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Abstract
Background: Assessment of the clinical significance of unclassified variants (UVs) identified in
BRCA1 and BRCA2 is very important for genetic counselling. The analysis of co-segregation of the
variant with the disease in families is a powerful tool for the classification of these variants.
Statistical methods have been described in literature but these methods are not always easy to
apply in a diagnostic setting.

Methods: We have developed an easy to use method which calculates the likelihood ratio (LR) of
an UV being deleterious, with penetrance as a function of age of onset, thereby avoiding the use of
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liability classes. The application of this algorithm is publicly available http://www.msbi.nl/
cosegregation. It can easily be used in a diagnostic setting since it requires only information on
gender, genotype, present age and/or age of onset for breast and/or ovarian cancer.

Results: We have used the algorithm to calculate the likelihood ratio in favour of causality for 3
UVs in BRCA1 (p.M18T, p.S1655F and p.R1699Q) and 5 in BRCA2 (p.E462G p.Y2660D, p.R2784Q,
p.R3052W and p.R3052Q). Likelihood ratios varied from 0.097 (BRCA2, p.E462G) to 230.69
(BRCA2, p.Y2660D). Typing distantly related individuals with extreme phenotypes (i.e. very early
onset cancer or old healthy individuals) are most informative and give the strongest likelihood
ratios for or against causality.

Conclusion: Although co-segregation analysis on itself is in most cases insufficient to prove
pathogenicity of an UV, this method simplifies the use of co-segregation as one of the key features
in a multifactorial approach considerably.

Background
High throughput technologies and more sensitive muta-
tion detection systems in the DNA diagnostic laboratories
have led to an increasing number of sequence variants in
the major cancer-predisposing genes for which the clinical
significance is unknown. In approximately 15% of the
DNA mutation scannings of BRCA1 or BRCA2 in breast
cancer families, the test result is difficult to interpret
because an unclassified variant is found (UV, or 'variant of
uncertain clinical significance' (VUCS) or 'variant of
uncertain significance' (VUS) [1]. The risk for breast and
ovarian cancer might be as high as for classical pathogenic
mutations, but they might also be negligible. The decision
for or against prophylactic surgery must in these cases be
based entirely on the family cancer history, which never
yields risks comparable to pathogenic mutations. In addi-
tion, predictive testing and preventive surgery are not
offered to their healthy relatives, although these relatives
may experience anxiety for carrying the UV [2].

A variety of approaches have been used to assess the clin-
ical relevance of these UVs [3-9]. These include 1) in silico
predictions based on evolutionary conservation, position
and nature of the amino acid change, 2) functional anal-
ysis of the variant using in vitro assays directed at specific
functional domains of the protein, 3) population genetics
analyzing frequency of the variant in cases and controls
and co-occurrence of the UV with a known deleterious
mutation in one or more tested individuals and 4) clinical
validation using family history, co-segregation of the var-
iant with the disease in pedigrees as well as relevant fea-
tures of BRCA1- and BRCA2-associated tumours.

A functional assay would ideally be capable of distin-
guishing pathogenic from neutral variants. However,
although these assays are available, their results are very
difficult to interpret clinically and can only be used for a
subset of unclassified variants located in specific domains
of the genes. This is because BRCA1 and BRCA2 are mul-
tifunctional proteins and these assays will generally only

interrogate one of those functions. Since none of the
approaches mentioned above have by itself been able to
provide compelling evidence for or against pathogenicity
of UVs, multifactorial likelihood models integrating these
features have been developed [3,4]. As shown by Goldgar
et al., the significance of the analysis was highly depend-
ent on co-occurrence and co-segregation data. Recently,
the genetic evidence for or against disease causality was
reported for a large number of variants with the use of a
large database of tested individuals collected analyzing
co-occurrence, personal and family history of cancer as
well as co-segregation with disease, the latter only in a
subset of probands [5]. Although co-occurrence has
shown to be a powerful tool to obtain high odds in favour
of neutrality, this method requires large databases of
tested individuals, such as collected by Myriad Genetics
laboratories, and these data are not publicly available. In
addition, family-history analysis has demonstrated to be
very useful although it might be susceptible to bias due to
population-specific ascertainment. Co-segregation
(occurrence of UVs in affected individuals) is not affected
by selection bias because it considers the distribution of
the genotypes given the phenotypes and the genotype of
the proband (the first person that was genotyped in the
family and carried a UV). Co-segregation analysis is there-
fore regarded as a robust approach since it directly relates
to the disease risk whereas the absence of co-segregation
provides strong evidence against pathogenicity.

