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A continuum framework for grain boundary diffusion in thin film/substrate
systems

Can Ayas and Erik van der Giessena�
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The Netherlands

�Received 24 February 2010; accepted 12 August 2010; published online 6 October 2010�

A two-dimensional continuum model is developed for stress relaxation in thin films through grain
boundary �GB� diffusion. When a thin film with columnar grains is subjected to thermal stress,
stress gradients along the GBs are relaxed by diffusion of material from the film surface into the
GBs. The transported material constitutes a wedge and becomes the source of stress inside the
adjacent elastic grains that are perfectly bonded to the substrate. In the model, the coupling between
diffusion and elasticity is obtained by numerically solving the governing equations in a staggered
manner. A finite difference scheme is used to solve the diffusion equations, modified in order to
implement realistic boundary conditions, while the elasticity problem is solved with the finite
element method. The solutions reveal the existence of a universal power law scaling between the
unrelaxed fraction of stress and the grain aspect ratio. For slender grains, the GB wedge attains a
more uniform shape and relaxation is more effective. The kinetics of the process depends not only
on the grain aspect ratio but also strongly on the thickness of the film. In case there is no adhesion
between film and substrate, complete stress relaxation is attained albeit at a slightly slower rate.
© 2010 American Institute of Physics. �doi:10.1063/1.3488897�

I. INTRODUCTION

Metallic thin films with thickness on the order of mi-
crometers or smaller are routinely used in microelectronic
device technology. While their main role is electric transport,
mechanical properties are important for the reliability of the
device.

One of the most common types of loads in thin films is
due to the thermal expansion mismatch between film and
substrate upon temperature change. When the thermal stress
exceeds a certain threshold level, it is relaxed by inelastic
processes. In thin films with columnar grains, besides
dislocation-mediated slip, diffusion along the GBs is a
known relaxation mechanism. The scope of this study is the
relaxation of thermal stresses in a film/substrate system by
GB diffusion only.

Several modeling efforts have been instrumental in un-
derstanding stress relaxation of this kind. Gao et al.1 pre-
sented an essentially one-dimensional continuum framework
for GB diffusion. Subsequently, Guduru et al.2 developed an
even simpler model in which grains are regarded as parallel
linear springs normal to the GBs. These models are able to
capture the basics of the phenomena, but do not �or, at least,
not properly� account for the microstructure of the films, i.e.,
the grain size and film thickness. In the present paper, a
full-field two-dimensional modeling approach is proposed
for nongrowing films, which we subsequently use to gain
insight in the microstructural parameters that govern the de-
gree and the kinetics of relaxation. The method involves a
combination of two numerical techniques in order to effi-
ciently deal with the peculiar boundary conditions involved.
Specifically, we will show that a careful consideration of the

boundary conditions becomes essential for a two-
dimensional model. The boundary conditions given in Gu-
duru et al.2 are inadequate for a two-dimensional analysis
and therefore cannot describe the distribution of stress across
the film width.

The stress gradient between the film surface and the up-
permost part of the GB produces a chemical potential gradi-
ent which is the driving force for diffusion. As diffusion
progresses, the originally neighboring faces of the GB are
pushed apart by the material transported from the free sur-
face into the GB. The GB thus becomes a source of stress
and strain in the system which in turn relaxes the thermal
stress in the film. These elastic fields are found by solving a
mechanical �linear elastic� boundary value problem �BVP�.
As the kinetics of the diffusion process is determined by the
well-known diffusion equation together with continuity, the
development of the GB displacement profile with time is a
diffusional BVP. Eventually, stress gradients along the GBs
vanish and diffusion halts, even though this steady state is
not necessarily stress free.

In a previous article, we have presented a model for
stress relaxation where GB diffusion is represented by the
motion of discrete dislocations.3 By construction, that model
contains an intrinsic length scale. We will confront the find-
ings of the two models and will demonstrate the limitations
of the continuum theory due to the absence of an intrinsic
length scale.

