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ABSTRACT

This is the first of a series of papers in which the kinematics of disk galaxies over a range of scales is scrutinised by em-
ploying spectroscopy. A fundamental aspect of these studies is presented here: the new publicly available software tool TiRiFiC
(http://www.astro.uni-bonn.de/˜gjozsa/tirific.html) enables a direct fit of a “tilted-ring model” to spectroscopic data
cubes. The algorithm generates model data cubes from the tilted-ring parametrisation of a rotating disk, which are automatically
adjusted to reach an optimum fit via a chi-squared minimisation method to an observed data cube. The structure of the new software,
the shortcomings of the previously available programs to produce a tilted-ring model, and the performance of TiRiFiC are discussed.
Our method is less affected by the well-known problem of beam smearing that occurs when fitting to the velocity field. Since we fit
many data points in a data cube simultaneously with our method, TiRiFiC is sensitive to very faint structures so can be used to derive
tilted-ring models significantly extending in radius beyond those derived from a velocity field. The software is able to parametrise
H I disks of galaxies that are intersected by the line-of-sight twice or more, i.e. if the disks are heavily warped, and/or with a significant
shift of the projected centre of rotation, and/or if seen edge-on. Furthermore, our method delivers the surface-brightness profile of the
examined galaxy in addition to the orientational parameters and the rotation curve. In order to derive kinematic and morphological
models of disk galaxies, especially reliable rotation curves, a direct-fit method as implemented in our code should be the tool of
choice.

Key words. methods: data analysis – galaxies: kinematics and dynamics – galaxies: structure

1. Introduction

Kinematic analyses based on spectroscopy are an important tool
for constraining the dynamical structure and hence the distri-
bution of matter in galaxies. The discovery and description of
global features in the kinematics of galaxies, such as the flatness
of rotation curves (Rubin & Ford 1970; Bosma 1978), have di-
rectly influenced cosmology. Since then, the increase in compu-
tational power enabled theorists to provide testable predictions
of the mass distribution on sub-galaxy scales for given cosmo-
logical models (e.g. Navarro et al. 1997; Moore et al. 1999; Reed
et al. 2005), such that kinematical studies can be utilised as im-
mediate tests for cosmology. While in recent years the debate has
concentrated mainly on the spherical distribution of dark matter
(DM) in relaxed systems (e.g. Swaters et al. 2003; de Blok et al.
2003; Gentile et al. 2004; Navarro et al. 2004), deviations from
this, which are evident from lopsidedness (e.g. Schoenmakers
et al. 1997) or warping (e.g. Bosma 1978), now come into the fo-
cus of theoretical research in the cosmological context (Sharma
& Steinmetz 2005; Gao & White 2006). The aim of constraining
the structure of anisotropies in the DM distribution imposes an
observational challenge, requiring both observations with high
sensitivity as well as appropriate analysis tools.

This is the first paper in a series that aims to push the ob-
servational limits forward in order to further constrain theory, to
gain insight into the large-scale structure of the disk-halo sys-
tem in disk galaxies, and to test proposed mass-density profiles.
One of the major ingredients is the necessary development of

improved analysis methods. A new software tool for analysing
the kinematics of disk galaxies is presented in this paper.

It is known from observations that the orbits of the disk mate-
rial in spiral galaxies without large bars have a comparably low
ellipticity (e.g. Bosma 1981; Schoenmakers et al. 1997), such
that it is a good approximation to treat them as circular. This
means that the kinematics of a galactic disk at a certain galac-
tocentric radius can be described to first order by a set of three
parameters, i.e. the rotation velocity and two parameters that de-
scribe the local disk orientation with respect to some reference
system. Such a “tilted-ring model” was first constructed for M 83
by Rogstad et al. (1974).

In some cases the tilted-ring model is an oversimplification,
for example when the orbits are significantly non-circular due
to the presence of a bar (e.g. Bosma 1978; Simon et al. 2003).
Nevertheless, in many cases it serves as a good approximation
and is thus the standard kinematic model for galaxies. Several
algorithms exist to fit such a model to spectroscopic data. The
most extensively used is the ROTCUR routine (van Albada et al.
1985; Begemann 1987), which is a generalisation of the origi-
nal method of Warner et al. (1973). It is implemented in several
data analysis packages, e.g. GIPSY (van der Hulst et al. 1992),
NEMO (Teuben 1995), and AIPS (Fomalont 1981). ROTCUR
fits a set of inclined rings to a velocity field. ROTCUR deriva-
tives and extensions exist. The GIPSY routine RESWRI takes
into account that non-axisymmetric potentials have a character-
istic imprint on the velocity field (Binney 1978; Teuben 1991)
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and allows for any azimuthal variations in the rotation veloc-
ity (see also Franx et al. 1994; Schoenmakers et al. 1997).
Similarly, RINGFIT (Simon et al. 2003) allows for the same
variation, while at the same time only treating a flat disk. Simon
et al. (2005) use this routine to test the reliability of their rota-
tion curves. ROTCURSHAPE (implemented in NEMO, Teuben
1995) performs a global fit of the velocity field, in which the
ring parameters are not fitted independently, but “in one go”. A
reduction of the higher-order terms in a harmonic expansion is
used by KINEMETRY (Krajnović et al. 2006) in order to find
the best-fitting solution of a tilted-ring model.