In order to classify UVs via co-segregation, a simple Baye-
sian method to assess causality of rare sequence variants
was provided by Petersen et al. [10]. In contrast to
Petersen, Thompson et al. [11] have developed a more
general method based on the full pedigree likelihood. All
available genotype information from the family is used,
including any unaffected individuals who have been
tested. The two methods either use a defined penetrance
in carriers versus non-carriers and ignore the age of onset
[11], or specify liability classes which define the age range
of family members in intervals for which the penetrance is
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supposed to be constant [10]. Using the full age of onset
information however will result in more reliable estimates
of the likelihood ratio (LR).

We have developed an algorithm to calculate the likeli-
hood ratio of a UV being deleterious based on co-segrega-
tion analysis, using the precise age of onset information.
The method can easily be used in a diagnostic setting since
it requires only information on gender, genotype, present
age and/or age of onset for breast and/or ovarian cancer.

Methods
In collaboration with the DNA diagnostic laboratories of
the Clinical Genetic Centres in the Netherlands, 8 UVs
have been selected for this study (Table 1, detailed
description can be found in Additional file 1; Table S1).
The Human Genetic Variation Society (HGVS) approved
guidelines http://www.hgvs.org/mutnomen have been
used for BRCA1 and BRCA2 nomenclature [12]. To facili-
tate published data comparison, also the traditional
nomenclature is listed (Breast Cancer Information Core,
http://research.nhgri.nih.gov/bic/). GenBank accession
no. NM_007294.2/NP_009226.1 and NM_000059.3/
NP_000050.1 have been used for BRCA1 and BRCA2
mRNA and protein numbering respectively.

Each laboratory selected 5 UVs in either BRCA1 or BRCA2
which were of particular interest for them (e.g. multiple
families with same UV, large families in which the UV was
segregating). A long-list was made which contained all the

selected UVs (14 BRCA1, 17 BRCA2). From this list, UVs
were selected that met a least one of the following criteria:
1) Grantham score above 100, 2) The UV is located in a
functional domain [13], 3) The amino acid has a high
degree of evolutionary conservation (i.e. also in non-
mammalian species). In addition, priority was given to
those UVs found in more than one family and/or genetic
centre. UVs co-occurring with a pathogenic mutation in
the same gene (data from Netherlands) in the proband
were excluded. 15 Dutch families, in which one of the 8
selected UVs had been found and for which at least two
family members were genotyped were included in our
study. Some of the UV's were detected in more than one
family. Families were tested for BRCA1/2 after genetic
counselling of clinically presumed hereditary breast and/
or ovarian cancer, when the mutation detection rate is
above 10% [14] (e.g., two breast cancer cases with one
case under age 50, more than 3 first-degree relatives in two
successive generations with breast cancer under age 60,
breast and/or ovarian cancer families), or if breast cancer
was diagnosed at a relatively young age (i.e., one patient
younger than 35 years old). The proband is defined as the
first person in the family who is genotyped and tested pos-
itive for one of the selected UVs. The pathogenic control
group consisted of families in which a pathogenic muta-
tion was detected in BRCA1 or BRCA2 (Table 2). The neu-
tral control group consisted of families in which genetic
variants were found that are considered neutral variants
with respect to breast and/or ovarian cancer risk (Table 3)
[3,15].

Table 1: BRCA1 and BRCA2 missense variants analysed and likelihood ratio in favor of causality

Gene HGVS1 traditional2 protein # fam3 LR per family4 LR-variant5

BRCA1 c.53T>C 172T>C p.M18T 2 5.7004(2+) 7.9777
1.3995(4+; 6+; 3-)

BRCA1 c.4964C>T 5083C>T p.S1655F 1 6.7425(3+; 2+) 6.7425
BRCA1 c.5096G>A 5215G>A p.R1699Q 1 1.4280(2+) 1.4280
BRCA2 c.1385A>G 1613A>G p.E462G 4 0.7738(1+; 1+) 0.0965

0.6757(1+; 1+)
1.2459(1+; 1-)
0.1481(1+; 1-)

BRCA2 c.7978T>G 8206T>G p.Y2660D 3 1.8579(2+), 230.6927
11.1565(2+)
11.1297(2+; 3+)

