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ORIGINAL ARTICLE

Differential Effects of Stress on Adult Hippocampal Cell Proliferation
in Low and High Aggressive Mice
A. H. Veenema,* E. R. de Kloet,� M. C. de Wilde,* A. J. Roelofs,* M. Kawata,� B. Buwalda,* I. D. Neumann,§ J. M. Koolhaas* and

P. J. Lucassen–

*Department of Behavioural Physiology, Center for Behavioural and Cognitive Neuroscience, University of Groningen, the Netherlands.

�Division of Medical Pharmacology, Leiden ⁄ Amsterdam Center for Drug Research, Leiden University Medical Center, the Netherlands.

�Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.

§Institute of Zoology, University of Regensburg, Regensburg, Germany

–Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands

Male wild house mice selected for a long (LAL) or a short (SAL)

latency to attack a male intruder in their home cage generally show

profound differences in their behavioural responses to environmen-

tal challenges. For example, LAL mice show more freezing ⁄ immobil-

ity when exposed to uncontrollable or unescapable stressors, such

as the shock-probe ⁄ defensive burying test (1), the two-way shock

avoidance test (2), and the forced swim test (3, 4). Furthermore,

LAL mice adapt more quickly to a 12-h shift in light ⁄ dark cycle and

show more exploration in response to a small change in an other-

wise familiar maze, whereas SAL mice rather show routine forma-

tion in both social and nonsocial situations (5–7). Thus, the LAL

mice display a ‘reactive’ coping style, whereas SAL mice show a

‘proactive’ coping style (8, 9).

The reactive coping style of LAL mice corresponds with

enhanced hypothalamic-pituitary-adrenal (HPA) axis reactivity

when the mice are subjected to the acute stress of forced swim-

ming or during exposure to a chronic psychosocial stressor (3, 4,

10, 11). The hippocampal mineralocorticoid receptor (MR) ⁄ gluco-

corticoid receptor (GR) mRNA expression ratio is decreased after

chronic stress in LAL mice (12). Furthermore, in LAL mice, the

hippocampal intra- and infra-pyramidal mossy fibres terminal

fields are larger (13), which may be related to spatial learning

capacity (14). In addition, several cytoskeleton genes, calmodulin-

related genes and genes encoding mitogen activated protein kin-

ase (MAPK) cascade components are expressed at higher levels

in the hippocampus of LAL compared with SAL mice (15). These
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Male wild house mice selected for a long (LAL) or a short (SAL) latency to attack a male intruder

generally show opposing behavioural coping responses to environmental challenges. LAL mice,

unlike SAL mice, adapt to novel challenges with a highly reactive hypothalamic-pituitary-adrenal

axis and show an enhanced expression of markers for hippocampal plasticity. The present study

aimed to test the hypothesis that these features of the more reactive LAL mice are reflected in

parameters of hippocampal cell proliferation. The data show that basal cell proliferation in the

subgranular zone (SGZ) of the dentate gyrus, assessed by the endogenous proliferation marker

Ki-67, is lower in LAL than in SAL mice. Furthermore, application of bromodeoxyuridine (BrdU)

over 3 days showed an almost two-fold lower cell proliferation rate in the SGZ in LAL versus

SAL mice. Exposure to forced swimming resulted, 24 h later, in a significant reduction in

BrdU + cell numbers in LAL mice, whereas cell proliferation was unaffected by this stressor in

SAL mice. Plasma corticosterone and dentate gyrus glucocorticoid receptor levels were higher

in LAL than in SAL mice. However, no differences between the SAL and LAL lines were found for

hippocampal NMDA receptor binding. In conclusion, the data suggest a relationship between

coping responses and hippocampal cell proliferation, in which corticosterone may be one of the

determinants of line differences in cell proliferation responses to environmental challenges.

Key words: BrdU, coping style, dentate gyrus, hippocampal plasticity, neurogenesis.

doi: 10.1111/j.1365-2826.2007.01555.x

Journal of Neuroendocrinology 19, 489–498

ª 2007 The Authors. Journal Compilation ª 2007 Blackwell Publishing Ltd



findings suggest line-differences in adrenocortical responsiveness

and hippocampal structural plasticity.

The proliferation of precursor cells and neurogenesis are import-

ant determinants of hippocampal plasticity. Neurogenesis continues

to occur in the adult hippocampal dentate gyrus. It has been pro-

posed that the continuous proliferation of new cells enables the

hippocampus to adapt more readily to novelty and other challenges

(16). Indeed, various positive correlations between adult prolifer-

ation and hippocampal-dependent learning have been reported

(17–19). Moreover, elevated circulating glucocorticoid concentra-

tions and stress are amongst the most potent inhibitors of dentate

gyrus proliferation in various species and paradigms (20–26).

