys-
tem, but was only implemented to reproduce the density distribution.
The method was later extended to include kinematic constraints
(Pfenniger 1984; Richstone & Tremaine 1984). Since then many
codes have been developed (e.g. Richstone & Tremaine 1984; Rix
et al. 1997; van der Marel et al. 1998; Cretton et al. 1999; Valluri,
Merritt & Emsellem 2004; van den Bosch et al. 2008). While first
only the lowest moments of the los velocity distribution (mean ve-
locity and velocity dispersion) were fitted, better data have led to the
inclusion of higher moments in the fits. While the use of moments
allows one to use linear or quadratic programming (QP) to find
the orbit weights, likelihood methods using discrete data have been
developed (e.g. Merritt & Tremblay 1993; Wu & Tremaine 2006;
Chanamé, Kleyna & van der Marel 2008). A great advantage of
Schwarzschild modelling is that it does not require the specification
of the anisotropy profile, and this is in fact an outcome of the model
(see also Jardel & Gebhardt 2012; Jardel et al. 2013 for applications
on the Fornax and Draco dwarf galaxies).

Sculptor (Scl) is a dSph galaxy satellite of the Milky Way. It lies
at high galactic latitude and is located at a heliocentric distance
of 79 kpc. With an ellipticity of 0.32 (axis ratio is 0.68) it is not
extremely flattened (Irwin & Hatzidimitriou 1995), allowing us to
approximate and model Sculptor as a spherical object. Its luminosity
is LV = 2.15 × 106 L� and one recent estimate of its dynamical
mass is 2–3 × 108 M� within 1.8 kpc (Battaglia et al. 2008). Its
(stellar) mass distribution can be well fitted with a Plummer profile
with scale radius b = 13.0 arcmin (�0.3 kpc; Battaglia 2007). Two
large kinematic data sets have been compiled by Battaglia et al.
(2008) and by Walker, Mateo & Olszewski (2009a), leading to a
total of ∼2000 member stars with radial velocity measurements with
errors of ∼2 km s−1. As we show below, the combination of these
two data sets together with the Schwarzschild method allows us to
constrain the dark matter distribution of Sculptor and its internal
orbital structure.

This paper is organized as follows. In Section 2, we will de-
scribe the basic ingredients of Schwarzschild modelling, especially
focusing on how it can be applied to dSph data. In Section 3, we
validate our model on a mock data set motivated by the current
Sculptor data. In Section 4, we apply the technique to Scl data, we
present a brief discussion in Section 5 and leave our conclusions to
Section 6.

2 DY NA M I C A L M O D E L

In this section we review some of the theory that provides the basis
for our Schwarzschild method. We then describe how to generate
models and focus later on how these can be fitted to the observables.

2.1 Generalities

The phase-space structure of a galaxy can be specified by its dis-
tribution function (hereafter df) f (x, v), where x and v are the
position and velocity coordinates, respectively. The probability of
finding a star in the volume dxdv is given by f (x, v)dxdv. All
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observables may be derived from knowledge of the df. For exam-
ple, the normalized surface density is given by

μ(x, y) =
∫

dzdvf (x, v), (1)

where z is the direction along the los.
According to the (strong) Jeans (1915) theorem, the df of a

steady-state stellar system in which almost all orbits are regular
is a function of the isolating integrals of motion (see also Binney
& Tremaine 2008). Spherically symmetric systems (both in the
tracer’s density and the underlying potential) have only regular or-
bits and generally respect four integrals of motion, the energy and
the three components of the angular momentum vector. However, if
the galaxy shows no rotation, due to symmetry, the df will depend
only on the energy and the length of the angular momentum vector,
i.e. f (x, v) = f (E, L). Furthermore, if the velocity distribution is
isotropic, the df can only depend on energy and f (x, v) = f (E).

Most dSph galaxies are so distant that the only phase-space co-
ordinates that may be measured currently are the projected stellar
positions on the sky and the los velocities of (a subset of) its stars.
These can be used to derive the surface density μ0(R) and the mo-
ments of the los velocity distribution:

μ0(R) =
∫

dzdvf (E,L), (2)

μ2(R) = 1

μ0(R)

∫
dzdvv2

‖f (E, L), (3)

μ4(R) = 1

μ0(R)

∫
dzdvv4

‖f (E, L). (4)

Here R is the projected distance on the sky from the centre of the
galaxy and v‖ is the velocity along the los, after subtraction of the
centre of mass mean motion.

The above equations suggest that through comparison to the ob-
servables it should be possible to derive the form of the df. In some
cases, it may be better to parametrize the df and try to estimate its
characteristic parameters by comparison to the data (Wilkinson et al.
2002; Amorisco & Evans 2012a). However, in this work we prefer to
use a non-parametric approach such as the Schwarzschild method.
This method uses orbits integrated in a specific gravitational poten-
tial as building blocks. From these, light and kinematical profiles
may be derived and compared to observations through appropriate
weighing of the orbits.

In the case of a dwarf galaxy embedded in a spherical dark
matter halo, the gravitational potential can be characterized by a
few parameters such as: (i) the (enclosed) mass of the dark matter
halo MDM and (ii) its scale parameter rDM. Due to the high dynamical
mass-to-light ratios of dSphs, we do not expect the stellar mass to
have a significant influence on the dynamics of the galaxy. We
assume a fixed stellar mass-to-light ratio of M�/L� = 1 as in
Walker et al. (2007), and hence from the light distribution we may
directly derive the gravitational potential associated with the stars.
In the remainder of the paper, we shall refer to properties related to
the stellar mass and luminosity interchangeably.

Thus in practice, for a given set of parameters of the potential,
we integrate orbits and match these to the observations by adjusting
the orbital weights. We then repeat this exercise for other values of
these parameters. This can be used to establish the values of the set
of parameters which result in a better fit to the observables.

2.2 From the model to the observables

Our Schwarzschild method is based on many of the ideas of Rix
et al. (1997) and van den Bosch et al. (2008). It is, however, a new
implementation that is optimized for spherical symmetry. Among
other small improvements, our code can be run in parallel and is
therefore significantly faster; furthermore for each orbit, we do not
store the full los velocity distribution but only its moments, which
also reduces the computational load.

We now focus on how to generate the observables, namely the
surface density and moments of the los velocity distribution of the
models, and how to compare these to data.

For convenience we define l = L/Lmax the relative angular mo-
mentum (where Lmax is the angular momentum of a circular orbit
of energy E), such that l ∈ [0, 1]. This enables us to define a rect-
angular grid in energy and relative angular momentum. Since the
Schwarzschild method is based on orbit integrations, the df may be
seen as a sum of Dirac delta functions:

f (E,L) =
∑
i,j

f̂i,j δ(E − Ei)δ(L − ljLmax,i), (5)

where
∑

i,j f̂i,j = 1 and f̂i,j ≥ 0.
To define the grid in energy and (relative) angular momentum,

we proceed as follows. For the energy we choose N ′
E radii between

a minimum and maximum radius spaced logarithmically, and take
the corresponding energy of a purely radial orbit. The minimum and
maximum radii we consider are 0.033 and 24.492 kpc, respectively.
For each energy, we choose N ′

l relative angular momenta spaced
linearly between 0 and 1. All orbits are integrated starting from their
apocentre.

We also define NR radial bins on the sky, defined by radii at
the edges Rk (k = 0, . . . , NR). The borders are determined by the
kinematic data, by requiring for instance that each bin contains a
particular number of stars.