II. GOVERNING EQUATIONS

Diffusion in general is the transport of a quantity down
the chemical potential gradient. For a GB with a unit normal
vector n, the chemical potential of an atom is given bya�Electronic mail: e.van.der.giessen@rug.nl.
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� = − ��n, �1�

where � is the volume of an atom and �n is the stress normal
to the GB, i.e., �n=n ·� ·n. Diffusion takes place along the
GB plane in accordance with Fick’s law, which relates the
volumetric flux denoted by j to the gradient of the chemical
potential through

j = D grad �n, D =
D��

kT
. �2�

D is the GB diffusion coefficient, � is the thickness of the
diffusion layer, k is Boltzmann’s constant, and T is tempera-
ture. The effective diffusion coefficient is denoted by D.

Continuity along the GB requires

div j = − �̇ , �3�

in which � is the local width of the GB wedge in the direc-
tion n and represents the material migrated from the surface
�the superimposed dot denotes the time derivative�. � also
represents the displacement jump between the two originally
neighboring faces of the GB. Combination of Eqs. �2� and
�3� yields the governing differential equation for diffusion,

�̇ = − D div�grad �n� . �4�

In the class of problems under consideration here, GB diffu-
sion takes place concurrently with deformation of the grains.
When this deformation process remains linear elastic, the
governing equations consist of, respectively, the equilibrium
condition, compatibility between strain � and displacement
u, and the linear thermoelastic constitutive relation:

div � = 0,

� =
1

2
�grad u + �grad u�T� ,

� = M:� + ��TI . �5�

Here, M is the fourth-order elastic compliance tensor, � the
thermal expansion coefficient, �T the temperature change,
while I is the second order unit tensor.

III. PROBLEM DESCRIPTION

We consider a thin film consisting of columnar grains
that is perfectly bonded to an infinitely thick substrate, as
illustrated in Fig. 1. The system is in a state of plane strain
perpendicular to the x1−x2 plane. The film has a thickness h
and all grains have the same width d. An infinitely wide film
is modeled by introducing a periodic computational cell in
the x1 direction which has width w; as the grains are modeled
as being isotropic and the initial conditions are uniform, it
suffices to consider only a single grain in the cell, i.e., w
=d.

The system is cooled down from an initially stress-free
state and, therefore, subjected to a thermal stress, which is
denoted with �0. In practice, the thermal expansion coeffi-
cient � f of the �metallic� film material is higher than that of
the substrate material, �s, so that the film cannot freely con-

tract in the x1 direction upon cooling. In the absence of any
inelastic processes, this thermal stress state is uniform inside
the film and is given by

�11 =
��s − � f�E�T

�1 − 	�
¬ �0, �6�

while low compressive stresses are induced in the substrate.
We will investigate how this initial thermal stress relaxes by
way of GB diffusion.

For this purpose we will apply the equations given in
Sec. II, leading to coupled BVPs for diffusion and for elastic
deformation. For their solution, numerical methods will be
employed that are dedicated to the peculiar boundary condi-
tions of the present problem. The coupling between the two
BVPs is achieved by linking the numerical solution methods
through the boundary conditions in a staggered manner.

A. Diffusional BVP

For the film in Fig. 1, the GB is normal to the x1-axis, so
that �n�x2�=�11�0,x2� and Eq. �4� simplifies to

�̇�x2,t� = − D
�2�n�x2,t�

�x2
2 . �7�

The boundary condition at the free surface is governed by
continuity with the flux of atoms js/gb migrating from the free
surface into the GB,

j2�h,t� = js/gb. �8�

According to Guduru et al.2 the surface flux is given by

js/gb =
2Cs
�5/3

kT
�n�h,t� , �9�

where Cs is the surface concentration of adatoms on the free
surface and 
 is the jump rate of adatoms into the GB.

