

 University of Groningen

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS
Fang, J.; Cao, M.; Morse, A. S.; Anderson, B. D. O.

Published in:
SIAM Journal on Control and Optimization

DOI:
10.1137/070679144

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Fang, J., Cao, M., Morse, A. S., & Anderson, B. D. O. (2009). SEQUENTIAL LOCALIZATION OF SENSOR
NETWORKS. SIAM Journal on Control and Optimization, 48(1), 321-350.
https://doi.org/10.1137/070679144

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://doi.org/10.1137/070679144
https://research.rug.nl/en/publications/ba23ee86-99d1-4a00-be10-67ca745da081
https://doi.org/10.1137/070679144

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. CONTROL OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 48, No. 1, pp. 321–350

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS∗

J. FANG† , M. CAO‡ , A. S. MORSE† , AND B. D. O. ANDERSON§

Abstract. The sensor network localization problem with distance information is to determine
the positions of all sensors in a network, given the positions of some of the sensors and the distances
between some pairs of sensors. A definition is given for a sensor network in the plane to be “se-
quentially localizable.” It is shown that the graph of a sequentially localizable network must have
a “bilateration ordering,” and a polynomial time algorithm is given for deciding whether or not a
network’s graph has such an ordering. A provably correct algorithm is given which consists of solving
a sequence of quadratic equations, and it is shown that the algorithm can localize any localizable
network in the plane whose graph has a bilateration ordering.

Key words. sensor networks, localization, graph theory, rigidity

AMS subject classifications. 68W01, 68R99

DOI. 10.1137/070679144

1. Introduction. Determining the positions of sensors is essential in many net-
work applications such as geographic routing, coverage and creating formations.
Equipping each sensor in a network with GPS is not feasible in many cases because of
the large number of sensors and the cost associated with a GPS unit. Hence, we attack
this problem by exploiting the connectivity of a sensor network and some common
capabilities of sensors. More specifically, we assume a sensor can measure its distances
to and communicate with certain other sensors in the network. The sensor network
localization problem with distance information is to determine the positions of all sen-
sors in a network given the positions of some sensors and the distances between some
pairs of sensors. A sensor whose position is given is called an anchor. A network in Rd

is said to be localizable if there exists exactly one position in Rd corresponding to each
nonanchor sensor such that the given intersensor distances are satisfied. The authors
of [5] use rigidity theory to give the necessary and sufficient conditions for a network
to be localizable. However, the process of localizing a network has been shown to be
NP-hard even when the network is known to be localizable [2]. This leaves us with
the more refined questions of how we should go about localizing networks, and what
kinds of networks can we “efficiently” localize.

The characterization of networks which can be “easily” or “efficiently” localized
is not complete, even for the ideal case where the given distance measurements are
exact. In [14], global nonlinear optimization techniques combined with heuristics are

∗Received by the editors January 3, 2007; accepted for publication (in revised form) September 2,
2008; published electronically February 11, 2009. The work of Fang, Cao, and Morse was supported
in part by grants from the U.S. Army Research Office and the U.S. National Science Foundation
and by a gift from the Xerox Corporation. The work of Anderson was supported by the Research
School of Information Sciences and Engineering and National ICT Australia which is funded by
the Australian Government’s Department of Communications, Information Technology and the Arts
and the Australian Research Council through the Backing Australia’s Ability initiative and the ICT
Center of Excellence Program.

http://www.siam.org/journals/sicon/48-1/67914.html
†Department of Electrical Engineering, Yale University, New Haven, CT 06520 (jia.fang@yale.edu,

as.morse@yale.edu).
‡Faculty of Mathematics and Natural Sciences, ITM, University of Groningen, Groningen, The

Netherlands (m.cao@rug.nl).
§Australian National University and National ICT Australia Ltd., 216 Northbourne Ave., Can-

berra ACT 2601 Australia (Brian.Anderson@nicta.com.au).

321

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

322 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

used to estimate sensor information. In [13], a “fold-free” layout of the network is first
estimated, and then force-based relaxation methods are used to refine the estimated
sensor positions. In [16, 15], the distance between each pair of sensors is estimated
from the given intersensor distances using a shortest path algorithm, and classical
multidimensional scaling techniques are used to assign positions to each sensor to
approximate the given distance information. In [3], a semidefinite programming–based
algorithm is given for a class of dense networks when a sufficiently large number of
intersensor distances are known. In this work, we are interested in provably correct
localization algorithms and the kinds of networks that can be “efficiently” localized by
them. We assume the given intersensor distances are exact distance measurements.

The characterization of efficiently localizable networks has been investigated in [1]
and we extend the results of that paper. We present a localization algorithm called
“Sweeps” which consists of solving a sequence of a finite number of quadratic equa-
tions, where the solution of each equation is easily obtainable by the well-known
quadratic formula. We give a simple graphical characterization of all networks which
can be localized by Sweeps, and we use graph rigidity theory to give some graphical
characterizations of networks that can be efficiently localized by Sweeps. We also
introduce the concept of “sequential” localization algorithms, and we say a network
is sequentially localizable if it can be localized by some sequential localization algo-
rithm. We show that Sweeps is a sequential localization algorithm which can localize
all sequentially localizable networks. The Sweeps algorithm we present in this work
is limited because we assume that the given intersensor distance measurements are
exact. We refer the interested reader to [6] in which we adapt the Sweeps algorithm
for the case of inaccurate distance measurements.

In section 2, we review the theoretical background of the localization problem
from graph rigidity theory, and we give the terms and definitions to be used in the
exposition that follows. In section 3, we introduce the notions of “bilateration or-
derings” and “sequentially localizable” networks. In section 4 we present the Re-
stricted Sweeps algorithm on which the Sweeps algorithm is based, and in section 5
we present the Sweeps algorithm. In section 6 we characterize the class of networks
localizable by Sweeps, and we show that all sequentially localizable networks are lo-
calizable by Sweeps. In section 7, we characterize some classes of networks which can
be “efficiently” localized by either Sweeps or Restricted Sweeps, and in section 8 we
characterize some classes of networks which are localizable by Restricted Sweeps. We
conclude with future work and research problems in section 9.

2. Background. A multipoint p = {p1, . . . , pn} in d-dimensional space is a set
of n points in Rd labeled p1, . . . , pn. Because we are concerned only with networks
in the plane, we will henceforth restrict our attention to the case of d = 2. Two
multipoints p = {p1, . . . , pn} and q = {q1, . . . , qn} of n points in R2 are congruent
if for all i, j ∈ {1, . . . , n}, the distance between pi and pj is equal to the distance
between qi and qj . A graph with vertex set V and edge set E is denoted (V , E). A
simple graph is a graph for which there is at most one edge between any two distinct
vertices, and no edge between a vertex and itself. A point formation of n points at a
multipoint p = {p1, . . . , pn} consists of p and a simple undirected graph G with vertex
set V = {1, . . . , n}, and is denoted by (G, p). If (i, j) is an edge in G, then the length
of edge (i, j) in the point formation (G, p) is the distance between pi and pj . Two
point formations with the same graph have the same edge lengths in the case when
the length of each edge in the graph is the same in both point formations.

For t ∈ R2, let ‖t‖ denote the Euclidean norm on R2. For any multipoint p =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 323

{p1, . . . , pn} in R2 and ε > 0, let Bp(ε) denote the set of all multipoints q = {q1, . . . , qn}
in R2, where ‖pi−qi‖ < ε for all i ∈ {1, . . . , n}. A point formation (G, p) is rigid in R2

if there exists ε > 0 such that for all q ∈ Bp(ε), p and q are congruent whenever (G, p)
and (G, q) have the same edge lengths. Roughly speaking, a rigid point formation is
one that cannot be continuously deformed without causing an edge length to change.
A graph G is said to be rigid in R2 if there exists a multipoint p in R2 and ε > 0
such that (G, q) is rigid in R2 for all q ∈ Bp(ε). A set consisting of a finite number
of elements from R is said to be algebraically independent over the rationals if its
elements do not satisfy any nonzero multivariable polynomial equation with rational
coefficients. A multipoint is said to be generic if the set consisting of the coordinates
of its points is algebraically independent over the rationals. It is known that if a
multipoint p is generic, then a point formation (G, p) is rigid if and only if G is rigid.

A point formation (G, p) in R2 is globally rigid in R2 if multipoints p and q are
congruent whenever (G, p) and (G, q) have the same edge lengths. In other words,
edge lengths of a globally rigid point formation uniquely determine all intervertex
distances. A graph G is said to be globally rigid in R2 if there exist multipoint p in
R2 and ε > 0 such that (G, q) is globally rigid in R2 for all q ∈ Bp(ε). It is known that
if a multipoint p in R2 is generic, then the point formation (G, p) is globally rigid in
R2 if and only if G is globally rigid in R2. For any integer k > 1, a graph is said to be
k connected if there does not exist a set of k − 1 vertices whose removal disconnects
the graph. It is known that a graph with four or more vertices is globally rigid in R2 if
and only if the graph is three connected and there does not exist an edge of the graph
whose removal results in a graph which is not rigid in R2 [10, 9, 4]. There are a number
of polynomial time algorithms such as Pebble Game for determining if a graph is rigid
in R2 [11]. Since the k connectedness of a graph can also be efficiently determined, it
follows that the global rigidity of a graph in R2 can be efficiently determined.

A network with n sensors is modeled by a point formation (G, p), where each sen-
sor corresponds to exactly one vertex of G, and vice versa, with (i, j) being an edge of
G if either i and j are both anchors or the distance between the corresponding sensors
is known and p = {p1, . . . , pn}, where pi is the position of the sensor corresponding
to vertex i. We say that G is the graph of the network and p is the multipoint of
the network. In this work we will be concerned only with networks in the plane.
It is known that if the multipoint of a network in R2 is generic, then the network
is localizable if and only if it has at least 3 noncollinear anchors and the graph of
the network is globally rigid in R2 [5]. Since almost all multipoints are generic, we
will, without loss of generality, restrict our attention to those networks with generic
multipoints [4]. In particular, for networks in the plane, this implies no two sensors
occupy the same point and no three sensors are collinear in the networks we consider.
For such networks, the localizability of the network depends only on the number of its
anchors and its graph. Because we are concerned only with networks in the plane, we
will refer to graphs that are globally rigid, or rigid, in R2 as simply globally rigid, or
rigid. To avoid trivial and degenerate cases, we will restrict our attention to networks
containing four or more sensors.

In the following, let N be a localizable network of n > 3 sensors in the plane
labeled 1 through n, and suppose the multipoint of the point formation modeling N
is generic. Let G = (V , E) be the graph of N. Since the multipoint of N is assumed
to be generic, we have that N is localizable if and only if G is globally rigid in R2

and N has at least three anchors. As noted previously, there are a number of efficient
algorithms for determining if a graph is globally rigid in R2 [11, 9, 10]. Hence, it
follows that the localizability of N can also be efficiently determined just by analyzing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

324 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

the graph of N and counting its anchors. Without loss of generality, suppose that for
each i ∈ {1, 2, . . . , n}, vertex i of G corresponds to sensor i and vice versa. For each
v ∈ V , let N (v) denote the set consisting of all vertices u where (u, v) ∈ E , and for
each u ∈ N (v) write duv for the distance between sensors u and v.

3. Sequentially localizable networks. Suppose A is a set of at least three
sensors of N and the vertices corresponding to the sensors in A induce a complete
graph in G, i.e., the distances among all pairs of sensors in A are known. Suppose a
position π(a) is assigned to each sensor a ∈ A such that all known distances among
the sensors of A are satisfied. Since N is localizable, it is straightforward to show that
the positions assigned to the sensors in A determine a unique position for each of the
sensors not in A. In other words, there corresponds exactly one position π(v) to each
of the sensors v ∈ V − A such that all known intersensor distances are satisfied, i.e.,
‖π(v) − π(u)‖ = duv for all (u, v) ∈ E . We call π(v), v ∈ V , the position of sensor v
relative to A, and we call A the set of proxy anchors of N. It is easy to show that if
sensors labeled a1, a2, a3 are three anchors whose positions are given either by GPS
or manual configuration, then the given anchor positions and π(a1), π(a2), π(a3) can
be used to compute a Euclidean transformation which maps each π(v), v ∈ V , to the
actual position of sensor v.

Let A denote a set of at least three proxy anchors of N, i.e., A is any set of three
sensors for which all distances among the sensors are given, and each sensor in A has
been assigned a position so that the given distances among them are satisfied. Let
π(u), u ∈ A, denote the position assigned to sensor u, and let π(v), v ∈ V , denote
the position of sensor v relative to A. For each sensor v and a set S of points in
the plane, we say that S is a candidate positions set of sensor v if π(v) ∈ S. If a
candidate positions set consists of a finite number of points, then the set is said to be
finite. By a sweep of N is meant any sequence v1, . . . , vn obtained by relabeling the n
sensors in any way. By a predecessor of a sensor in a sweep is meant any other sensor
preceding it in the sweep such that the distance between the two sensors is known. The
concatenation of a finite number of sweeps in a specific order is a multiple sweep. By a
sequential localization algorithm is meant any localization algorithm which processes
the sensors in a network, one by one, in a predetermined sequence in such a way
so that the sequence is a multiple sweep and the data for each successive sensor
v ∈ V −A in the sequence are either the empty set or a finite candidate positions set
for v computed using only the known distances between v and its predecessors, and
previously determined data for v and the predecessors of v. The data for sensor a ∈ A
is assumed to be the singleton candidate positions set consisting of just its assigned
position. Clearly, the position of sensor v relative to A is computed if a candidate
positions set consisting of just one element is computed for v. Suppose a singleton
candidate positions set has been computed for each sensor of N. If N has three
anchors, then the given positions of the anchors and their computed positions relative
to A can be used to obtain a Euclidean transformation which maps the computed
position of each sensor v to the actual position of sensor v. Since N is localizable, it
must have at least three anchors, so N can be localized by a sequential localization
algorithm followed by a Euclidean transformation. For any localizable network, we say
the network is sequentially localizable if it can be localized by a sequential localization
algorithm followed by a Euclidean transformation. Furthermore, we say the network is
sequentially localizable in k sweeps if the sequence in which the sensors are processed
is a multiple sweep, which is the concatenation of k sweeps.

A graph has a bilateration ordering if its vertices can be ordered as v1, . . . , vn

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 325

so that the subgraph induced by v1, v2, and v3 is complete, and each vi, i > 3, is
adjacent to at least two distinct vertices vj , j < i. As noted previously, to avoid
degenerate cases, all networks considered below will be assumed to contain at least
four sensors. The following is an easily shown property of the graphs of sequentially
localizable networks.