The SAL and LAL mouse lines have been selected on the basis of

distinct behavioural and neuroendocrine phenotypes that represent

the extremes of the behavioural response repertoire (27). Such

extremes are valuable to understand better the mechanisms under-

lying interindividual differences in specific traits or phenotypes as

they exist in a given population. The present study aimed to test the

hypothesis that their distinct phenotypes are reflected in differences

in hippocampal cell proliferation rate under basal and ⁄ or stressful

conditions. For this purpose, basal cell proliferation rate was deter-

mined using immunocytochemistry for Ki-67, an endogenous DNA

binding protein selectively expressed in cells engaged in cell cycle,

except G0 (28, 29). Furthermore, using the birth date marker

5-bromo-2¢-deoxyuridine (BrdU) (30, 31) adult-generated cells were

identified. Animals were killed 24 h after BrdU administration to

allow at least one and possibly two cell cycles in the mouse. Hence,

the term proliferation used in the present study may include the

very early stages of maturation as well as proliferation per se. The

measurements for neurogenesis were further related to circulating

corticosterone concentrations, hippocampal GR protein levels and

hippocampal NMDA receptor binding in both mouse lines.

Materials and methods

Mice

Male LAL and SAL mice originated from a colony of wild house mice (Mus

musculus domesticus) maintained at the University of Groningen, the Neth-

erlands, since 1971. The LAL males used for the experiments came from the

38–40th generation of selection and the SAL males came from the 66–68th

generation (this difference in generation between LAL and SAL mice is the

result of unsuccessful breeding of LAL mice at the beginning of the selec-

tion). The mice were housed in plexiglass cages (17 · 11 · 13 cm) in a

room under a 12 : 12 h light ⁄ dark cycle (lights on 00.30 h). Standard labor-

atory chow and water was available ad libitum. Mice were weaned at

3–4 weeks of age, and were paired male–female at the age of 6–8 weeks

and were housed in this way during all experiments.

At 14 weeks of age, male mice were subjected to the attack latency test

(32). Briefly, a male was confronted with a standard non-aggressive male

opponent in a neutral cage on three consecutive days. The attack latency

score was taken as the mean of these daily scores. Neither LAL nor SAL mice

experienced a social defeat. Non-attacking LAL mice and SAL mice with an

attack latency of less than 50 s were used for the experiments. Male LAL

and SAL mice used for this study were aged 18 � 2 weeks. All experiments

were in accordance with the regulations of the Committee for Use of

Experimental Animals of the University of Groningen (DEC no. 2326).

Basal hippocampal cell proliferation

Ki-67

LAL and SAL mice (n ¼ 8 per line) were left undisturbed in their home cage

for at least one week. Thereafter, mice were rapidly perfused in the morning

and numbers of proliferating cells were determined using Ki-67 immunocyt-

ochemistry as described below.

BrdU

LAL and SAL mice (n ¼ 9 per line) received three i.p. injections of 10 mg ⁄ ml

BrdU (daily dose: 50 mg ⁄ kg body weight, dissolved in sterile 0.9% NaCl, Sig-

ma, St Louis, MO, USA), once per day for three consecutive days. Mice were

perfused 24 h after the last injection. It should be noted that by measuring

BrdU-positive cells 24 h after the last BrdU injection, BrdU-positive cells

reflect not only proliferating cells but also cells undergoing very early stages

of maturation. Blood was obtained from the heart just prior to perfusion to

determine corticosterone concentrations.

Acute stress-effects on hippocampal cell proliferation

LAL (n ¼ 10) and SAL (n ¼ 8) mice received a single i.p. injection of

20 mg ⁄ ml BrdU (dose: 100 mg ⁄ kg body weight, dissolved in sterile 0.9%

NaCl). Immediately afterwards, the mice were forced to swim in a narrow

plexiglass cylinder (30 cm high, diameter of 10 cm) filled with water of

25 �C for 5 min. The depth of the water was 8.5 cm, which enabled the

mice to reach the bottom with their tail. The forced swim test was chosen

because this is a uniform and strong psychological and physical stressor,

sufficient to generate stress-induced changes in cell proliferation. Import-

antly, because forced swimming was found to amplify behavioural and neu-

roendocrine phenotypes of SAL and LAL mice (3, 4, 33), this was taken into

account as well. Control LAL and SAL mice (n ¼ 8 per line) received the

same dose of BrdU but were then left undisturbed. Twenty-four hours after

the BrdU injection, blood was obtained from the heart prior to perfusion for

plasma corticosterone measurement.

To determine the effect of the injection and ⁄ or swim stress exposure on

the corticosterone response, an additional group of LAL and SAL mice

received the same treatment as mentioned above, but were killed 15 min

after exposure to forced swimming (n ¼ 8 per line) or 15 min after the

injection (control mice, n ¼ 7 per line). Trunk blood was obtained by decap-

itation for plasma corticosterone determination.

Assessment of hippocampal GR protein levels and NMDA
receptor binding

Hippocampal GR protein levels were measured by quantitative immunocyto-

chemistry in the same brains of the naı̈ve LAL and SAL mice (n ¼ 8 per line)

that were used for the Ki-67 immunostaining. An additional group of naı̈ve

LAL and SAL mice (n ¼ 8) received an overdose of CO2 anaesthesia, and

brains were rapidly removed, quickly frozen in ice cold iso-pentane and

stored in )80 �C for subsequent measurements of hippocampal NMDA

receptor binding using autoradiography.

