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Abstract

Background: The threat of emergence of a human-to-human transmissible strain of highly pathogenic influenza A
(H5N1) is very real, and is reinforced by recent results showing that genetically modified A(H5N1) may be readily
transmitted between ferrets. Public health authorities are hesitant in introducing social distancing interventions due
to societal disruption and productivity losses. This study estimates the effectiveness and total cost (from a societal
perspective, with a lifespan time horizon) of a comprehensive range of social distancing and antiviral drug
strategies, under a range of pandemic severity categories.

Methods: An economic analysis was conducted using a simulation model of a community of ~30,000 in Australia.
Data from the 2009 pandemic was used to derive relationships between the Case Fatality Rate (CFR) and
hospitalization rates for each of five pandemic severity categories, with CFR ranging from 0.1% to 2.5%.

Results: For a pandemic with basic reproduction number Ry = 1.8, adopting no interventions resulted in total costs
ranging from $441 per person for a pandemic at category 1 (CFR 0.1%) to $8,550 per person at category 5 (CFR
2.5%). For severe pandemics of category 3 (CFR 0.75%) and greater, a strategy combining antiviral treatment and
prophylaxis, extended school closure and community contact reduction resulted in the lowest total cost of any
strategy, costing $1,584 per person at category 5. This strategy was highly effective, reducing the attack rate to 5%.
With low severity pandemics costs are dominated by productivity losses due to illness and social distancing
interventions, whereas higher severity pandemic costs are dominated by healthcare costs and costs arising from
productivity losses due to death.

Conclusions: For pandemics in high severity categories the strategies with the lowest total cost to society involve
rigorous, sustained social distancing, which are considered unacceptable for low severity pandemics due to societal
disruption and cost.

Keywords: Pandemic influenza, Economic analysis, Antiviral medication, Social distancing, Pandemic severity, Case
fatality ratio

Background

While the HIN1 2009 virus spread world-wide and was
classed as a pandemic, the severity of resulting symp-
toms, as quantified by morbidity and mortality rates,
was lower than that which had previously occurred in
many seasonal epidemics [1-3]. The 2009 pandemic thus
highlighted a further factor which must be considered
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when determining which public health intervention
strategies to recommend, namely the severity of symp-
toms arising from a given emergent influenza strain.
The mild symptoms of HIN1 2009 resulted in a reluc-
tance of public health authorities to use rigorous social
distancing interventions due to their disruptive effects,
even though modelling has previously suggested that
they could be highly effective in reducing the illness at-
tack rate [4-13].

Had the HINI1 2009 influenza strain been highly
pathogenic, more timely and rigorous responses would
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have been necessary to mitigate the resultant adverse
health outcomes. Furthermore, there is continuing con-
cern that a highly pathogenic avian influenza A(H5N1)
strain may become transmissible between humans. This
scenario is highlighted by the large reservoir of influenza
A(H5N1) in poultry in South-East Asia [14], and recent
experimental results which have shown that the A
(H5N1) virus may be genetically modified to become
readily transmissible between ferrets, a commonly used
animal model for human influenza transmission studies
[15-17].

The severity of a particular influenza strain directly
impacts on the cost of any pandemic; increased severity
increases health care costs and escalates productivity
losses due to a) absenteeism arising from increased ill-
ness and b) increased mortality rates. In this study, the
role which pandemic severity has on the total cost of a
pandemic for a range of potential intervention strategies
is analysed, and for highly pathogenic influenza strains
inducing significant morbidity and mortality, as occurred
during the 1918 pandemic [18,19], the results suggest
which intervention strategies are warranted in terms of
reduction of illness and total pandemic cost. This study
adopts a societal perspective on the cost of a pandemic,
with the time horizon being the lifetime of individuals
experiencing the pandemic.

Methods

General overview

We used a detailed, individual-based simulation model
of a real community in the south-west of Western
Australia, the town of Albany with a population of ap-
proximately 30,000, to simulate the dynamics of an in-
fluenza pandemic. Comparing simulations with and
without interventions in place allowed us to analyse the
effect which a range of interventions have on reducing
the attack rate and on the health of each individual in
the modelled community. Epidemic outcome data pro-
duced by the simulation model were used to determine
health outcomes involving hospitalisation, ICU treat-
ment, and death. In turn, these healthcare outcomes, to-
gether with productivity losses due to removal from the
workforce, were used to estimate the overall cost of in-
terventions. Figure 1 provides an overview of this ana-
lysis methodology, showing each of the processes that
make up the methodology, their input parameters and
the resulting data generated by the process.

Simulation model

Population contact network

The simulation model captures the contact dynamics of
the population of Albany, Western Australia using cen-
sus and state and local government data [20]. These data
allowed us to replicate the individual age and household
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Figure 1 Overview of pandemic cost analysis methodology.
Input parameters are shown on the left in boxes with blue text, with
arrows indicating to which part of the cost analysis methodology
they apply. Boxes with white text represent different processes of
the methodology — each process is described in the Methods
section under a subsection of the same name. Boxes with green text
appearing at the bottom and on the right represent results
generated by the analysis.

structure of all households in this town of approximately
30,000 individuals, and also allowed for the construction
of an explicit contact network linking households,
schools, workplaces and other meeting places by allocat-
ing individuals to workplaces and schools.

The modelled community was chosen so as to be rep-
resentative of a developed world population, and self-
contained in the sense that all major locales for interper-
sonal mixing were represented within the community.
The model includes both urban and rural components, a
central commercial core, a complete set of schools (cov-
ering all age groups), and a mix of large and small em-
ployers. The community is also of a size where public
health interventions could be uniformly implemented
based on local information. The model captures explicit
person-to-person contact with the contact network de-
scribing population mobility occurring between house-
holds, schools, workplaces and the wider community as
shown in Figure 2. The virus spreads through the com-
munity due to this mobility, as transmission occurs be-
tween individuals when they are co-located, possibly
following a move from one location to another. For
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Figure 2 Idealised household and hub contact network.

example, an infectious child moves from household to
school on a given day, and infects two further children;
they return to households 2 and 3 and, following virus
incubation, become infectious and may infect other
household members in their households. Note that these
households may be geographically separate, but are
connected via contact of children at school.

Each household contains uniquely identified individ-
uals. Children and adults were assigned by an allocation
algorithm to school classes and workplaces, respectively.
The assignment of children to classes was based on age,
school class size data, and proximity between schools
and households; the assignment of adults to workplaces
was based on workplace size and commuter survey data.
In addition to contact occurring in households and
mixing hubs, community contact was introduced to cap-
ture mixing which occurs outwith these locales and in
the wider community.