In general, it is convenient to work with the (normalized) mass
in a given radial bin:

dm∗(R)

M∗
= 2πRμ0(R)dR. (6)

Thus, the mass contributed by an orbit of energy Ei and relative
angular momentum lj in the radial bin k is


m∗,i,j ,k

M∗
=

∫ Rk+1

Rk

2πRμ0,i,j (R)dR. (7)

In the Schwarzschild method, this quantity is obtained by inte-
grating the i, j orbit and calculating the fractional time this orbit
spends in radial bin k. Since we integrate the orbit with a fixed time
step, this is simply equivalent to counting the number of times the
orbit crosses bin k, divided by the number of time steps. To reflect
the spherical symmetry, at each time step the position and velocities
are rotated randomly Nrot = 25 times, as in Rix et al. (1997, equa-
tion 2). Each orbit is integrated for 100 orbital time-scales torb, with
torb = 2πra/vcirc, where ra is the apocentre radius and vcirc is the
circular velocity at ra. Each orbit is stored at 1000 points (separated
by a constant time step). Therefore, the total mass (contributed by
all orbits) in bin k is


m∗k

M∗
=

N ′
E∑

i=1

N ′
l∑

j=1

g(Ei, Lj )f̂i,jLmax
Ei
li × 
m∗,i,j ,k

M∗

=
N ′

E∑
i=1

N ′
l∑

j=1

c′
i,j × 
m∗,i,j ,k

M∗
, (8)
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where g(E, L) is the density of states. The coefficients c′
i,j are known

as the orbital weights.
We may now proceed to calculate the light-weighted second and

fourth moments of the line-of-sight velocity distribution in a given
projected radial bin k as

μ2,k = M∗

m∗k

N ′
E∑

i=1

N ′
l∑

j=1

c′
i,j

∫ Rk+1

Rk

2πRμ0,i,j (R)μ2,i,j (R)dR, (9)

μ4,k = M∗

m∗k

N ′
E∑

i=1

N ′
l∑

j=1

c′
i,j

∫ Rk+1

Rk

2πRμ0,i,j (R)μ4,i,j (R)dR, (10)

where μ2, i, j(R) and μ4, i, j(R) are the second and fourth moments,
respectively, of orbit i, j. The integral is also derived from the
orbit integrations. However, instead of counting each time the orbit
is found in bin k, we add the corresponding second moment in
quadrature (and to the fourth power for the fourth moment) and at
the end divide by the number of time steps. Note that the moments
are linear in the orbital weights, which allows us to find a solution
using QP, while for instance the kurtosis (γ2 = μ4/μ

2
2) is not.

It is possible to consider the orbit weights (c′
i,j ) as free parameters

whose exact values will be determined through comparison to the
observables. However, this would imply that the number of orbits
that are integrated to reproduce the observables is exactly equal
to the number of free parameters that define the df. Decoupling
these two sets of quantities is clearly desirable, see e.g. Cretton
et al. (1999). This procedure is known as dithering and results in
smoother density distributions while keeping the number of free
parameters in the df small.

While we may use N ′
E × N ′

l orbits to reproduce the observables,
we choose only NE × Nl = N ′

E × N ′
l /(NdE

× Ndl
) free parameters

to characterize the df, where we take NdE
× Ndl

= 8 × 8 = 64. The
coefficients of the df ci, j are related to the orbit weights (c′

i,j ) as
follows:

c′
i,j = 1

NdE
× Ndl

ci\NdE
,j\Ndl

, (11)

where \ indicates the integer part, e.g. [i/NdE
]. Therefore, NdE

×
Ndl

orbits share the same df coefficient. In practice, one can sim-
ply average the quantities obtained from the individual orbits. We
choose NE = 20 and Nl = 8, which results in 20 × 8 = 160 free
parameters for the df, but we integrate 20 × 8 × 8 × 8 = 10 250
orbits.

To fit models to the data, we generally use projected quantities
(i.e. the observables). However, if one knows (or has derived) the
df coefficients, it is also possible to make predictions for quantities
that are not (yet) directly observable, such as the intrinsic (3D)
density distribution or moments of the full velocity distribution.
For example, the mass contained in the (spherical) radial bin m
contributed by orbit i, j is


m∗,3D,i,j ,m

M∗
=

∫ rm+1

rm

4πr2ν∗,i,j (r)dr, (12)

where the integral is computed from the orbital integrations and
ν∗, i, j(r) is the radial density profile of orbit i, j. In practice, we
use Nr = 50 (3D) radial bins, spaced linearly between rmin = 0 kpc
and rmax = 1.5 kpc. Similarly we also store the radial and tangential
velocity dispersions in these bins. Although we do not store the
intrinsic properties beyond 1.5 kpc, this has no effect on the way the
projected properties are determined. Note that the intrinsic proper-

ties are not used in any of the fitting routines but may be used for
inferring for instance the intrinsic velocity anisotropy profile.

Orbits are integrated using the GNU Scientific Library ordinary
differential equation solver using an eighth-order (Runge–Kutta)
Prince–Dormand method. We found that the energy is conserved to
better than 0.1 per cent.

2.3 Fitting procedure

2.3.1 Light distribution

Our first requirement is for the model to fit the observed light
distribution. We assume that this is known accurately. We require
that the projected mass (or light) in each bin is matched within 1
per cent. Given our assumption of a constant stellar mass-to-light
ratio, we make no distinction between surface brightness and stellar
mass surface density in what follows. From the assumed brightness
profile μ∗(R), we calculate


m∗,true,k

M∗
=

∫ Rk+1

Rk

2πRμ∗(r)dR, (13)

and thus require for each projected radial bin k that∣∣∣∣
m∗,true,k

M∗
− 
m∗,k

M∗

∣∣∣∣ ≤ 0.01. (14)

Note that the number of bins for the light does not have to equal
the number of bins for the kinematics; in this work we choose 250
bins for fitting the light distribution.

2.3.2 Kinematics

To derive the los velocity dispersion profile, we calculate the second
and fourth moment estimators of the los velocity distribution μ̂2,k

and μ̂4,k in bins containing at least 250 stars. Assuming that the
measurement errors are normally distributed, and all measurements
and errors are independent and uncorrelated, we can obtain μ̂2 of the
population as follows. The expectation value of the second moment
is

E[m2] = E

[
1

N

N∑
i

(vi + εi)
2

]
= μ2 + s2, (15)

where εi is the unknown noise of measurement i, which we assume
is drawn from a normal distribution with dispersion σ i (i.e. this is the
formal error of measurement i). Hence, s2 = 〈σ 2

i 〉 = E[ 1
N

∑N
i ε2

i ]
is the average of the estimated squared errors. Here μ2 is the true
value of the second moment. Therefore, our best estimate for the
second moment of the underlying population is

μ̂2 = 1

N

N∑
i

(vi + εi)
2 − s2. (16)

Similarly, the expectation value of the fourth moment is

E[m4] = E

[
1

N

N∑
i

(vi + εi)
4

]
= μ4 + 3s2

2 + 6μ2s2, (17)

where we have used that the fourth moment of a normal distribution
is 3σ 4. Therefore, our estimate for the fourth moment is

μ̂4 =
N∑
i

(vi + εi)
4 − 3s2

2 + 6μ2s2, (18)

where we have assumed μ2 ≈ μ̂2.

Downloaded from https://academic.oup.com/mnras/article-abstract/433/4/3173/1749856
by University of Groningen user
on 03 April 2018



Orbit-based dynamical models of Sculptor 3177

The variance of the second moment, var(m2), can be determined
using var(x) = E[x2] − (E[x])2, which yields

var(m2) = 1

N

(
μ4 − μ2

2 + 2s2
2 + 4μ2s2

)
. (19)

Although we formally need var(μ̂2), we have found by testing with
a Gaussian distribution that for our purposes var(μ̂2) ≈ var(m2).
For the variance of the fourth moment, we find

var(m4) = μ8 + 105s4
2 + 204μ4s

2
2 + 420μ2s

3
2

+ 28μ6s2 − 9s4
2 , (20)

which require the 6th and 8th moments:

E[m6] = μ6 + 15μ4s2 + 45μ2s
2
2 + 15s3

2 , (21)

E[m8] = μ8 + 210μ4s
2
2 + 28μ6s2 + 420μ2s3

2 , (22)

and again we use var(μ̂4) ≈ var(m4).
The likelihood of the kinematic data given a model is

p(kinematic data|model) ∝ e− 1
2 χ2

kin , (23)

where

χ2
kin =

Nbins∑
k

(
μ̂2,k − μ2,k

)2

var(μ̂2,k)
+

Nbins∑
k

(
μ̂4,k − μ4,k

)2

var(μ̂4,k)
. (24)

Here μ2, k is given by equation (9), μ̂2,k is the estimate from the data
for bin k and similarly for the fourth moment.1