Tissue processing

For the cell proliferation experiments, mice received an overdose of CO2

anaesthesia and were perfused transcardially with heparinised 0.9% saline

followed by 4% paraformaldehyde in cold phosphate buffer (pH 7.4). The

brains were postfixed overnight, transferred into 30% sucrose and stored
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at 4 �C. After 24–48 h, coronal sections of 40-lm thickness were cut on

a freezing microtome. The sections were stored at )20 �C in cryoprotec-

tant containing 25% ethylene glycol, 25% glycerin and 0.5 M phosphate

buffer.

Radioimmunoassay for corticosterone

Blood samples were collected in chilled tubes containing EDTA, centrifuged

at 2600 g for 10 min at 4 �C, and plasma samples were stored at )20 �C

until assayed. Plasma corticosterone was determined in duplo using a com-

mercially available radioimmunoassay kit (Mouse Corticosterone RIA Kit, ICN

Biomedicals, Costa Mesa, CA, USA). The detection limit of the assay was

3 ng corticosterone ⁄ ml with an intra-assay variance of 4.4% and interassay

variance of 6.5%.

Immunocytochemistry

Ki-67 immunocytochemistry

Ki-67 immunocytochemistry was performed as described earlier (25). Briefly,

mounted sections were rinsed with 0.1 M Tris buffered saline pH 7.6 (TBS).

Sections were placed in 2 plastic jars filled with citrate buffer (0.01 M,

pH 6.0) and pretreated in a domestic microwave oven (800 W). Microwave

treatment took 15 min in total, starting at 800 W for 5 min until boiling

was reached, after which the setting was lowered to 260 W. Following

30 min of cooling at room temperature, non-specific binding was blocked

by incubating in TBS + 2% milk powder (Campina Melkunie, Eindhoven, the

Netherlands) for 30 min. Sections were then incubated overnight at 4 �C

with polyclonal anti-Ki-67 (Novocastra, Newcastle, UK, 1 : 2000) in Supermix

(TBS ⁄ 0.25% gelatin ⁄ 0.5% Triton X-100). Following rinsing in TBS, sections

were incubated with biotinylated sheep anti-rabbit (Amersham Life Sciences,

Den Bosch, the Netherlands, 1 : 200) in Supermix for 1.5 h, after which sig-

nal was amplified with ABC Elite (Vector Laboratories, Burlingame, CA, USA,

1 : 800) in TBS ⁄ BSA 1% for 2 h and again with biotinylated tyramide

(1 : 500, kindly provided by Dr I. Huitinga, Netherlands Institute for Brain

research, Amsterdam) and 0.01% H2O2 for 30 min followed by another 1.5 h

incubation with ABC (1 : 1000). Colour development was performed with

diaminobenzidine (0.50 mg ⁄ ml DAB, Sigma, 0.01% H2O2) for 10 min.

BrdU immunocytochemistry

BrdU immunocytochemistry was performed as described earlier (25, 34).

Briefly, free-floating sections were treated with 0.6% H2O2 in TBS (pH 7.6)

for 30 min, following incubation in 50% formamide ⁄ 2 · SSC (0.3 M NaCl

and 0.03 M sodium citrate) for 2 h at 65 �C, acidification ⁄ denaturation with

2 M HCl for 30 min at 37 �C and incubation in 0.1 M boric acid pH 8.5 for

10 min at room temperature. Sections were then incubated overnight at

4 �C with mouse anti-BrdU (Novocastra; 1 : 200) in TBS-plus (TBS ⁄ 0.1% Tri-

ton X-100 ⁄ 3% normal horse serum). After washing with TBS-plus for

30 min, sections were incubated with biotinylated horse antimouse (1 : 200)

for 45 min, followed by the streptavidin-HRP and DAB (0.25 mg ⁄ ml DAB,

0.01% H2O2).

GR immunocytochemistry

A well characterised GR-specific antibody was used (raised by M. Kawata,

Kyoto, Japan) according to protocols described earlier (35). In brief, free

floating sections were washed in 0.1 M PBS, 0.3% triton X-100, and incuba-

ted with GR antiserum (1: 5000) for 48 h at 4 �C, washed and incubated

with biotinylated anti-rabbit (1: 200, Vector Laboratories) for 2 h, washed

again and then amplified with avidin-biotin peroxidase complex (ABC 1:

1000, Vector Laboratories) for 1 h at room temperature. Chromogen devel-

opment was performed with DAB (0.25 mg ⁄ ml, 0.01% H2O2) after which

they were washed in PBS, mounted, dried and coverslipped with Entallan

(Merck, Darmstadt, Germany). For quantification purposes, all incubations

including the one in DAB were performed in a standardised manner, assur-

ing all individual slides to receive exactly the same incubation time.