The number of contacts made by each individual each
day in school, work and community settings were ad-
justed to reproduce the proportion of cases occurring in
different settings as reported by empirical studies, specif-
ically 40% of infections occurred in households, 30% in
schools and workplaces, and 30% in the wider commu-
nity [21-23]. Contacts within schools and workplaces oc-
curred in fixed-size mixing groups of maximum size 10.
Within mixing groups contact was assumed to be homo-
geneous. Community contacts occurred between ran-
domly selected individuals, weighted toward pairs of
individuals located in neighbouring households.

Epidemic simulations

A simulation algorithm, realised in the C++ program-
ming language, manipulates the underlying demographic
model and captures both population mobility and the

time-changing infectivity profile of each individual. Each
individual has their infectivity status denoted by one of
the four (Susceptible, Exposed, Infectious, Recovered)
states at any time point during the duration of the simu-
lated period. The simulation algorithm captures the state
of the whole population twice per day, a daytime point-
in-time snapshot and an evening snapshot, with individ-
uals (possibly) moving locations between successive day
or night periods, such as household to school or work-
place for the day phase, returning to home for the night
period. Individuals come into contact with other individ-
uals on a one-to-one basis in each location, with possible
influenza transmission then occurring. Individuals in
each household and contact hub make contacts within a
close-contact mixing group, taken to be the entire
household or a subset of larger hubs, and also make
additional non hub-based random community contacts.
The attributes of the various locations in which individ-
uals come into potentially infectious contact are summa-
rized in Table 1.

Using the contact, mobility and transmission features
described above, stochastic simulations of influenza
spread were conducted. All simulations were repeated
40 times with random numbers controlling the outcome
of stochastic events (the locality of seeded infected indi-
viduals and the probability of transmission) and the re-
sults were averaged. Analysis of this simulation model
has shown that the 40-run mean attack rate is highly un-
likely (95% confidence) to differ by more than 1.2% from
the mean attack rate of a much larger set of experiment
repeats.

One new infection per day was introduced into the
population during the whole period of the simulations,
and randomly allocated to a household. This seeding as-
sumption of 1 case per day was chosen to reliably begin
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Table 1 Individual and contact location attributes
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Agents/ Description

Objects

Individual ~ The individual is the primary agent entity in the model. Each individual has an age, a household, a (possible) daytime hub, an activity
state, a current infection state, and time-of-infection (when infected) that explicitly tracks the progression of the infectious disease.
Individuals move between different locations at different time periods, making contacts with other individuals.

Locations  Description When contact Who participates in contact Average number of

occurs contacts

Household Each household is made up from a Every day during Members of each household Average household size is
certain number of individuals Day and Night cycle. 2.54 individual
following census data, spatially
located.

Childcare Child care and pre-schools; number  Weekdays during Child (age 0-4) and adult (worker) Maximum group size is 10.
and size determined from local Day cycle. individuals who are allocated into the
government data. hub if they are active*.

School Primary and secondary schools; Weekdays during Child (ages 5-17) and adult (teacher) Maximum group size is 10.
number, size and age structure Day cycle. individuals who are allocated into the
determined from state education hub if they are active*.
department data.

Adult Tertiary and vocational education Weekdays during Young adult and adult individuals who Maximum group size is 10.

education  institutions, number and size Day cycle. are allocated into the hub if they are
determined from state education active*.
department data.

Workplace Number and size of determined for ~ Weekdays during Adult individuals who are allocated into  Maximum group size is 10.
local government business survey Day cycle. the hub if they are active .
data.

Community Represents all contact between Everyday during Day All individuals make contacts if they are 4 contacts for each individual

individuals in the community that is
not repeated on a daily basis.

cycle.

active®, contact is random but weighted
towards pairs with nearby household
locations.

(2 if community contact
reduction is in effect)

* All individuals are active during day cycles unless: he/she is symptomatically infected and chooses to withdraw to household (50% chance for adults, 90% for
children); or if his/her school or workplace is affected by social distancing interventions; or if he/she is a parent of a child who is inactive (only one parent per

family is affected this way).

a local epidemic in every stochastic simulation. For the
transmission characteristics described above, analysis
shows that seeding at this rate for 7 days results in a
sustained epidemic in >97% of the simulation runs and
100% with two weeks of seeding, with higher percent-
ages for the higher transmissibility scenarios. Seeding at
this rate is continued throughout the simulation in order
to capture the case where an epidemic may be initially
suppressed by a rigorous intervention strategy, but may
subsequently break out if intervention measures are
relaxed.

After the beginning of a sustained local epidemic, any
subsequent variation in the amount of seeding has very
little effect on the progress of the local epidemic, as the
number of imported cases is much smaller than those
generated by the local epidemic. Preliminary analyses
using the present model have shown that even if the
seeding rate is increased to 5 infections per day, after 7
days the number of infections generated from the self-
sustained local epidemic is twice the number of
imported infections, and by 14 days local infections out-
number imported infections by a factor of 8.

The simulation period was divided into 12 hour day/
night periods and during each period a nominal location
for each individual was determined. This took into

consideration the cycle type (day/night, weekday/week-
end), infection state of each individual and whether child
supervision was needed to look after a child at home. In-
dividuals occupying the same location during the same
time period were assumed to come into potential infect-
ive contact. Details of the simulation procedure are
presented in [10].

Influenza transmisison model

In the simulation model, we assumed that infectious
transmission could occur when an infectious and sus-
ceptible individual came into contact during a simula-
tion cycle. Following each contact a new infection state
for the susceptible individual (either to remain suscep-
tible or to become infected) was randomly chosen via a
Bernoulli trail [24]. Once infected, an individual
progressed through a series of infection states according
to a fixed timeline.