At the other end of the GB, material transport has to stop
at the interface with the substrate, leading to the boundary
condition

j2�0,t� = 0, �10�

which is equivalent to ��n /�x2�0, t�=0. At the same time,
however, the GB cannot open-up there since the grains are
assumed to be perfectly bonded to the substrate. This gives

x1

ti=0

f

s

x2

wedge
GB

w=d

n

α

α

h

Δ

∞ ∞

FIG. 1. Schematic illustration of the problem.
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rise to a second boundary condition at the same point

�̇�0,t� = 0. �11�

The conditions at the root of the GB are unusual, and there-
fore render this a nonstandard diffusion problem.

The diffusion Eq. �7� being constructed on the domain
�0,h� allows for only two spatial boundary conditions: one at
the interface and one on the free surface. Having two bound-
ary conditions at x2=0, Eqs. �10� and �11�, makes the BVP
ill-defined from a mathematical point of view, even though
they do exist physically. This difficulty was circumvented by
Guduru et al.2 in their one-dimensional model by prescribing
only a zero stress gradient at the interface, consistent with
Eq. �10�. However, in a two-dimensional model, the condi-
tion ��0, t�=0 should also be imposed to ensure compatibil-
ity in the elasticity part of the problem.

We here propose a dedicated numerical scheme to incor-
porate both boundary conditions Eqs. �10� and �11�, which is
illustrated in Fig. 2. The diffusion Eq. �7� is solved with an
explicit finite difference �FD� scheme, where the GB is
meshed in the thickness direction with equidistant points
spaced by �x2. The evolution of the GB wedge width � as a
function of time in an FD scheme centered in space and
forward in time is given by the following discretization:

��I��t + �t� − ��I��t�
�t

= − D
�n

�I+1��t� − 2�n
�I��t� + �n

�I−1��t�
�x2

2 ,

�12�

where �t is the time step and superscript �I� refers to grid
point I. The boundary condition �11� is implemented simply
by prescribing ��0, t� to be zero at all times in Eq. �12�, see
Fig. 2�a�. The simultaneous implementation of the second
boundary condition is achieved by modifying the FD scheme
Eq. �12� at the interface. For the element at the interface a
zero stress gradient is enforced by prescribing the normal
stress for the second node to be equal to the normal stress for
the first node at all times, i.e., �n

�2��t�=�n
�1��t�. This is illus-

trated in Fig. 2�b�. Thus, the FD formula for the second node
specializes to

��2��t + �t� − ��2��t�
�t

= − D
�n

�3��t� − �n
�2��t�

�x2
2 . �13�

To implement the flux condition �8� at the top of the GB
we note that in a first-order forward difference scheme, the
flux can be approximated as

j2�h,t� � − D
�n

�N+1��t� − �n
�N��t�

�x2
, �14�

where N is the last grid point inside the film, i.e., x2
�N�=h, and

N+1 is an extra point at x2
�N+1�=h+�x2. This extra point is

introduced solely to prescribe j2�h , t�. Combining Eqs. �8�,
�9�, and �14�, together with identifying �n�h , t�=�n

�N��t�, we
find that the normal stress at the extra node for that time
instant can be written as

�n
�N+1��t� = �n

�N��t��1 − �x2/l�, l ª
DkT

2Cs
�5/3 . �15�

Here, l is a length scale that follows naturally from the analy-
sis and which controls the surface kinetics relative to that of
GB diffusion. Its value is determined by material parameters
and processing conditions. The results presented subse-
quently are for l=6 nm so that js/gb has the same value as
considered in our previous discrete dislocation �DD� study.3

When the diffusion coefficient is adapted from2 as �D=15
�102 exp�−10 013 /T� �m3 s−1 and the temperature is cho-
sen to be 400 K, the value l=6 nm corresponds to Cs

�3.31�105 s−1. For these values, surface diffusion pro-
ceeds much faster than its GB counterpart and therefore the
normal stress at the uppermost part of the GB decays rapidly
from �0 toward 0. Hence it is this boundary condition that
induces the initial stress gradient between the top most part
and the rest of the GB and thus initiates the diffusion pro-
cess.