NMDA receptor autoradiography

Brain tissue sections of 20 lm thickness were cut on a cryostat and thaw-

mounted on gelatine-coated slides. These slides were stored at )80 �C until

the time of radioligand binding. The sections were de-moisturised overnight

in the presence of silica gel and stored at ) 80 �C. The labelling was per-

formed at ligand concentrations saturating all binding sites. NMDA receptor

radiography was described elsewhere (36). Sections were preincubated in a

50 mM Tris buffer (pH 8.0) for 3 · 15 min at room temperature. The incuba-

tion solution contained 50 nM [3H]CGP39653 (40.0 lCi ⁄ nmol, Amersham,

NET-780), 2.5% GDH (L-glutamic dehydrogenase, Sigma), 1.135 mM NAD

(b-nicotinamide adenine dinucleotide, Sigma) and 0.05% hydrazine (Sigma).

The slices were incubated for 1 h at 4 �C. Subsequently, the slides were

rinsed for 3 · 30 s in ice-cold preincubation buffer and for 3 s in distilled

water. Finally, the preparations were dried and exposed to a 3H-sensitive

film for 6 weeks. The films were developed with a Kodak D19 developer

(5.8 mM Elon, 0.317 M Na2SO3, 0.082 M C6H6O2, 0.358 M Na2CO3, 3.33 mM

citric acid and 6.75 mM K2S2O5), and were fixed with a 30% solution of

Na2S2O3ÆH2O.

Stereological quantification of proliferation

Ki-67 and BrdU-labelled cells were counted in a stereological approach

throughout the rostro-to-caudal extent of the entire hippocampus using a

light microscope (· 400) by a researcher blinded to the study code. Ki-67+

and BrdU+ cells were scored in the SGZ (defined as a 2–3 cell-body-wide

zone along the border of the granule cell layer with the hilus) as described

previously (16, 25) in serially sampled, coronal 40-lm sections. We inten-

tionally avoided the Stereo Investigator method as it, for the quantification

of ‘rare’ events, generates data with high variance (37). We quantified all

BrdU+ and Ki-67+ cells in a modified stereological approach in randomised

and coded 40-lm sections from a systematically sampled 1-in-10 series

through the entire rostro-to-caudal extent of the dentate gyrus. Ki-67+

cells were scored bilaterally, BrdU+ cells were scored unilaterally (basal cell

proliferation) or bilaterally (stress-induced cell proliferation). Data shown

reflect total cell counts per animal. In addition, the surface area of the

granule cell layer was estimated in the same sections in which BrdU cell

number had been assessed using an automated image analysis system

(Quantimet 500, Leica, Cambridge, UK). The surface areas of the brain

sections were summed per mouse and expressed as mm2.

Quantification of GR-immunoreactivity

GR immunocytochemical signal was quantified using optical density (i.e.

grey values) measurements of the pyramidal and granular cell layers, follow-

ing previous descriptions by others (38). Briefly, three to four levels of the

dorsal hippocampus per mouse were immunostained for GR and then digi-

tised using a CCD camera connected to a microscope at · 2.5 magnification.

Digitised images were stored on a Macintosh computer and analysed using

‘Object-Image’ software (http://simon.bio.uva.nl/object-image.html), which is

an adaptation of NIH Image (http://rsb.info.nih.gov/nih-image). Following

a standard normalisation procedure, mean optical densities of the GR
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immunoreactive signal were determined in manually drawn outlines of the

CA1-2 pyramidal and dentate gyrus granular cell layers. A standardised rect-

angle of 500 · 700 lm was placed over the stratum radiatum, and the grey

value determined in there was used for background subtraction. Corrected

mean values were expressed per subregion and per animal and as ratio of

CA1-2 over the dentate gyrus.

Quantification of NMDA receptor autoradiography

Densitometric analysis of receptor binding was performed with the use

of a computer assisted image analysis system (Quantimet 600, Leica). The

optical density of receptor labelling was measured in the stratum oriens

and the stratum radiatum of the CA1 region, and in the inner and outer

molecular layers of the dentate gyrus. For each animal, three consecutive

coronal sections were measured and averaged. The optical density

of receptor labelling was expressed as tissue equivalent (nCi ⁄ mg brain

tissue) according to autoradiographic [3H]-microscales (Amersham,

RPA-506).

Statistical analysis

An unpaired Student’s t-test was used to determine line differences in Ki-

67+ cells and BrdU+ cells, surface area, corticosterone concentrations, GR-

immunoreactivity and NMDA receptor labelling. Univariate analysis of vari-

ance (ANOVA) was used to determine line and treatment effects of forced

swimming on BrdU+ cells and corticosterone concentrations. When signifi-

cance was revealed, ANOVA was followed by a Bonferroni post-hoc test. For

all tests the software package SPSS, version 11 (SPSS Inc., Chicago, IL, USA)

was used. Data are presented as mean � SEM. P < 0.05 was considered

statistically significant.