The probability that a susceptible individual would be
infected by an infectious individual was calculated
according to the following transmission function, which
takes into account the disease infectivity of the infec-
tious individual /; and the susceptibility of susceptible in-
dividual I at the time of contact.
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Pyans(Ii, I) = B X Inf (I;) x Susc(Iy) x AVF (1, L)

The baseline transmission coefficient p was initially
chosen to give an epidemic with a final attack rate of
17.4%, which is consistent with seasonal influenza as es-
timated in [25] (in Table three of that paper). To achieve
simulations under a range of basic reproduction num-
bers (Ry), p was increased from this baseline value to
achieve epidemics of various R, magnitudes; details of
the procedure for estimating [ and R, are given in [10].
A reproduction number of 1.8 was used as a baseline as-
sumption, and the sensitivity of results to this assump-
tion was gauged by repeating all simulations and
analyses for alternative reproduction numbers of 1.5 and
2.5. A pandemic with a reproduction number of 1.5 cor-
responds to some estimations of the basic reproduction
number of the 2009 pandemic [26-29], while a
reproduction number of 2.5 corresponds to an upper
bound on estimates of what may have occurred in the
1918 pandemic, with most estimates being in the range
1.8-2.2 [18,19].

The disease infectivity parameter Inf(I;) was set to 1
for symptomatic individuals at the peak period of infec-
tion and then to 0.5 for the rest of the infectivity period.
The infectiousness of asymptomatic individuals was also
assumed to be 0.5 and this applies to all infected individ-
uals after the latent period but before onset of symp-
toms. The infection profile of a symptomatic individual
was assumed to last for 6 days as follows: a 0.5 day la-
tent period (with nf(l;) set to 0) was followed by 1 day
asymptomatic and infectious, where Inf(l;) is set to 0.5;
then 2 days at peak infectiousness (with Infll;) set to
1.0); followed by 2.5 days reduced infectiousness (with
Infil;)set to 0.5). For an infected but asymptomatic indi-
vidual the whole infectious period (of 5.5 days) was at
the reduced level of infectiousness with Inf(I;) set to 0.5.
This infectivity profile is a simplification of the infectiv-
ity distribution found in a study of viral shedding [30].
As reported below in the results section for the unmiti-
gated no intervention scenario, these assumptions re-
garding the duration of latent and infectious periods
lead to a mean generation time (serial interval) of 2.47
days which is consistent with that estimated for HIN1
2009 influenza [26,31,32].

Following infection an individual was assumed to be
immune to re-infection for the duration of the simula-
tion. We further assume that influenza symptoms devel-
oped one day into the infectious period [30], with 20%
of infections being asymptomatic among children and
32% being asymptomatic among adults. These percent-
ages were derived by summing the age-specific antibody
titres determined in [33]. Symptomatic individuals with-
drew into the home with the following probabilities;
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adults 50% and children 90%, which is in keeping with
the work of [23,34].

The susceptibility parameter Susc(l;) is a function dir-
ectly dependent on the age of the susceptible individual.
It captures age-varying susceptibility to transmission due
to either partial prior immunity or age-related differ-
ences in contact behaviour. To achieve a realistic age
specific infection rate, the age-specific susceptibility pa-
rameters were calibrated against the serologic infection
rates for seasonal H3N2 in 1977-1978 in Tecumseh,
Michigan [25]. The resulting age-specific attack rates are
consistent with typical seasonal influenz, with a higher
attack rate in children and young adults (details of the
calibration procedure may be found in [10]).

The antiviral efficacy factor AVF([,,[) = (1 - AVE)*(1 -
AVE;) represents the potential reduction in infectious-
ness of an infected individual (denoted by AVE;) induced
by antiviral treatment, and the reduction in susceptibility
of a susceptible individual (denoted by AVE;) induced by
antiviral prophylaxis. When no antiviral intervention
was administrated the values of both AVE; and AVE;
were assumed to be 0, indicating no reduction in infec-
tiousness or susceptibility. However, when antiviral treat-
ment was being applied to the infectious individual the
value of AVE; was set at 0.66, capturing a reduction in
infectiousness by a factor of 66% [35]. Similarly, when
the susceptible individual was undergoing antiviral
prophylaxis the value of AVE, was set to 0.85 indicating
a reduction in susceptibility by a factor of 85% [35]. This
estimate is higher than most previous modelling studies
[6,36,37], which assume an AVE, of 30%. This common
assumption appears to stem from an estimate made in
[38] based on 1998-1999 trial data. Our higher value is
based on a more comprehensive estimation process
reported in [35], which also incorporated data from an
additional study performed in 2000-2001 [39]. It is also
in line with estimates of 64%-89% reported in [40].

Intervention strategies

We examined a comprehensive range of intervention
strategies including school closure, antiviral drugs for
treatment and prophylaxis, workplace non-attendance
(workforce reduction) and community contact reduc-
tion. These interventions were considered individually
and in combination and social distancing interventions
were considered for either continuous periods (that is,
until the local epidemic effectively ceased) or periods of
fixed duration (2 weeks or 8 weeks).

Antiviral drug interventions and social distancing in-
terventions were initiated when specific threshold num-
bers of symptomatic individuals were diagnosed in the
community, and this triggered health authorities to
mandate the intervention response. This threshold was
taken to be 0.1% of the population. This threshold was
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chosen based on a previous study with this simulation
model, which found that it represents a robust com-
promise between early, effective intervention and “pre-
mature” intervention, which can result in sub-optimal
outcomes when limited duration interventions are used
[5]. It was assumed that 50% of all symptomatic individ-
uals were diagnosed, and that this diagnosis occurred at
the time symptoms appeared.

For continuous school closure, all schools were closed
simultaneously once the intervention trigger threshold
was reached. For fixed duration (e.g. 2 weeks or 8 weeks)
school closure, schools were closed individually as fol-
lows: for a primary school the whole school was closed if
1 or more cases were detected in the school; in a high
school only the class members of the affected class were
isolated (sent home and isolated at home) if no more
than 2 cases were diagnosed in a single class; however if
there were more than 2 cases diagnosed in the entire
high school the school was closed. Note that these
school closure policies were only activated after the
community-wide diagnosed case threshold was reached;
cases occurring in schools before this time did not result
in school closure. This policy of triggering school closure
based on epidemic progression avoids premature school
closure which can reduce the effectiveness of limited
duration school closure [5,36,41]; see [5] for a detailed
description of school closure initiation triggering
strategies.

Two primary antiviral drug strategies have been
examined; antiviral drugs used solely for treatment of
symptomatic cases (strategy T), and treatment plus
prophylaxis of all household members of a symptomatic
case (strategy AV). A further strategy was also examined,
in which prophylaxis was also extended to the contact
group (school or workplace contacts) of a symptomatic
case (strategy T + H + E). Due to the logistical resources
required, it is unlikely that this extended strategy could
be implemented throughout a pandemic, and we do not
report the results of this strategy in the main paper; full
results are however given in (Additional file 1). Antiviral
treatment (and prophylaxis for household or work /
school group contacts) was assumed to begin 24 hours
after the individual became symptomatic. It was as-
sumed that an individual would receive at most one
prophylactic course of antiviral drugs. Further details of
antiviral interventions are given in [4,37].