Lemma 1. A network is sequentially localizable only if its graph has a bilateration
ordering.

All proofs, unless otherwise stated, are given in the appendix.
A simple and well-known example of a sequential localization algorithm is based

on the trilateration operation, where the position of each sensor is determined using
its distances to three sensors whose positions have already been determined. Trilater-
ation can be applied to any localizable network in the plane possessing a special type
of sweep called a “trilateration ordering,” which means an ordering v1, . . . , vn of the
vertices of the network’s graph so that the subgraph induced by v1, v2, v3 is complete
and each vi with i > 3 is adjacent to at least three distinct vertices vj , j < i [1].
Clearly, a trilateration ordering of a graph is also a bilateration ordering, while a
bilateration ordering is not necessarily a trilateration ordering. Graphs with trilater-
ation orderings are known to be globally rigid in R2 [1]. Suppose G has a trilateration
ordering v1, . . . , vn. Assign positions pv1 , pv2 , pv3 to sensors v1, v2, v3, respectively, so
that their intersensor distances are satisfied, and let v1, v2, v3 be the proxy anchors of
N. As noted previously, the multipoint of N is assumed to be generic, which implies
no three sensor positions are collinear. Hence, beginning with v4, trilateration can
be used to determine a unique position pvi for each sensor vi, i > 3, using the given
distances between vi and its predecessors in the ordering, and the computed positions
of its predecessors. It is easy to show that the computed position of each sensor is
the position of the sensor relative to the proxy anchors. Moreover, the actual sensor
positions can be obtained from the computed positions pv, v ∈ V , via a Euclidean
transformation. Hence, the network can be localized by a sequence of trilateration
operations followed by a Euclidean transformation and is therefore sequentially lo-
calizable in one sweep. Furthermore, it is straightforward to show that a network’s
graph must have a trilateration ordering if the network is sequentially localizable in
one sweep.

Lemma 2. A localizable network is sequentially localizable in one sweep if and
only if its graph has a trilateration ordering.

From Lemma 2, we have that localizable networks whose graphs have trilateration
orderings are sequentially localizable; however, as we will show below, the converse
need not be true. The central aims of this paper are to explicitly characterize the class
of sequentially localizable networks and to present a sequential localization algorithm,
called Sweeps, which can localize all sequentially localizable networks. The main result
of this paper is the following.

Theorem 1. A localizable network is sequentially localizable if and only if the
graph of the network has a bilateration ordering. All sequentially localizable networks
are localizable by Sweeps.

The proof of Theorem 1 is given in section 6. Given a network whose multipoint
is generic, it is known that the network is localizable if and only if it has three
anchors and its graph is globally rigid in R2 [5]. From Theorem 1, it follows that
if a network has three anchors and its graph is globally rigid and has a bilateration
ordering, then the network is sequentially localizable and can be localized by Sweeps.
In section 3.1, we give a polynomial time algorithm for determining if a graph has a
bilateration ordering, and for identifying a bilateration ordering of the graph when

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

326 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

the graph has at least one such ordering. As noted previously, there are polynomial
time algorithms for determining if a graph is globally rigid in R2. Hence, it can be
efficiently determined if a network is sequentially localizable, and therefore localizable
by Sweeps, just by analyzing the graph of the network.

The graph H as shown in Figure 1(a) can be easily verified to be three connected
since there do not exist two vertices whose removal disconnects the graph. Further-
more, it can be shown using the Pebble Game, for example, that there does not exist
an edge of H whose removal results in a graph which is not rigid in R2 [11]. Hence,
H is globally rigid in R2 [9, 10]. It follows then that any network with three anchors
and a generic multipoint and whose graph is H must be localizable [5]. Furthermore,
H has a bilateration ordering but no trilateration ordering. Hence, if H is the graph
of a network with three anchors, then it follows from Theorem 1 that the network is
sequentially localizable and can be localized by Sweeps. However, since H does not
have a trilateration ordering, the network cannot be localized by only a sequence of
trilateration operations followed by a Euclidean transformation. We note that not
all localizable networks are sequentially localizable. For example, the graph in Fig-
ure 1(b) does not have a bilateration ordering since any bilateration ordering must
begin with three vertices, all of which are in either {1, 2, 3, 4, 5} or {6, 7, 8, 9, 10}, and
no vertex in {1, 2, 3, 4, 5} is adjacent to at least two vertices in {6, 7, 8, 9, 10}, and
vice versa. Furthermore, it can be checked that the graph is also globally rigid in R2

[11, 9, 10]. So if the graph in Figure 1(b) is the graph of a network with three anchors,
then the network is localizable but not sequentially localizable.

1

2
3

4
5

6

7

8

9

10
a

b

c
d

ef

(a) (b)

pa

pb

dau

dbu

a

c b

uv

(c) (d)

Fig. 1. (a) A globally rigid graph with a bilateration ordering, i.e., a,d,f,e,c,b, but no trilatera-
tion ordering. (b) A globally rigid graph without a bilateration ordering. (c), (d) Sensors a, b, and
c are anchors.

3.1. Bilateration orderings. As noted in [1] a graph with a trilateration or-
dering must also be globally rigid in R2. It is easy to show by example that a graph
with a bilateration ordering is not necessarily globally rigid in R2. However, a graph
with a bilateration ordering is necessarily rigid in R2. More specifically, given any
graph which is rigid in R2, it is known that if a new vertex x is added to the graph by
making x adjacent to two or more vertices of the graph, then the resulting graph is
again rigid in R2 [17]. Suppose G has a bilateration ordering, and let v1, v2, v3, . . . , vn

be any bilateration ordering of G. Let Gi, i ∈ {3, 4, . . . , n}, denote the graph induced
in G by all vertices vj where j ≤ i. Since the complete graph on three vertices is rigid,
it follows that G3 must be rigid. Now suppose Gi is rigid for some i ∈ {3, . . . , n− 1}.
Since Gi+1 can be obtained from Gi by making vi+1 adjacent to two or more vertices
of Gi, it follows that Gi+1 must also be rigid. By induction then, Gn, and therefore
G, must be rigid in R2. It is known that if a graph is rigid in R2, then the graph must
also be two connected. Therefore, any graph with a bilateration ordering is rigid in
R2 and two connected.

A graph may have zero, one, or multiple bilateration orderings. If there is no

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 327

set of three vertices of G which induce a complete subgraph in G, then G cannot
have a bilateration ordering. Suppose G has at least one set of three vertices which
induce a complete subgraph. In the following we give a polynomial time algorithm
for determining if G has a bilateration ordering, and for identifying a bilateration
ordering of G if there is at least one such ordering. Let x, y, z be any set of three
vertices which induce a complete subgraph in G, and let W1 = {x}, W2 = {y},
W3 = {z}. Suppose Wi for some i ≥ 3 has been defined. If there exists a vertex u in
V −

⋃
j≤i Wj such that u is adjacent to at least two vertices in

⋃
j≤i Wj , then define

Wi+1 = {u}. Otherwise, set Wi+1 = ∅ and stop the algorithm. Let W1, . . . ,Wh be
the nonempty sets generated by this procedure. Clearly, h = n if and only if there is
a bilateration ordering of the graph beginning with x, y, z. If h = n, then the ordering
obtained by labeling the vertex in Wi, i ∈ {1, . . . , n}, as vi is a bilateration ordering
of G. For each i ∈ {1, . . . , h}, we have that |V −

⋃
j≤i Wj | = n − i, and it takes

a number of operations that are linear in n to check if a vertex in V −
⋃

j≤i Wj is
adjacent to two vertices in

⋃
j≤i Wj . Hence, it takes a number of operations that are

polynomial in n to determine each of the sets W1, . . . ,Wh, where h is at most n. The
vertex labeling to obtain a bilateration ordering is clearly a linear time procedure.
Furthermore, there are at most

(
n
3

)
possible choices for the first three vertices of a

bilateration ordering, which implies it can be determined in polynomial time if a graph
has a bilateration ordering, and to identify a bilateration ordering if it exists. Since
the global rigidity of a graph in R2 can also be efficiently determined, we conclude
that it can be determined in polynomial time if a network is sequentially localizable
just by analyzing the graph of the network.

In the following, we describe a class of graphs for which a bilateration ordering
can be obtained beginning with any two adjacent vertices. A graph is called a cycle
if its vertices can be relabeled as c1, . . . , cm, m ≥ 2, such that ci is adjacent to cj if
and only if |i− j| = 1 or |i− j| = m− 1. The length of a cycle is the number of edges
in the cycle. Let H be any graph, and let C be any subgraph of H such that C is a
cycle. If vertices u and v are adjacent in H, and u and v are nonadjacent vertices in
C, then the edge (u, v) is called a chord of C. A graph H is said to be chordal if for
each subgraph which is also a cycle of length at least four, H contains at least one
chord of the cycle. A chordal graph is not necessarily rigid.

Lemma 3. Let H be a rigid and chordal graph with at least four vertices. Then
H has a bilateration ordering, and moreover, for each edge (u, v) in H, there exists a
bilateration ordering of H that begins with vertices u and v.

Hence, if a graph is rigid and chordal, then the graph has a bilateration ordering,
and furthermore, it is particularly easy to determine a bilateration ordering of the
graph since any two adjacent vertices must be the first two vertices of some bilateration
ordering. An additional simple consequence of Lemma 3 is that any rigid graph which
is also chordal must contain a “triangle,” i.e., a cycle of length three.

4. The Restricted Sweeps algorithm. In what follows we present a restricted
version of the Sweeps algorithm, called Restricted Sweeps, for the class of networks
whose graphs have bilateration orderings. The Sweeps algorithm is an extension of
this and will be given in section 5.

We begin with an informal description of Restricted Sweeps. A bilateration or-
dering of the network’s graph is first determined, assuming such an ordering exists,
and the sensors corresponding to the first three vertices of the ordering are designated
the proxy anchors. Positions are assigned to the proxy anchors so that the known dis-
tances among them are satisfied. For notational convenience, we assume each vertex of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

328 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

the network’s graph has the same label as that of the sensor to which it corresponds.
Roughly speaking, the algorithm “sweeps” through the network by processing the
sensors sequentially according to the chosen bilateration ordering, beginning with the
first sensor in the ordering which is not a proxy anchor. For each sensor which is not
a proxy anchor, a finite candidate positions set of the sensor is computed using the
known distances from the sensor to its predecessors in the ordering, and the candidate
positions sets, or assigned positions, of its predecessors. Recall that a predecessor of a
sensor in an ordering is simply any other sensor preceding it in the ordering such that
the distance between the two sensors is known. Once the last sensor in the ordering
is processed, a candidate positions set will have been computed for each sensor. We
call this first “sweep” a finite candidate positions set generating sweep. If not every
candidate positions set generated by the first sweep is a singleton, then subsequent
“refining” sweeps are performed to remove, if possible, elements from each candidate
positions set so as to obtain a candidate positions set of fewer elements. To perform a
refining sweep, an ordering distinct from the one used to perform the previous sweep
is determined, and the sensors are again processed sequentially according to the new
ordering. In section 8, we will give a polynomial time algorithm for determining order-
ings so as to localize the network in as few sweeps as possible by analyzing the graph
of the network. At the very least, the new ordering should be such that at least one
sensor with a nonsingleton candidate positions set has a predecessor in the ordering.
For each sensor v which is not a proxy anchor and whose candidate positions set is not
a singleton, the candidate positions sets of v’s predecessors in the new ordering, and
the known distances between v and its predecessors, are used to identify, if possible,
those points in v’s candidate positions set which cannot be sensor v’s position relative
to the proxy anchors. The identified points are removed from the candidate positions
set of sensor v to obtain a candidate positions set of fewer elements. We call each
sweep after the first sweep a refining sweep since the goal of each subsequent sweep
is to obtain smaller candidate positions sets.

To illustrate the general idea of a sweep, we use Restricted Sweeps to localize
a simple network whose graph is shown in Figure 1(c). For each pair of adjacent
vertices i, j, let dij denote the known distance between sensors labeled i and j. We
assume the multipoint of the network is generic, which implies in particular that no
three sensor positions are collinear. Vertices a, b, c correspond to the anchors, and
vertices u, v correspond to sensors whose positions are to be determined. Let pa, pb,
and pc denote the positions of anchors a, b, and c, respectively. It can be efficiently
determined that the graph in Figure 1(c) is globally rigid in R2 [9, 11, 10]. Since the
network has three anchors and a generic multipoint, it follows that the network must
be localizable.

For the sake of notational convenience, we choose for the first sweep the ordering
a, b, c, u, v, in which case the proxy anchors correspond to the actual anchors. The
algorithm begins by letting the candidate positions set of each anchor be the singleton
set consisting of the anchor’s position. Hence, the positions of sensors u and v relative
to the anchors a, b, c are simply their actual positions. For a point p ∈ R2 and a
positive real number r, let C(p, r) denote the circle with center p and radius r. Since
u is the first nonanchor sensor in the chosen ordering, the algorithm proceeds in
the first sweep by computing a finite candidate positions set for sensor u, which is
just the set of points where the two circles C(pa, dau) and C(pb, dbu) intersect. Since
no three sensor positions are collinear, it follows that C(pa, dau) and C(pb, dbu) must
intersect at exactly two points. For instance, if C(pa, dau) and C(pb, dbu) are as shown
in Figure 1(d), then the two points of intersection comprise the candidate positions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 329

set of sensor u. Let S(u, 1) denote the candidate positions set computed for sensor
u. Once a finite candidate positions set has been computed for sensor u, Restricted
Sweeps proceeds in the first sweep by determining a finite candidate positions set
for sensor v as follows. For each point p ∈ S(u, 1) which is distinct from both pa

and pc, let I(p) denote the points in the common intersection of the three circles
C(pa, dav), C(pc, dcv), and C(p, duv). The candidate positions set computed for sensor
v, denoted S(v, 1), is the union of all I(p), p ∈ S(u, 1) where p �= pa and p �= pc.
Now we show that S(v, 1) must be a singleton. Let pv be any point in S(v, 1).
Clearly, the distance from pv to anchors a and c must be dav and dcv, respectively.
Furthermore, since pv is in the intersection of C(pa, dav), C(pc, dcv), and C(pu, duv) for
some pu ∈ S(u, 1), we have that the distance between pu and pv must be duv. Note
that since pu ∈ S(u, 1), it follows that the distance between pu and anchors a and b
must be dua and dub, respectively. In other words, for each point pv ∈ S(v, 1), there
exists a point pu ∈ S(u, 1) such that all known intersensor distances are satisfied when
sensors v and u are assigned positions pv and pu, respectively, and the anchors are
simply assigned their given positions. Since the network is localizable, we have that
there exists exactly one point corresponding to each nonanchor sensor such that all
known intersensor distances are satisfied. Hence, it must be the case that S(v, 1) is a
singleton. By definition, the point in S(v, 1) must be the position of sensor v, so the
first sweep not only computes a finite candidate positions set for sensor v, but also
localizes sensor v since the computed candidate positions set is a singleton.