BRCA2 c.8351C>T 8579G>A p.R2784Q 1 1.8101(1+; 1+) 1.8101
BRCA2 c.9154C>T 9382C>T p.R3052W 2 3.0651(2+), 12.1960

3.9790(3+)
BRCA2 c.9155G>A 9383G>A p.R3052Q 1 0.2208(1+; 1-) 0.2208

1The Human Genetic Variation Society (HGVS) approved guidelines http://www.hgvs.org/mutnomen have been used for BRCA1 and BRCA2 
nomenclature [12].
2To facilitate published data comparison, also the traditional nomenclature is listed (Breast Cancer Information Core, http://research.nhgri.nih.gov/
bic/). GenBank accession no. NM_007294.2/NP_009226.1 and NM_000059.3/NP_000050.1 have been used for BRCA1 and BRCA2 mRNA and 
protein numbering respectively.
3Number of families with at least two genotyped family members.
4Likelihood ratio per family. Between brackets the number of affected individuals carrying the UV (n+) or unaffected individuals with the UV (n+), 
affected individuals without the UV (n-) or unaffected individuals without the UV (n-).
5The overall likelihood ratio is derived by the product of the LR over the independent families.
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Likelihood ratio using co-segregation data
In this subsection, we derive the relevant likelihood ratio
to evaluate the evidence for the causality associated with
the UV referred to breast or ovarian cancer. The first
assumption is that the proband carries a UV in BRCA1 or
BRCA2.

The notation G stands for the genotype of the UV in the
family. Hence, G = 1 if the UV is present and G = 0 if not.

The genotype is observed in at least one other family
member, but certainly not in all. Phenotypic information
is available in most family members and denoted by P.
Pedigrees are pruned to leave out non-informative
branches (i.e. no cancer and no genotype information).

We use the notations "d", "n", "o", "u", "f", "p" for "dele-
terious", "neutral", "observed", "unobserved", "family"
and "proband" respectively. The likelihood ratio for path-
ogenicity based on segregation within families is then
equal to

By definition of "neutral"

One has

Hence,

We have to take into account all family members with
unobserved (missing) genotypic information. If we do so,
we obtain

LR
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Table 2: Likelihood ratio in favor of causality for selected pathogenic mutations

Gene HGVS1 traditional2 protein # fam3 LR per family4 LR-variant5

BRCA1 c.81-6T>A IVS2-6T>A p.Cys27fsX1 1 6.4287(5+; 3+; 1-; 3-) 6.4287
BRCA1 c.213-12A>G IVS5-12A>G p.Arg71fsX20 1 10.2701(1+; 3+; 6-) 10.2701
BRCA1 c.1292dup 1411insT p.Leu431PhefsX5 2 1.7312(2+; 1+; 1-) 3.3715

1.9475(1+; 2+; 1-)
BRCA1 c.2193_2197del 2312delAGAAG p.Glu733ThrfsX5 1 4.7089(2+; 1+; 4-) 4.7089
BRCA1 c.5095C>T 5214C>T p.Arg1699Trp 3 22.8602(3+; 6+; 2-; 4-) 402.164

2.2720(1+; 1+; 1-)
7.7431(2+; 1+)

BRCA2 c.2806_2809del 3034delAAAC p.Ala938ProfsX21 1 1.9901(2+; 1+; 1-) 1.9901
BRCA2 c.3269del 3497delT p.Met1090SerfsX14 16 87.46(5+) 87.46
BRCA2 c.3599_3560del 3827delTG p.Cys1200X 1 1.1876(1+; 3+; 1-) 1.1876
BRCA2 c.8067T>A 8295T>A p.Cys2689X 1 12.2424(3+; 1+; 4-) 12.2424
BRCA2 c.8773C>T 9001C>T p.Gln2925X 1 1.8827(1+; 3+) 1.8827

1–5 For clarification see Table 1.
6 Pedigree is shown in Figure 2.