2.3.3 Finding a solution

We need to find the ci, j that maximize the probability (equation 23)
or minimize the χ2

kin, under the condition that all ci, j are positive (and
sum up to unity) and the light distribution is reproduced to within
1 per cent. This problem can easily be solved by QP, since the
minimization is quadratic in the df coefficients and the constraints
are linear. Note however that for this non-parametric problem, the
parameter space is very large, and a solution will often yield an
unrealistically spiky df. To effectively reduce the parameter space
and yield a smoother df, we add a regularization constraint, in
analogy to Cretton et al. (1999) and van den Bosch et al. (2008), by
including a penalty term to the total χ2. This term has the form

χ2
reg = χ2

reg,E + χ2
reg,L, (25a)

χ2
reg,E =

⎛
⎝λE

NL∑
j=0

NE−1∑
i=1

−ξi−1ci−1,j + 2ξici,j − ξi+1ci+1,j

⎞
⎠

2

,

(25b)

χ2
reg,L =

⎛
⎝λL

NL−1∑
j=1

NE∑
i=0

−ξici,j−1 + 2ξici,j − ξici,j+1

⎞
⎠

2

, (25c)

where χ2
reg,E and χ2

reg,L are small for a smooth df. This smoothness
requirement is implemented by demanding the second-order deriva-

1 Here we have neglected correlations between the moments, although these
may exist in practice.

tives of the df to be small, which we compute by taking second-order
finite differences (equations 25b and c).

In our case, we found λL = λE/8 to work well, and we calibrate λE

in the next section. The ξ i terms are the inverse of the (normalized)
masses inside the radii defined by our energy grid (Section 2.2; see
also van den Bosch et al. 2008, equation 29). Since the regularization
term χ2

reg is quadratic in the df coefficients, it can also be optimized
using the QP.

The total χ2 now becomes

χ2 = χ2
reg + χ2

kin. (26)

Minimizing this equation, in combination with the linear constraints
of the ci, j and the linear constraints on the light distribution (equation
14), defines the problem for the QP.

3 T E S T I N G T H E M E T H O D

3.1 Plummer profile embedded in an NFW dark matter halo

3.1.1 Mock Sculptor

We now create a mock galaxy that may be representative of Sculptor
according to previously published dynamical models of this system
(Battaglia et al. 2008). The goal is to test our method in the region
of parameter space where we expect Sculptor to be. For the stellar
component, we choose a Plummer profile with total mass M∗ =
106 M� and a scale radius b = 0.3 kpc. The stellar component is
embedded in a spherical NFW dark matter halo with scale rs =
0.5 kpc and enclosed mass at 1 kpc of MDM (< 1 kpc) = 108 M�.
The radial density profile for the NFW halo is of the form
ρDM(r) = ρ0(r/rs)−1(1 + r/rs)−2. We set the velocity anisotropy
to be constant, β = −1. Recall that β(r) = 1 − σ 2

t (r)/σ 2
r (r) and

σ 2
t (r) (where σ 2

t = σ 2
φ = σ 2

θ for every r) and σ 2
r (r) are the second

moments of the intrinsic velocity distribution at radius r in the tan-
gential and radial directions, respectively. Note that in this model,
although the central velocity dispersion is null,2 the los velocity
dispersion is finite and has a value σlos = 7.71 km s−1. By assuming
the df to be separable, i.e. f(E, L) = fE(E)fL(L), we may compute it
explicitly (numerically) as described in Appendix A.

As an extra check that our model galaxy is physical and stable,
we have generated phase-space coordinates for 100 000 stars from
its df, and simulated it numerically using GADGET-2 (Springel 2005).
In this simulation the stars are represented as N-bodies and they are
embedded in the static potential given by the dark halo of our mock
Sculptor model. We found that, even after 10 Gyr of evolution, the
density distribution, velocity dispersion profiles and the anisotropy
match the initial values well.

To generate observations of our mock Sculptor, we could draw
a random sample of ∼2000 stars from its df. However, this has the
disadvantage that many realizations would be required to test if the
mean of the recovered quantities matches the known input values.
Therefore, for the purposes of testing our modelling technique, we
prefer to compute the moments of the los velocity distribution at
different radii directly from the known df, as this is less susceptible
to randomness. We add uncertainties in the moments and choose
the location of the radial bins to match the Sculptor data set. Fig. 1
shows the los velocity dispersion profile and the kurtosis derived in
this way. Note however that in the model fitting we use the second
and fourth moments since these are linear in the df coefficients.

2 This implies that there is no conflict with the An & Evans (2009) theorem.
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Figure 1. The los velocity dispersion (bottom) and kurtosis (top) for mock
Sculptor. Black symbols: values for the moments in radial bins from the
mock Sculptor data, with 1σ error bars. Blue contours: recovered profiles
from the models, where the regions correspond to the 68.3, 95.4 and 99.7
per cent confidence intervals.

We calculate the uncertainties in the moments using equations (19)
and (20), assuming no measurement errors since these contribute
only ∼1 per cent of the error budget for the typical measurement
errors of 2 km s−1 and los velocity dispersions of 10 km s−1 found
in dSph. Therefore, the uncertainties in the moments are only due
to the number of objects per bin. Here we choose to have 250 stars
per bin, which gives a total of 8 bins for a sample of 2000 objects.

We proceed to test our code in two steps. In the first instance,
our aim is to establish how well the method recovers the intrinsic
properties of our mock galaxy if the df is known. Thus, in this first
test we use the known df to compute the df coefficients. These define
the orbital weights which our Schwarzschild code uses to calculate
the observables. The df coefficients are shown in the upper-left
panel of Fig. 2. The recovered (normalized) mass per intrinsic (3D)
bin (equation 12) is plotted in the top-right panel of the same figure.
The red dashed curve shows the output of the Schwarzschild code,
while the solid black curve corresponds to the true values. In the
lower-left panel, we plot the velocity dispersions for the radial
(red) and tangential (green) directions. The solid curves indicate
the true values, whereas as dashed curves we showed the recovered
dispersions. Here the ‘true’ velocity dispersion has been calculated
using the Jeans equations (Binney & Tremaine 2008, chapter 4).
The lower-right panel shows the true (solid black) and the recovered
(dashed red) anisotropy as a function of radius. This exercise shows
that given the correct weights we are indeed generally able to recover
the known intrinsic properties of our mock galaxy.

The small deviations from the true values especially visible in
the anisotropy profile are expected since the df coefficients only
approximate the true df. These deviations can thus be removed by
increasing the number of df coefficients. For example, if we double
the number of coefficients in the energy and angular momentum di-
rections, the small offset between the true and recovered anisotropy
profiles disappears. The increase in the resolution in the energy di-

Figure 2. Result of a test of our Schwarzschild code on mock Sculptor.
Here we have assumed knowledge of the df coefficients and recovered the
intrinsic properties of the model.

rection also leads to the elimination of the wiggles in the anisotropy
profile. On the other hand, the turnover of the anisotropy profile
seen at small radii is related to the sampling of orbits with the high-
est binding energy. Recall that we sample orbits from a minimum
radius rmin ∼ 0.03 kpc, so that the highest binding energy radial or-
bit has its apocentre at rmin. The orbits that contribute to the region
r � rmin are those which are very elongated with pericentres inside
this radius and with large apocentres (beyond rmin), and the set of
orbits with the highest binding energy but which have more angu-
lar momentum. These more circular orbits only contribute within
a small range of radii, and hence the resulting velocity ellipsoid is
radially biased. Clearly, if we were to reduce rmin, i.e. increase the
sampling of orbits in the central regions, this will lead to a decrease
in the radius at which the velocity anisotropy turns over. However,
we deem this unnecessary as the amount of mass associated with
this region is negligible, and this regime is in fact outside the reach
of observations since we only have access to observables along
the los, and a star at a small projected radius could be located at
larger physical radii from the centre. Furthermore, the size of the
currently available data sets is a strongly limiting factor (see the
next paragraph).

We now use the full Schwarzschild method and solve for the df
using QP. For the regularization parameters, we found λE = 0.1
to give good results. Fig. 3 summarizes our findings. The overall
properties of the df are well recovered as well as the remaining
characteristics (see Fig. 2 for comparison). The anisotropy is recov-
ered accurately except for r � 0.1 kpc. This is not due to sampling
of highly bound orbits discussed above, but is mostly driven by the
small number of stars in this (3D) inner region. Running the same
experiment with a larger data set (10 000 and 50 000 stars) we see
the mismatch in the anisotropy to occur at smaller radii. In practice,
this means that with the current data sets we are not sensitive to the
anisotropy at r � 0.1 kpc.