After the first sweep, a finite candidate positions set will have been determined
for both u and v. Since the candidate positions set of sensor u, i.e., S(u, 1), is not
a singleton, a second ordering is determined in order to perform a refining sweep.
Let the second ordering be a, b, c, v, u. Notice that the ordering has a sensor with a
nonsingleton candidate positions set, namely u, that also has at least one predecessor
in the ordering. More specifically, the predecessors of sensor u in the second ordering
are sensors a, b, and v. The second sweep begins by considering the first vertex in the
chosen ordering which has a nonsingleton candidate positions set, which in this case
would be sensor u. The Restricted Sweeps algorithm identifies, and removes, points
in S(u, 1) which cannot be the position of sensor u as follows. The key observation is
that if a point p ∈ S(u, 1) is the position of sensor u, then for each of u’s predecessors,
there must exist a point in the candidate positions set of the predecessor such that
p’s distance to that point is the known distance between u and the predecessor. If
this is not the case, then the point p can be removed from S(u, 1) to obtain a new
candidate positions set of fewer points.

Now we show that the second sweep will remove all but the actual position of
sensor u from S(u, 1). First, note that the distances between the actual position of
sensor u and the points in the singleton candidate positions sets of a, b, and v must be
dua, dub, and duv, respectively. So the actual position of sensor u will not be removed
from S(u, 1). Suppose there is a point q ∈ S(u, 1) such that q is not removed by
the second sweep; i.e., the distances between point q and the points in the singleton
candidate positions sets of a, b, and v are dua, dub, and duv, respectively. Clearly,
if sensor u is assigned point q as its position, and sensors a, b, c, v are assigned their
actual positions, then all known intersensor distances are satisfied. Since the network
is localizable, we have that there exists exactly one position corresponding to each
nonanchor sensor such that all known intersensor distances are satisfied. This implies
point q must be the actual position of sensor u, and all other points in S(u, 1) will have
been removed from S(u, 1) by the second sweep. Hence, the second sweep localizes
sensor u since the candidate positions set of u is a singleton after the second sweep.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

330 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

Also, since the candidate positions set of each sensor is a singleton after the second
sweep, it follows that Restricted Sweeps can localize the network in two sweeps.

4.1. Restricted Sweeps. Suppose the network N is localizable and the graph of
N, i.e., G, has at least one bilateration ordering. We first give the terms and definitions
to be used in describing the Restricted Sweeps algorithm. Let 2R

2
be the power set of

R2 and write R+ for the set of positive real numbers. Let f : 2R
2 ×R+ → 2R

2
denote

the function (S, d) 	−→ S′, where S′ is the set of p ∈ R2 such that ‖p − t‖ = d for
some t ∈ S. If S ∈ 2R

2
is not empty, then geometrically f(S, d) is the union of all

points in the plane which lie on circles with the same radius d centered at the points
in S. Of course if S is empty, then so is f(S, d) and conversely. We will be especially
interested in the case when S is a nonempty “finite set” and d > 0, where by finite
set we mean a set with a finite number of points in R2. In this case f(S, d) is simply
the union of a finite number of circles in the plane which all have radius d.

Let S denote the set of all nonempty subsets of R2 with finitely many elements.
Let q be a positive integer no smaller than 2 and write Sq for the q-fold Carte-
sian product of S with itself. Similarly, let (R+)q denote the q-fold Cartesian prod-
uct of R+ with itself. Our goal is to define a function gq : Sq × (R+)q → 2R

2
in

such a way so that for each {S1,S2, . . . ,Sq} ∈ Sq and {d1, d2, . . . , dq} ∈ (R+)q,
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite set. Furthermore, we shall re-
quire the definition of gq to be such that whenever there are distinct points ui ∈ Si,
i ∈ {1, 2, . . . , q}, if v ∈ R2 satisfies ‖v − ui‖ = di, i ∈ {1, 2, . . . , q}, then v must be a
point in gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq). Defining gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) in
the most obvious way as the intersection of the sets f(Si, di), i ∈ {1, 2, . . . , q}, will
not be adequate, for it may be the case that the resulting intersection is a continuous
circle of points in the plane rather than a finite set. However, a necessary condition
for this to occur is that

⋂q
j=1 Sj �= ∅. Hence, let I =

⋂q
j=1 Sj and let X be the

intersection of the sets f(S1\I, d1) and f(Si, di), i ∈ {2, . . . , q}, which is clearly finite.
For each point p in I, let Y(p) denote the intersection of f({p}, d1) and f(Si\{p}, di),
i ∈ {2, . . . , q}, which is again finite. By letting gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) be the
union of X and Y(p), p ∈ I, it is easy to see that gq satisfies all the aforementioned
requirements.

More formally, for S1, . . . ,Sq ∈ S, let I =
⋂q

j=1 Sj . Let k denote the number of
elements in I. If I is not the empty set, i.e., k > 0, then let p1, p2, . . . , pk denote
the elements of I. For any set S ∈ S, and any subset T ⊆ S, let S\T denote the
complement of T in S. Define the function gq : Sq × (R+)q → 2R

2
as follows:

gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) =
(

f(S1\I, d1) ∩ f(S2, d2) ∩ · · · ∩ f(Sq, dq)
)

⋃(
k⋃

i=1

f({pi}, d1) ∩ f(S2\{pi}, d2) ∩ ∩ f(Sq\{pi}, dq)

)
.(1)

For q ≥ 2, it is easy to show that gq is defined such that for each {S1,S2, . . . ,Sq} ∈
Sq and {d1, d2, . . . , dq} ∈ (R+)q, gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite
set. Furthermore, whenever there are distinct points ui ∈ Si, i ∈ {1, 2, . . . , q},
if v ∈ R2 satisfies ‖v − ui‖ = di, i ∈ {1, 2, . . . , q}, then v must be a point in
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq).

Let [v] = v1, v2, v3, . . . , vn be a bilateration ordering of G. We begin by assign-
ing a point π(i) in R2 to each vi, i ∈ {1, 2, 3}, so that the given distances among

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 331

the sensors corresponding to vi, i ∈ {1, 2, 3}, are satisfied. Let the proxy anchors
of N be v1, v2, v3. For each vi, i > 3, let π(vi) denote the position of sensor vi

relative to the proxy anchors. In the following, we will describe an iterative pro-
cedure for computing a sequence of candidate positions sets for each v ∈ V , i.e.,
S(v, 1),S(v, 2), . . . ,S(v, i),

For i ∈ {4, . . . , n}, let M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1}. We denote the cardi-
nality of M(vi) by qi and the elements of M(vi) by ui1, ui2, . . . , uiqi . Clearly qi ≥ 2
for all i ∈ {4, . . . , n} since [v] is a bilateration ordering. We define the sets S(vi, 1),
i ∈ {1, 2, . . . , n}, as follows. For i ∈ {1, 2, 3}, let

(2) S(vi, 1) = {π(i)},

and for i ∈ {4, 5, . . . , n}, let

(3) S(vi, 1) = gqi(S(ui1, 1),S(ui2, 1), . . . ,S(uiqi , 1), dui1vi , dui2vi , . . . , duiqi
vi).

Suppose S(v, k), v ∈ V , have been computed. The sets S(v, k + 1), v ∈ V ,
are computed as follows. Let [x] = x1, x2, . . . , xn be an ordering of V , and for i ∈
{1, . . . , n} let M(xi) = N (xi) ∩ {x1, x2, . . . , xi−1}. Note that [x] need not be a
bilateration ordering. For i ∈ {1, 2, 3, . . . , n}, if M(xi) = ∅ or |S(xi, k)| = 1, then let

(4) S(xi, k + 1) = S(xi, k).

Otherwise, let

(5) S(xi, k + 1) = S(xi, k)
⋂(⋂

w∈M(xi)

f(S(w, k + 1), dwxi)

)
.

4.2. Properties of the Restricted Sweeps algorithm. In the following, we
will show that for all v ∈ V , each S(v, i) is a finite candidate positions set for v, i.e.,
π(v) ∈ S(v, i), and S(v, j) ⊆ S(v, i) if i < j.

Since [v] is assumed to be a bilateration ordering, each M(vi), i > 3, has at least
two elements and so qi ≥ 2. Hence, for i ∈ {4, . . . , n}, gqi is defined, and (3) implies
that S(vi, 1) is a finite set because the image of gqi consists of only finite sets. Since
S(vi, 1), i ∈ {1, 2, 3}, are also finite sets because of (2), we have that S(v, 1) is a
finite set for each v ∈ V . Note also that π(vi) ∈ S(vi, 1), vi ∈ V . This is clearly
true for i ∈ {1, 2, 3} because of (2). For any vertex v ∈ V , an easily verified property
of the function f is that if u ∈ N (v), and S(u) is a set for which π(u) ∈ S(u),
then π(v) ∈ f(S(u), duv). We call this the position keeping property of f . The fact
that π(v), v ∈ V , are distinct, together with the definition of gqi and the position
keeping property of f , implies that π(vi) ∈ S(vi, 1) for i ∈ {4, . . . , n}. So each S(v, 1),
v ∈ V , is a finite candidate positions set for sensor v, and we call the computation
of S(v, 1), v ∈ V , a finite position generating sweep of N. Suppose for some k ≥ 1
that S(v, k), v ∈ V , is a finite candidate positions set for v, i.e., π(v) ∈ S(v, k).
For each xi, (5) and (4) imply that S(xi, k + 1) must be a finite set since S(xi, k)
is a finite set. The fact that π(xi) ∈ S(xi, k) and the position keeping property
of f imply π(xi) ∈ S(xi, k + 1) for each xi. So for each v ∈ V , S(v, k + 1) is a
finite candidate positions set for v; furthermore, it is obvious from (5) and (4) that
S(v, k + 1) ⊆ S(v, k) for all v ∈ V . It follows from (2), (3), (5), and (4) that each
S(v, i), v ∈ V , i ∈ {1, . . . , k + 1}, is computed using S(u, i), where u is a predecessor

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

332 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

of v in the ordering chosen for the ith sweep, and S(v, i−1) when i > 1. By definition
then, the Restricted Sweeps algorithm is a sequential localization algorithm.

The preceding shows that if we sweep through the network a finite number of
times beginning with a finite position generating sweep, we can generate a sequence
of finite candidate positions sets for each v ∈ V , i.e., S(v, 1),S(v, 2), . . . ,S(v, i), . . . ,
such that S(v, 1) ⊇ S(v, 2) ⊇ · · · ⊇ S(v, i) ⊇ · · · . As we will show in section 4.3,
each S(v, 1), v ∈ V , is obtained by solving a sequence of a finite number of quadratic
equations, and each S(v, i), v ∈ V , i > 1, is obtained by computing the distance
between a finite number of specified pairs of points. Thus if we can sweep through
the network a finite number of times, say k, such that for all v ∈ V , each S(v, k) will
contain just one element, then that element must be π(v). Since N is localizable, N
must have at least three anchors, so the sensor positions can be obtained from π(v),
v ∈ V , via a Euclidean transformation computed from the anchors. In this case, we say
the network is localizable by the Restricted Sweeps algorithm in k sweeps followed
by a Euclidean transformation. In section 8, we will give the graph properties of
networks for which we can choose sweep orderings so that the first sweep is a finite
position generating sweep and the network is localized in as few sweeps as possible.
We will also describe the procedure by which we can efficiently determine the sweep
orderings by analyzing the network’s graph.

4.3. Quadratic equations. The localization of N can be formulated mathe-
matically as a system of |E| simultaneous quadratic equations in |V| variables:

(6) (xi − xj)2 + (yi − yj)2 = d2
ij ∀ (i, j) ∈ E ,

where (xi, yi) denotes the unknown position of sensor i. In the following we show that
the Restricted Sweeps algorithm is equivalent to solving a sequence of a finite number
of quadratic equations, where each equation has just one unknown, the solution of
which is easily obtained by the well-known quadratic formula, and computing the
distance between a finite number of specified pairs of points.

We first consider the computation of S(v, 1), v ∈ V . Each S(v, 1) is defined using
the function gq defined in (1). Since the ordering used for the first sweep must be
a bilateration ordering, it must be the case that q is at least 2 in (3). Computing
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is equivalent to solving the following system of equa-
tions in variables x and y for each collection of q points (ai, bi), i ∈ {1, . . . , q}, where
each (ai, bi) ∈ Si and not all q points are identical:

(7) (x − ai)2 + (y − bi)2 = d2
i , i ∈ {1, . . . , q}.

First, consider the case where q = 2. The equations in (7) become

(x − a1)2 + (y − b1)2 = d2
1,(8)

(x − a2)2 + (y − b2)2 = d2
2.(9)

Equations (8) and (9) are satisfied by the coordinates of the points of intersection,
if any, of the two circles with radii d1 and d2, and centered at (a1, b1) and (a2, b2),
respectively. Since (a1, b1) and (a2, b2) are assumed to be nonidentical, the coordinates
of at most two points in the plane can satisfy (8) and (9). See Figure 2 for the
three cases where the two circles intersect at two, one, and zero points respectively.
Equations (8) and (9) can be rewritten as one quadratic equation in one variable in
the obvious way. Since (ai, bi), i ∈ {1, . . . , q}, are assumed to be distinct, it must be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 333

(a1,b1)

d1

d2

(a2,b2)

(a1,b1)

d1

d2

(a2,b2)

(a1,b1)

d1

d2

(a2,b2)

(a) (b) (c)

Fig. 2. (a) Two intersection points. (b) One intersection point. (c) Zero intersection points.

the case that either a1 − a2 �= 0 or b1 − b2 �= 0. Without loss of generality, suppose
the latter is true. By subtracting (9) from (8), the quadratic terms cancel, and we get

(10) y =
d2
1 − d2

2 − (b2
1 − b2

2 + a2
1 − a2

2) − (−2a1 + 2a2)x
−2b1 + 2b2

.