Table 3: Likelihood ratio in favor of causality for selected neutral variants

Gene HGVS1 traditional2 protein # fam3 LR per family4 LR-variant5

BRCA1 c.135-15_135-12del6 IVS4-15delCTTT p.= 19 3.8592 (2+) 3.8592
BRCA1 c.2613G>A7 2732G>A p.Pro871Pro 1 1.8533(2+) 1.8533
BRCA1 c.5152+20T>A7 IVS18+20T>A p.= 1 3.6711(1+; 1+) 3.6711
BRCA2 c.125A>G8 353A>G p.Y42C 2 0.9728(2+) 0.7405

0.7612(1+; 4+)

1–5 For clarification see Table 1.
These variants are regarded to be neutral towards cancer risk based on 6Vreeswijk et al. [15], 7Splice site prediction analysis and 8Goldgar et al. [3].
9 Pedigree is shown in Additional file 1; Figure S4.
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So, the building blocks are P(Gf|GP = 1) and Pd(Pf|Gf).

We can now make some simplifying assumptions

a. the mutation is very rare. That helps enormously in enu-
merating all possible genotypes in the family and comput-
ing P(Gf|GP = 1)

b. if the mutation is deleterious and known to be present
in the family, the genotype for that mutation is the domi-
nant factor in computing Pd(Pf|Gf), that is to say that the

probability of the phenotype for an individual only
depends on her/his genotype and not on the phenotypes
of the other family members. This implies that

, where i changes over all

family members.

If the mutation is deleterious, we assume that the pene-
trance of the mutation (defined by the probability of
acquiring the disease before age t) is given by the known
penetrance for BRCA1 or BRCA2, respectively. We apply
the penetrances as in Jonker et al. [16], the smoothed ver-
sions of the known penetrances based on normal distribu-
tion functions. We denote the density and cumulative
functions of normal distribution by φ and Φ respectively.
The general form is given by F(t|r, μ, σ) = r Φ((t - μ)/σ).
Values of r (life time risk), μ (age of diagnosis) and σ
(standard deviation) for the breast and ovarian cancer are
given in Additional file 1; Table S2. The penetrance func-
tions are plotted in Additional file 1; Figure S1. The phe-
notypic likelihood is given by 1 - F(t|r, μ, σ) if an
individual is disease free at age t, and by the derivative
f(t|r, μ, σ) = rφ(t - μ)/σ)/σ if the individual has cancer at
age t. Breast and ovarian cancer are assumed to be statisti-
cally independent given the genotype of the deleterious
mutation.

The likelihood for two sided breast cancer cases at onset

ages t1 and t2 (≥ t1) is given as the product of the deriva-

tives of  and

[17].

For a specific variant, if there are multiple families carry-
ing the variant, the overall likelihood is derived by the
product of the likelihood ratios over the independent
families, assuming that the specific variant is not in link-
age disequilibrium with an unknown deleterious muta-
tion.

An algorithm to enumerate possible genotypes
To analyze co-segregation and to compute P(Gf|GP = 1)
under the rare genotype assumption, one has to explore

all the different possibilities of the genotypes of the family
members. The genotype takes values 1 for the carriers of
the variant and 0 for non-carriers. In our data set the
proband is by definition carrier of a variant (genotype 1).

The algorithm that is at the basis of our computational
algorithm is demonstrated using the pedigree of Figure 1.

The members of the pedigree are numbered 1,...,n. In our
example, the proband is given number 1. A genotypic con-
figuration is described by a vector G = (G1,...,Gn) of 0's and
1's, Gi = 1 if individual i carries the UV and Gi = 0 if it is a
non-carrier. Under the rare mutation assumption and the
selection on the proband, all the possibilities have to meet
the following

1. GP = 1.

2. If two parents have G = 0, all children have Gi = 0.

3. If for an individual Gi = 1, one (and only one) of his/
her parents must have the mutation, i.e. G = 1.

4. Exactly one of the founders has G = 1.

P P G f P P Gd f f d i i
i

( | ) ( | )= Õ

1 1 1- - F t r( | , , )m s

1 1 2- - F t r( | , , )m s

Illustration of our modelFigure 1
Illustration of our model. Hypothetical pedigree for the 
illustration of our model. Individuals are numbered 1–10 for 
identification and underneath the age at last contact is listed. 
Open circle: female, open square: male, closed circle: 
affected with breast (or ovarian) cancer at age × (BrCx). 
Unless specified by + (carrier of UV), - (no carrier), individu-
als are not genotyped. Proband is indicated by arrow.
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Conditions 3 and 4 are equivalent formulations of the
rare mutation assumption.

In order to construct an enumeration of all possible geno-
typic configurations, we proceed as follows

Step 1
Finding possible founders

Going upwards from the proband we can find all founders
that can be reached from the proband. Given a founder,
all family members in the path from the founder to
proband must have the mutation as well. All the pedigree
members that do not descend from the founder with the
mutation cannot have the mutation.