3.1.2 Global halo parameter recovery

In the above tests, we showed that the Schwarzschild code accu-
rately recovers the df and therefore the kinematic properties of our
mock dwarf galaxy (except at very small radii). This test was done
assuming that the (enclosed) mass within 1 kpc of the NFW halo
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Figure 3. Result of the application of the Schwarzschild code on our mock
Sculptor. The figure shows that the intrinsic structure is recovered through
the QP when the underlying gravitational potential is known. The grey region
in the lower-right plot indicates where we cannot recover the anisotropy
because of sampling limitations (see the main text for more details).

(M1 kpc) and its scale (rs) were known. We now focus on how to
estimate these parameters directly.

We proceed to calculate the probability of a model for a set of
parameter values. In our case, these parameters are M1 kpc and rs.
However, instead of calculating this probability on a regular grid as
done in e.g. Gebhardt et al. (2007) and van den Bosch et al. (2008),
we use an adaptive method, similar to Gebhardt & Thomas (2009).
This first finds the probability density function (pdf) on a coarse grid
and then determines where the pdf needs to be refined, and does so
hierarchically. This allows us to obtain a relatively smooth pdf via
the evaluation of a small number of models. For each set of model
parameters, we calculate the (relative) probability as p ∝ e− 1

2 χ2
kin

(equation 24). This results in estimates of the best-fitting parameters,
as well as in confidence intervals. We assume the prior on M1 kpc

to be uniform in log M1 kpc in the range log M1 kpc ∈ [7.6, 8.2]3 and
the prior on rs to be uniform in log rs in the range log rs ∈ [ − 1, 1].

The pdf for the parameters M1 kpc and rs for our mock Sculp-
tor model is shown in the top-left panel of Fig. 4. The pdf is
nicely centred on the input values M1 kpc = 108 M� and rs =
0.5 ≈ 10−0.3 kpc. The maximum likelihood value (blue dot or
lines) almost equals the input value, where the small deviation
is caused by the discretization of the pdf. Although the enclosed
mass at 1 kpc is recovered both accurately and precisely (mean
M1 kpc = 1.02 × 108.00±0.03 M�, corresponding to a 7 per cent un-
certainty, or M1 kpc = 1.02+0.075

−0.070 × 108 M�), the scale radius is
more poorly constrained (mean rs = 0.56 × 10±0.14 kpc, corre-
sponding to a 37 per cent uncertainty, or rs = 0.56+0.21

−0.15 kpc). Note
that the marginalized pdfs for M1 kpc and rs are somewhat asymmet-
ric (a reflection of what is seen in the upper-left panel of Fig. 4),
and this leads to slightly biased mean values for the parameters of
the model.

Each Schwarzschild model (i.e. for a given M1 kpc and rs) re-
sults in a single anisotropy profile. To find the pdf of the velocity
anisotropy profile, one should integrate (marginalize) over all pos-
sible df coefficients (as in Magorrian 2006). However, this is not
always feasible due to the high dimensionality of the parameter

3 Outside this interval the pdf is essentially zero.

Figure 4. Left column: probability density functions (joint and marginal-
ized) for mass and scale parameters of the NFW dark matter halo potential
recovered for the mock Sculptor model. The blue dot and blue lines indicate
the maximum likelihood value (of the unmarginalized pdf), while the red
dot and vertical dashed lines indicate the input values for the mock Sculptor
model. Right column: the green solid line indicates the median value, and
the blue regions (or black contour lines in the top-left panel) correspond to
the 68.3, 95.4 and 99.7 per cent confidence intervals. Top right: recovered
anisotropy profile. The grey region indicates where we cannot recover the
anisotropy. Middle right: recovered logarithmic density slope (see the text)
for the dark matter. Bottom right: recovered enclosed mass profile.

space required to specify the df (NE × Nl = 160 for this model).
Instead, we take the single anisotropy profile of each model and
calculate the probability density function for the anisotropy as a
function of radius as follows:

p(β|r) =
∫

dM1 kpc

∫
drsp(β|r,M1 kpc, rs)p(M1 kpc, rs). (27)

We plot the median anisotropy as a function of radius in green
in the top-right panel of Fig. 4, together with the 68.3, 95.4 and
99.7 per cent confidence intervals in blue. Note, however, that the
anisotropy values at different radii are not independent. The input
anisotropy is indicated by the red dashed line. The anisotropy seems
to be reproduced quite accurately, except at small radii. Since our
technique recovers nearly perfectly the input values of the model,
the anisotropy profile found is essentially equivalent to that derived
in Fig. 3. The mismatch at small radii is explained in the previous
section, and the apparent small uncertainty in the anisotropy in this
region may be understood from the following argument. Using the
Jeans equation, we may express the mass within a given radius as

GM(r)/r = σ 2
r (γ − 2β − α),
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where γ = d log ν∗/d log r , β is the anisotropy and α =
d log σ 2

r /d log r . For any model without a black hole in the cen-
tre, the lhs → 0 as r → 0. For a cored profile (as we have assumed)
γ = 0 in this limit. This implies that there is quite a strong restriction
on the behaviour of β (and σ r) at small radii. The above equation
implies that as r → 0,

2σ 2
r − 2σ 2

t − rdσ 2
r /dr = 0,

and since σ r → 0 as r → 0 to have a physical solution in a cuspy
dark matter halo according to An & Evans (2009), this means that
there is only one possible σ t at r = 0, for any model, i.e. value of
MDM and rs.

In the middle-right panel of Fig. 4, we plot the logarithmic slope
(η) of the dark matter density (ρDM) as a function of radius:

η(r) = d log ρDM

d log r
. (28)

In the inner parts η = −1 and in the outer regions η = −3 due to our
choice of the NFW profile. In the next section, we also explore a
different functional form for the halo density profile, which makes
this plot more meaningful and useful for later comparison.

In the bottom-right panel, we plot the enclosed (dark matter) mass
as a function of radius. The least uncertainty in the enclosed mass
is at r ≈ 0.5−0.6 kpc. This radius is close to the half-light radius
r1/2 ≈ 1.3b ≈ 0.4 kpc, where Walker et al. (2009c, 2010) and Wolf
et al. (2010) find the enclosed mass to be most robustly determined
and to be independent of anisotropy.

The los velocity dispersion and the kurtosis profiles obtained from
the models are shown as the blue contours in Fig. 1. These have
been computed in an analogous manner to the anisotropy profile,
i.e. as in equation (27). This figure shows that the resulting curves
are in excellent agreement with the input profiles.

To gain further confidence in our methodology, we have also
performed a similar set of tests for different anisotropy profiles,
while keeping the same stellar and dark matter density profiles.
In one case, the anisotropy varied from β = −1 in the centre to
β = +0.25 at larger radii (i.e. from tangentially to radially biased).
The other case we have tested has an anisotropy profile that changes
from β = 0 at the centre to β = −1 at larger radii (i.e. from
radial to tangential anisotropy). Also in these cases all the quantities
recovered are in excellent agreement (modulus the behaviour at very
small radii) with the input values, indicating that our methodology
works well and is robust.

3.2 Changing the dark matter halo density profile

In reality we will not know the actual density profile of the dark
matter halo hosting a galaxy like Sculptor, and we would like to
determine this from the data. A particularly interesting quantity is
the inner slope of the density profile since this depends on the nature
of the dark matter particles themselves, i.e. whether it is cold, warm
or self-interacting (Spergel & Steinhardt 2000; Avila-Reese et al.
2001).

Therefore, in this section we use our mock Sculptor, which is
embedded in an NFW profile, but we assume a more general func-
tional form to test the performance of our Schwarzschild method,
i.e. we take

ρDM(r) = ρ0 (r/rs)
α (1 + r/rs)

−(3+α) , (29)

such that for α = −1 this reduces to the NFW case. For the orbit
integration, we need to know the potential (or rather the forces)
generated by this density distribution. Since no general analytic

expression exists for these general potentials, we have to solve
Poisson’s equation numerically. We do this using the finite element
method (e.g. Pepper & Heinrich 1992). Our basis functions are
Lagrange polynomials of degree 0 to 3 (cubic), which leads to a
force field of order 2 (quadratic). We use a grid of 200 points in
log radius, from r = 10−6 to 104 kpc. Testing this in the case of
the NFW profile, we find that the relative errors in the force in this
range are ∼10−6.