Hence, (8) can be rewritten as a quadratic equation of just the variable x:

(11) (x − a1)2 +
(

d2
1 − d2

2 − (b2
1 − b2

2 + a2
1 − a2

2) − (−2a1 + 2a2)x
−2b1 + 2b2

− b1

)2

= d2
1.

Obviously, if (x, y) satisfies (8) and (9), then x must satisfy (11). On the other hand,
suppose x satisfies (11) and y satisfies (10); then x and y must also satisfy (8). So, if
we let P1(x, y) = (x− a1)2 + (y − b1)2 − d2

1, P2(x, y) = (x− a2)2 + (y − b2)2 − d2
2, and

P3(x, y) = P1(x, y) − P2(x, y), then x, y satisfy P1(x, y) = 0 and P3(x, y) = 0. Since
P3(x, y) = P1(x, y)−P2(x, y), this implies P2(x, y) = 0, which implies that (9) is also
satisfied by x and y. Therefore, x and y satisfy (8) and (9) if and only if they also
satisfy (11) and (10). Hence, for the case where q = 2, solving for x, y which satisfy
(8) and (9) reduces to solving a quadratic equation in x and then solving for y via
substitution. Since we are interested only in points in the real plane whose coordinates
satisfy (8) and (9), any complex solutions to (8) and (9) are discarded. Clearly, when
q > 2, solving for x, y which satisfy (7) can be similarly reduced to solving a quadratic
equation in x and then solving for y via substitution. Furthermore, it is not difficult
to show that when q > 2 the solution to (7) can be obtained by just solving a linear
system of equations. Since each Sj , j ∈ {1, . . . , q}, is a finite set, it follows that
computing S(v, 1), v ∈ V , in Restricted Sweeps is equivalent to solving a sequence of
a finite number of polynomial equations, each in one variable and each with degree
at most two, the solution of which is easily obtained by the quadratic formula.

Now consider the computation of S(v, k), v ∈ V , for k > 1. Let M(v) denote the
vertices adjacent to v which also precede v in the ordering chosen for the kth sweep.
If M(v) = ∅, then S(v, k) = S(v, k − 1), so suppose M(v) is nonempty, and let
u1, . . . , um, m ≥ 1, denote the elements of M(v). When M(v) is nonempty, S(v, k)
is computed using (5). It follows from (5) that S(v, k) is obtained by removing all
points p from S(v, k−1) for which there does not exist points p1 ∈ S(u1, k), . . . , pm ∈
S(um, k) such that ‖p − pi‖ = duiv for each i ∈ {1, . . . , m}. Hence, (5) consists
of computing the distances between pairs of points in S(v, k − 1) and S(ui, k), i ∈
{1, . . . , m}. From this, we conclude that Restricted Sweeps is equivalent to solving a
sequence of a finite number of quadratic equations, where the solution of each equation
is easily obtained by the well-known quadratic formula, and computing the distance
between a finite number of specified pairs of points.

5. The Sweeps algorithm. An extension to the Restricted Sweeps algorithm
was proposed in [7]. The Sweeps algorithm to be presented in what follows is based
upon the extension to the Restricted Sweeps algorithm which we now describe.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

334 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

Like the Restricted Sweeps algorithm, Sweeps is a localization algorithm for the
class of networks whose graphs have bilateration orderings. As in Restricted Sweeps,
the Sweeps algorithm “sweeps” through the network according to a predetermined
bilateration ordering of the sensors and computes a finite candidate positions set for
each sensor using the candidate positions sets of its predecessors and known distances.
The key difference in Sweeps is that a “subassignment” function is associated with each
point in the candidate positions set computed for a sensor. We illustrate this using a
simple example. We first define an assignment of N to be any function α : V → R2. By
a subassignment of N is meant any function that is the restriction of an assignment to
a nonempty subset of V . Suppose u, v, w, x is a subsequence of the ordering chosen for
the first sweep, i.e., the finite candidate positions set generating sweep, and suppose v
and w are each adjacent to both u and x, as shown in Figure 3(a). Let S(u, 1), S(v, 1),
and S(w, 1) denote the candidate positions sets of u, v, w, respectively, computed in
the first sweep by Restricted Sweeps. Since u is a predecessor of both v and w
in the ordering, S(u, 1) is used in the computations of both S(v, 1) and S(w, 1).
More specifically, suppose v has predecessors u and u′. From (3), we have that each
point pv ∈ S(v, 1) is obtained by computing the intersection of circles centered at
distinct points pu and pu′ for some pu ∈ S(u, 1) and pu′ ∈ S(u′, 1). Hence, pv can be
considered a candidate position of sensor v under the assumption that sensors u and
u′ are positioned at pu and pu′ , respectively. A graphical illustration of this is shown
in Figure 3(b).

pv

pu

pu’

u

v
w

x

2(u2)2(u2)

p

dvu2dvu2

dvu1dvu1 1(u1)1(u1)

(a) (b) (c)

Fig. 3.

In the Restricted Sweeps algorithm, the candidate positions set of sensor v con-
tains no “record” of the fact that pv was computed assuming u is positioned at pu and
u′ is positioned at pu′ . The Sweeps algorithm extends Restricted Sweeps by using a
subassignment to keep track of the fact that pv was computed assuming sensors u and
u′ are positioned at pu and pu′ , respectively. So a subassignment β is associated with
pv, where the domain of β contains v, u, u′ and β(v) = pv, β(u) = pu, and β(u′) = pu′ .
More generally, for each sensor v and each point p in the candidate positions set of v,
the assumed position of each sensor whose candidate positions set was either directly
or indirectly used in computing p is kept track of via a subassignment function. In
reference to Figure 3(a), suppose pv ∈ S(v, 1) is computed assuming sensor u is po-
sitioned at pu, and qw ∈ S(w, 1) is computed assuming sensor u is positioned at qu,
where qu �= pu. Since both v and w are predecessors of x, we have that the candidate
positions sets of both v and w are used in computing the candidate positions set of
x. For the sake of this example, suppose that the only predecessors of x are v and w.
In Restricted Sweeps, pv and qw would be used in computing the candidate positions
set of x. More specifically, if the circle centered at pv with radius dvx and the circle
centered at qw with radius dwx intersect at one or more points, then each of those
points would be an element in the candidate positions set of x. In Sweeps, however,
pv and qw would not be used in computing the candidate positions set of sensor x

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 335

because the two points were computed assuming different positions for sensor u. For
certain networks, the candidate positions sets generated by Sweeps contain signifi-
cantly fewer elements than those generated by Restricted Sweeps. And as we will
see in section 7, the computational complexity of localizing a network by Sweeps, or
Restricted Sweeps, is entirely dependent on the number of elements in the generated
candidate positions sets.

5.1. Sweeps. Suppose the network N is localizable and the graph of N, i.e.,
G, has at least one bilateration ordering. We first give the terms and definitions
to be used in describing the Sweeps algorithm. An assignment α is consistent if
‖α(u)−α(v)‖ = duv for all (u, v) ∈ E . Let D(α) denote the domain of a subassignment
α. Two subassignments α and β are said to be consistent with each other, and we write
α ∼ β, if there does not exist u ∈ D(α)∩D(β) such that α(u) �= β(u). For p ∈ R2 and
a positive real number r, let C(p, r) denote the circle of radius r centered at p. Let
α1, . . . , αk be a collection of k ≥ 1 pairwise consistent subassignments, i.e., αi ∼ αj

for all i, j ∈ {1, . . . , k}, and define uk(α1, . . . , αk) as the subassignment with domain⋃
i∈{1,...,k} D(αi) whose restriction to D(αi) is equal to αi for each i ∈ {1, . . . , k}.

Consider a collection of k ≥ 2 pairwise consistent subassignments α1, . . . , αk.
Suppose there are vertices v ∈ V and ui ∈ D(αi), i ∈ {1, . . . , k}, such that (v, ui) ∈ E
for all i ∈ {1, . . . , k}, and v is not an element of the domain of any αi. If there is a point
p whose distance to each αi(ui), i ∈ {1, . . . , k}, is dvui , then roughly speaking, p is a
candidate position for sensor v assuming each sensor ui, i ∈ {1, . . . , k}, is positioned at
αi(ui). More generally, p can be viewed as a candidate position for sensor v assuming
each sensor u ∈

⋃
i∈{1,...,k} D(αi) is positioned at α(u), where α = uk(α1, . . . , αk). We

aim to define a set M(α1, . . . , αk, v, u1, . . . , uk) with the goal of keeping track of the
candidate positions of sensor v assuming sensors ui, i ∈ {1, . . . , k}, are positioned at
αi(ui), i ∈ {1, . . . , k}, respectively. Since sensor positions are assumed to be distinct,
we shall be interested only in the case where αi(ui), i ∈ {1, . . . , k}, are distinct. See
Figure 3(c) for an illustration of the case when k = 2. To keep track of the fact
that p is a candidate position for sensor v assuming each sensor ui, i ∈ {1, . . . , k}, is
positioned at αi(ui), define the subassignment βp with domain {v}∪

⋃
i∈{1,...,k} D(αi)

such that βp(v) = p and βp(ui) = αi(ui) for each i ∈ {1, . . . , k}:

(12) βp(v) = p, βp(u) = ζ(u) ∀ u ∈
⋃

i∈{1,...,k}
D(αi),

where ζ = uk(α1, . . . , αk). Let M(α1, . . . , αk, v, u1, . . . , uk) denote the set of all such
βp. More formally, if

⋂
j∈{1,...,k} C(αj(uj), dvuj) = ∅, or αi(ui) = αj(uj) for some

i, j ∈ {1, . . . , k}, i �= j, then let M(α1, . . . , αk, v, u1, . . . , uk) = ∅. Otherwise, since
k ≥ 2, it is easy to see that

⋂
j∈{1,...,k} C(αj(uj), dvuj) is a set consisting of at most q

points in R2, where q is at most 2. Let the points be denoted by p1, . . . , pq, and let

(13) M(α1, . . . , αk, v, u1, . . . , uk) = {βp1 , . . . , βpq}.

In the Sweeps algorithm, a sequence of finite sets of subassignments S(v, 1), . . . ,
S(v, j) is computed for each v ∈ V , where for each i ∈ {1, . . . , j}, v is in the domain of
each subassignment in S(v, i), and {β(v) | β ∈ S(v, i)} is a finite candidate positions
set for v.

Let [v] = v1, v2, v3, . . . , vn be a bilateration ordering of G. We begin by assigning
a point π(vi) in R2 to each vi, i ∈ {1, 2, 3}, so that the known distances among the
sensors corresponding to vi, i ∈ {1, 2, 3}, are satisfied. Let the proxy anchors of N be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

336 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

v1, v2, v3. For each vi, i > 3, let π(vi) denote the position of sensor vi relative to the
proxy anchors. For vi, i ∈ {1, 2, 3}, let αi be the subassignment with domain {vi},
where αi(vi) = π(vi). For i ∈ {1, 2, 3}, let S(vi, 1) be defined as

(14) S(vi, 1) = {αi}, i ∈ {1, 2, 3}.

The sets S(vi, 1), i > 3, are computed iteratively as follows. For vi, i > 3, let M(vi) =
N (vi) ∩ {v1, . . . , vi−1}. Since [v] is a bilateration ordering, each M(vi), i > 3, must
be a set of at least two elements. Let u1, . . . , um be the elements of M(vi). In order
to compute S(vi, 1), we consider each collection of pairwise consistent subassignments
αj ∈ S(uj , 1), j ∈ {1, . . . , m}. Suppose M(α1, α2, . . . , αm, vi, u1, u2, . . . , um) �= ∅, and
let β ∈ M(α1, α2, . . . , αm, vi, u1, u2, . . . , um). From (12), we have that vi, u1, . . . , um ∈
D(β), β(uj) = αj(uj) for all j ∈ {1, . . . , m}, and β(vi) is a candidate position of sensor
vi assuming that each sensor u ∈ D(β) is positioned at β(u), and more specifically, that
each sensor uj , j ∈ {1, . . . , m}, is positioned at αj(uj). The set S(vi, 1) is intended to
be the set of all such subassignments β, where β ∈ M(α1, α2, . . . , αm, vi, u1, u2, . . . , um)
and αj ∈ S(uj , 1), j ∈ {1, . . . , m} is a collection of pairwise consistent subassignments.
Hence, S(vi, 1) is defined as

(15)
S(vi, 1) =

⋃
αj∈S(uj ,1) ∀ j∈{1,...,m} and αj∼αk ∀ j,k∈{1,...,m}

M(α1, . . . , αm, vi, u1, . . . , um).

Note that since |M(vi)| ≥ 2 for each vi, where i > 3, it follows that each S(v, 1)
consists of a finite number of elements.

Suppose for some k ≥ 1 that S(u, k), u ∈ V , have been computed, and that each
S(u, k) consists of a finite number of elements. Let u1, . . . , un, denoted [u], be any
ordering of the vertices such that the first three vertices of [u] coincide with the proxy
anchors: u1 = v1, u2 = v2, u3 = v3. Note that [u] is not required to be a bilateration
ordering. Once the ordering [u] is selected, the sets S(u, k + 1), u ∈ V , are computed
iteratively as follows. For i ∈ {1, 2, 3}, let S(ui, k + 1) = S(ui, k). For i ∈ {4, . . . , n},
let M(ui) = N (ui) ∩ {u1, . . . , ui−1}, and let S(ui, k + 1) = S(ui, k) if M(ui) = ∅. If
M(ui) is nonempty, then let w1, . . . , wm be the elements of M(ui). For notational
convenience, let w0 denote ui. Suppose α0 is a subassignment in S(ui, k) for which
there exists a collection of subassignments αj ∈ S(wj , k + 1), j ∈ {1, . . . , m}, such
that α0, α1, . . . , αm are pairwise consistent and ‖α0(ui)− αj(wj)‖ = duiwj for all wj ,
j ∈ {1, . . . , m}. In this case, α0(ui) can be considered a candidate position for sensor
ui assuming that each wj , j ∈ {1, . . . , m}, is positioned at αj(wj), and more generally,
that each w ∈ D(αj), j ∈ {1, . . . , m}, is positioned at αj(w). Hence, if α0 is “aug-
mented” to a subassignment α, where α = um+1(α0, α1, . . . , αm), then α(ui) = α0(ui)
and α(wj) = αj(wj) for all j ∈ {1, . . . , m}, and α(w) = αj(w) for each w ∈ D(αj),
j ∈ {1, . . . , m}. Roughly speaking, S(ui, k + 1) is the set of subassignments obtained
from S(ui, k) by “augmenting” each such subassignment α0 to um+1(α0, α1, . . . , αm).
Now suppose β is a subassignment in S(ui, k) for which there does not exist some
collection of subassignments βj ∈ S(wj , k+1), j ∈ {1, . . . , m}, such that β, β1, . . . , βm

are pairwise consistent and ‖β(ui) − βj(wj)‖ = duiwj for all wj , j ∈ {1, . . . , m}. It
is straightforward to show that β(ui) cannot be the position of sensor ui relative to
the proxy anchors, and so β is not used to define any subassignment in S(ui, k + 1).
Roughly speaking, β(ui) is removed from consideration as a candidate position for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 337

sensor ui. More formally, S(ui, k + 1) is defined as

S(ui, k + 1) =

{
um+1(α0, α1, . . . , αm) | α0 ∈ S(ui, k),(16)

αj ∈ S(wj , k + 1) ∀ j ∈ {1, . . . , m},
αh ∼ αj , αh(wh) �= αj(wj) ∀ h, j ∈ {0, 1, . . . , m},

α0(ui) ∈
⋂

j∈{1,...,m}
C(αj(wj), duiwj)

}
.(17)

Since each S(v, k), v ∈ V , consists of a finite number of elements, it follows from (17)
that S(v, k + 1) must also consist of a finite number of elements.