Results

Basal hippocampal cell proliferation

Ki-67

Ki-67+ cells were identified in the SGZ, dentate gyrus hilus, and

in the CA1 stratum radiatum (Fig. 1A), often in clusters or dou-

blets (Fig. 1B,C). Quantification of the number of Ki-67+ cells

revealed a significantly lower number of cells in the SGZ in LAL

compared with SAL mice (P < 0.05, Fig. 1D). Quantification of

other hippocampal regions revealed that LAL mice had signifi-

cantly more Ki-67+ cells in the CA1 stratum radiatum than SAL

mice (P < 0.05; Table 1).

BrdU

LAL mice showed an almost two-fold lower total number of

BrdU+ cells in the SGZ compared with SAL mice (P < 0.001;

Fig. 2A). No line-difference was found for surface area of the

granule cell layer (LAL: 0.98 � 0.04 mm2; SAL: 1.01 � 0.02 mm2).

Importantly, 24 h after the last BrdU injection, plasma corticos-

terone concentrations were significantly higher in LAL mice than

in SAL mice (P < 0.05; Fig. 2B). A typical example of BrdU label-

ling in the hippocampal dentate gyrus of a LAL and SAL mouse

is depicted in Fig. 3.

Acute stress-effects on hippocampal cell proliferation

LAL mice showed more immobility behaviour during forced swim-

ming than SAL mice (duration in percentage time: LAL,

71.5 � 4.33; SAL, 35.5 � 4.86; P < 0.001, Student’s t-test).

Regarding cell proliferation, a line effect [F(1,30) ¼ 7.834,

P < 0.01] and a line · treatment effect [F(1,30) ¼ 5.130, P < 0.05]

were found for the number of BrdU+ cells in the SGZ of the

dentate gyrus. LAL mice subjected to forced swim stress showed a

CA

H
SGZ

GCL

(A)

Ki-67-posiive cells

80

100

60

40

20

0
LAL SAL

*

(D)(B) (C)

Fig. 1. Ki-67 labelling in tissue sections of the hippocampus revealed clearly

positive cells mainly in the dentate gyrus hilus (H) and subgranular zone

(arrowheads) subregions (A). Also in the subventricular wall, proliferating

cells are abundantly present (arrows). Positive cells were also found in CA1

stratum radiatum layers (CA). Details of Ki-67+ clusters (B) or doublets (C)

clearly represent dividing cells. The number of Ki-67+ cells in the SGZ was

significantly lower in LAL compared with SAL mice (D). The numbers indicate

total cell counts in both hemispheres + SEM. *P < 0.05, Student’s t-test.

GCL, granular cell layer. Bar represents 160 lm.

Table 1. Ki-67+ cell numbers in hippocampal subregions in naı̈ve LAL and

SAL Mice.

Mol cell layer Dentate gyrus CA1 rad Hippocampus

LAL (n ¼ 8) 27.5 � 3.3 88.5 � 2.9 49.5 � 4.7* 138.4 � 6.0

SAL (n ¼ 8) 24.6 � 2.4 95.4 � 5.8 36.6 � 3.3 133.1 � 6.8

Ki-67+ cells were assessed in a stereological approach in serially sampled,

coronal 40-lm sections in a 1-in-10 series throughout the entire rostro-to-

caudal extent of the hippocampus. Subregions counted included the molecu-

lar cell layer of the dentate gyrus (mol cell layer), dentate gyrus (including

subgranular zone, granule cell layer, hilus and molecular cell layer), CA1

stratum radiatum (CA1 rad) and per total hippocampus (including dentate

gyrus, pyramidal cell layer of CA1-2, CA1 rad). The numbers indicate total

cell counts in both hemispheres � SEM. *P < 0.05 versus SAL, Student’s

t-test.
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significant decrease in BrdU+ cell number compared with control

LAL mice (P < 0.05) and compared with SAL mice (P < 0.005)

(Fig. 4A). Interestingly, no line difference in cell proliferation rate

was found after a single injection of BrdU (i.e. control LAL versus

control SAL mice).

Plasma corticosterone concentrations

Plasma corticosterone concentrations measured 24 h after forced

swimming revealed a significant treatment effect [F(1,29) ¼ 4.442,

P < 0.05]. Corticosterone concentrations were significantly higher in

stressed LAL mice compared with control LAL mice (P < 0.05;

Fig. 4B). In an additional group of LAL and SAL mice, a treatment

effect was found for plasma corticosterone measured 15 min after

forced swimming [F(1,26) ¼ 10.811, P < 0.005]. Exposure to forced

swimming along with a single i.p. injection resulted in higher

plasma corticosterone concentrations compared with a single i.p.

injection only (significant difference in LAL, P < 0.05; tendency in

SAL, P ¼ 0.053; Fig. 4C).