Workforce reduction (WR) was modelled by assuming
that for each day the intervention was in effect, each
worker had a 50% probability of staying at home and
thus did not make contact with co-workers. Community
contact reduction (CCR) was modelled by assuming that
on days when the intervention was in effect, all individ-
uals made 50% fewer random community contacts. The
most rigorous social distancing interventions considered
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in this study, which we denote as strict social distancing,
involve the combined activation of school closure with
workforce reduction and/or community contact reduc-
tion, and for this to occur for significant time periods;
continuous and 8 weeks duration were considered.

In the present study we simulated a total of 32 inter-
vention scenarios (for each of three reproduction num-
bers 1.5, 1.8 and 2.5). To simplify the results, we only
present those interventions that reduce the unmitigated
illness attack rate by at least 50%.

Definition of severity

We defined five severity categories based on those pro-
posed by the CDC [42]. The CDC pandemic index was
designed to better forecast the health impact of a
pandemic, based on 5 categories having CFRs ranging
from <0.1% to>= 2.0%, and allow intervention recom-
mendations to match pandemic severity. The discrete
CFRs used are listed in Table 2. We extend the CDC
categories to further include rates of hospitalisation and
ICU treatment, as described below using data collected
during the 2009 pandemic in Western Australia, by the
state Department of Health. These data permit case hos-
pitalisation (ICU and non-ICU) and case fatality ratios
(CFR) to be related, as described below.

The least severe pandemic considered (category 1) has
CFR of 0.1% which is at the upper end of estimates for
the 2009 pandemic. Initially, the 2009 pandemic CFR
was estimated to be in the range 0.007% - 0.048% [50];
however recent reanalysis of global data from 2009 sug-
gest a CFR (for the 18-64 age group) in the range
0.018% - 0.159% [51]. Cost analysis results for a pan-
demic with HIN1 2009 characteristics using a similar
simulation model to the one described here can be
found in [52].

Health outcomes

Calculation of costs arising from lost productivity due to
death and from hospitalisation of ill individuals requires
that individual health outcomes (symptomatic illness,
hospitalisation, ICU admission, and death) be estimated
for each severity level. The 2009 pandemic data from
Western Australia was used to provide this relationship
between the mortality rate and numbers requiring hospi-
talisation and ICU care. These data indicated a non-ICU
hospitalisation to fatality ratio of 32:1 and an ICU ad-
mission to fatality ratio of 3:1. These values align with
those in a previous study by Presanis et al. in [50], which
estimated the ratios in the ranges 17-37 to 1 and 3.1-
5.0 to 1, respectively.

Economic analysis
The economic analysis model translates the age-specific
infection profile of each individual in the modelled
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Parameters Values Source
Epidemiological parameters
Symptomatic infectiousness timeline 0.5 day latent (non infectious), 1 day asymptomatic; 2 days peak symptomatic; [30]
2.5 days post-peak symptomatic
Asymptomatic infectiousness timeline 0.5 day latent; 5.5 days asymptomatic [30]
Asymptomatic infectiousness 05 (30]
peak symptomatic infectiousness 1.0 -
post-peak symptomatic infectiousness 0.5 [30]
Probability of asymptomatic infection 032 [33]
Probability of adult withdrawal from work if sick 0.5 (0.25,0.75)* -
Probability of child withdrawal from school if sick 0.9 (0.5,1.0)* -
Basic Reproduction Number Ry and Attack Rate (%) Ro=1.5, AR=244% (Ry=1.8 and AR =32.4%, Ry =2.5, AR =43.8%)* -
Intervention parameters
Antiviral infectiousness reduction 66% (33%, 89%)* [35,40]
Antiviral susceptibility reduction 85% (43%, 90%)* [35,40]
Prophylaxis symptom reduction probability 50% [35]
Diagnosis delay 12h -
Diagnosis ratio 50% -
Maximum antiviral courses given for treatment 1 course per person for 5 days -
Maximum antiviral courses given for prophylaxis 1 course per person for 10 days -
School Closure Duration 2 weeks, 8 weeks and continuously -
School Closure Trigger 20 to 40 community cases [5]
School Closure withdrawal probability 1.0 (0.5, 0.75)* -
Workforce Reduction Duration 4 weeks and continuously -
Workforce Reduction Trigger 2 weeks after first case -
Workforce Reduction attendance probability 0.5 (0.25, 0.75)* -
Community Contact Reduction (CCR) Duration 4 weeks and continuously -
CCR Trigger 2 weeks after first case -
CCR withdrawal probability 0.5 (0.25, 0.75)* -
Pandemic severity parameters
Severity Category 1 (CFR < 0.1%) Case Fatality Rate =0.1% [42]
Severity Category 2 (CFR 0.1% - 0.5%) Case Fatality Rate = 0.25% [42]
Severity Category 3 (CFR 0.5% - 1.0%) Case Fatality Rate = 0.75% [42]
Severity Category 4 (CFR 1.0% - 2.0%) Case Fatality Rate = 1.5% [42]
Severity Category 5 (CFR > = 2.0%) Case Fatality Rate =2.5% [42]
Hospitalisation / fatality ratio 32:1
ICU / fatality ratio 31
Average hospital stay (days) 4 [1,43]
Average ICU stay (days) 7 [1,43]
Economic analysis parameters
Average wages (per week) $836 [44]
Average school closure cost (per student per day) $19.22 [45]
Average GP visit cost $106.97 [46]
Average hospitalization cost (per day) $1042 [46]
Average ICU cost (per day) $2084 [46/47]
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Antiviral cost per course $24.81
Antiviral dispensing cost per course $31.22
Antiviral shelf life 5 years
Mean time between pandemics 30.3 years
Discount Rate (annually) 3%

* indicates alternative values analysed in sensitivity analyses.

population, as derived by the Albany simulation model,
into the overall pandemic cost burden. Total costs in-
volve both direct healthcare costs (e.g. the cost of med-
ical attention due to a GP visit, or for hospitalisation)
and costs due to productivity loss [47,53]. Pharmaceut-
ical costs (i.e. costs related to antiviral drugs) are also es-
timated. All costs are reported in 2010 US dollars using
consumer price index adjustments [54]. 2010 US dollar
values are used to make the results readily convertible to
a wide range of countries.