By the same argument as that used in section 4.3, it follows that Sweeps is
equivalent to solving a sequence of a finite number of quadratic equations, where
each equation has just one unknown, the solution of which is easily obtained by the
well-known quadratic formula, and computing the distance between a finite number
of specified pairs of points.

5.2. Properties of Sweeps. As noted previously, each of the sets computed by
the Sweeps algorithm consists of a finite number of subassignments. In the following,
we give some additional properties of these sets.

Lemma 4. Let w be any vertex of G. If vertices u, v are adjacent in G, and
u, v ∈ D(β) for some β ∈ S(w, 1), then ‖β(u) − β(v)‖ = duv.

From (17), we have that each subassignment α ∈ S(v, 2), v ∈ V , is a subassign-
ment “augmented” from some subassignment α̂ ∈ S(v, 1), i.e., α = um+1(α̂, α1, . . . , αm).
From this and Lemma 4 we can show the following.

Lemma 5. Let w be any vertex of G. If vertices u, v are adjacent in G, and
u, v ∈ D(β) for some β ∈ S(w, 2), then ‖β(u) − β(v)‖ = duv.

Recall that v1, . . . , vn was the ordering used to compute S(v, 1), v ∈ V , and
v1, v2, v3 are the proxy anchors of N whose assigned positions are π(v1), π(v2), and
π(v3), respectively. Since N is localizable, there exists exactly one consistent assign-
ment ᾱ of N, where ᾱ(vi) = π(vi) for each i ∈ {1, 2, 3}. Furthermore, for each
v ∈ V , ᾱ(v) is the position of sensor v relative to the proxy anchors. Suppose
S(v, 1),S(v, 2), . . . ,S(v, k) are computed for each v ∈ V .

Lemma 6. For each v ∈ V and i ∈ {1, . . . , k}, there is a β ∈ S(v, i) which is the
restriction of ᾱ to the domain of β and v ∈ D(β).

Each S(vi, k), k ≥ 1, is computed using sets S(vj , k), where vj is a predeces-
sor of vi in the kth chosen ordering, and S(vi, k − 1) when k > 1. Recall that
the sensors of N are labeled 1, . . . , n and V = {1, . . . , n}. Each subassignment
β may be represented as a sequence of n points, where the ith point in the se-
quence is β(i) if i ∈ D(β) and is ∅ otherwise. Hence, if β1, . . . , βm are m subassign-
ments, where subassignment βi is represented by the sequence pi1, . . . , pin, then the
set consisting of subassignments β1, . . . , βm can be represented by the set of points
{p11, . . . , p1n, p21, . . . , p2n, . . . , pm1, . . . , pmn}. From Lemma 6 we have that for each
sensor v and each computed ith sweep, the set {β(v) | β ∈ S(v, i)} is a finite candidate
positions set for v. By definition then, Sweeps is a sequential localization algorithm.

6. Graphical properties of networks localizable by Sweeps. In the follow-
ing, we show that the necessary condition for a localizable network to be sequentially
localizable is also a sufficient condition for the network to be localizable by the Sweeps

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

338 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

algorithm. More specifically, we show that all localizable networks whose graphs have
bilateration orderings can be localized by computing S(v, k), v ∈ V , where k ≤ 2,
with the Sweeps algorithm, and we give an efficient algorithm for determining the
sensor ordering of each sweep.

Let A denote any set of three vertices in G which induce a complete graph in G.
Let H1, H2, . . . , Hc denote the maximally connected components of the subgraph of G
induced by vertices in V −A. The following is a consequence of the assumption that
N is localizable.

Lemma 7. For each i ∈ {1, . . . , c}, the graph induced in G by A and the vertices
of Hi is globally rigid in R2.

Let H be Hi for any i ∈ {1, . . . , c}, and let u be any vertex of H. In the following
we construct a partition of the vertex set of H. Let N0(u) = {u}, and let N1(u)
denote the set of vertices in V − A adjacent to u. Suppose for some integer i ≥ 1,
Nj(u), j ∈ {0, 1, . . . , i}, have been determined. Let Ni+1(u) denote the set of vertices
w ∈ V −A, where w /∈

⋃
j∈{0,...,i} Nj(u) and w is adjacent to a vertex in Ni(u). Since

there are a finite number of vertices, there can be only a finite number of sets generated
this way. Suppose we have h+1 sets generated this way: N0(u),N1(u), . . . ,Nh(u). It
is straightforward to show that the sets Ni(u), i ∈ {0, 1, . . . , h}, make up a partition
of the vertices of H. We call Ni(u), i ∈ {0, 1, . . . , h}, a vertex partition of H. Let n′

denote the number of vertices in H. Select any n′ elements of {|A| + 1, . . . , n}, and
order them as i1, i2, . . . , in′ so that i1 < i2 < · · · < in′ . Assign indices 1 to |A| to
vertices in A in any manner, and assign index in′ to vertex u. Assign the remaining
indices ij , j ∈ {1, 2, . . . , n′−1}, to vertices in N1, . . . ,Nh beginning with N1 and n′−1;
i.e., assign indices in′−1 to in′−|N1(u)| to the vertices in N1(u) in any manner, assign
indices in′−|N1(u)|−1 to in′−|N1(u)|−|N2(u)| to the vertices in N2(u) in any manner, and
so on. We call this ordering a complete ordering of the vertices of H with respect to
u and A, or just a complete ordering of the vertices of H with respect to A.

For each i ∈ {1, . . . , c}, let ui be any vertex in Hi. Since the vertex sets of
Hi, i ∈ {1, . . . , c}, are pairwise disjoint, we can construct an ordering of V that is a
complete ordering of Hi with respect to ui and A for all i ∈ {1, . . . , c}. We call this a
complete ordering of G with respect to u1, . . . , uc and A, or just a complete ordering
of G with respect to A.

Let v1, v2, v3, . . . , vn be any bilateration ordering of G, and suppose S(v, 1), v ∈ V ,
are computed using this ordering. This implies that sensors corresponding to v1, v2, v3

make up the set of proxy anchors, and v1, v2, v3 induce a complete subgraph in G.
Let A = {v1, v2, v3}, and let π(v1), π(v2), and π(v3) be the positions assigned to
the proxy anchors v1, v2, v3, respectively. Since N is localizable, there is exactly one
consistent assignment ᾱ of N such that ᾱ(vi) = π(vi), i ∈ {1, 2, 3}. As noted previ-
ously, the actual sensor positions can be obtained from ᾱ(v), v ∈ V , via a Euclidean
transformation computed using anchor positions. For i ∈ {1, . . . , c}, let ui be any
vertex in Hi.

Lemma 8. Suppose the ordering used to compute the second sweep, i.e., S(v, 2),
v ∈ V, is a complete ordering of G with respect to u1, . . . , uc and {v1, v2, v3}. For
each i ∈ {1, . . . , c}, and all α ∈ S(ui, 2), D(α) is the union of {v1, v2, v3} and the
vertex set of Hi.

The following is a consequence of Lemmas 5, 6, 7, and 8.
Lemma 9. Suppose the ordering used to compute the second sweep, i.e., S(v, 2),

v ∈ V, is a complete ordering of G with respect to u1, . . . , uc and {v1, v2, v3}. For
each i ∈ {1, . . . , c}, S(ui, 2) is a singleton, and the subassignment in S(ui, 2) is the
restriction of ᾱ to the union of {v1, v2, v3} and the vertex set of Hi.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 339

If the ordering used to compute the second sweep, i.e., S(v, 2), v ∈ V , is a complete
ordering of G with respect to u1, . . . , uc and {v1, v2, v3}, then Lemma 9 implies that
each S(ui, 2), i ∈ {1, . . . , c}, consists of exactly one subassignment αi, which is the
restriction of ᾱ to the union of A and the vertex set of Hi. Each sensor v which is not
a proxy anchor must correspond to a vertex in exactly one of the Hi, i ∈ {1, . . . , c}.
If sensor v corresponds to a vertex in Hi, then the position of sensor v relative to the
proxy anchors, i.e., ᾱ(v), is given by αi(v).1 We have just shown the following.

Lemma 10. If N is localizable and its graph has a bilateration ordering, then
N can be localized by computing two sweeps of the Sweeps algorithm followed by a
Euclidean transformation. The ordering of the first sweep is any bilateration ordering
v1, v2, v3, . . . , vn, and the ordering of the second sweep is a complete ordering of G
with respect to {v1, v2, v3}.

Now we give the proof for Theorem 1. From Lemma 1, we have that a localiz-
able network is sequentially localizable only if its graph has a bilateration ordering.
Lemma 10 implies that Sweeps can localize all sequentially localizable networks since
a sequentially localizable network’s graph must have a bilateration ordering. Further-
more, since Sweeps is a sequential localization algorithm, Lemma 10 implies that a
localizable network is sequentially localizable if its graph has a bilateration ordering.
Hence, Lemmas 10 and 1 imply a localizable network is sequentially localizable if and
only if its graph has a bilateration ordering.

In [7], it was shown via extensive simulations that Sweeps is practically feasible
on uniformly random networks of 250 sensors with connectivity modeled by unit disk
graphs despite having a worst case computational complexity that is exponential in
the number of sensors. In section 7, we give the graph properties of some networks
which can be efficiently localized using Sweeps.

7. Efficiently localizable networks. Consider a class of networks such that
for each positive integer i, there is a network in the class with at least i sensors.
We say that the class of networks is efficiently localizable by Sweeps (or Restricted
Sweeps) if there is a constant c such that each network in the class can be localized
by Sweeps (or Restricted Sweeps) in a number of operations that is at most nc, where
n is the number of the network’s sensors. The computational complexity of local-
izing N by Sweeps, or Restricted Sweeps, is entirely dependent upon the number of
elements in the sets S(v, 1), v ∈ V . More specifically, let M(v) denote the vertices
preceding v and also adjacent to v in the ordering chosen for the first sweep. In both
the Sweeps and Restricted Sweeps algorithm, the number of operations necessary to
compute S(v, 1), v ∈ V , is equal to C

∏
u∈M(v) |S(u, 1)|, where C is a constant that

is independent of the number of sensors in N. In the following, we give a graphical
characterization for when a network is efficiently localizable by Sweeps and Restricted
Sweeps. We emphasize that this is not a complete characterization of all such effi-
ciently localizable networks. However, the general techniques used here can be used
to determine additional efficiently localizable networks.

Suppose the graph of N, namely G, has a trilateration ordering, and that the
ordering chosen for the first sweep is a trilateration ordering v1, . . . , vn. It is easy
to see that S(v, 1) is a singleton and

∏
u∈M(v) |S(u, 1)| = 1 for all v ∈ V . Hence,

the class of networks whose graphs have trilateration orderings is obviously efficiently
localizable by Sweeps. The key property of the trilateration ordering which makes N
efficiently localizable by Sweeps is that for all i ∈ {4, . . . , n}, the graph induced in G

1By a slight modification to the Sweeps algorithm, a singleton candidate positions set can be
obtained for each sensor; however, we omit this step since it is unnecessary.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

340 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

by vertex vi, and all the vertices vj , where j < i, is globally rigid. We now “relax”
this property to define a “superbilateration” ordering. A graph with n ≥ 4 vertices
has a superbilateration ordering v1, v2, v3, . . . , vn if the graph contains a subgraph
with the same vertex set which can be constructed inductively as follows beginning
with the complete graph on three vertices labeled v1, v2, v3. Suppose the graph being
constructed already contains vertices v1, . . . , vi, i ≥ 3. If i + 1 is even, then vi+1

is added to the graph by making vi+1 adjacent to at least three vertices vj where
j < i + 1. Otherwise, if i + 1 is odd, then vi+1 can be added to the graph in one
of two ways, the first of which is to make vi+1 adjacent to at least three vertices vj

where j < i + 1. Or, vi+1 can be added to the graph by making vi+1 adjacent to
distinct vertices vi, vk, vj , where vk is adjacent to vi, and removing the edge between
vi and vk.

A 1-extension on a graph is the operation whereby two adjacent vertices of the
graph are first selected, say vertices u and v, and a new vertex w is added to the
graph by making w adjacent to vertices u, v, and x, where x is distinct from both
u and v, and removing the edge between u and v [8]. An edge-addition on a graph
is the operation whereby two nonadjacent vertices are made adjacent by insertion of
a new edge. In [10], it was shown that the graph resulting from an edge-addition or
1-extension operation on any globally rigid graph of four or more vertices is again
globally rigid. From this, it follows that any graph with a superbilateration ordering
v1, . . . , vn is necessarily globally rigid. Furthermore, for each i > 3, where either i
is equal to n or i is odd, the graph induced by all vertices vj , j ≤ i, is globally
rigid. Clearly, a trilateration ordering is automatically a superbilateration ordering.
It is easy to show by example that the converse need not be true. Suppose G has a
superbilateration ordering v1, . . . , vn. Let v1, v2, v3 be the proxy anchors of N. For
i > 3, and where i is either odd or equal to n, let Ni denote the subnetwork consisting
of all sensors corresponding to vertices vj , j ≤ i. Each subnetwork Ni can be efficiently
localized, relative to the proxy anchors, by Sweeps assuming the positions of all sensors
in Ni which are also in some Nj , j < i, are known. Hence, the entire network can
be localized in a number of operations polynomial in the number of sensors by using
Sweeps to localize each of the subnetworks in sequence beginning with N5. Generally
speaking, suppose a localizable network contains subnetworks N1, . . . , Nm so that each
subnetwork Ni is efficiently localizable by Sweeps (or Restricted Sweeps) assuming the
position of each sensor in Ni which is also in some Nj , j < i, is known. Then the
entire network is efficiently localizable by localizing the subnetworks N1, . . . , Nm in
sequence, provided each sensor of N is in some Ni, i ∈ {1, . . . , m}.