We use our Schwarzschild code to find the best model that fits our
mock Sculptor data, now with an additional unknown parameter α,
assuming a uniform prior in the range ∈ [−2, 0] (α > 0 corresponds
to a central hole in the dark matter distribution, which we do not
consider). The results are given in Fig. 5. The top row in this figure
shows the joint pdfs, marginalized over the remaining parameter.
The middle row shows the pdfs of the single parameter, marginal-
ized over the other two parameters. The blue dots and blue lines
indicate the maximum likelihood value (of the unmarginalized pdf).
The bottom row shows the recovered anisotropy, mass and density
profile.

In general, all quantities are recovered quite well. However, the
pdf of α versus log rs shows an important degeneracy between
these parameters, indicating that it is difficult to determine either
of these quantities reliably from our mock data set. The maximum
likelihood (the blue dot) is slightly offset from the input value
(red dot), which may indicate small systematic errors due to for
instance the discretization of the df. However, note that since this
systematic offset is in the direction of the degeneracy, the systematic
error is small compared to the statistical uncertainty and therefore
we do not consider this to be a problem for data sets of this size
and quality. This analysis suggests that the current data are not
sufficient to provide a good estimate of the inner slope for these
models. The limitation lies in the number of stars with spectroscopic
measurements (which in the case tested here is 2000) and/or their
spatial distribution.

4 A PPLIC ATIO N TO TH E SC U LPTO R dSph
G A L A X Y

4.1 Data and extracted velocity moments

We use the los velocities of Battaglia et al. (2008, hereafter B08,
1073 stars) and Walker et al. (2009a, hereafter W09, 1541 stars).4 In
the case of duplicates (stars in common in the data sets), we average
the los velocities and the errors (in quadrature). Two observations
are considered to be from the same star when the astrometry agrees
within 1 arcsec and a velocity difference less than 3ε, where ε

is the average velocity error. Inspection of the relative distances
between stars in the data sets shows that this criterion is optimal
to sieve duplicates. This procedure led to the identification of 308
duplicates, roughly 11 per cent of the combined data set.

To create a velocity dispersion profile, we first need to convert the
measurements of the heliocentric los velocities into los velocities
that take into account the space motion of Sculptor. We provide
below a brief summary of this procedure and refer the reader to
Appendix B for more details.

4 Although Amorisco & Evans (2012b) have reported a systematic velocity
offset of 1.5 km s−1 in the data set of W09 compared to B08’s, we here
perform no correction. The various tests we have done show that this offset
has no visible effect on the results.
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Figure 5. Top two rows: probability density functions (joint and marginalized) for mass, scale and inner slope parameters of the dark matter halo potential
recovered for our mock Sculptor model. The blue dots (top row) and blue lines (middle row) indicate the maximum likelihood value (of the unmarginalized
pdf), while the red dots and vertical dashed lines indicate the input values for the mock Sculptor model. Bottom row: the green solid line denotes the median
value, and the blue regions (or black contour lines in the top row) correspond to the 68.3, 95.4 and 99.7 per cent confidence intervals. Bottom left: recovered
anisotropy profile. The grey region indicates where we cannot recover the anisotropy. Bottom centre: recovered enclosed mass profile. Bottom right: recovered
logarithmic density slope (see the text) for the dark matter.

The heliocentric los velocities of Sculptor’s stars are shown in
Fig. 6. As can be seen from this figure, there appears to be a velocity
gradient along the major axis (see also fig. 1 of B08). The presence
of such a gradient could be due to intrinsic rotation in Sculptor,
as suggested by B08. On the other hand, it is also possible that
the gradient is a result of the projection of the proper motion of
the centre of mass of Sculptor (or a mix of both), in which case it
can be used to infer its space velocity (Walker, Mateo & Olszewski
2008). In the absence of independent and direct measurements of
the proper motion of Sculptor, it remains debatable what the source
of the gradient is. For simplicity, here we assume that Sculptor
does not rotate and we derive the velocity of the centre of mass of
Sculptor from the los measurements in Appendix B. We note that,
in practice, our procedure simply removes the gradient, which one
might say is equivalent to having removed (solid body) rotation.

4.1.1 Velocity dispersion profile

For our dynamic modelling, we need to calculate the velocity dis-
persion profile of Sculptor in radial bins. To this end, we initially

make a rough selection of the likely members of Sculptor, and then
perform a more thorough analysis including the effects of Milky
Way contaminants. In the first step, we take the systemic helio-
centric radial velocity (vScl,sys,helio = 110.6 km s−1) and the mean
velocity dispersion (σScl = 10.1 km s−1) from B08. We require that
the member stars are within 3σ of the systemic velocity of Sculp-
tor, as indicated by the red solid lines in the right-hand panel of
Fig. 6. Furthermore, we also require that they are located within
r < 3400 arcsec (∼0.◦94, 1.3 kpc), indicated by the green dashed
line in the same panel. We add this requirement since we are not
confident that outside this radius a reliable velocity dispersion can
be measured due to the low number density of (probable) Sculptor
members compared to Milky Way stars. An improved method for
discriminating Milky Way contaminants based on surface gravity in
the data set of B08 has been developed by Battaglia & Starkenburg
(2012), see also Walker et al. (2009b).

We then define radial bins such that each but the last bin contains
at least 250 stars that match these criteria. From the total of unique
(i.e. non-duplicates) 2306 stars, 1695 match the above two criteria,
resulting in 7 radial bins, where the last one contains 195 stars.
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Figure 6. Top: los velocities for Sculptor versus radius. We only use the
stars at radii r < 3400 arcsec. The grey line indicates the systemic radial
velocity for Sculptor and the red lines indicate ±3σ the mean velocity
dispersion. Bottom: heliocentric los velocities from the combined data set
of Battaglia et al. (2008) and Walker et al. (2009a). The velocities have been
smoothed by taking the median in cells of 0.◦2 on a side.

After we defined our bins to include at least 250 probable mem-
bers, we remove the requirement of being within 3σ of the sys-
temic velocity of Sculptor. We now only require r < 3400 arcsec
(= 1.3 kpc), so all stars below the green dashed line in the top panel
of Fig. 6 are considered for calculating the velocity dispersions
(2153 stars). We now use a model for the velocity distribution of
the foreground contamination and of Sculptor itself, which then
allows us to calculate the most likely velocity dispersion in each
radial bin.

Following B08 and W09, we model the velocity distribution in
a radial bin as a sum of Gaussians. The velocity distribution of
Sculptor itself is modelled as a single Gaussian, while that of the

Milky Way is modelled as a sum of two Gaussians,5 following B08.
Then the probability of the velocity dispersion of Sculptor in radial
bin j with data Dj is

p(σj |Dj ) = p(Dj |σj )p(σj )

p(Dj )
=

Nj∏
i

p(Dj,i |σj )p(σj )

p(Dj,i)

=
Nj∏
i

p(Rj,i , vj,i |σj )p(σj )

p(Rj,i , vj,i)

∝ p(σj )
Nj∏
i

(
p(Rj,i , vj,i , m|σj )

+p(Rj,i , vj,i , ¬m|σj )
)
, (30)

where Rj, i and vj, i are the radius and velocity of the ith star in
the j th bin, Nj is the number of stars in bin j, p(σ j) is the prior,
which we take flat in the range 0 ≤ σ j ≤ 30 km s−1, and m and
¬m indicate the Boolean value of being a member star of Sculptor
or not. The proportionality can be used since the denominator is a
normalization constant. The first terms in the last line of equation
(30) can be expanded further (for each j):

p(Ri, vi, m|σ ) = p(Ri, vi |m, σ )p(m|σ )

= p(Ri, vi |m, σ )p(m)

= p(Ri |m)p(vi |m, σ )p(m). (31)

We take the prior on membership to be equal to p(m) = p(¬m) =
1
2 . Using the model of Sculptor as described above, p(Ri |m) =
μScl(Ri), the normalized surface density, and p(vi|m, σ ) is a Gaus-
sian convolved with the individual measurement errors on vi.