B. Linear elastic BVP

For plane strain conditions as considered here, the ther-
moelastic constitutive relation Eq. �5� becomes

�ij =
1 + 	

E
��ij − 	�ij�kk� + �1 + 	���T�ij,

i, j,k � �1,2� , �16�

where E is Young’s modulus, 	 is Poisson’s ratio, and �ij is
the Kronecker delta. Periodic boundary conditions �denoted
by � in Fig. 1� at the sides of the cell ensure displacement
and traction continuity as follows:

ui�0,x2� = ui�w,x2� ,

�i1�0,x2� = �i1�w,x2� . �17�

The bottom surface of the substrate is fully clamped while
the film surface is traction free, i.e.,

ui�x1,0� = 0,

�i2�x1,h� = 0. �18�

The boundary conditions along the two surfaces of GB is
the key to the coupling between diffusion and elasticity, as
illustrated in Fig. 3�a�. Due to GB diffusion, originally neigh-
boring grain faces move apart from each other, while the gap

(1)� (t)=0

I=4

I=1

x

���

2

I=2

I=3

n�j2 (t)=0(1)

I=3

I=4

I=1

I=2

(a) (b)

FIG. 2. Numerical implementation of �a� the perfect bonding condition Eq.
�11� and �b� the zero-flux boundary condition Eq. �10� at the film/substrate
interface x2=0.
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between them is filled by the GB wedge with width ��x2�. In
our model, the GB is situated right in the center of the com-
putational cell, hence also on the axis of symmetry �see Figs.
1 and 3�. As a consequence, ��x2� is equally partitioned be-
tween two neighboring grains and the shear stress along the
GB vanishes by virtue of symmetry. Hence, the boundary
conditions on the + and side of the GB read

u1�0+,x2� = ��x2�/2,

u1�0−,x2� = − ��x2�/2,

�21�0,x2� = 0. �19�

Through this coupling, the solution of the diffusion problem
at any time instant determines the elastic stress field inside
the grains. Conversely, the corresponding GB normal stress
drives the instantaneous diffusion process, cf., Eqs. �7� and
�12�.

The solution of the above linear elastic BVP is obtained
with a standard finite element �FE� method. The FE mesh
overlaps with the FD mesh on the GB and consists of quad-
rilateral elements that are close to being square. The film
average stress 	�11
f is calculated by numerically integrating
�11 over the film elements.

C. Time integration

Since the aim of this study is to investigate the time
evolution of the system, an incremental procedure is formu-
lated in a staggered manner. The core computational task
consists of two steps for every time increment, which is
schematically shown in Figs. 3�b� and 3�c�. In the first step,
from the known stress state we solve Eqs. �7�–�11� for the
diffusional BVP, and ��x2� along the GB is updated for the
chosen value of the time step �t. Since accommodation of
the GB wedge requires displacement across the GB, the sec-
ond step consists of solving the linear elastic BVP, Eqs.
�16�–�19�, where the field quantities ui, �ij, and �ij are found
for that particular time instant. Subsequently, time is updated
and the above mentioned procedure is repeated until a steady
state is established.

IV. RESULTS & DISCUSSION

Since the accuracy of the solution is intimately tied to
the FD and FE mesh size, a convergence check on the ele-
ment size is performed first. Figure 4 shows the relaxation of
the film average stress with time for different mesh sizes. For
h=1 �m and d=0.25 �m a fairly good convergence in
view of the desired accuracy is attained when using 40 ele-
ments across the thickness of the film; along the x1 direction
using 20 elements renders a square FE mesh. The number of
elements have been kept constant for different h values
whereas the mesh size is kept constant along the x1 direction
for varying d values.

Given the chosen mesh size, the FD scheme can become
unstable if �t is too large. For each film thickness, the time
step is chosen to be the largest possible for a stable solution
by trial and error.