Hippocampal GR-immunoreactivity

As described previously (35, 39, 40), GR-immunopositive nuclei were

found in the cortex, amygdala, hypothalamus as well as hippocam-

pus, with high densities in the dentate gyrus and CA1-2 regions

(Fig. 5). In the CA3-4 pyramidal layers, almost all cells were devoid

of nuclear GR signal. Quantification of mean optical densities

within the hippocampus (Table 2) revealed a significant difference

between LAL and SAL mice in the dentate gyrus (P ¼ 0.045), but
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Fig. 2. Number of BrdU+ cells in the subgranular zone of the dentate gyrus

(A) and plasma corticosterone concentrations (B) of LAL and SAL mice, 24 h

after the third i.p. injection of BrdU. The numbers indicate total cell counts

in one hemisphere + SEM. *P < 0.05, **P < 0.001, Student’s t-test.

GCL

(A) (B)

GCL

H H

Fig. 3. BrdU labelling in tissue sections of the hippocampal dentate gyrus of a LAL mouse (A) and a SAL mouse (B), which were obtained 24 h after the third

i.p. injection of BrdU. BrdU+ nuclei are clearly present in the subgranular zone (arrowheads). Note the lower number of BrdU+ cells in LAL compared with SAL

mice. GCL, Granule cell layer of the dentate gyrus; H, hilus region of the dentate gyrus.
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Fig. 4. Effects of 5 min of forced swimming of LAL and SAL mice on the number of BrdU+ cells in the subgranular zone of the dentate gyrus (A), and on

plasma corticosterone concentrations 24 h later (B). Effects of 5 min of forced swimming following a single i.p. injection on plasma corticosterone concentra-

tions in LAL and SAL mice 15 min later (C). The numbers indicate total cell counts in both hemispheres + SEM. *P < 0.05; **P < 0.005, #P ¼ 0.053, ANOVA

followed by Bonferroni post-hoc test.
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not in the CA1-2 area (P ¼ 0.29). Ratios of CA1-2 over dentate gy-

rus did not differ between both lines (P ¼ 0.17).

Hippocampal NMDA receptor binding

No differences were found between LAL and SAL mice for NMDA

receptor binding in the dentate gyrus or CA1 subregions (Table 3).

Discussion

The present study demonstrates that a genetic difference in beha-

vioural adaptation is accompanied by altered hippocampal cell pro-

liferation under both basal and acute stress conditions. Specifically,

LAL mice showed less Ki-67+ cells and less BrdU+ cells in the SGZ

of the dentate gyrus under baseline conditions than SAL mice. Fur-

thermore, a significant reduction in the number of BrdU+ cells was

observed 24 h after exposure to 5 min of forced swimming in LAL,

but not in SAL mice. The higher plasma corticosterone levels and

higher GR-immunoreactivity selectively in the dentate gyrus of LAL

mice may underlie, in part, this stress-induced decrease in hippo-

campal cell proliferation rate.

Basal hippocampal cell proliferation

Basal cell proliferation rate in the SGZ of the dentate gyrus, as

studied with the endogenous marker Ki-67 (29), was found to be

significantly lower in LAL compared with SAL mice. Using BrdU as

an exogenous birth date marker for proliferation, significantly less

proliferating cells were observed in the SGZ of LAL compared with

SAL mice after three daily BrdU injections, but not after a single

BrdU injection. Corticosterone levels were significantly higher 24 h

after the third, but not after a single, BrdU injection in LAL mice.

Therefore, the lower BrdU+ cell number in LAL mice likely reflects a

line-difference in corticosterone response following the stress of

repeated injections.

The different outcome between the BrdU+ cell number after a

single BrdU injection and Ki-67+ cell number in LAL and SAL mice

is puzzling. One factor that needs to be investigated in future

studies is a possible line-difference in bio-availability of BrdU in

brain due to clearance or blood brain barrier passage. Furthermore,

the different outcome could be explained by methodological differ-

ences. BrdU cell number only reflects a snapshot following 2 h of

BrdU bioavailability and identifies only cells in S-phase, whereas

Ki-67 identifies cells present in all stages of the cell cycle except

G0. The final number of BrdU+ cells is influenced by the continuing

division of the newborn cells and depends on the initial BrdU

dose and the subsequent survival time after injection. Secondary

generations of dividing cells will initially yield larger numbers of

BrdU+ cells until the label becomes diluted below detection level.

Moreover, a significant proportion of the newly generated cells die

as well (41). As such, BrdU+ cells represent a very heterogeneous

population at 24-h survival after a BrdU injection, that is difficult

to directly compare to Ki-67 in absolute numbers, as discussed

previously (29).

The present findings suggest that the higher expression of mark-

ers for hippocampal plasticity, as seen in the more ‘reactive’ LAL

mice (13, 15), is linked with lower hippocampal cell proliferation at

basal levels, as previously observed (42). However, hippocampal

plasticity is strongly influenced by environmental factors. For exam-

ple, animals reared in larger, more complex environments show

enhanced dendritic branching and neurogenesis, and improved

learning and memory (43–47). Conversely, environmental depriva-

tion might cause a reduction in these structural and functional

CA1

DG

H

*

(A) (C)

(D)

(E)

(B)

Fig. 5. Examples of glucocorticoid receptor (GR)-immunocytochemistry in

the hippocampus of a SAL (A) and a LAL (B) mouse, showing prominent nuc-

lear signal in the CA1 subregion and dentate gyrus. Higher GR-immunoreac-

tivity is apparent in the dentate gyrus of the LAL mouse. (C) Showing a

higher magnification of the nuclear GR immunoreactive signal in the CA1

subregion (upper left). The asterisk indicates the start of the CA3 subregion

where the GR is known to be absent. (D) An example of the dentate gyrus

at higher magnification; the inset (E) shows a detail of CA1 cells. (A,B) Scale

bar ¼ 120 lm; (C,D) scale bar ¼ 60 lm; (E) scale bar ¼ 18 lm. DG, Dentate

gyrus; H, hilar region.