The second term in equation (30) can similarly be derived by
replacing m with ¬m in equation (31); p(Ri |¬m) = μMW is the
density of the Milky Way foreground. Since the normalization is
not important, we only need to know the ratio μMW/μScl(Ri) in each
bin.6 This can be estimated by the ratio of stars outside the 3σ and
inside the 3σ velocity dispersion. Furthermore, if there is any bias
in the sampling of the kinematic data (which usually is the case), it
will affect both the Sculptor data and the foreground data in equal
ways, and will cancel out in the ratio. The term p(vi|¬m, σ ) is the
weighted sum of two Gaussians as described in B08.

For each radial bin, we find the maximum likelihood value for
the velocity dispersion. After this, we perform a 3σ clipping around
the mean, and estimate the second and fourth moments for the
remaining stars using equations (16) and (18). The errors are com-
puted from equations (19) and (20). The final sample contains 1696
member stars. Fig. 7 shows the resulting velocity dispersion profile
and the kurtosis (μ̂4/μ̂

2
2). The los velocity dispersion is well con-

strained; it is relatively flat although it appears to be slightly rising
with radius. The kurtosis has larger error bars, and this implies that
additional modelling is required to establish in a robust statistical
way what the shape of the velocity ellipsoid is (Gerhard 1993).

5 This gives a good fit to the Besançon model in this region of the sky and
for stars with colours and magnitudes in the observed range (Robin et al.
2003).
6 Although the sampling of B08 and W09 is different, we have found in tests
that this has no influence on our results.
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Figure 7. Los velocity dispersion profile obtained in radial bins for the
data by B08 and W09 of Sculptor, taking into account the foreground con-
tamination by the Milky Way. The dashed curve corresponds to the (pdf-
weighted) median los velocity dispersion profile from the Schwarzschild
models presented in Section 4.2, while the contours indicate the 1σ , 2σ and
3σ uncertainties around this curve. The last bin extends to 1.3 kpc.

4.2 Schwarzschild method applied to Sculptor

We now apply the Schwarzschild method to the data from the Sculp-
tor dSph and model this galaxy as a (non-rotating) spherically sym-
metric system. For the light distribution, we assume a Plummer
profile with scale radius b = 0.3 kpc (Battaglia 2007).

We first assume that Sculptor is embedded in an NFW dark matter
halo, as we did for mock Sculptor in Section 3.1. The results of this
modelling are shown in Fig. 8. We obtain a tight constraint on the
enclosed dark matter mass of M1 kpc = 1.03 × 108.00±0.03 M� (7
per cent uncertainty, or M1 kpc = 1.03+0.075

−0.070 × 108M�). The scale
radius at rs = 2.15 × 10±0.25 kpc (76 per cent uncertainty, or rs =
2.15+1.6

−0.93 kpc) is less well constrained, similar to what we find for
mock Sculptor. In comparison to our mock model, the Sculptor
dwarf galaxy would seem to have a larger scale radius (see Fig. 4).

Our estimates are consistent with those derived in previous work
for the NFW family of mass models. For example, Walker et al.
(2009c, 2010) derive a mass of 10+3.2

−5.0 × 107 M� within 1.1 kpc,
while we estimate 10+1.3

−1.2 × 107 M� within the same distance with
smaller error bars. On the other hand, B08 obtained a mass of
2.2+1.0

−0.7 × 108 M� within 1.8 kpc, while our measurement at this
radius is 1.9+0.4

−0.3 × 108 M�. The mass estimates by Strigari et al.
(2008), Walker et al. (2010, MCMC value) and Wolf et al. (2010)
are overplotted in the bottom-right panel of Fig. 8, and all three
agree very well with ours and are within the confidence regions.

The top-right panel of Fig. 8 shows that Sculptor’s anisotropy is
mostly tangential and fairly constant with radius, except near the
centre where it becomes slightly more isotropic (even after taking
into account our limitations due to the projection effects shown and
discussed in the context of Fig. 3). This anisotropy profile at r >

0.1 kpc is consistent with the constant anisotropy assumed in Jeans
models of Sculptor, as by Walker et al. (2007), who find β = −0.5.

Figure 8. Left column: probability density functions (joint and marginal-
ized) for mass and scale parameters of the NFW dark matter halo potential
recovered for Sculptor. The blue dot and blue lines indicate the maximum
likelihood value (of the unmarginalized pdf). Right column: the green solid
line indicates the median value, and the blue regions (or black contour lines
in the top-left panel) correspond to the 68.3, 95.4 and 99.7 per cent con-
fidence intervals. Top right: recovered anisotropy profile. The grey region
indicates where we cannot recover the anisotropy. Middle right: recovered
logarithmic density slope (see the text) for the dark matter. Bottom right:
recovered enclosed mass profile.

We plot the joint pdf of M1 kpc and rs again in Fig. 9. In the
left-hand panel, we plot lines of constant virial mass M200 in blue,7

with the blue dotted line indicating a value of log M200 = 8.5,
increasing with steps of 0.5 dex until log M200 = 10.5. The orange
lines indicate constant concentration values, with the orange dashed
line corresponding to c = 10, increasing with steps of 5 until c =
40. This shows that the concentration of Sculptor is ∼15 ± 6 and
that the virial mass is not well determined (not better than within
factor of 100 at a 3σ level uncertainty).

Cosmological N-body simulations of dark matter have shown that
there is a relation between the concentration of dark matter haloes
and their virial masses, the so-called mass–concentration relation
(e.g. Bullock et al. 2001a). In the right-hand panel of the Fig. 9, we
show as the dashed black line the mass–concentration relation of
Macciò et al. (2007):

log c200 = −0.109 log(M200/M�) + 2.34. (32)

7 M200 is the virial mass (mass enclosed within r200), where r200 is the
distance at which the average density of a dark matter halo is 200 times the
cosmological density ρc (e.g. Binney & Tremaine 2008, section 2.2).
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Figure 9. Left: the black contours correspond to the same pdf as that shown
in the bottom-right panel of Fig. 8. The blue lines indicate curves of constant
M200, with the blue dotted line corresponding to a value of log M200 =
8.5, increasing with steps of 0.5 dex until log M200 = 10.5. The orange
lines indicate values of constant concentration, with the orange dashed line
corresponding to c = 10, increasing with steps of 5 until c = 40. Right: the
red contour lines indicate the cosmologically motivated prior, with the black
dashed line corresponding to the mean value. The green contours denote the
pdf obtained using this prior for Sculptor.

Judging solely from this relationship this would suggest that Sculp-
tor is not compatible with the current �CDM cosmology. If we
however plot the intrinsic scatter of σln c200 = 0.33 in the same panel
(solid red lines, 1σ , 2σ and 3σ contours), we see that Sculptor lies
well within the 1σ and 2σ contours. We can also use the mass–
concentration relation as a prior in our models. The results are
shown as the green contours in this figure and they are slightly
smaller than the original contours. The effect is small, but leads to
a narrowing down of the possible values for rs.

4.3 Dark matter inner density profile

We now consider a more general dark matter profile for the dark
matter halo of Sculptor as we did for our mock models in Section
3.2 by allowing the inner slope α to vary (see equation 29). The
results are shown in Fig. 10.

This figure shows that the maximum likelihood value for M1 kpc

and that the velocity anisotropy recovered by the Schwarzschild
method are in very good agreement with the values obtained when
α is fixed to −1 as in Fig. 8. However, as discussed in Section 3.2

Figure 10. Top two rows: probability density functions (joint and marginalized) for mass, scale and inner slope parameters of the dark matter halo potential
recovered for Sculptor. The blue dots (top row) and blue lines (middle row) indicate the maximum likelihood value (of the unmarginalized pdf). Bottom row:
the green solid line indicates the median value, and the blue regions (or black contour lines in the top row) correspond to the 68.3, 95.4 and 99.7 per cent
confidence intervals. Bottom left: recovered anisotropy profile. The grey region indicates where we cannot recover the anisotropy. Bottom centre: recovered
enclosed mass profile. Bottom right: recovered logarithmic density slope (see the text) for the dark matter.
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the strong degeneracy between rs and α implies that the scale radius
is less well determined.