The results of the simulations are reported in the subse-
quent three subsections. In the first subsection the focus is on
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FIG. 4. Relaxation of film average stress with time in a film with grain size
d=0.25 �m for different mesh sizes. �x2 is the thickness of an element and
h is the thickness of the film. The final, relaxed stresses for different mesh
sizes are plotted in the inset.
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FIG. 3. The problem under consider-
ation �a� is solved by the staggered solu-
tion of the diffusion equation under a
given normal stress distribution �b� and
the elasticity problem of a wedge being
inserted along the GB between two elas-
tic grains �c�.
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the identification of the parameters that control the steady
state in the films, i.e., the final stress value shown in Fig. 4.
Next, we investigate the kinetics of the process, which is
related with the total time required for the curves in Fig. 4 to
reach the steady state. Finally we will explore these features
for films that are not well adhered to the substrate.

A. Steady state properties

We start by looking at the relaxation of stress in time for
different grain sizes d �in the range of 0.25–2 µm� and film
thicknesses h �in the range of 0.25–1 µm�. The characteristic
feature of all results in Fig. 5 is that all films finally reach a
steady state, but at a different rate and to different stress
levels.

When the Figs. 5�a�–5�c� are considered individually, the
effect of grain size d for a constant film thickness h can be
explored. It is clearly seen that as the grains become smaller
the initial stress �0 is relaxed more efficiently, i.e., down to a
lower residual stress level. For all the data presented in Fig.
5 the initial stress value was chosen to be �0=500 MPa, but

this value does not have any effect on the graphs since the
film average stress is normalized by �0. In Fig. 5, results for
films with identical grain aspect ratio h /d are drawn with the
same color. It is, therefore, easily recognized that films with
the same aspect ratio attain the same final stress levels.

The observations above suggest there is a simple rela-
tionship between the four physical variables 	�11
f, �0, h,
and d. Since these four variables are expressed in terms of
two basic physical dimensions �force and length�, Bucking-
ham’s � theorem tells that the system is fully characterized
by two linearly independent, dimensionless parameters

� 	�11
f

�0
,
h

d
� .

Thus, the normalized residual stress depends only on the
aspect ratio of the grains.

In Fig. 6, the values of 	�11
f /�0 for simulations with
varying h and d values are compiled into a single graph.
Indeed a single master curve emerges, which confirms that
neither h nor d, but their ratio, controls the effectivity of
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FIG. 5. Relaxation behavior from �0=500 MPa for different grain geometries. Thickness h=1 �m in �a�, h=0.5 �m in �b�, and h=0.25 �m in �c�. Results
for microstructures with the same aspect ratio h /d have the same color coding.
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relaxation by GB diffusion. We have confirmed that the
curves for different initial stress values also collapse on this
master curve. Moreover, it is possible to determine the scal-
ing law between the grain aspect ratio and the normalized
residual stress by fitting the data points shown in Fig. 6 to

	�11
 f

�0
= ch

d
��

. �20�

The corresponding value of the coefficient is c=0.11 and the
exponent is found to be �=−0.77.

Why does the effectiveness of relaxation increase with
the slenderness of the grains? In our previous work3 using
DDs to model the same problem, it was found that as the
grains become slender, the GB wedge attains a more rectan-
gular shape. The same trend is observed here in the con-
tinuum solution, as seen in Fig. 7 showing the grain bound-
ary shape parameter �,

� =
1

h��h��0

h

��x2�dx2, �21�

versus grain aspect ratio. The value of � reaches 1 for a
perfect U–shaped opening, whereas for a perfect V–shaped
opening �=0.5. This parameter is observed to also depend
solely on the grain aspect ratio, with the value of � increasing
from �0.7 for wide grains to 1 as the grains become more
slender. Among the microstructures studied here, the film
with h=1 �m and d=0.25 �m features the most uniformly
shaped GB wedge �see inset of Fig. 7�, while the film with
h=0.25 �m and d=2 �m shows a GB opening closest to a
triangular profile.