Age-specific hospitalisation costs are achieved by
multiplying the average cost per day by average length of
stay for each age group [55,56]. Hospitalisation costs, in-
cluding ICU costs, those involving medical practitioner
visits, and antiviral drug (and their administration) costs
are taken from the literature and are presented in Table 2
[46,47,53]. The antiviral costs include the costs of
maintaining an antiviral stockpile. This was calculated
by multiplying the antiviral cost per course (but not the
dispensing cost per course, which was included separ-
ately) by the expected number of times each antiviral
course would expire and be replaced between pan-
demics, assuming a mean inter-pandemic period of 30.3 -
years (based on the occurrence of pandemics in 1918,
1957, 1968 and 2009) and an antiviral shelf life of 5 years
[48]. Treatment costs, lengths of stay in hospital (both
ICU and non-ICU), and other cost data used in
establishing the overall cost of mitigated and unmiti-
gated epidemics in the modelled community are given in
Table 2.

Productivity losses due to illness and interventions
(e.g. necessary child-care due to school closure and
workforce reduction) were calculated according to the
human capital approach, using average wages and aver-
age work-days lost; the latter being determined from
day-to-day outbreak data generated by the simulation
model. Assumed average wages are given in Table 2.

School closure is assumed to give rise to two costs.
The first, following the work of Perlroth et al. [45], is a
$19 per student school day lost. This is intended to ap-
proximate the cost of additional education expense in-
curred in the future — which might occur for example in
the form of additional holiday classes. The second com-
ponent is lost productivity of parents staying at home to
supervise children. The simulation model calculates

whether this occurs for every day for every household,
based on what interventions are in force (school closure
and/or workforce reductions), whether children or adults
are ill, the number of adults in the household, whether it
is a school day, etc, and accumulates the cost
accordingly.

Indirect production losses due to death were also de-
rived using a human capital approach, based on the net
present value of future earnings for an average age per-
son in each age group. This was calculated by multiply-
ing the age-specific number of deaths due to illness by
the average expectancy in years of future earnings of an
individual by an average annual income [44]. We as-
sumed a maximum earning period up to age 65. Prod-
uctivity losses due to death were discounted at 3%
annually, which is a standard discounting rate used to
express future income in present value [49]. To provide
an alternative analysis, total costs were also calculated
without this long-term productivity loss due to death
component.

Results

Overview

Figure 3 presents the final attack rate (AR) and the total
cost of the epidemic for each intervention strategy ap-
plied, for a pandemic with a basic reproduction number
of Ryp=1.8. Although costs are calculated from the
whole-of-society perspective, total costs are presented as
a cost per person in the community, calculated by divid-
ing the simulated cost of the pandemic by the popula-
tion of ~30,000, in order to make the results more easily
transferable to communities of various sizes. Strategies
are ordered from left to right by increasing effectiveness
(i.e. their ability to decrease the attack rate), and only
intervention strategies that reduce the attack rate by at
least 50% are included.

Figure 3 shows three distinctive features. Firstly, for an
epidemic with basic reproduction number Ry =1.8, no
single intervention is effective in reducing the attack rate
by more than 50%, and thus do not appear in Figure 3.
This finding is consistent with previous modelling stud-
ies which found that layering of multiple interventions is
necessary to achieve substantial attack rate reductions
[5-10,12,57,58]. Secondly, higher severity pandemics
have higher total costs. Total costs of unmitigated
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Total cost ($) per person

mCat 1, CFR=0.1%
mCat 3, CFR=0.75% mCat 2, CFR=0.25%

mCat 5, CFR=2.5% ®mCat 4, CFR=1.5%

Figure 3 Total cost of intervention strategies for 5 pandemic
severity categories. Total pandemic cost for each severity category.
Costs shown by colour coded columns according to pandemic
severity, with cost per person in community shown on left axis.
Intervention strategies are listed on horizontal axis. Attack rates (AR)
for each strategy appear with each strategy label. Values are for a
pandemic with unmitigated transmissibility of Ry = 1.8. Interventions
abbreviated as: SC - school closure; CCR - 50% community contact
reduction; WR — 50% workforce reduction; 4, 8 — intervention
duration in weeks; cont — continuous duration; AV — antiviral
treatment of diagnosed symptomatic cases and antiviral prophylaxis
of household members of diagnosed symptomatic cases.

pandemics range from $441 to $8550 per person for
pandemics from category 1 to category 5 (see Table 3).
Thirdly, for high severity pandemics total costs are lower
for the more effective intervention strategies.

Figure 4 presents the constituent components that
make up the total cost of each intervention and severity
category, measured in terms of cost per person in the
modelled community. Three distinctive features can be
seen in Figure 4. Firstly, for high severity pandemics
costs are dominated by productivity losses due to death
and health care costs. Secondly, for low severity pan-
demics costs are dominated by social distancing and ill-
ness costs. Thirdly, for all severity categories antiviral
costs are comparatively low when compared with all
other cost components of antiviral based intervention
strategies. Antiviral costs never constitute more than
20% of the total cost, and for all severity categories
greater than 1 (CFR >0.1%) antiviral costs are always the
smallest cost component.
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Below we report on effectiveness, total costs and cost
components of interventions for pandemics with high
and low severity. These cost data are presented in
Table 3.

High severity pandemics

Figure 5 summarises the characteristics of key interven-
tion strategies. For high severity pandemics (categories 4
and 5, with case fatality rates above 1.5%) the least costly
strategy combines continuous school closure, commu-
nity contact reduction, antiviral treatment and antiviral
prophylaxis. At category 5 this strategy has a total cost
of $1,584 per person, a net benefit of $6996 per person
compared to no intervention. This strategy is also the
most effective intervention strategy, reducing the attack
rate from 32% to 4.6%. The results indicate that strat-
egies with the lowest total costs are also the most effect-
ive. For a category 5 pandemic the 6 most effective
strategies, all of which reduce the attack rate to less than
10%, have total costs ranging from $1,584 to $2,748 per
person, which is less than one-third the cost of the un-
mitigated pandemic ($8,550), showing the substantial
net benefit of effective interventions for high severity
pandemics. These strategies all feature continuous
school closure, with either continuous community con-
tact reduction or antiviral treatment and prophylaxis.