Table 2. Optical Densities (Arbitrary Units) of Glucocorticoid Receptor-Im-

munocytochemistry in the Dentate Gyrus and CA1-2 Subregions of the Hip-

pocampus of LAL and SAL Mice.

Dentate gyrus CA1-2 area

LAL (n ¼ 8) 14.7 � 1.5* 25.1 � 1.0

SAL (n ¼ 8) 10.8 � 1.2 23.2 � 1.6

Data are presented as mean � SEM. *P < 0.05 versus SAL, Student’s t-test.

Table 3. Optical Densities (nCi ⁄ mg) of NMDA Receptor Binding in the Inner

and Outer Molecular Layer of the Dentate Gyrus (DG) and in the CA1 Stra-

tum Radiatum (CA1 rad) and CA1 Stratum Oriens (CA1 ori) of the Hippo-

campus of LAL and SAL Mice.

DG inner DG outer CA1 rad CA1 ori

LAL (n ¼ 8) 16.9 � 1.0 16.6 � 1.2 23.9 � 1.0 22.0 � 1.1

SAL (n ¼ 8) 19.3 � 1.3 18.8 � 1.0 24.8 � 1.3 22.3 � 0.8

Data are presented as mean � SEM.
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features (47). The housing conditions of SAL and LAL mice are

restricted (standard cage, standard rearing facilities, no environ-

mental enrichments), which by itself might have affected the cell

proliferation rate in the SGZ, especially in the LAL mice. Because

LAL mice rather than SAL mice readily adapt to novel challenges (5,

6, 48), it is tempting to speculate that under conditions of environ-

mental enrichment the cell proliferation rate might be higher in LAL

compared with SAL mice. On the other hand, recent studies failed

to demonstrate parallels between changes in (hippocampus-related)

behaviour and alterations in adult hippocampal neurogenesis (49,

50). These findings might indicate that certain types of behavioural

adaptation do not require hippocampal cell proliferation or neuro-

genesis. Further research is necessary to investigate whether this is

true for the LAL mice as well.

It is important to note that by using a survival time of 24 h after

BrdU labelling, it is not possible to distinguish between glia- and

neurogenesis because no marker proteins for glia or neurones are

coexpressed in such young cells. Similarly, Ki-67 is a marker that

detects proliferating cells but not differentiating cells. Whether or

not survival or selective phenotypes are affected, awaits future

studies. Because no adult neurogenesis occurs in the CA1 stratum

radiatum, it is likely that the higher number of Ki-67+ cells in LAL

compared with SAL mice represent proliferating glia. Further studies

are needed to investigate whether these glia cells might play a role

in the differences in size of the mossy fibres terminal fields and in

hippocampal gene expression profile between the LAL and SAL lines,

as reported previously (13, 15).

Acute stress effects on hippocampal cell proliferation

Forced swim stress induced a selective decrease in hippocampal

cell proliferation, as assessed 24 h later in the dentate gyrus of

LAL mice. Stress-induced inhibition of cell proliferation has previ-

ously been described in several species including mice, rat, tree

shrew and monkey (21–23, 25, 51, 52). Unlike chronic stress

conditions that may cause dendritic atrophy and endanger hippo-

campal viability (53, 54), acute stress-induced morphological rear-

rangement of the hippocampus, like proliferation, is considered to

be an adaptive response (55, 56). This is further emphasised by

the observation that stress-induced reductions in cell proliferation

are transient and reversible. Reduced cell proliferation upon stress

can normalise again after a recovery period, following treatment

with antidepressants, or following the application of a corticotro-

phin-releasing factor receptor antagonist, a vasopressin V1b recep-

tor antagonist or a GR antagonist (25, 51, 57–60). Thus, the

present stress-induced decrease in proliferation may indicate that,

unlike SAL mice, LAL mice do respond to a stressor by means of

structural adaptation. In addition to the previously established dif-

ferences in coping style and HPA axis reactivity (3, 4, 6, 8, 9), this

additional level of hippocampal plasticity appears unique for the

LAL line and may be a possible prerequisite for their behavioural

repertoire.