Figure 8 displays the final residual stress distributions
for three different h /d. We observe large regions in between
GBs where a significant amount of the initial tensile stress is
still present for the widest grains �h /d=0.125�. Effective re-
laxation has only taken place near the GBs. However, as the
aspect ratio increases, the relatively unrelaxed area rapidly
shrinks down to a thin region in the proximity of the film/
substrate interface. In Fig. 9 the distribution of other stress
components at steady state is shown for the case h=d
=0.5 �m but this time only for one periodic cell. Although
�11 has been relaxed to a great extend as have been shown in
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Fig. 8 the development of diffusion wedge builds up �12 and
�22. Both of these quantities are initially zero.

In addition to �, the effectiveness of relaxation depends
on the thickness of the diffusion wedge at the top of the film.
When ��h� is normalized with d, it gives the strain imposed
as a result of diffusion at the top. The dependence of this
parameter on grain aspect ratio is given in Fig. 10�a�. Ini-
tially, as the aspect ratio increases the GB wedge becomes
wider, but then it decreases and levels off. The h /d parameter
window in which the decrease is observed coincides with the
range where the � value increases most drastically in Fig. 7.
Contrary to �, the GB wedge width does depend on the value
of �0 as depicted in Fig. 10�a�, as well as on the plane strain
elastic modulus E�

ªE / �1−	2�. Yet Fig. 10�b� demonstrates
that a master curve emerges when ��h� /d is multiplied with
E� /�0. Thus, eventually, it is these two parameters—� and
��h�E� /�0 /d—that control the residual stress level as a
monotonically decreasing function of aspect ratio �as in Fig.
6� in accordance with Eq. �20�.

The relevance of ��h�E� /�0 /d in this regard can be un-
derstood by noting that if the GB wedge were perfectly
U–shaped ��=1�, an opening ��h� can be thought of as in-
ducing an overall strain ��h� /d in the x1–direction that
would counteract the initial elastic strain �0 /E�. When �
�1, we have to work with the total amount of diffused ma-
terial, as defined by

� = �
0

h

��x2�dx2. �22�

This can be rewritten as �=�h��h�, leading to a diffusion-
induced strain � / �hd�=���h� /d. Based on these ideas, we
postulate that the film average stress after diffusion of an
amount of material � can be expressed as

	�11
f = �0 − E�
�

hd
. �23�

The accuracy of this relationship is confirmed in Fig. 11
which shows the correlation between the values of � / �hd�
and the fraction of the stress that is relaxed.

When the predictions of the continuum model above are
compared with those of the DD model,3 two notable distinc-
tions emerge. In the continuum model relaxation will take
place irrespective of the magnitude of �0, whereas in the DD
model the initial stress should exceed a “diffusional yield
strength” for the initiation of diffusion. The origin of this
yield strength is the attraction of a dislocation to a nearby
free surface. For a dislocation on the verge of nucleation
from free surface, the attractive force may overcome the
force due to tensile thermal stress and hence hinder the dif-
fusional deformation all together.

Second, while the residual stress decreases monotoni-
cally with increasing h /d in the continuum model, it levels
off after a critical h /d in the DD calculations. The critical
h /d depends on the initial stress and diffusional yield
strength. The origin of this barrier is the presence of a mate-
rial length scale in the DD model of diffusion, namely the
magnitude of the Burgers vector. This length scale consti-
tutes the minimal admissible displacement in the GB wedge:
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diffusion halts when the GB cannot accommodate another
extra half-plane of atoms. In the continuum model, there is
no such limitation: complete stress relaxation is possible by
developing a GB wedge width � that can be infinitesimally
small. When �0 is high and the grains are sufficiently coarse,
there is perfect agreement between the two models.