In the example (Figure 1), person 1 is the proband carry-
ing the UV. There are three possible founders: person 2, 6
or 7. We will discuss these three possibilities below.

1) If person 2 carries the mutation, then numbers 3, 6, 7,
8 and 10 can not have the mutation. Person 4 and 5 may
have the mutation. We first indicate the genotype of num-
bers 4 and 5 by x and then obtain all possibilities for x's.
So all the possibilities in case that number 2 carries the
mutation are contained in the following vector where the
upper line represents the number of the person in the ped-
igree and the lower line represents the genotype informa-
tion.

2) If number 7 has the mutation, then numbers 2 and 6
cannot have the mutation. Number 3 will carry the muta-
tion and numbers 4, 5, 8 and 10 may have the mutation.
Again we first indicate the genotype of numbers 4, 5, 8
and 10 by x and then obtain all possibilities for x's. So all
the possibilities for the case that number 7 has the muta-
tion are contained in the following vector

3) If number 6 has the mutation, then we repeat the situ-
ation 2) above with numbers 6 and 7 replaced by each
other.

Hence, all the possible configurations are contained in the
vectors M1 and M2.

The situations 1), 2) and 3) are also shown in Additional
file 1; Figure S2A. This figure might be useful to under-
stand how the algorithm is built.

The x's have to be filled to obtain the enumeration. To do
this in an efficient way we have to determine the "genera-
tion" of the x's.

Step 2
Setting the generations.

We use the following iterative algorithm to define the
"generation" H for the

"open" genotypes:

a. if both parents have known genotype, then H = 2,

b. if one parent has "open" genotype (two is impossible),
then Hi = Hparent+1.

We fill in the generations at the "open" genotypes. We
obtain

Step 3
Filling the "hole"

The general principle is that an open genotype must be
"0" if both parents have Gi = 0 and can be 0 or 1 if one of
the parents has Gi = 1. That leads to the filling and splitting
algorithm shown in Additional file 1; Table S3.

Additional file 1; Figure S2B shows the situation 1) above.
As mentioned above, all possibilities in this situation are
contained in vector M1.

We start with this vector and we need to find all different
possibilities for the 2's in this vector. We start with the
member number 4.

Because one of the parents has the mutation, number 4
can have G = 0 and G = 1. For each of these possibilities,
(with the same reason) number 5 also has two possibili-
ties G = 0 and G = 1. In fact when a parent has G = 1, there
is a split, otherwise there is no split.

The situation 2) above is shown in Additional file 1; Fig-
ure S3. As mentioned above, all possibilities in this situa-
tion are contained in vector M2.

We start with this vector and we need to find all different
possibilities for the 2's and 3's in this vector. We start with
the member number 4. As our explanation for Additional
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file 1; Figure S2B, we have a split for number 4. For each
of the possibilities, we have another split for number 5
and for each of them; we have another split for number 8.
Then all the 2's are filled and we arrive at the 3 for number
10. Here we have a split just for the possibilities that
number 8 has G = 1 otherwise there is no splits and
number 10 has G = 0.

Using our algorithm, the two matrixes M1 and M2 become

To compute P(Pf|Gp = 1) one needs to derive the probabil-
ity of each possibility.

Note that

and

So, each split halves the probability. This is shown in
Additional file 1; Figure S2.

The probability of each possibility is the product of the 1/
2's. In fact a split occurs when a member of the family has
a parent with G = 1. Hence, the probability of a possibility

is 1/2 to the power of the number of family members who
have one parent with G = 1 in the possibility.

For the two matrixes, M1 and M2, we obtain the probabil-
ities below for the respective rows.

Assuming that the proband in Figure 1 carries a BRCA1
mutation, the likelihood ratio in favour of causality is
1.66. The likelihood ratio becomes 1.76 in case of a
BRCA2 mutation, due to differences in penetrance
between both genes.

The algorithm can be run on the website at http://
www.msbi.nl/cosegregation. On the website, users can
upload a file containing the pedigree information and the
application will calculate the likelihood ratio instantly. A
detailed instruction for the use of the method is available
as Additional file 2 as well as on the website.