The middle-right panel of Fig. 10 shows that the distribution
of values for the inner slope α is very broad. Nonetheless, it is
clear that very steep cuspy profiles (α < −1.5) are excluded. The
maximum likelihood value is reached for a cored profile (α = 0),
although this is statistically indistinguishable from slightly cuspier
slopes as evidenced by the pdfs in this figure. The bottom-right
panel of Fig. 10 shows that at a distance of 250 pc (where the
anisotropy profile begins to change its shape, and which according
to our tests in Section 3.2 is the innermost point where it is reliably
determined), the median logarithmic slope profile (green line) takes
a value of ∼−1.25, which is larger than that found in our mock
Sculptor model (∼−1.75). Since the maximum likelihood value of
rs estimated by the Schwarzschild method is not very different from
that assumed in mock Sculptor, this comparison would suggest that
the density profile of Sculptor is shallower than NFW, although the
uncertainties are still too large to make a very firm statement.

5 D ISCUSSION

Our results agree with previous studies of Sculptor that a central
logarithmic slope α = 0 is more likely than the NFW α = −1
cusp (B08; Walker & Peñarrubia 2011; Agnello & Evans 2012;
Amorisco & Evans 2012a), although in our case the evidence is
clearly not strong enough to rule out the latter. Note however that
many, though not all, of these works have tested the presence of
a true core, namely dρ/dr = 0 and not just d log ρ/dr = α = 0 at
the centre. A comparison of the statistical significance of our results
with Walker & Peñarrubia (2011) or Agnello & Evans (2012) is not
straightforward because of the very different methods employed to
estimate the inner slope. These authors use the existence of two
distinct populations (metal-rich and metal-poor) to constrain the

mass distribution (which is modelled non-parametrically), and this
may or may not be the cause of the difference. Amorisco & Evans
(2012a) favour a cored profile over an NFW with a high signif-
icance, but their conclusion is based on the assumption that two
populations follow Michie–King phase-space dfs, which are radi-
ally anisotropic. Amorisco & Evans (2012b) present evidence that
the velocity anisotropy of Sculptor might in fact be radial. This is in
conflict with our results, since we find, with high confidence levels,
that the orbits of stars in Sculptor are tangentially biased (also when
marginalized over all models), especially at radii beyond 250 pc,
where the dominant population is the metal-poor one. Furthermore,
also Walker et al. (2007), B08 and Łokas (2009) favour a tangen-
tially biased constant anisotropy profile in their Jeans models of this
system.

Given these seemingly contradictory results, it is worthwhile
taking a closer look at the los velocity distributions to understand
where the discrepancies might arise. Fig. 11 shows these distribu-
tions (black histograms) together with the results obtained for the
best-fitting NFW (blue dotted) and α = 0 (red dashed) models. This
figure shows that the los velocity distribution is more peaked at
small radii than in the outskirts, where it is more flat topped. This is
consistent with our measurements of the los kurtosis, and also with
our derived anisotropy profile. As shown by Dejonghe (1987), sys-
tems with a tangentially biased velocity ellipsoid have a flat-topped
los velocity distribution only at large radii, while in the centre, this
distribution is always more peaked. This is because the los towards
the centre has contributions from stars located at a larger range of
radii, and hence also from radial plunging orbits, which drives the
shape of the projected velocity distribution to be more peaked. This
is known as the ‘complementarity property’, and the results of our
modelling would be consistent with such a scenario.

Fig. 11 also shows the small differences between the α = 0 and
α = −1 profiles, and lends support to our conclusion that the two
profiles are both relatively good representations of the data. This

Figure 11. los velocity distributions for Sculptor stars for different radial bins (black histogram). The red curve corresponds to the best-fitting α = 0 model,
while the best-fitting NFW model (α = −1) is shown in blue. The p-values correspond to the probability that the observed and best-fitting model are drawn
from the same parent distribution, as quantified by a KS test.
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is quantified by a KS test, whose probabilities are indicated in the
corners of each of the panels of this figure. In a few of the radial
bins, none of the models fair particularly well. The α = 0 model
tends to fit better the peak of the histogram, and this could be partly
to the lower but still tangential anisotropy since β ∼ −0.3 for most
radii.

The question thus arises as why do Amorisco & Evans (2012b)
find a radial anisotropy. Just like us, these authors have utilized the
W09 data set. However, they use stars with a membership probabil-
ity of 0.5 (as estimated by W09), and do not model the contamina-
tion by the Milky Way any further. In the presence of contaminants,
los velocity distributions have extended wings, and this produces
a peaky distribution akin that of truly radially anisotropic systems.
We have tested this idea by measuring the kurtosis for two different
membership probability values p = 0.5 (1370 stars), as in Amorisco
& Evans (2012b), and p = 0.9 (which is more in line with our more
sophisticated modelling of the foreground, 1355 stars), and found
a significant difference (despite the small change in the number of
members, only 15 objects are removed with the stricter criterion):
the kurtosis is >3 in the first case while in the second case it is
consistent with that shown in Fig. 6.

In conclusion, care is required when contamination is present,
and the differences between profiles that have α = −1 such as the
NFW or α = 0, although present, are perhaps not as dramatic as
maintained in other published work.

6 C O N C L U S I O N S

We have presented a spherically symmetric dynamical model for
the Sculptor dSph galaxy using the Schwarzschild orbit superpo-
sition method. This method fits a set of observables, which in our
case are the light, the second and fourth moments of the los veloc-
ity distribution. We have tested this method on a mock model for
the Sculptor dSph galaxy embedded in an NFW profile, and gener-
ated with similar sampling and velocity errors as the data currently
available for this system.

In our tests we have found our method to give precise (7 per
cent uncertainty) and accurate estimates for the mass within 1 kpc,
when assuming that the underlying gravitational potential is of NFW
form. However, the scale radius is recovered less precisely (37 per
cent uncertainty) for data sets containing ∼2000 member stars. We
have also explored a more general model for the dark matter halo
and found that we are able to measure the logarithmic slope of its
density profile, although the central value is weakly constrained.
Nonetheless, we find that the maximum likelihood value for the
inner slope is very close to the input value.

We then used the Schwarzschild method on Sculptor after hav-
ing estimated the second and fourth los velocity moments for this
galaxy. Assuming an NFW profile for the dark matter profile, we
derive a mass within 1 kpc of M1 kpc = (1.03 ± 0.07) × 108 M�,
and find the concentration (c ∼ 15) to be compatible with cur-
rent �CDM predictions, given the expected scatter in the mass–
concentration relation (Macciò et al. 2007). When we try to con-
strain the inner slope of the dark matter density profile of Sculptor,
we can exclude very cuspy profiles (α < −1.5). However, given the
current data set, our method does not seem to be able to discrimi-
nate in a statistically significant way between an α = −1 cusp and
a central logarithmic slope α = 0, although the latter is the most
likely value. We are, however, able to determine that the logarithmic
slope of the density profile falls off to the value of −2 at a distance
of ∼1 kpc.

The Schwarzschild method is also able to derive the velocity
anisotropy profile, except near the centre where we are limited
by the number of tracers. For Sculptor we find this to be tangen-
tially biased with a hint that it may become more isotropic for
r � 250 pc. This result is nearly independent of the assumed shape
of the dark matter density profile, whether NFW or its generalized
form. This nearly flat tangentially anisotropic ellipsoid should hold
clues to the formation and dynamical evolution of Sculptor but it
is as yet unclear whether a model exists that can reproduce this
trend.

Models in which stars follow the dark matter are inconsistent
with our results, as they predict a more radially anisotropic velocity
ellipsoid (Diemand, Moore & Stadel 2004). On the other hand,
the tidal stirring of a discy galaxy (see e.g. Mayer 2010) can lead
to a tangentially biased ellipsoid. However, this model predicts
that the ellipsoid becomes increasingly tangential with radius as a
consequence also of tidal stripping, and this is not what we derive
at face value.

Schwarzschild modelling does not have to assume a parametric
form for the velocity anisotropy as for instance in the commonly
used Jeans modelling. We therefore believe that we are less affected
by biases due to assumptions compared to such class of models.
Furthermore, by construction we are guaranteed that our models
are physical in the sense of having non-negative dfs.