The ability of highly effective interventions to reduce
the total cost of a high severity pandemic is due to the
largest component of the overall cost being productivity
losses arising from deaths. This is illustrated in Figure 4
which shows the cost components for each intervention.
It can be seen that the majority of the cost for an un-
mitigated pandemic of severity category 4 and 5 is due
to death-related productivity losses (shown in purple).
Although highly effective interventions incur large
intervention-related productivity losses (shown in
green), for high severity pandemics these intervention
costs are more than outweighed by the reduction in
medical costs and death-related productivity losses.

The most costly intervention considered (i.e. which
still reduced the attack rate by at least 50%) is continu-
ous school closure combined with continuous workforce
reduction, which costs $4,804 per person.

Low severity pandemics

For low severity pandemics (in category 1, having CFR < =
0.1%) the intervention strategy with the lowest total cost
considered is 8 weeks school closure combined with anti-
viral treatment and prophylaxis, costing $374 per person
which represents a net saving of $67 per person compared
to no intervention. However, this strategy is not as effect-
ive as other intervention strategies, reducing the attack
rate to only 15%.
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Table 3 Intervention total costs
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Intervention strategy AR (%) Cat 1 Cat 2 Cat 3 Cat 4 Cat 5
Case Fatality Ratio (CFR)

0.1% 0.25% 0.75% 1.5% 2.5%
no intervention 324 $441 $943 $2649 $5175 $8550
*SC cont + WR cont 15.7 $1217 $1439 $2194 $3311 $4804
SC8+WR4+CCR 4+ AV 149 $539 §757 $1499 $2596 $4062
SC 8 wks + AV 14.5 $374 $582 $1288 $2334 $3732
*SC cont+CCR 4 14.5 $518 §722 $1419 $2449 $3826
*SC cont+WR 4 +CCR 4 132 $654 $854 $1533 $2539 $3882
SC cont + AV 9.2 $489 $629 $1104 $1808 $2748
*SC cont + CCR cont 74 $447 $560 $945 $1514 $2275
SC cont+WR 4+ CCR 4+ AV 79 $585 $691 $1052 $1585 $2298
*SC cont +WR cont + CCR cont 6.0 $1116 $1208 $1521 $1984 $2603
SC cont + CCR cont + AV 57 $416 $488 $734 $1098 $1584
SC cont + WR cont + CCR cont + AV 56 $1083 $1155 $1401 $1764 $2249

Cost of pandemic shown as total cost for each intervention strategy and each severity category. Costs expressed as dollars (US) per member of population. Values
are for pandemic with unmitigated transmissibility of Ry = 1.8. Interventions abbreviated as: SC - school closure; CCR - 50% community contact reduction; WR -
50% workforce reduction; 4, 8 - intervention duration in weeks; cont — continuous duration; AV - antiviral treatment of diagnosed symptomatic cases and
antiviral prophylaxis of household members of diagnosed symptomatic cases. Purely social distancing interventions marked by *.

The most effective intervention (combined continuous
school closure, community contact reduction, and anti-
viral treatment and household prophylaxis), which re-
duces the attack rate to 4.6%, costs $416 per person, a
net benefit of $25 per person compared to no interven-
tion. Figure 4 shows that for category 1 and 2 pan-
demics, although highly effective intervention measures
reduce medical costs and death-related productivity
losses, they incur larger costs due to intervention-related
lost productivity.

The most costly intervention considered is continuous
school closure combined with continuous workforce re-
duction, which costs $1,217 per person, a net cost of
$776 per person compared to no intervention. This is
due to the large cost associated with 50% workforce
absenteeism.

Non-pharmaceutical interventions
An important subset of intervention strategies are those
consisting of purely social distancing interventions. In
the case that antiviral drugs are unavailable or ineffective,
only these non-pharmaceutical interventions strategies
will be available. The most effective non-pharmaceutical
strategy is the continuous application of the three social
distancing interventions, school closure, workforce reduc-
tions, and community contact reduction, which reduces
the attack rate to 6%. This intervention has a total cost
ranging from $1,116 to $2,603 per person for severity cat-
egories ranging from 1 to 5 respectively.

The least costly non-pharmaceutical strategy omits
workforce reduction, resulting in a slightly higher attack

rate of 7%. This intervention has a total cost ranging
from $447 to $2,275 per person for severity categories
ranging from 1 to 5 respectively.

Results without death-related productivity losses

The costing model used for this analysis includes future
productivity losses from deaths caused by the pandemic.
This long-term cost is often not included in cost-utility
analyses. The inclusion of death-related productivity
losses greatly increases the total costs of severe pan-
demics. However, even if these costs are not included,
medical costs (due to hospitalisation and ICU usage)
play a similar, although less extreme, role. If long-term
productivity losses due to death are not included in the
costing model, the total cost of the pandemic is not sur-
prisingly lower. However the effectiveness and relative
total costs of intervention strategies — that is, the rank-
ing of intervention strategies by total cost - remains the
same whether or not death-related productivity losses
are included (Spearman’s rank correlation coefficient
r=0.95, p=0.006 for a null hypothesis that rankings are
uncorrelated). Full cost results of an alternate analysis that
omits death-related productivity losses is contained in an
additional file accompanying this paper (Additional file 1),
and is summarised below.

For category 5, when death-related productivity losses
are not included the total cost of intervention strategies
ranges from $559 to $1,711. This range is much smaller
than if death-related productivity losses are included, in
which case total cost ranges from $1,799 to $4,804. For
lower severity pandemics with lower case fatality ratios,
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Cat 1, CFR = 0.1%
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Figure 4 (See legend on next page)

.

Cat 2, CFR = 0.25%

$800 $1,600

Cat 4, CFR = 1.5%

$3,000 $6,000

B Health care cost
B Antiviral cost
" Social distancing and illness cost

B Productivity loss due to death




Kelso et al. BMIC Public Health 2013, 13:211
http://www.biomedcentral.com/1471-2458/13/211

Page 12 of 17

(See figure on previous page.)

Figure 4 Breakdown of pandemic cost components. Breakdown of pandemic costs shown as horizontal bar, for each intervention strategy
and each severity category. Coloured segments of each bar represent cost components as follows: (blue) health care; (red) antiviral drugs,
including dispensing costs; (green) productivity losses due to illness and social distancing interventions; (purple) productivity losses due to deaths.
Note that horizontal scale is different for each severity category. Values are for a pandemic with unmitigated transmissibility of Ry=1.8.
Interventions abbreviated as: SC — school closure; CCR - 50% community contact reduction; WR — 50% workforce reduction; 4, 8 — intervention
duration in weeks; cont — continuous duration; AV — antiviral treatment of diagnosed symptomatic cases and antiviral prophylaxis of household

members of diagnosed symptomatic cases.

the contribution of death-related productivity losses is
naturally smaller. For category 1, when death-related
productivity losses are not included total cost ranges
from $314 to $1,089; with death-related productivity
losses the range is $365 to $1,217.