8. Graphical properties of networks localizable by Restricted Sweeps.
In this section, we will give sufficient conditions on the graphs of localizable networks
for which we can choose sweep orderings so that the network is localized in as few
sweeps as possible by the Restricted Sweeps algorithm. First, consider the case where
N’s graph G has a trilateration ordering v1, . . . , vn, and suppose this is the ordering
chosen for the first sweep. Since we assume that the multipoints of the networks
we consider are generic, it follows that no three sensor positions of N are collinear.
Hence, each S(v, 1), v ∈ V , as computed by the first sweep of the Restricted Sweeps
algorithm, is a singleton. This and Lemma 2 imply that a network with three or more
anchors can be localized by Restricted Sweeps in one sweep followed by a Euclidean
transformation if and only if its graph has a trilateration ordering.

8.1. Networks with partially acyclic graphs. In the following, we show that
if G is “partially acyclic,” then G must have a bilateration ordering and N is localizable

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 341

by Restricted Sweeps in two sweeps plus a Euclidean transformation. For any subset
W of V , let G(W) denote the graph induced in G by vertices in W . For any nonempty
subset W of V , we say that G is partially acyclic with respect to W , or just partially
acyclic, if G(W) is a complete graph and G(V −W) is acyclic. Suppose G is partially
acyclic with respect to W , and that each vertex in V −W has degree at least three in
G. In the following, we will construct a bilateration ordering of G. We first note that
a necessary condition for a graph with four or more vertices to be globally rigid in R2

is that each of its vertices must have degree at least three [9]. Since N is localizable
and contains at least four sensors, it follows that each vertex of G must have degree
at least three. The graph in Figure 1(a) is globally rigid and partially acyclic with
respect to any three mutually adjacent vertices of the graph. Additional globally rigid
graphs which are also partially acyclic can be constructed using the edge-addition and
1-extension operations beginning with the complete graph on four vertices [10].

Let H denote a maximally connected component of G(V −W), and let r denote
any vertex of H. Let [r] denote any complete ordering of the vertex set of H with
respect to r and W , and let N0(r),N1(r), . . . ,Nh(r) denote the vertex partition used
to construct the ordering [r]. We now show that [r] is a bilateration ordering of the
graph induced in G by the vertices of H and the vertices in W . Let v be any vertex
of H and suppose v ∈ Ni(r) for some i ∈ {0, 1, . . . , h}. First suppose i = 0, in which
case v must equal r. Suppose r is adjacent to c < 2 vertices of W . Since H is a
maximally connected component of G(V −W), and r has degree at least three in G,
we have that r must be adjacent to at least 3 − c > 0 vertices in H, which implies
r must be adjacent to at least three vertices preceding it in the ordering [r]. Now
suppose i > 0. This implies v is adjacent to at least one vertex in Ni−1(r). Moreover,
v is adjacent to exactly one vertex in Ni−1(r), for if v is adjacent to two vertices in
Ni−1(r), then H is not acyclic, which implies G(V −W) is not acyclic. Similarly, if v
is adjacent to a vertex in Ni(r), then that would again imply H is not acyclic. Since
v has degree three in G, v must be adjacent to at least two vertices in Ni+1(r) ∪W .
Since the vertices in Ni+1(r) ∪ W all precede v in [r], it follows that v is adjacent
to at least two vertices preceding it in the ordering [r]. Now we show that the first
three vertices of [r] induce a complete graph. Let x be any vertex in Nh(r). Since H
is acyclic, x can be adjacent to exactly one vertex in H. Also, since x has degree at
least three in G, it follows that x must be adjacent to at least two vertices in W and
so |W| ≥ 2. Furthermore, since the vertices in Nh(r) precede all other vertices in H
in the ordering [r], it follows that v3 ∈ W ∪ Nh(r). Hence, the first three vertices of
[r] induce a complete graph, and [r] must therefore be a bilateration ordering. Let
V(H) denote the vertex set of H. We have just shown the following.

Lemma 11. If G is partially acyclic with respect to some W ⊆ V, and each vertex
in V −W has degree at least three in G, then any complete ordering of a maximally
connected component H of G(V−W) with respect to W is also a bilateration ordering
of the graph G(V(H) ∪W).

Let H1, . . . , Hc denote the maximally connected components of G(V −W). For
each Hi, let vi1, vi2, vi3, . . . , vik be any complete ordering of Hi with respect to W . This
implies that the first |W| vertices of each of the orderings must be the vertices of W ,
i.e., {vi1, . . . , vi|W|} = W for all i ∈ {1, . . . , c}. Let w1, . . . , w|W| denote the vertices
of W . From Lemma 11, we have that each of the orderings vi1, vi2, vi3, . . . , vik is a
bilateration ordering. Therefore, the ordering obtained by concatenating w1, . . . , w|W|
and vi(|W|+1), . . . , vik for all i ∈ {1, . . . , c}, i.e., w1, . . . , w|W|, v1(|W|+1), . . . , v1k, . . . ,
vi(|W|+1), . . . , vik, . . . , vc(|W|+1), . . . , vck must be a bilateration ordering, and it is a
complete ordering of G with respect to W . We have just shown the following.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

342 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

Lemma 12. If G is partially acyclic with respect to some W ⊆ V, and each
vertex in V −W has degree at least three in G, then G has a bilateration ordering,
and any complete ordering of G with respect to W is a bilateration ordering.

Remark 1. It is known that a necessary condition for a graph with at least four
vertices to be globally rigid in R2 is that the graph must be three connected, i.e.,
G(V −V ′) is connected if |V ′| ≤ 2. Hence, if G is partially acyclic with respect to W ,
and G(V −W) has more than one connected component, then |W| ≥ 3. Since G is
globally rigid, Lemma 7 can be used to show that for each i ∈ {1, . . . , c}, the graph
G(W ∪ Vi), where Vi is the vertex set of Hi, must also be globally rigid.

Our main result for networks with partially acyclic graphs is the following.
Theorem 2. A localizable network with graph G is localizable by Restricted

Sweeps in two sweeps plus a Euclidean transformation if G is partially acyclic with
respect to some W ⊆ V. The ordering of the finite position generating sweep is
[v] = v1, v2, v3, . . . , vn, where [v] is a complete ordering of G with respect to W, and
the ordering of the second sweep is v1, v2, v3, vn, vn−1, . . . , v4.

A globally rigid graph in R2 is said to be minimally globally rigid in R2 if no edge
can be removed from the graph without causing the graph to no longer be globally
rigid in R2. A number of globally rigid graphs in R2 that are partially acyclic with
respect to some W ⊆ V , where |W| ≥ 3, are also minimally globally rigid in R2.
Hence, Theorem 2 implies that Restricted Sweeps can localize certain networks with
just enough edges in their graphs to ensure localizability. For any i > 3, let Wi denote
the graph whose vertices can be labeled as w0, w1, . . . , wi such that w0 is adjacent to
all other vertices, and vertices w1, . . . , wi induce a cycle in the graph. Any such Wi,
i > 3, is called a wheel graph. It is known that wheel graphs are minimally globally
rigid, and it is straightforward to show that any wheel graph is partially acyclic with
respect to any three vertices which are mutually adjacent. Hence, any network with
three or more anchors and whose graph is a wheel graph is localizable by Restricted
Sweeps in two sweeps plus a Euclidean transformation. One can show by example
that globally rigid graphs which are also partially acyclic are not limited to just wheel
graphs.

Let NT denote the class of networks whose graphs have a trilateration ordering,
and let NP denote the class of networks whose graphs are globally rigid in R2 and
partially acyclic. It is not difficult to show that NT and NP are not disjoint, NT � NP

and NP � NT . For example, networks with wheel graphs are in NP but not NT , and
any network whose graph has a trilateration ordering v1, . . . , vn, where n > 5 and
each vi, i > 3, is adjacent to vertices vi−1, vi−2, and vi−3, is in NT but not NP .

8.2. Networks with ring squared graphs. Many practical networks are such
that the distance between two sensors is known if the sensors are within a prescribed
sensing radius of each other. Suppose N̄ is such a network and has at least three
anchors, and let Ḡ be its graph. Define a ring graph with ordering v1, . . . , vn as a
graph whose vertices can be labeled as v1, . . . , vn so that each vertex vi, 1 < i < n, is
adjacent to vertices vi−1 and vi+1, and vertex v1 is adjacent to vertex vn.

Lemma 13. If Ḡ is a ring graph with ordering v1, . . . , vn, then N̄ is localizable in
two sweeps plus a Euclidean transformation after doubling the sensing radius of each
sensor. The ordering of the first sweep is v1, . . . , vn, and the ordering of the second
sweep is v1, v2, v3, vn, vn−1, . . . , v4.

Let V̄ and Ē denote the vertex set and edge set of Ḡ, respectively. The second
power of Ḡ, written Ḡ2, is the graph with vertex set V̄ and edge set Ē ∪ Ē2, where
(i, j) ∈ Ē2 in the case when i, j ∈ V̄ and there exists k ∈ V̄ such that (i, k), (k, j) ∈ Ē .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 343

A graph is edge 2-connected if there exists two paths with no edge in common between
each pair of vertices. It is known that the second power of an edge 2-connected graph
is globally rigid in R2 [1]. An important consequence of this and Theorem 13 is that
if the graph of a network is edge 2-connected with at least three anchor vertices, and
the network is such that the distance between two sensors is known if the sensors are
within sensing radius, then the network is sequentially localizable after doubling the
sensing radius of all the sensors [1].

9. Conclusion. In this work, we presented Sweeps, a sequential localization
algorithm which consists of solving a sequence of a finite number of quadratic equa-
tions, and determining the distances between specified pairs of points. We identified
the graph properties of all networks which can be localized by Sweeps, as well as the
graph properties of some networks which can be efficiently localized by Sweeps. The
worst case computational complexity of Sweeps is exponential. However, extensive
experimental evaluations on uniformly random networks modeled by unit disk graphs
indicate that Sweeps is practically much more efficient [7]. Part of our future work will
be to analyze the average case computational complexity of Sweeps. Additionally, the
necessary and sufficient condition for a localizable network to be localizable by Sweeps
is that the graph of the network has a bilateration ordering. Extensive simulations
on uniformly random networks modeled by unit disk graphs suggest that the gap
between localizable and sequentially localizable networks is not large [7]. A question
that is of interest is if there exists a threshold such that a graph is globally rigid and
has a bilateration ordering when the average degree of the graph passes the threshold.
In [12], a trilateration-based localization algorithm was proposed for networks with
inaccurate distance measurements in which sensors are assigned an estimated position
only when the estimated position can be provably bounded to be within some known
range of the actual sensor position. A similar concept was employed in adapting the
Sweeps algorithm for the case of inaccurate distance measurements [6] in that each
estimated sensor position can be guaranteed to be within a known distance of the
actual sensor position. As part of future research, we aim to fine tune and improve
the Sweeps algorithm adapted for inaccurate distance measurements.

A key aspect of wireless sensor networks is that each sensor can interact with
only a subset of the sensors in the network. Hence, Sweeps and Restricted Sweeps are
proposed on the assumption that the distances between each sensor and only some
of the sensors in a network are known. Although the computations in Sweeps and
Restricted Sweeps are currently envisioned as being carried out on a central computer,
we note that this does not necessarily contradict the distributed nature of a wireless
sensor network. For example, in a sensor network deployed for environment monitor-
ing, quantities measured by a sensor, i.e., chemical emissions, and transmitted to a
base station, make sense only in the context of the sensor’s position. The distance
measurements taken by each sensor to, say, nearby sensors can be transmitted to the
base station along with whatever quantities the sensor was deployed to monitor. The
base station can then run a localization algorithm using the intersensor distance mea-
surements, and thus associate a position with each measured quantity. An important
part of our future research will be to design a fully distributed version of Sweeps.

10. Appendix.
Proof of Lemma 1. Suppose N is sequentially localizable. For each sensor v, let

k(v) denote the sweep in which a finite candidate positions set was computed. Order
the sensors as v1, . . . , vn so that vi precedes vj , i.e., i < j, if either k(vi) < k(vj)
or k(vi) = k(vj) and vi is a predecessor of vj in the k(vi)th sweep. Consider any vi

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

344 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

which is not a proxy anchor. First, suppose no distance is known between vi and any
sensor vj , where j < i. This implies that when sensor vi is processed, there is no
known distance between vi and a sensor whose candidate positions set has already
been determined. Hence, there is no data with which to compute a finite candidate
positions set for vi. Now suppose the distance between vi and exactly one other
sensor vj , j < i, is known. This implies that when vi is processed, its distance to
exactly one sensor with a finite candidate positions set is known. By definition of a
sequential localization algorithm, a sensor for which a finite candidate positions set
has not been computed does not have any position information associated with it.
Hence, since sensor positions are distinct, a finite candidate positions set of vi cannot
be determined when just its distance to a single sensor with an already computed
candidate positions set is known. We have just shown that if vi is not a proxy anchor,
then vi must be adjacent to at least two vj , where j < i. This implies that v1 and v2

must be proxy anchors, and so v1, . . . , vn is a bilateration ordering.
Proof of Lemma 2. The “if” direction has already been shown in section 3. The

“only if” direction is a straightforward consequence of the following. Given a sensor v,
and its distances to k sensors u1, . . . , uk with known positions where no three sensors
in {v, u1, . . . , uk} are collinear, there exists exactly one position for sensor v such that
its distances to all k sensors are satisfied if and only if k ≥ 3.

Proof of Lemma 3. Let V denote the vertex set of G, and let u be any vertex in
V . Note that u must be adjacent to at least one other vertex in G since G is rigid
and therefore connected. Let v be any vertex adjacent to u. Let u1, u2, . . . , um be
any ordering of m ≤ |V| vertices such that u1 = u, u2 = v, and each ui, i ≥ 3, is
adjacent to at least two vertices uk, k < i. Moreover, suppose there does not exist
any vertex w ∈ V − {u1, u2, . . . , um} which is adjacent to two or more vertices in
{u1, u2, . . . , um}. Let B denote the graph induced in G by {u1 = u, u2 = v, . . . , um}.
Note that B contains at least two vertices, namely, u and v. In the following we will
show that V − {u1, u2, . . . , um} �= ∅ is a contradiction to the assumption that G is
chordal. So, suppose V − {u1, u2, . . . , um} �= ∅. Let F denote a maximally connected
component of the graph induced by vertices not in B, i.e., V −{u1, u2, . . . , um}. Note
that F has at least one vertex since V −{u1, u2, . . . , um} �= ∅. For an edge incident on
vertices a and b, we say that the edge is from B to F if a is in B and b is in F. Since
G is rigid, and F contains at least one vertex, there must be at least two edges e1 and
e2 from B to F. Let e1, e2, . . . , ec, c ≥ 2, denote all the edges from B to F.