We plan to develop the Schwarzschild method further to work
with the full los velocity distribution, instead of binning the data
and comparing it to the velocity moment profile. Avoiding the loss
of information when binning, we expect that this may give us better
estimates for the inner slope and the anisotropy profile. Also, since
neither Sculptor nor any of the other dSph galaxies are spherical,
we are developing a non-spherical orbit-based dynamical model.
We also plan to apply this modelling to other dSph galaxies such as
Fornax, Carina and Sextans in future work.
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APPENDI X A : NUMERI CAL APPROX I MATIO N
TO TH E df

We take the following separable form for the df:

f (E,L) = fE(E)fL(L). (A1)

For a constant anisotropy for instance, fL(L) ∝ L−2β . Now we assume
that the df f (E, L) can be approximated by f̂ (E, L), where f̂E(E)
is a sum of delta functions, such that

f̂ (E,L) = 1

N

N∑
i=1

wiδ(E − Ei)fL(L). (A2)

The density distribution corresponding to this df is

ν̂(r) = 2π

∫ vr,max

−vr,max

dvr

∫ vt,max

0
vtdvt f̂ (E, L) (A3)

= 4π

r2

∫ −�(r)

0
dE

∫ Lmax

0
dLL

f̂ (E,L),√
−2(E − �(r)) − L2

r2

(A4)

= 4π

r2

1

N

N∑
i=1

wi

∫ Lmax

0
dLL

fL(L)√
−2(Ei − �(r)) − L2

r2

(A5)

× �(−(Ei − �(r))) (A6)

= 1

N

N∑
i=1

wiν̂i(r), (A7)

where � is the Heaviside step function and the ν̂i(r) are the densities
that correspond to the each of the energy delta functions.

Given a stellar density distribution ν(r) and a gravitational po-
tential �(r), it may be possible to find the weights wi such that
ν(r) ≈ ν̂(r). In this case, we may state that we have found a numer-
ical approximation to the df that generates the proper stellar density
distribution and is embedded in the potential �(r). A solution can
be found for instance using a non-negative least-squares method.
An even simpler method is to start with the ν̂j corresponding to the
lowest binding energy. All ν̂i associated with higher binding ener-
gies can only contribute to the density at smaller radii; therefore, by
weighing ν̂j this can account for the density out to the outermost
radius. Now one can proceed with the next ν̂i . Thus, we start from
the lowest binding energy components, use appropriate weights and
build the density distribution from outside in. Care should be taken
to make sure all weights are positive.
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In the case of the mock Sculptor model discussed in the main text,
ν(r) is the Plummer profile and �(r) is the sum of the potentials of
the Plummer mass distribution describing the stellar component and
that generated by the NFW profile associated with the dark halo.
In this case we have chosen fL(L) ∝ L−2β , where β = −1. For our
purpose we choose a logarithmically spaced radial grid of 600 points
between rmin = 10−3 kpc and rmax = 103 kpc. For each ri on the grid,
we calculate the potential energy, giving us a grid of energies, which
we take the energies for our df (Ei in equation A2). For each Ei, we
calculate the density on the same radial grid. The last step is to find
the weights wi using the above procedure. A small mismatch (a few
per cent) of the density at large radii (>300 pc) occurs due to the
df missing lower binding energy components. The cumulative mass
distribution of the stellar mass deviates <10−4 from the true mass
distribution, and within 300 pc the relative density deviates <2 ×
10−4. Outside this radius the density does not match very well, but
since this is at large radii and its mass contribution is very small
(note also that the cumulative mass distribution shows only small
deviations), this is of no importance.

APPENDIX B: C ENTRE O F MASS V ELOCI TY
O F S C U L P TO R

In this appendix we transform the observed los velocities to veloc-
ities with respect to the centre of mass of Sculptor. This requires
knowledge of the latter, which is what we derive here using a max-
imum likelihood method.

The observed (heliocentric) los velocity of a star can be expressed
as

v∗,hel(l, b) = elos(l, b)· (v∗,Scl(l, b) + vScl,GSR − v�,GSR

)
= v∗,Scl(l, b) + vScl,GSR(l, b) − v�,GSR(l, b),

where elos(l, b) is the line-of-sight unit vector in the direction of the
star, v∗,Scl(l, b) is the velocity of the star with respect to the centre
of mass of Sculptor, vScl,GSR is the systemic velocity of the centre
of mass of Sculptor with respect to the Galactic standard of rest
(hereafter GSR), v�,GSR is the velocity of the Sun with respect to
the GSR and · indicates the inner product. The component of the
los velocity we are interested in is v∗,Scl(l, b). Since v∗,hel(l, b) is
measured, and assuming that we know v�,GSR, we only need to
find vScl,GSR(l, b). For the velocity of the Sun, we use v�,GSR =
v�,LSR + vLSR,GSR = (10.0, 5.2, 7.2) + (0, 220, 0) km s−1, where
LSR denotes local standard of rest (Dehnen & Binney
1998).

To determine which stars are likely members of Sculptor, we
make a rough first selection. We take the systemic heliocentric
radial velocity (vScl,sys,helio = 110.6 km s−1) and the mean velocity
dispersion (σScl = 10.1 km s−1) from B08. We first require that the
member stars are within 3σ of the systemic velocity of Sculptor,
as indicated by the red solid lines in the right-hand panel of Fig. 6.
Furthermore, we also require that they are located within r < 0.◦944,
indicated by the green dashed line in the same panel. We add this
requirement since we are not confident that outside this radius a
reliable velocity dispersion can be measured due to the low number
density of (probable) Sculptor members compared to Milky Way
stars.

For simplicity, we first assume that the los velocity distribution
is described by a Gaussian distribution with a constant velocity dis-
persion and zero mean velocity w.r.t. the centre of mass of Sculptor.

Figure B1. Probability density function (pdf) of the three velocity com-
ponents of the systemic velocity of Sculptor with respect to the GSR. Left
column: joint pdfs with 1σ , 2σ and 3σ contours lines, marginalized over the
other component. Right column: individual pdfs marginalized over the other
two components. The measurements from Piatek et al. (2006) are shown in
red, while those by Schweitzer et al. (1995) are shown in blue. The vertical
lines in the right-hand panels and the dots in the left-hand panels indicate
the maximum likelihood values.

Then the probability for vScl,GSR can be expressed as

p(vScl,GSR) =
∏

i

1√
2πσi

exp

(
−v∗i ,Scl(li , bi)2

2σ 2
i

)

=
∏

i

1√
2πσi

exp

[
− 1

2σ 2
i

{
v∗i ,hel

− elos(li , bi) · (
v�,GSR − vScl,GSR

)}2
]

, (B1)

where σ 2
i = σ 2

Scl + σ 2
∗i

is the velocity dispersion of Sculptor added
in quadrature with the measurement error of the velocity of star i.
Although the velocity dispersion is not constant with radius, we use
the global value of σScl = 10.1 km s−1 as described previously.

The joint and marginalized probability density functions for the
velocity components of Sculptor are plotted in Fig. B1 together
with the 1σ , 2σ and 3σ contours. The maximum likelihood value is
reached at v̂Scl,GSR = (vx, vy, vz) = (278.5, 101.5, −81.0) km s−1.
These values are in agreement with Walker et al. (2008), who use
a similar method. We also overplot the measurements of Piatek
et al. (2006, in red) and Schweitzer et al. (1995, in blue) while the
maximum likelihood value is indicated in black. Note that the un-
certainty in vz is smallest since this reflects mainly the uncertainty
in the mean radial velocity of the centre of mass of Sculptor due to
its high galactic latitude. The uncertainties in the other two velocity
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components mainly reflect the uncertainties in the proper motion
measurements. Our determination of the vy component agrees well
with the various data sets, while the vx component appears to be
systematically offset. Note, however, that there is overlap at the 3σ

level, and the 2σ and 3σ contours for the joint vx and vy overlap as
well. Perhaps this level of disagreement could be taken as an indica-
tion that there may be intrinsic rotation in the system. Nonetheless,

we note that with this procedure we effectively have removed the
observed gradient and no apparent rotation remains, whatever its
origin.
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