B. Kinetics

Although the amount of relaxation is the same for films
comprised of grains with identical aspect ratios, the kinetics
of relaxation can be very different. For instance, when the
curves for h /d=0.5 in Figs. 5�a�–5�c� are examined, the time
until completion of diffusion seems to decrease substantially
as the film thickness decreases. This is expected since mass
transport occurs over the length of the GBs: hence, the thin-
ner the film, the shorter the distance the atoms have to travel,
and thus the faster relaxation. Furthermore, the pace of re-
laxation for a constant h �see, for example, Fig. 5�a�� is seen
to depend on d. As the grains become thinner, relaxation
speeds up since diffusion takes place across more GBs per
unit film area. However, the dependence of the diffusion rate
on d seems to be weaker compared to that on h. In the
remainder of this section, we want to get insight in the com-
bined effect of h and d.

Atomistic4 as well as continuum dislocation1 models for
GB diffusion have suggested that the GB normal stress av-
eraged over the film thickness, 	�n
gb, decays exponentially
with time,

	�n�t�
gb = �0 exp�− t/�c� , �24�

with a characteristic time �c that scales as �c�h�. The value
of � was found to be 3.0 with the continuum dislocation
model,1 whereas ��2.7 according to the atomistic study.4

The time decay of the average GB normal stress 	�n�t�
gb in
our computations �obtained by numerical integration of �11

over the GB� is presented in Fig. 12�a�. Note that, contrary to
film average stress �cf. Fig. 5�, the average GB normal stress
does relax to zero. The difference arises from the presence of
residual stresses inside the grains, as seen in Fig. 8. The

relaxation curves in Fig. 12�a� fit perfectly to exponential
time decay. This is confirmed by plotting the data on a loga-
rithmic scale, see Fig. 12�b�, which renders all relaxation
curves as straight lines passing through the origin and having
a slope

ln�	�n
gb/�0�/t = − 1/�c. �25�

Our aim now is to find the relation between �c and film
thickness h according to the present model. For this, we first
note that dimensional considerations of the governing
parameters—D in �7�, E in �16� and the various variables
with dimension length—dictate that only the ratio of length
to the power 3 divided by ED has the proper dimension of
time. Hence, �c scales with a length scale to the power 3. A
model with only h as a length scale necessarily leads to �
�h3 as given in,1 but the present model also involves the
grain width d and the material length scale l, defined in Eq.
�15�. Observing that the grain width has entered the results
so far only through the grain aspect ratio h /d, we postulate
the following functional dependence:

�c = h�l�3−��f�h/d�/�ED� , �26�

with f a function to be established. By considering relaxation
curves for the same aspect ratio but different thickness, �for
example, the curves for h /d=1 are identified by arrows in
Fig. 12� we found that a scaling exponent �=2.97 gives a
best fit to the data. Notice that this leaves a very weak de-
pendence on l, the value of which is almost two orders of
magnitude smaller than the smallest film thickness consid-
ered in this study. What is left is to identify the unknown
function of h /d in Eq. �26�. For that purpose, we adopt the
equality �25� combined with Eq. �26�; taking the slopes from
Fig. 12�b�, we finally find f�h /d� as shown in Fig. 13.

C. No adhesion at the interface

Until now the thin films were considered to be perfectly
attached to the substrate. In real systems, bonding is never
perfect but depends on the film and substrate materials, pro-
cessing conditions, likelihood of forming oxide layers, etc. In
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order to avoid the complexity associated with the interface
properties, we will investigate the opposite extreme case,
namely where there is no adhesion between film and sub-
strate.

In the absence of adhesion, the boundary conditions of
the diffusional and mechanical BVPs change, as depicted in
Fig. 14�a�. For diffusion, first of all, the constraint on the GB
opening ��0, t� disappears since the substrate no longer re-
stricts the sliding of the film over the substrate. The no-flux
condition j2�0, t�=0, however, still holds since the GB termi-
nates at x2=0. As for the elasticity of the film, the substrate is
no longer relevant. Instead, the tangential tractions along the
film’s bottom surface should vanish, i.e., t1�x1 ,0�=0, while
u2�x1 ,0�=0 ensures that the film does not lift off.