A vertex in F can be incident on at most one edge from B to F. For if a vertex w
in F is incident on two edges from B to F, then obviously, w ∈ V − {u1, u2, . . . , um}
and w is adjacent to two or more vertices in {u1, u2, . . . , um}, which contradicts our
assumption that there does not exist any vertex w ∈ V − {u1, u2, . . . , um} which is
adjacent to two or more vertices in {u1, u2, . . . , um}. Suppose e1 is incident on vertex
z in B, and that all the edges from B to F are incident on z. By removing z from
G, G is disconnected since this removes all edges from B to F, and F is a maximally
connected component of the graph induced by vertices not in B. But G is rigid, which
means it is at least two connected, and therefore it requires the removal of at least
two vertices to disconnect G. Hence, there must exist at least one edge from B to F
which is not incident on z. So there must exist two edges from B to F such that the
edges are incident on distinct vertices in B. Let ei and ej denote two such edges. Also
from the above, we have that ei and ej are incident on distinct vertices in F. Hence,
there exist distinct vertices b, b′ ∈ B and f, f ′ ∈ F such that b is adjacent to f and
b′ is adjacent to f ′. Since B is connected, there is a path in B from b to b′. Let this
path be denoted b0 = b, b1, b2, . . . , bB = b′. Since F is connected, there is a path in F

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 345

from f to f ′. Let this path be denoted f0 = f, f1, f2, . . . , fF = f ′.
Let L be the smallest positive integer in {1, 2, . . . , F} such that fL is adjacent

to some vertex in {b1, b2, . . . , bB}. Note that such an L must exist since f ′ = fF

is adjacent to b′ = bB. Let L̄ be such that bL̄ is the vertex in {b1, b2, . . . , bB} to
which fL is adjacent. Note that L̄ > 0 and L > 0. Let T be the largest integer
less than L such that fT is adjacent to some vertex in {b0, b1, . . . , bL̄−1}. Such a
T must exist since f = f0 is adjacent to b = b0, and as noted above, L, L̄ > 0.
Let T̄ be such that bT̄ is the vertex to which fT is adjacent in {b0, b1, . . . , bL̄−1}.
By construction, the subgraph of G with vertices fT , fT+1, . . . , fL, bL̄, bL̄−1, . . . , bT̄

and edges (fT , fT+1), . . . , (fL−1, fL), (fL, bL̄), (bL̄−1, bL̄−2), . . . , (bT̄−1, bT̄), (bT̄ , fT) is
a cycle. Let this cycle be denoted C. Note that C contains at least four vertices and
so is a cycle of length at least four. Since G is chordal, there must exist an edge in
G that is also a chord of C. Since fT and fL can each be incident upon only one
edge from B to F, we have that any chord of C that is also an edge from B to F must
be incident upon fM , where T < M < L. Suppose there is such a vertex fM . Since
L is the smallest positive integer in {1, 2, . . . , F} such that fL is adjacent to some
vertex in {b1, b2, . . . , bB}, it follows that fM must be adjacent to b0 since M < L.
But this is a contradiction since M > T and T is the largest integer less than L such
that fT is adjacent to some vertex in {b0, b1, . . . , bL̄−1}. Hence, any chord of C can
only contain vertices which are either both in B or both in F. Since C contains at
least four vertices, two of which are in B and two of which are in F, and C contains
no chord from B to F, it follows that there is a chordless cycle in G of at least four
vertices. This contradicts the fact that G is chordal. Hence, it cannot be the case
that V − {u1, u2, . . . , um} �= ∅. So, B contains all the vertices in V , which implies G
has a bilateration ordering. Recall that vertices u and v of B, which are the first two
vertices of the bilateration ordering on all the vertices of B, may be any two vertices
of G. As shown above, B must contain all the vertices of G. Hence, it must be the
case that for all edges (u, v) in G, there exists a bilateration ordering of G that begins
with vertices u and v.

Proof of Lemma 4. If w is a proxy anchor, then the lemma holds trivially, so
suppose w is not a proxy anchor. It is also easy to show that the lemma holds
when u and v are both proxy anchors, so suppose at least one of u or v is not a
proxy anchor. Let the ordering of the first sweep be x1, . . . , xn, which we denote
by [x]. Let w = xk. Without loss of generality, suppose u precedes v in [x], i.e.,
u = xi and v = xj for some i, j where i < j. It is easy to see that if w precedes
v in the ordering [x], then it cannot be the case that v is in the domain of any
subassignment in S(w, 1). Therefore, it must be the case that k ≥ j. We will prove
the lemma by induction on k − j. First, consider the case where k = j. In this case,
w = v. From (13), it is clear that u ∈ D(β) for all β ∈ S(v, 1), and ‖β(u) − β(v)‖ =
duv. Now suppose k − j = 1. Let M(w) = N (w) ∩ {x1, . . . , xk−1}. If xk = w
is not adjacent to xj = v, then it is easy to see that v cannot be in the domain
of any subassignment in S(w, 1). Hence, suppose w is adjacent to v, which implies
v ∈ M(w). Let the elements of M(w) be denoted u1, . . . , um, and without loss
of generality, let v = u1. Let β be any subassignment of S(w, 1). From (15), we
have that β ∈ M(α1, . . . , αm, w, u1, . . . , um) for some collection of pairwise consistent
subassignments α1, . . . , αm where αi ∈ S(ui, 1), i ∈ {1, . . . , m}. This implies D(α1) ⊂
D(β). As we have just shown, u ∈ D(δ) and ‖δ(u) − δ(v)‖ = duv for all δ ∈ S(v, 1).
Hence, u, v ∈ D(α1) and ‖α1(u)−α1(v)‖ = duv. From (13), we have that the domain
of each subassignment in M(α1, . . . , αm, w, u1, . . . , um) contains D(α1) and must be
identical to α1 when restricted to the domain of α1. Therefore, u, v ∈ D(β) and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

346 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

β(u) = α1(u), β(v) = α1(v). Clearly, this implies ‖β(u)− β(v)‖ = duv. Hence, for all
γ ∈ S(w, 1) we have that u, v ∈ D(γ) and ‖γ(u) − γ(v)‖ = duv.

Suppose the lemma holds for all w = xk where k − j ≤ L for some L. Now
consider w, where w = xk, where k − j = L + 1. Again, let u1, . . . , um denote
the elements of M(w). Let β be any subassignment of S(w, 1) where u, v ∈ D(β).
From (15), we have that β ∈ M(α1, . . . , αm, w, u1, . . . , um) for some collection of
pairwise consistent subassignments α1, . . . , αm where αi ∈ S(ui, 1), i ∈ {1, . . . , m}.
By definition, the domain of β is equal to the union of {w} and the union of the
domains of αz , z ∈ {1, . . . , m}. Hence, it must be the case that v ∈ D(αz) for some
z ∈ {1, . . . , m}. As noted previously, u is in the domain of all subassignments in
S(v, 1). It is straightforward to show then that u, v ∈ D(αz). By definition of M
in (13), we have that β must equal αz when restricted to the domain of αz. This
implies β(u) = αz(u) and β(v) = αz(v). By the inductive hypothesis, we have that
‖αz(u) − αz(v)‖ = duv, which implies ‖β(u) − β(v)‖ = duv. The lemma follows by
induction.

Proof of Lemma 5. It is easy to show that the lemma holds when u and v are
both proxy anchors, so suppose at least of of u or v is not a proxy anchor. Let
y1, . . . , yn denote the ordering chosen for the second sweep, and for any vertex yi,
let M(yi) = N (yi) ∩ {y1, . . . , yi−1}. Suppose w = yi. We will prove the lemma
by induction on i ∈ {1, . . . , n}. The lemma is trivially true if w is a proxy anchor,
i.e., w = yi, i ∈ {1, 2, 3}. Now suppose the lemma holds for all w = yj , where
j < i for some i ∈ {4, . . . , n}. Consider w = yi. If M(w) = ∅, then S(w, 2) =
S(w, 1), in which case Lemma 5 follows from Lemma 4. So suppose M(w) �= ∅. Let
u1, . . . , um denote the elements of M(w). Let β be any subassignment of S(w, 2)
such that u, v ∈ D(β). From (17), we have that β = um+1(α0, α1, . . . , αm) for some
collection of pairwise consistent subassignments α0 ∈ S(w, 1) and αj ∈ S(uj , 2),
j ∈ {1, . . . , m}. Without loss of generality, suppose that u preceded v in the ordering
chosen for the first sweep. By definition of um+1, the domain of β is the union of the
domains of αj , j ∈ {0, 1, . . . , m}. Hence, since u, v ∈ D(β), it follows that v ∈ D(αz)
for some z ∈ {0, 1, . . . , m}. It is straightforward to show from (17) that u must
also be in D(αz), so u, v ∈ D(αz). From Lemma 4 and the inductive hypothesis,
it follows that ‖αz(u) − αz(v)‖ = duv. Since αj , j ∈ {0, 1, . . . , m}, are pairwise
consistent, it follows from the definition of um+1 that β(u) = αz(u) and β(v) = αz(v),
so ‖β(u) − β(v)‖ = duv.

Proof of Lemma 6. We first show that the lemma holds for the first sweep, i.e., for
each v ∈ V , there is a β ∈ S(v, 1) which is the restriction of ᾱ to D(β), and v ∈ D(β).
Let v1, . . . , vn be the ordering used to compute S(v, 1), v ∈ V . Let v be any vertex of
G. If v is a proxy anchor, i.e., v = vi for some i ∈ {1, 2, 3}, then from (14), we have
that S(v, 1) = {α}, where D(α) = {v} and α(v) = π(v). Hence, the lemma holds
for vi, i ∈ {1, 2, 3}. Now suppose v = vi, i > 3. From (13) and (15), we have that
vi ∈ D(β) for all β ∈ S(v, 1), so it just remains to show that there is a β ∈ S(v, 1)
which is the restriction of ᾱ to D(β). We show this by induction on vi, i ∈ {1, 2, . . . , n}.
We have already shown the lemma to be true for S(vi, 1), i ∈ {1, 2, 3}. Now suppose
the lemma holds for all S(vj , 1), where j < i for some i ∈ {4, . . . , n}. For each vj ,
j < i, let β̄vj denote the subassignment in S(vj , 1) which is the restriction of ᾱ to
D(β̄vj). Now consider vi. Let the elements of N (vi) ∩ {v1, . . . , vi−1} be denoted
u1, . . . , um. Clearly, β̄uj , j ∈ {1, . . . , m}, are pairwise consistent, i.e., β̄uj ∼ β̄u′

j

for all j, j′ ∈ {1, . . . , m}. Consider M(β̄u1 , . . . , β̄um , vi, u1, . . . , um). Clearly, π(vi) ∈⋂
j∈{1,...,m} C(β̄uj (uj), dviuj). From (13), it follows that there is β ∈ S(vi, 1) such

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 347

that β = β̄uj when restricted to the domain of β̄uj for each j ∈ {1, . . . , m}, and
β(vi) = π(vi). Since each β̄uj is a restriction of ᾱ, it follows that β must then be a
restriction of ᾱ as well. By induction then, we have that the lemma is true for all
S(v, 1), v ∈ V .

We have just shown that the lemma holds for the first sweep. Now we will show
the lemma holds for all sweeps by induction, so suppose the lemma holds for the kth
sweep, where k ≥ 1. Let u1, . . . , un be the ordering chosen for the (k + 1)th sweep.
Clearly, S(ui, k + 1) = S(ui, k) for i ∈ {1, 2, 3}, and since the lemma holds for the
kth sweep, we have that the lemma holds for S(ui, k + 1), i ∈ {1, 2, 3}. Suppose the
lemma holds for all S(uj , k + 1), where j < i for some i ∈ {4, . . . , n}. For each uj ,
j < i, let β̄uj denote the subassignment in S(uj , k + 1) which is a restriction of ᾱ
with uj in its domain. Consider ui. Clearly, if N (ui) ∩ {u1, . . . , ui−1} is the empty
set, then S(ui, k + 1) = S(ui, k), in which case the lemma holds for S(ui, k + 1) since
the lemma is true for the kth sweep. So suppose N (ui) ∩ {u1, . . . , ui−1} �= ∅, and let
w1, . . . , wm denote its elements. By the inductive hypothesis, we have subassignments
β̄ui ∈ S(ui, k) and β̄wj ∈ S(wj , k + 1), j ∈ {1, . . . , m}, where each subassignment is a
restriction of ᾱ and ui ∈ D(β̄ui), wj ∈ D(β̄wj), j ∈ {1, . . . , m}. From (17), it is easy
to see that um+1(β̄ui , β̄w1 , . . . , β̄wm) is in S(ui, k + 1) and is also a restriction of ᾱ
with ui in its domain. By induction, the lemma holds for the (k + 1)th sweep.

Proof of Lemma 7. Let H′
i denote the graph induced in G by the vertices of Hi

and the vertices of A. Suppose H′
i is not globally rigid. Consider the subnetwork of N

containing just the sensors corresponding to vertices in H′
i, and denote the subnetwork

by Ni. Clearly, the point formation modeling Ni is (H′
i, p

′), where p′ contains the
positions of those sensors of Ni. Since the multipoint of N is generic, it follows that
the multipoint of Ni, i.e., p′, must also be generic. Hence, that H′

i is not globally
rigid implies Ni cannot be localizable. In other words, there exists multipoint q′ such
that the point formations (H′

i, q
′) and (H′

i, p
′) have the same edge lengths but are not

congruent. Furthermore, it is easy to see that by applying a Euclidean transformation
to the points of (H′

i, q
′), we can obtain a point formation (H′

i, q
′′), which is congruent

to (H′
i, q

′), and such that the points in q′′ corresponding to the vertices in A are
identical to the points in p′ corresponding to the vertices in A. Hence, (H′

i, q
′′) has

the same edge lengths as (H′
i, p

′), and the points corresponding to vertices in A are
the same in both (H′

i, q
′′) and (H′

i, p
′), but (H′

i, q
′′) and (H′

i, p
′) are not congruent. Let

(G, p) be the point formation modeling N. Since N is localizable, it follows that (G, p)
is globally rigid. Consider the point formation (G, p′′) defined as follows. The point in
(G, p′′) corresponding to a vertex j not in Hi is the same as the point corresponding
to vertex j in (G, p), and the point in (G, p′′) corresponding to a vertex j in Hi is the
same as the point corresponding to vertex j in (H′

i, q
′′). It is easy to see that (G, p′′)

has the same edge lengths as (G, p) but (G, p′′) and (G, p) are not congruent. This
contradicts the fact that (G, p) is globally rigid, and therefore H′

i must be globally
rigid.