Results
We have calculated the likelihood ratios for 8 UVs in
BRCA1 and BRCA2 using the method described in the
Methods section. In Table 1 the likelihood ratios are given
for the separate UV-families, as well as the combined odds
for an UV for which multiple families were available. Like-
lihood ratios for families with pathogenic mutations and
neutral variants are summarized in Table 2 and 3 respec-
tively.

The multifactorial likelihood model described by Goldgar
et al. [3], considered UVs with overall odds of causality
>1000:1 (LR>1000) as pathogenic and those with odds of
causality <1:100 (LR<0.01) as neutral.

Except for the BRCA2 p.Y2660D variant, with a LR in
favour of causality of more than 230, none of the UV's has
a very outspoken LR in favour of causality (LR>1) or neu-
trality (LR<1). Moreover, there is quite some heterogene-
ity between families. Similarly, we see that the evidence
for the pathogenic and neutral controls is not very strong
either. In this section we describe some further data-anal-
ysis to get a better insight into the usefulness of co-segre-
gation in the classification of UV's. Moreover, we want to
explore what the best genotyping strategy should be:
Should we genotype close or distant relatives of the
proband and patients or healthy individuals?

To explore the latter issue we study a pedigree with a path-
ogenic BRCA2 mutation (c.3269del with a LR of 87.46) in
more detail (Figure 2). We calculated what the LR would
be if we had genotyped only a subset of the family mem-
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bers and in different combinations. Typing for example
one sister of the proband with breast cancer at age 50
(individual 12) will give a LR of 1.86 when she carries the
mutation, whereas a positive genotype (i.e. carrier of the
UV) of a third grade related cousin with breast cancer at
age 53 (individual 11) results in a LR of 6.11. Two affected
sisters with the UV or two affected cousins will generate a
LR of 3.67 and 23.83 respectively. From this analysis it is
clear that typing distantly related individuals with extreme
phenotypes (i.e. very early onset cancer or old healthy
individuals) is most informative and gives the strongest
likelihood ratios for or against causality. Small pedigrees
with only one or two affected individuals do not carry very
much information that helps to decide on the clinical sig-
nificance of the UV. Generally speaking it is helpful to
genotype as many individuals as possible. If it is only pos-
sible to type a limited number of individuals, the advice is
to type individuals with "extreme phenotypes" in these
breast cancer families. Distant affected young relatives
which are carriers and nearby unaffected old non carriers
(>60 years of age) are a very strong indication for causality
of the variant whereas variants found in distant unaffected
old family members and not in nearby affected young
members will very likely be neutral to cancer risk.

To explore the sensitivity of the method we have to look
into one of the pedigrees with a neutral variant (BRCA1
c.135-15_135-12del; Additional file 1; Figure S4). We dis-
tributed the rare variant randomly from the proband
onwards using the algorithm described in the Methods
section and looked what distribution of the LR we would
get depending on who we genotyped and what the out-
come would be. If we would type everybody, we would
obtain a distribution of the Likelihood Ratio for which the
probability of getting a LR>1 is almost 20% and the prob-
ability of getting LR>3 almost 8%. The probability of
obtaining a LR<0.1 in favour of neutrality, is also almost
8% (Additional file 1; Figure S5).

One might wonder if it would not have been wiser to gen-
otype another pedigree member. However, a more
detailed analysis of the simulation data (not shown)
reveals that the LR of 2.97 that we get if we only type indi-
vidual 4 is no indication that the wrong individual was
genotyped. Generally, individuals that show strong evi-
dence when their genotype is positive also show strong
evidence when the genotype is negative.

Likelihood ratio in favour of causality for different genotyping patternsFigure 2
Likelihood ratio in favour of causality for different genotyping patterns. a. Pedigree with BRCA2 mutation c.3269del. 
Individuals are numbered 1–13 for identification and underneath the age at last contact is listed. Open circle: female, open 
square: male, /: deceased, closed circle: affected with breast (or ovarian) cancer at age × (BrCx). In case of bilateral breast can-
cer this is listed below the first occurrence. Unless specified by + (carrier of UV), - (no carrier), individuals are not genotyped. 
Proband is indicated by arrow. b. Likelihood ratios in favour of causality if only a subset of the family members are genotyped 
and in different combinations. 1The number of family members that is genotyped positive for the mutation, in addition to the 
proband, individual 13, who carries the BRCA2 mutation c.3269del mutation. 2Family member number in pedigree. 3Likelihood 
ratio in favour of causality when individual 13 and 1 carry the mutation.