If death-related productivity losses are not included,
social distancing and illness costs dominate the total cost
of each intervention strategy for low severity pandemics,
while health care costs dominate the cost profile for high
severity pandemics.

Sensitivity analyses

Sensitivity analyses were conducted to examine the
extent to which these results depend upon uncertain
model parameters that may impact on the cost or effect-
iveness of interventions. The methodology adopted was
to identify assumptions and model parameters known to
have an effect on intervention outcomes, taken from pre-
vious studies with this simulation model [4,5,10,11,37,52],
and to perform univariate analyses on each, examining
parameter values both significantly higher and lower than

Low severity pandemics (CFR = 0.1%) High severity pandemics (CFR = 1.5%)
Total Cost Total Cost
Attack 1 Attack -
cost relative to cost relative to
Strategy Rate per unmitigated Cost breakdown Strategy R:/.te per unmitigated Cost breakdown
%) person pandemic } person pandemic
1%
Unmitigated no no
ternic int tion 32% $441 - 15% int tion 32% $8550 -
11% 3%
SCcont + ' SCoont + -$3746
Most costly WR cont 15% $1,217 $776 - WR cont 15% $4,804 (cost saving) 2%
9%
Leastcostly | SCBWESKS+ 100, 4374 ( mﬁ':ﬂng)
5% 1%
SCeont +
QCR cont + -$6966
o AV 5%  $1584 (et saving) 2%
SCeont + '
Most QOCR cont + -$25
effective AV 5% %416 (cost saving)
84%
B Antiviral cost Social distancing and illness cost
B Health care cost B Productivity loss due to death

Figure 5 Summary of key intervention strategies. Characteristics of key intervention strategies is given for pandemics of low severity

(category 1, CFR <= 0.1%) and high severity (category 5, CFR > = 2.5%). Values are for a pandemic with unmitigated transmissibility of Ry =1.8.

Interventions abbreviated as: SC — school closure; CCR - 50% community contact reduction; WR - 50% workforce reduction; 4, 8 — intervention
duration in weeks; cont — continuous duration; AV — antiviral treatment of diagnosed symptomatic cases and antiviral prophylaxis of household
members of diagnosed symptomatic cases.
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the baseline values. Alternative parameter settings were
analysed for transmissibility (as characterised by the basic
reproduction number Ry), voluntary household isolation
of symptomatic individuals, antiviral efficacy, compliance
to home isolation during school closure, degree of
workforce reduction, and degree of community contact
reduction.

A common finding across all sensitivity analyses was
that alternative parameter settings that rendered inter-
ventions less effective resulted in strategies that not only
had higher attack rates, but also had higher total pan-
demic costs, with this effect being most pronounced for
pandemics of high severity.

Further details and results of the sensitivity analysis
can be found in an additional file accompanying this
paper (Additional file 1).

Discussion

The need for an unambiguous, extended definition of se-
verity has been noted in the World Health Organization
report on the handling of the 2009 pandemic [59], which
highlights the impact pandemic severity has on health
care provision and associated costs. In the absence of
such definitions, an extended severity metric is
presented. This extends the case fatality ratio (CFR) se-
verity scale devised by the CDC [42], with hospitalisation
and intensive care unit (ICU) data collected in Australia
during the 2009 pandemic. These data have been used
to generate a more extensive notion of pandemic sever-
ity, relating actual age-specific attack rates with age-
specific hospitalisation and mortality rates, thereby con-
tributing to the realism of both the simulation model
and the economic analysis. This pandemic severity scale
together with a pandemic spread simulation model al-
lows the calculation of the total cost of a pandemic, and
to estimate the relative magnitude of all the factors that
contribute to the pandemic cost, including not only
pharmaceutical and medical costs, but also productivity
losses due to absenteeism and death.

The severity of a future pandemic is shown to have a
major impact on the overall cost to a nation. Unsurpris-
ingly, high severity pandemics are shown to be signifi-
cantly more costly than those of low severity, using a
costing methodology which includes costs arising from
losses to the economy due to death, in addition to inter-
vention and healthcare costs. A key finding of this study
is that at high severity categories, total pandemic costs
are dominated by hospitalization costs and productivity
losses due to death, while at low severities costs are
dominated by productivity losses due to social distancing
interventions resulting from closed schools and
workplaces.

Consequently, findings indicate that at high severity,
the interventions that are the most effective also have
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the lowest total cost. Highly effective interventions
greatly reduce the attack rate and consequently the
number of deaths, which in turn reduces productivity
losses due to death. Although highly effective interven-
tions incur significant intervention-related productivity
losses, for severe pandemics having high CFR, these
intervention costs are more than compensated for by
the reduction in death-related productivity losses,
resulting in lower overall costs. Conversely, for low se-
verity pandemics, although highly effective intervention
measures do reduce medical costs and death-related
productivity losses, these savings can be smaller than
costs incurred due to intervention-related lost product-
ivity, resulting in total costs that are higher than the un-
mitigated baseline.

Antiviral strategies alone are shown to be ineffective in
reducing the attack rate by at least 50%. However, the
addition of antiviral case treatment and household
prophylaxis to any social distancing strategy always
resulted in lower attack rates and lower total costs when
compared to purely social distancing interventions. The
cost of all antiviral interventions constitutes a small frac-
tion of total pandemic costs, and these costs are
outweighed by both the healthcare costs prevented, and
productivity gained, by their use in preventing illness
and death.

Study limitations

It should be noted that the lowest severity category con-
sidered, pandemic category 1, has a CFR of 0.1% which
is at the upper end of CFR estimates for the 2009 pan-
demic, which has been estimated to have a CER of be-
tween 0.018% and 0.159% [51]. Thus, the cost results are
not directly applicable to the 2009 pandemic.

Vaccination has been deliberately omitted from this
study. The effectiveness and cost effectiveness of vaccin-
ation will depend crucially on the timing of the availabil-
ity of the vaccine relative to the arrival of the pandemic
in the community — vaccination cannot be plausibly
modelled without considering this delay, and how it in-
teracts with the timing of introduction and relaxation of
other, rapidly activated interventions. The examination
these timing issues for realistic pandemic scenarios that
include both vaccination and social distancing / antiviral
interventions is an important avenue for future work. As
they stand, the results of this study, specifically the “con-
tinuous” duration social distancing strategies, can be
considered to be models of interim interventions to be
used prior to a vaccination campaign.