Before trying to solve this problem, it is noted that these
boundary conditions are identical to symmetry conditions for
both BVPs about x2=0. Thus, the problem becomes equiva-
lent to that of GB diffusion in a free-standing film with a
thickness of 2h, as illustrated in Fig. 14�b�. This interpreta-

tion reinforces that the system cannot be loaded with thermal
stresses since the thermal expansion of film and substrate can
no longer communicate. Therefore we stretch the film in the
x2 direction by superimposing a uniform displacement U0 at
the sides of the cell. The value of U0 for different grain sizes
is chosen such that the corresponding overall initial strain
2U0 /d induces the same value of �0 in the previous subsec-
tions, i.e., �0=2E�U0 /d.

The steady state solution of the problem is trivial. Since
the constraint on the GB opening at x2=0 is absent, diffusion
will continue to eliminate any stress gradient until there is a
rectangular GB wedge ��=1�. The final width is equal to the
total initial stretch 2U0 and the initial applied stress is fully
relaxed. In Fig. 15 the relaxation curves for two grain sizes
are shown, together with the relaxation curves for perfectly
bonded films, for which relaxation is in general not com-
plete. Complete relaxation in the absence of adhesion can be
considered as the lower bound for the relaxation, while the
perfect-bonding case discussed earlier becomes the upper
bound. In reality, since interfaces have a finite strength film
delamination may arise due to development of �12 and �22

�see Fig. 9� during diffusion. Thus, the relaxation curves will
fall in between these two bounds: close to the lower bound
for very weak interfaces where film delamination may be
induced during diffusion and close to the upper bound for
strong interfaces that do not lead to delamination.

When the kinetics of relaxation in these free-standing
films is studied in detail, the same scaling between the char-
acteristic time and film thickness is found as before: �c

�h2.97l0.03. However from Fig. 15 it can be observed that
these films reach the steady state slightly later than the per-
fectly bonded counterparts, meaning that f�h /d� in Eq. �26�
is larger than in Fig. 13.

It bears emphasis here that a small change in boundary
conditions can give an entirely different problem with differ-
ent steady state properties and kinetics. For instance, the
model of Guduru et al.2 addresses solely the no-flux condi-
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tion, so that their solution is for a free-standing film or for a
film that is not bonded to the substrate. Incorporating both
boundary conditions �10� and �11� for bonded films requires
a dedicated treatment of the boundary conditions.

V. CONCLUSIONS

The main conclusions of the two-dimensional modeling
of GB diffusion in thin films presented in this work can be
summarized as follows.

• GB diffusion is more effective in relaxing the stress in
films with slender grains; its effectiveness is character-
ized by a power law scaling between residual stress
and the aspect ratio of grains h /d.

• The effectiveness of relaxation is manifested by the
GB wedge shape �, and the width of the GB wedge at
the top surface, ��h�.

• The continuum model predicts relaxation of stress
with any magnitude without any threshold and also
predicts complete relaxation in the limit of infinite h /d
since there is no built-in length scale. Because of this
limitation, the continuum model cannot detect the size
effects of this phenomena reported in Ref. 3

• The normal stress averaged along the GB decays ex-
ponentially with time and becomes zero at the steady
state. The characteristic time �c scales with film thick-

ness h with an exponent that is very close to 3, and
additionally depends on h /d.

• In the absence of adhesion between film and substrate,
stress relaxes completely but at a slightly lower pace.

The framework presented here is for stationary films, but
can be extended to growing films during deposition. During
the growth of metallic films, intrinsic stresses arise as a con-
sequence of competition between diffusion and coalescence
of grains. Very recently, Tello and Bower5 have presented a
detailed model in which coalescence stresses are incorpo-
rated with a cohesive law along the GB and have investi-
gated this competition in terms of stress development during
the Volmer–Weber type growth of polycrystalline films.
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