Proof of Lemma 8. In the following, we will show that the lemma holds for the
case where c = 1; i.e., the graph induced in G by vertices not in A is connected. The
case for c > 1 follows easily. Let H denote the graph induced in G by vertices not in
A. Let the ordering for the second sweep be [x] = x1, . . . , xn, and suppose [x] is a
complete ordering of H with respect to v of H and A. This implies v = xn, and [x] is
also a complete ordering of G with respect to A and xn.

Let xi be any vertex such that there is a path from xi to xn in G which is a
subsequence of [x] beginning with a vertex which is not a proxy anchor. In other
words, there exists i < i1 < i2 < · · · < ip < n such that i1 > 3 and (xi, xi1), (xi1 , xi2),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

348 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

. . . , (xip , xn) ∈ E . We will show by induction that xi ∈ D(β) for all β ∈ S(xn, 2). For
notational convenience, let ip+1 = n. For any xj , let M(xj) = N (xj)∩{x1, . . . , xj−1}.
Clearly, xi ∈ M(xi1). From (17), it follows that xi ∈ D(β) for all β ∈ S(xi1 , 2). Now
suppose xi ∈ D(β) for all β ∈ S(xij , 2), where j ≤ I for some I < p + 1, and consider
S(xij+1 , 2). Since xij ∈ M(xij+1), it follows from (17) that for all β ∈ S(xij+1 , 2), it
must be the case that D(β′) ⊆ D(β), where β′ is some subassignment of S(xij , 2). But
since xi ∈ D(β′) for all β′ ∈ S(xij , 2), it follows that xi ∈ D(β) for all β ∈ S(xij+1 , 2).
By induction then, we have that xi ∈ D(β) for all β ∈ S(xn, 2).

Let N0(xn), . . . ,Nh(xn) be the vertex partition of H used to construct the com-
plete ordering [x]. Consider any xi, i > 3, and suppose xi ∈ Nj(xn). Now we show
that there is a path from xi to xn in G which is a subsequence of [x]; i.e., there exists
i < i1 < i2 < · · · < ip < n such that (xi, xi1), (xi1 , xi2), . . . , (xip , xn) ∈ E . Since
xi ∈ Nj(xn), it must be true that xi is adjacent to some vertex in Nj′(xn), where
j′ < j. But since all the vertices in sets Nj′ , j′ < j, are assigned larger indices than
vertices in Nj , it follows that xi must be adjacent to some vertex xi1 where i < i1. If
xi1 ∈ N0, then it must be the case that xn = xi1 . Otherwise, xi1 ∈ Nb where b > 0,
and so xi1 must be adjacent to some vertex xi2 in Na where a < b. By construction
of a complete ordering, we have that i1 < i2 since xi2 ∈ Na and a < b. Hence, there
must exist a sequence of vertices xi1 , . . . , xip = xn such that xi is adjacent to xi1 ,
each xij is adjacent to xij+1 , and i < i1 < i2 < · · · < ip = n.

From the above, we can conclude that each xi, i > 3, must be in D(β) for all
β ∈ S(xn, 2). Now consider the proxy anchors, i.e., xi, i ∈ {1, 2, 3}. Suppose some xi,
i ∈ {1, 2, 3}, is not adjacent to any xj , j > 3. This implies xi has degree two in G, and
therefore G cannot be globally rigid in R2, and N is not localizable. This is clearly
a contradiction. Hence, each xi, i ∈ {1, 2, 3}, must be adjacent to some xj , j > 3,
which implies there exist indices i1, . . . , ip, where i < i1 < i2 < · · · < ip < n, i1 > 3,
and (xi, xi1), (xi1 , xi2), . . . , (xip , xn) ∈ E . Hence, each xi, i ∈ {1, 2, 3}, must also be
in D(β) for all β ∈ S(xn, 2), and it follows that D(β) = V for all β ∈ S(xn, 2).

Proof of Lemma 9. First, suppose c = 1 so the graph H induced in G by vertices
which do not correspond to the proxy anchors is connected. Suppose the ordering
used to compute the second sweep is a complete ordering of G with respect to A and
vertex u of H. From Lemma 6, we have that S(u, 2) is not empty. From Lemma 8,
we have that for each α ∈ S(u, 2), the domain of α is equal to V . From Lemma 5 we
have that ‖α(u) − α(v)‖ = duv for all (u, v) ∈ E . Clearly, α(a) = π(a) for all proxy
anchors a. Hence, α is a consistent assignment of N, where α(a) = ᾱ(a) for all proxy
anchors a. But as noted previously, there can be at most one such assignment, which
implies that α must equal ᾱ. Now we consider the case for c > 1. It follows from
Lemma 7 that each subnetwork Ni containing sensors corresponding to vertices in A
and Hi is itself localizable. The argument for the case c = 1 can be applied to each
Ni to show that each subassignment in S(ui, 2) must be the restriction of ᾱ to the
vertices corresponding to the proxy anchors and the sensors in Ni.

Proof of Theorem 2. We prove the lemma for the case where c = 1; i.e., the graph
G(V −W) is connected. The lemma for the case where c > 1 is a direct consequence.

Since v1, . . . , vn is the ordering chosen for the first sweep, without loss of generality
we can suppose v1, v2, v3 are the proxy anchors and let W = {v1, v2, v3}. Since G is
partially acyclic and c = 1, it follows that G(V −W) is acyclic and connected. Hence,
for each v ∈ V − W, we can define l(v), where l(v) is the length of the path from
v to vn in G(V −W). Clearly l(vn) = 0. Let L = maxv∈V−W l(v). For each vi, let
M(vi) = N (vi) ∩ {v1, . . . , vi−1}. Let [v] denote the ordering v1, . . . , vn. Let p be any
point in S(vn, 1). In the following we will assign point p(v) to each sensor v ∈ V−W so

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 349

that all known intersensor distances are satisfied and the point assigned to v is p, i.e.,
p(vn) = p. We do this inductively on l(v) beginning with v where l(v) = 0. Obviously
vn is the only vertex such that l(vn) = 0, and we let p(vn) = p. Now we consider
v where l(v) = 1. As noted previously, M(vn) − W = N1(vn), and by definition
N1(vn) is the set of vertices v where l(v) = 1. Let u1, . . . , um denote the vertices in
M(vn) − W . From (2), there are points pi ∈ S(ui, 1) such that ‖p − pi‖ = dvnui .
For each ui, i ∈ {1, . . . , m}, let p(ui) = pi. Now suppose p(v) has been defined for
all vertices v where l(v) ≤ k for some k < L. Now we define p(v) for each vertex
v ∈ V − W where l(v) = k + 1. Since [v] is a complete ordering and G(V − W) is
acyclic, we have that if vertex v is such that l(v) = k+1, then there must exist exactly
one vertex v′ ∈ V −W such that (v, v′) ∈ E , and l(v′) ≤ k. Since l(v′) = k, it follows
that p(v′) has already been defined. Furthermore, from (2), we have that there must
exist point pv ∈ S(v, 1) such that ‖p(v′) − pv‖ = dvv′ . Let p(v) = pv.

Let u, v be any two vertices in V −W which are adjacent in G. Since G(V −W)
is acyclic, it follows that either l(u) = l(v) + 1 or l(v) = l(u) + 1, which implies
‖p(u)−p(v)‖ = duv. Now let w be any vertex of W , and let u be any vertex of V−W .
Since all the sensors in W are proxy anchors, each w ∈ W is assigned some position
π(w) by the first sweep of the Restricted Sweeps algorithm. Again from (2), we have
that for all pu ∈ S(u, 1), it must be the case that ‖p(u) − π(w)‖ = duw. Hence, if we
define p(w) = π(w) for all w ∈ W , and assigned position p(v) to each sensor v ∈ V ,
then all known intersensor distances must be satisfied. We have just shown that for
each p ∈ S(vn, 1), there correspond points p(v), v ∈ V , such that p(vn) = p and
p(w) = π(w) for all w ∈ W , and all known intersensor distances are satisfied. Since
N is localizable, we have that for all assignments of points q(v) to sensors v ∈ V −W
such that all known intersensor distances are satisfied, assuming each sensor w ∈ W
is positioned at π(w), it must be the case that q(v) = p(v) for all v ∈ V −W. This
implies S(vn, 1) can contain only one element. Let π(vn) denote the point in S(vn, 1).
Clearly, π(vn) is the position of sensor vn relative to the positions assigned to the
proxy anchors. Let p(v), v ∈ V , be as defined above. Now we show that S(v, 2),
v ∈ V , must all be singletons. This is trivially true for v ∈ W ∪ {vn}, so consider
v /∈ W ∪ {vn}. Since G(V −W) is acyclic, it follows that v is adjacent to exactly one
v′ in G(V −W) such that l(v′) < l(v). By definition, ‖p(v) − p(v′)‖ = dvv′ , and the
only criterion used for choosing p(v) from S(v, 1) was that ‖p(v)−p(v′)‖ = dvv′ . This
implies that if there is q ∈ S(v, 1) where q �= p(v) and ‖q − p(v′)‖ = dvv′ , then there
exists an assignment of points q(x), x ∈ V , such that q(v) = q, q(w) = π(w) for all
w ∈ W , and all known intersensor distances are satisfied. But this clearly contradicts
the assumption that N is localizable. Hence, there can exist only one point p ∈ S(v, 1),
namely p(v), such that ‖p − p(v′)‖ = dvv′ . From (3) and the ordering specified for
the second sweep, it follows that S(v, 2) must be a singleton consisting of only p(v).
Hence, S(v, 2) must be a singleton for all v ∈ V .

Proof of Lemma 13. Without loss of generality, we assume that v1, v2, and v3 are
anchors. Note that the coordinates computed accordingly for the remaining sensors
can be transformed into their real locations by Euclidean transformations since there
are three anchors in the network. Now consider the first sweep with the ordering
v1, v2, . . . , vn in Ḡ2. Since v4 is adjacent to both v2 and v3, we have that S(v4, 1)
contains two elements. Since v5 is adjacent to both v4 and v3, we have that S(v5, 1)
contains four elements. Similarly, S(vi, 1), 4 ≤ i ≤ n contains finite elements by
using the edges (vi, vi−1) and (vi, vi−2) in Ḡ2. Then consider the second sweep with
the ordering v1, v2, v3, vn, vn−1, . . . , v4. From Lemma 2.1 in [14] we know that Ḡ2

is generically globally rigid, which implies that generically there is one element in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

350 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

S(vn, 1) which satisfies simultaneously ||pvn − pv1 || = dvnv1 and ||pvn − pv2 || = dvnv2 .
Hence, S(vn, 2) contains exactly one element. Using the same reasoning, we know
that S(vn−1, 2) contains one element by using the edges (vn−1, vn) and (vn−1, v1) in
Ḡ2. Similarly, we know that S(vi, 2), 4 ≤ i ≤ n − 2 by using the edges (vi, vn+1) and
(vi, vi+2) in Ḡ2.

REFERENCES

[1] B. D. O. Anderson, P. N. Belhumeur, T. Eren, D. K. Goldenberg, A. S. Morse, W.

Whiteley, and Y. R. Yang, Graphical properties of easily localizable sensor networks,
Wireless Networks, 2007 (electronic).

[2] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O.

Anderson, and P. N. Belhumeur, A theory of network localization, IEEE Trans. Mobile
Computing, 5 (2006), pp. 1663–1678.

[3] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, Semidefinite programming based algorithms
for sensor network localization, ACM Trans. Sensor Networks, 2 (2006), pp. 188–220.

[4] R. Connelly, Generic global rigidity, Discrete Comput. Geom., 33 (2005), pp. 549–563.
[5] T. Eren, D. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. O. Anderson,

and P. N. Belhumeur, Rigidity, computation, and randomization in network localization,
in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), New Haven, CT, 2004, pp. 2673–2684.

[6] J. Fang, D. Duncan, and A. S. Morse, Sequential localization with inaccurate measurements,
to appear in Localization Algorithms and Strategies for Wireless Sensor Networks: Moni-
toring and Surveillance Techniques for Target Tracking.

[7] D. K. Goldenberg, P. Bihler, M. Cao, J. Fang, B. D. O. Anderson, A. S. Morse, and

Y. R. Yang, Localization in sparse networks using sweeps, in Proceedings of Mobicom,
12th Annual International Conference on Mobile Computing and Networking, ACM, New
York, 2006, pp. 110–121.

[8] J. E. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity, Grad. Stud. Math.
2, AMS, Providence, RI, 1993.

[9] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput., 21 (1992), pp.
65–84.

[10] B. Jackson and T. Jordán, Connected rigidity matroids and unique realizations of graphs, J.
Combin. Theory Ser. B, 94 (2005), pp. 1–29.

[11] D. J. Jacobs and B. Hendrickson, An algorithm for two-dimensional rigidity percolation:
The pebble game, J. Comput. Phys., 137 (1997), pp. 346–365.

[12] D. Moore, J. Leonard, D. Rus, and S. Teller, Robust distributed network localization with
noisy range measurements, in Proceedings of the 2nd ACM SenSys, Baltimore, MD, 2004,
pp. 50–61.

[13] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, Poster abstract: Anchor-
free distributed localization in sensor networks, in SenSys ’03: Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems, ACM, New York, 2003,
pp. 340–341.

[14] A. Savvides, H. Park, and M. Srivastava, The n-hop multilateration primitive for node
localization problems, ACM Mobile Networks Appl., 8 (2003), pp. 443–451.

[15] Y. Shang and W. Ruml, Improved MDS-based localization, in Proceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), New
Haven, CT, 2004, pp. 2640–2651.

[16] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, Localization from mere connectivity,
in MobiHoc ’03: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, ACM, New York, 2003, pp. 201–212.

[17] T. Tay and W. Whiteley, Generating isostatic frameworks, Structural Topology, 306 (1988),
pp. 115–139.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