a. b.
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Discussion
To assess the clinical relevance of unclassified variants, a
number of approaches have been described and the anal-
ysis of segregation of the variant in affected family mem-
bers has been shown to be very powerful [3]. Co-
segregation analysis is usually done with statistical soft-
ware for linkage analysis in pedigrees [10,11] but a major
disadvantage of the currently used methods is that they
are not user-friendly and ignore the precise age of onset of
the disease since either liability classes or a constant pen-
etrance in carriers is used. We have therefore developed an
easy to use method which calculates the likelihood ratio
with penetrance as a function of age of onset. The analysis
requires at least two genotyped persons with information
on gender and present age or age onset for breast and/or
ovarian cancer. The software we developed has some sim-
ilarity with the well-known BRCAPRO software and
requires similar input [17]. It is written in MATLAB and
the application can be run on our website: http://
www.msbi.nl/cosegregation

Essential assumptions
One of the critical steps in our analysis is the selection of
the proband. In most cases, this will be the youngest
affected family member that was tested positive for the
UV. The algorithm analyses the segregation of the UV
from the proband and the results can differ according to
which person is used as proband. In principle it is possible
to allow more complex genotypic ascertainment schemes,
but in practice it is essential to know who the proband is.

Another important assumption is that "causal" UV's show
the same penetrance as the known deleterious mutations
in BRCA1 and BRCA2. In our analysis we did not allow for
penetrance functions that depend on the particular muta-
tion although it would be easy to redo the calculations
under the assumption of mutation-specific penetrance.
Since it would reduce the power of our method, such an
analysis would only be feasible in large pedigrees with
many genotyped individuals. Thirdly, we assume that the
UV is not in linkage disequilibrium with an unknown del-
eterious mutation. Finally, we computed UV specific LR's
by simply multiplying the LR's of the families with the
same UV under the assumption of homogeneity of the
effect. Unfortunately, we do not have data on enough
families with the same UV to analyze the heterogeneity
properly.

The algorithm
The algorithm works by complete enumeration of all gen-
otypic configurations under the assumption that the vari-
ant is rare. This method is very fast if the pedigree is not
too big. In practice we prune non-informative branches by
hand before applying the algorithm. An alternative for
manual pruning is to combine our complete enumeration
with the peeling algorithm of Elston- Stewart [18]. Such

an algorithm would retain all information, would be able
to handle large pedigrees and would speed up the compu-
tations. We use the algorithm for breast cancer related to
BRCA1 and BRCA2 mutations, but it can be easily applied
to other cancers, provided the penetrance functions of the
genes involved are known.

Information per pedigree
As we pointed out in the results section, the amount of
available information varies between pedigrees due to the
size and complexity of the pedigree, and within pedigrees
due to the variation in phenotype. As in linkage analysis
[19], it pays off to select "extreme" individuals for geno-
typing in those breast cancer families. In our analysis indi-
viduals can have an extreme phenotype (very early onset
of disease or disease free at old age) and an extreme geno-
type (distant relatives that are carrier or non-carriers near
the proband). Evidence for causality is obtained if pheno-
type and genotype are concordant (e.g. carriers with early
onset disease and non-carriers healthy family members at
old age); evidence for neutrality is obtained if they are dis-
cordant (e.g. non-carriers with early disease or healthy old
age carriers). As shown in the results section, it is straight-
forward to compute/simulate the LR's that can be
obtained if certain individuals are genotyped. Such a sim-
ulation analysis can help in deciding whether to genotype
at all, and, if so, who to genotype among those who are
willing to be genotyped.

Clinical findings
We have used the algorithm to calculate the likelihood
ratio in favour of causality for 3 UVs in BRCA1 (i.e.
p.M18T, p.S1655F and p.R1699Q) and 5 in BRCA2 (i.e.
p.E462G p.Y2660D, p.R2784Q, p.R3052W and
p.R3052Q). Likelihood ratios varied from 0.097 (BRCA2,
p.E462G) to 230.69 (BRCA2, p.Y2660D). Co-segregation
analysis on itself was therefore not powerful enough to
classify any of these variants, based on the LR threshold
for causality of 1,000:1 (LR>1000) and for neutrality of
100:1(LR<0.01) [3].