The swim stress-induced suppression of cell proliferation was

associated with higher plasma corticosterone concentrations

15 min and 24 h poststress in LAL mice. Despite this, no individ-

ual correlation was found between 24-h poststress corticosterone

concentrations and cell proliferation. This is most likely due to

the fact that plasma corticosterone was collected 24 h after

forced swimming, which is too late to establish a direct correla-

tion between these parameters. Nevertheless, inhibitory effects of

corticosterone itself on adult proliferation are well established

(20, 24, 60–63). In the rat, blockade of glucocorticoids synthesis

by adrenalectomy increases both dentate gyrus proliferation and

apoptosis (20, 64, 65), whereas exogenous corticosterone applica-

tion again reduces these parameters (24, 62). Treatment with a

GR or a MR agonist also reduced dentate gyrus proliferation in

adrenalectomised rats (37). Despite these findings, the mechanism

through which stress or corticosterone affects new cell birth

remains poorly understood.

The population of adult-generated precursor cells generally lack

GR expression for the first few days (66, 67). Therefore, direct

effects of corticosterone via GRs on precursor cells are rather unli-

kely. Because the granular cell layer contains high concentrations

of GR, corticosteroid signalling has been proposed to occur indi-

rectly via, for example, neighbouring mature granule cells or glia

cells. Alternatively, growth factors, specific cell cycle regulatory pro-

teins (68), vascular elements, or upstream mechanisms involving

the NMDA receptor-mediated excitatory pathway have been impli-

cated as well (69–72). For example, blockade of NMDA receptors

enhances dentate gyrus cell proliferation (73), whereas activation of

NMDA receptors inhibit cell proliferation in rodents (69). However,

in the present study, no line-difference was found for hippocampal

NMDA receptor binding, whereas quantitative analysis of GR-immu-

noreactivity in naı̈ve LAL and SAL mice revealed significantly higher

GR levels in the dentate gyrus, but not in the CA1 area, of LAL

mice. Taken together, the enhanced corticosterone response and the

higher GR expression in the dentate gyrus suggest a role for corti-

costerone in the selective reduction in hippocampal cell prolifer-

ation after forced swimming in LAL mice. Clearly, more studies are

needed to demonstrate the causal role of corticosterone in regula-

ting the stress-induced hippocampal cell proliferation rate in these

mouse lines.

Interestingly, SAL mice failed to show a swim stress-induced

decrease in cell proliferation. Elsewhere, dentate gyrus cell prolifer-

ation appeared also resistant to acute stress exposure (63, 74). In

addition to a possible role for a line-difference in corticosterone

response and GR levels, this stress-resistant effect on cell prolifer-

ation in SAL mice might have been mediated by simultaneous acti-

vation of positive regulators of adult hippocampal cell proliferation.

For example, activation of 5-HT1A receptors is associated with an

up-regulation of adult hippocampal cell proliferation (75). Adult

hippocampal cell proliferation was increased after administration of

fenfluramine, which causes the release of 5-HT, and after 8-OH-

DPAT stimulating 5-HT1A receptors (76). In addition, three 5-HT1A

receptor antagonists (WAY-100635, NAN-190, p-MPPI) were dem-

onstrated to reduce basal cell proliferation rate (77). In this respect,

it is of interest to note that SAL mice have higher hippocampal

5-HT1A receptor expression and binding capacity (33, 78), higher
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hippocampal 5-HT responsiveness (79) and higher brain 5-HT turn-

over (33) than LAL mice. Although further research is required, a

potential role of the hippocampal 5-HT1A receptor in preventing the

stress-induced decrease in cell proliferation in SAL mice is assumed.

It should be noted that, because the SAL males are highly

aggressive, it is not possible to house two males together. To pre-

vent social isolation, SAL and LAL mice are commonly housed in

pairs with a female. Given the established robust and persistent

behavioural and neuroendocrine differences between SAL and LAL

mice housed in this way for several generations (9, 12), it is unli-

kely that these housing conditions have significantly affected our

present findings.

The SAL and LAL mice represent the extremes in interindividual

differences in coping style and stress responsiveness. This amplifica-

tion of interindividual differences provides useful information that

may help to understand why some individuals are more likely to

suffer from stress-related disorders than others under seemingly

similar conditions. Previous studies have reported differences in

adult hippocampal cell proliferation rate between particular strains

of mice (80–83). We extend this finding by showing differences in

baseline and stress-induced hippocampal cell proliferation in two

lines of wild house mice. A recent study in mice reported that indi-

vidual differences in hippocampal cell proliferation are related to

the level of defensive behaviour displayed during social defeat (84).

Taken together, these and our results suggest that interindividual

differences in proliferation are associated with individual differences

in certain behavioural phenotypes. In support, a correlation has

been found between genetically determined baseline adult neuro-

genesis and the ability to acquire spatial memory on the water

maze task or vice versa (85, 86).

In conclusion, the present data indicate that stressful stimuli

selectively suppressed adult cell proliferation in the dentate gyrus

of LAL mice, probably in part through an action mediated by corti-

costerone, whereas SAL mice were found to be resistant. This differ-

ential susceptibility to stress-induced changes in adult cell

proliferation suggests that hippocampal structural plasticity may be

involved in the established line-differences in coping style and

behavioural adaptation during stress exposure.
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