The results are based on the community structure,
demographics and healthcare system of a combined
rural and urban Australian community, and as such may
not be applicable to developing world communities
with different population or healthcare characteristics.



Kelso et al. BMIC Public Health 2013, 13:211
http://www.biomedcentral.com/1471-2458/13/211

Although the cost and effectiveness results are directly
applicable to pandemic interventions in a small commu-
nity of 30,000 individuals, we expect that the per-capita
costs and final attack rate percentages derived in this
study can be extended to larger populations with similar
demographics, provided a number of conditions are met.
For the results to be generalisable, it needs to be as-
sumed that communities making up the larger popula-
tion implement the same intervention strategies, and
instigate interventions upon the arrival of the pandemic
in the local community (according to the criteria de-
scribed in the Methods section). The assumption is also
made that there are no travel restrictions between com-
munities. It should be noted that the single-community
epidemic results do not predict the overall timing of the
pandemic in the larger population.

Related research

The simulation model used in this study has been used
in previous studies to examine various aspects of social
distancing and pharmaceutical (antiviral and vaccine)
pandemic influenza interventions [4,5,10,11,37,52]. This
simulation model shares characteristics with other
individual-based pandemic influenza simulation models
that have been employed at a variety of scales, including
small communities [7,10,13,38,60,61], cities [8,62], coun-
tries [6,23,34,63] and whole continents [64].

Several related studies which also used individual-
based simulation models of influenza spread coupled
with costing models are those of those of Sander
et al, Perlroth et al, Brown et al, and Andradottir
et al. [45,46,57,65]. The current study extends upon
the scope of these studies in several ways: five grada-
tions of pandemic severity are considered, more com-
binations of interventions are considered, social
distancing interventions of varying durations are con-
sidered, and probabilities of severe health outcomes
for each severity category are based on fatality,
hospitalization and ICU usage data as observed from
the 2009 pandemic. Also in contrast with those
models, we have chosen to include a cost component
arising from productivity loss due to death, though a
similar costing without death-related productivity
losses has been included in (Additional file 1).

For a pandemic with very low severity, with a CFR
consistent with mild seasonal influenza, and that of the
2009 pandemic, previous results with the simulation and
costing model used for this paper coincide with the
studies mentioned above [52]. Specifically, they showed
that antiviral treatment and prophylaxis were effective in
reducing the attack rate and had a low or negative incre-
mental cost, and that adding continual school closure
further decreased attack rates, but significantly increased
total cost.
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For high severity pandemics the inclusion of product-
ivity loss following death, as presented in this study,
leads to a markedly different assessment of total costs
when compared to the two studies quoted above that
considered severe pandemics [45,46]. For example,
Perlroth et al. found that the incremental cost of adding
continuous school closure to an antiviral strategy was al-
ways positive, even for pandemics with high transmissi-
bility (Ry=2.1) and a CFR of up to 2%, meaning that
adding school closure always increased total costs. Simi-
larly Sander et al. found that the addition of continuous
school closure to an extended antiviral strategy also in-
creased total costs, including pandemics with a 5% CFR.
In contrast, we found that adding continuous school
closure to an extended prophylaxis strategy reduced
total costs where the CFR was 0.25% or greater (i.e. cat-
egory 2 and above), for a pandemic with Ry = 1.8.

The study of Smith et al. estimated the economic im-
pact of pandemic influenza on gross domestic product
for a range of transmissibility and severity values [66].
Consistent with our study was the finding that at low se-
verity the largest economic impacts of a pandemic would
be due to school closure (effective but costly) and work-
place absenteeism (largely ineffective and costly). Like
the other two studies mentioned above, the study of
Smith et al. did not include future productivity losses
due to death. As a result, in contrast to our findings,
they did not find that, for severe pandemics, the high
short-term costs of rigorous social distancing interven-
tions were outweighed by future productivity of people
whose lives were saved by the intervention.

In this study we considered the case of a pandemic
that infects a significant proportion of the population,
and thus incurs significant direct costs stemming from
medical costs and productivity losses. However, in the
case of a pandemic perceived by the public to be severe,
there are likely to be additional indirect macroeconomic
impacts caused by disruption of trade and tourism, con-
sumer demand and supply, and investor confidence
[67,68]. In the case of a pandemic of high severity (i.e.
high case fatality ratio) but low transmissibility, these in-
direct effects and their resulting societal costs may con-
stitute the main economic impact of the pandemic, an
effect seen with the SARS outbreak in 2003 [67].

Conclusions

The results of this study are relevant to public health au-
thorities, both in the revision of pandemic preparedness
plans, and for decision-making during an emerging in-
fluenza pandemic. Recent modelling research has shown
that combinations of social distancing and pharmaceut-
ical interventions may be highly effective in reducing the
attack rate of a future pandemic [5,6,8,9,12,13,23,34,62].
Public health authorities are aware that rigorous social
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distancing measures, which were used successfully in
some cities during the 1918 pandemic [69,70], when
pharmaceutical measures were unavailable, would be
highly unpopular due to resulting societal disruption,
and costly due to associated productivity losses [66]. The
results of this study give guidance as to the pandemic
characteristics which warrant the wuse of such
interventions.

The results highlight the importance of understanding
the severity of an emergent pandemic as soon as pos-
sible, as this gives guidance as to which intervention
strategy to adopt. In the likely situation where the sever-
ity of an emerging pandemic is initially unknown (but is
suspected to be greater than that of seasonal influenza),
the results indicate that the most appropriate interven-
tion strategy is to instigate school closure and commu-
nity contact reduction, combined with antiviral drug
treatment and household prophylaxis, as soon as trans-
mission has been confirmed in the community. If sever-
ity is determined to be low, public health authorities
may consider relaxing social distancing measures. In the
case of a category 1 pandemic (CFR approximately
0.1%), little is lost by the early imposition and subse-
quent relaxation of social distancing interventions:
results indicate that even if schools are closed for 8 -
weeks while severity is being determined, the total cost
of the pandemic is lower than if no interventions had
been enacted. If severity is determined to be high,
extending the duration of social distancing interventions
results in both net savings to society and reduction in
mortality.

Additional file

Additional file 1: Additional Results and Sensitivity Analyses.
"Milne2013PandemicCostAdditionalFile1.doc”.
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