Previous studies have suggested that the BRCA1 p.S1655F
variant and the p.R3052W in BRCA2 are likely to be dele-
terious (Additional file 1; Table S1). Our LRs of 6.74 and
12.20 respectively are in line with these findings and sup-
port the pathogenic nature of these variants.

The p.E462G (LR 0.097) and p.R3052Q (LR 0.22) vari-
ants in BRCA2 have odds below 1, suggestive for being
neutral as has been described by others (Additional file 1;
Table S1).

For the p.M18T and p.R1699Q variants in BRCA1, LRs of
7.98 and 1.43 respectively were not informative enough
to classify them, in line with the inconclusive results
obtained by other studies (Additional file 1; Table S1).
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These might be variants associated with an intermediate
risk and depending on the type of analysis, the variants are
classified as likely to be deleterious or neutral. Extensive
co-segregation analysis in multiple families with these
variants using different penetrance assumptions however
might be sufficient to classify these variants in the future.

To date, no other information is available on the patho-
genicity of the p.Y2660D and p.R2784Q variants in
BRCA2. We have analysed co-segregation in 3 families
with a p.Y2660D variant and found a LR of 230.69 which
is highly suggestive for being a deleterious variant. More
families have to be analysed before a definitive conclusion
regarding the pathogenicity of this variant can be
obtained.

A major problem with the use of co-segregation analysis is
that extensive co-segregation analysis is rarely performed
in these families, as a result of which only a few families
could be used for our analysis. Since the cancer risk asso-
ciated with these variants is unknown, the information
that additional family members carry the variant will not
change the screening advice. Therefore, clinical geneticist
might be reluctant to perform additional DNA screening
in these families, since the knowledge that someone car-
ries the variant might cause anxiety although it is not
established that it is associated with elevated cancer risk
[20]. The main reason to perform DNA mutation screen-
ing in UV families should be however, the contribution to
the assessment of the pathogenicity of the variant. We
have used families in which either neutral or pathogenic
BRCA1 or BRCA2 mutations segregate, to determine
which family members should be typed to give the most
informative results. By careful selection of family mem-
bers to be typed, i.e. early breast cancer cases distantly
related to the proband and old healthy individuals
nearby, segregation analysis will be a powerful tool to
assess the clinical significance of unclassified variants in
BRCA1 and BRCA2.

Although functional data might be useful for classifica-
tion, to date only functional assays are available for a sub-
set of the UVs, namely those that are located in specific
domains in the genes (e.g. BRCT domains in BRCA1) or
those that affect splicing. Furthermore, the results of the
functional assays are difficult to quantify and do not nec-
essary reflect the influence on cancer risk, since BRCA1
and BRCA2 are multifunctional. The determination of the
clinical significance of UVs should therefore preferably
rely on clinical data, such as co-segregation analysis,
which is directly related to disease risk and requires few
assumptions. A disadvantage might be that most variants
are very rare and that large international collaborations
will be required to obtain enough informative families
with the same UV to obtain LR>1000, the threshold for
causality. There is one other drawback to the use of co-seg-

regation analysis; the UV might be in linkage disequilib-
rium with an unknown deleterious mutation in BRCA1 or
BRCA2. To reduced this possibility it is preferred that mul-
tiple families are included in the co-segregation analysis.

In the case of most unclassified variants, classification will
depend on several data sources (i.e. co-occurrence, family
history, tumour information, etc.) as have been described
by others [3,4]. In line with the approach of Osorio et al.
[6], we would like to opt for a model which is based on
information that is readily accessible in a clinical setting.
Clinical observations, such as co-segregation, family his-
tory and tumour information (e.g. LOH and CGH analy-
sis), are directly related to cancer risk and relatively
straightforward to quantify. Such a model will considera-
bly increase the clinical utility of BRCA1 and BRCA2
genetic testing.

Since unclassified variants are also detected in genes
underlying other genetic diseases, e.g. hereditary colon
cancer, such a model might be applicable more broadly in
a clinical genetic setting.

Conclusion
Co-segregation analysis on itself is in most cases insuffi-
cient to prove pathogenicity of an UV. The presented
method, with its user-friendly web application, simplifies
the use of co-segregation as one of the key features in a
multifactorial approach considerably. Users can upload a
file containing the pedigree information on the website to
calculate the likelihood ratio. Genotypes of distantly
related individuals with extreme phenotypes (i.e. very
early onset cancer or old healthy individuals) are most
informative and give the strongest likelihood ratios for or
against causality.
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