These routines are all based on an analysis of the velocity
field, which itself is derived from a data cube, so it is an inter-
mediate step when going from the observed data cube to a tilted-
ring model. Various methods exist to extract a velocity field by
analysing the spectra in a data cube. All of these methods have
their shortcomings. First, for galaxies with large warps or galax-
ies seen close to edge-on, the derivation of a single representative
velocity field is impossible, because even if the disk geometry is
known, the line-of-sight intersects the disk twice or more. This
means that more than one velocity has to be inferred for some
positions on the sky. Second, a velocity field is contaminated by
beam-smearing effects (see below, also Teuben 2002). The inte-
gration of emission along the line-of-sight in a thickened galaxy
causes a similar effect. This leads to a situation where, in prin-
ciple, a tilted-ring model resulting from a fit to a velocity field
has to be cross-checked with a model data cube as can be pro-
duced by the GIPSY routine GALMOD (van der Hulst et al.
1992, originally designed by T.S. van Albada). Some authors
have fitted model data cubes by adjusting the model parameters
and successively improving the model data cube by comparing it
with the original data cube “by eye” (Arnaboldi & Galletta 1993;
Swaters 1999; Gentile et al. 2004).

The drawbacks of just using the velocity field fits led to the
development of a number of software tools that perform direct
fits to the data cube (Irwin & Seaquist 1991) or to a position-
velocity diagram (Simard & Pritchet 1999; Takamiya & Sofue
2002; Böhm et al. 2004), thus circumventing the beam-smearing
or smoothing problem. These fit routines, which simulate an
observation from a model parametrisation, do not allow, how-
ever, for an intrinsic change of the orientational parameters and
hence are only limited implementations of the tilted-ring model.
Especially for the analysis of H I kinematics, full 3D fitting is
most suitable and has first been implemented by Corbelli &
Schneider (1997) and applied to the spiral galaxy M 33. In this
case, however, the fit was performed on single spectra resulting
from a single-dish observation. Thus, besides not being available
publicly, this algorithm would not suit for performing a fit to a
data cube produced by synthesis or integral-field spectroscopic
observations.

In this paper, the new, publicly available software called
TiRiFiC (“Tilted-Ring-Fitting-Code”) is presented. It performs
an automated fit of a tilted-ring model to a data cube. This soft-
ware was originally developed to construct tilted-ring models of
heavily warped galaxies observed in the H I emission line. It can,
however, be used for all kinds of spectroscopic data cubes of
translucent objects that can be approximated by the tilted-ring
model. While the software will be under development for quite
some time in order to improve the performance and to extend
functionality beyond the classic tilted-ring model, TiRiFiC can
already be used in its current form.

In this paper, we try to deal with two basic issues: does a
method to fit a tilted-ring model directly to the data cube lead
to more reliable results than a fit to the velocity field, so is it

possible to reach a reasonable fit within a reasonable compu-
tational time? The paper is laid out as follows: in Sect. 2 the
model layout and the fitting procedure are introduced, in Sect. 3
the smoothing effect of velocity field-based fitting algorithms is
discussed, in Sect. 4 the results of a few tests of TiRiFiC are
presented. In Sect. 5 the results are summarised. First applica-
tions of TiRiFiC to purposely selected (warped) galaxies will be
published in forthcoming papers.

2. TiRiFiC layout

2.1. Tilted-ring model

A TiRiFiC tilted-ring model is specified by a set of parameters
that vary with radius, plus a set of global parameters. We refer to
the set of parameters belonging to a given radius as a “ring” in or-
der to stick to the traditional terminology. A model is calculated
in a very similar, but not identical, way as in the GIPSY rou-
tine GALMOD. To calculate a model, a number of “sub-rings”
with a user-specified width is created by linear interpolation of
the ring-specific parameters. These sub-rings are then modelled
by a Monte-Carlo integration to rotate with the same tangential
velocity with a certain orientation w.r.t. the observer, determined
by the position angle and inclination. The resulting velocities
are then projected onto a cube with dimensions set by the input
data cube. The orientational parametrisation used by TiRiFiC is
shown in Fig. 1. The final step to obtain a model representing
an observation consists of a convolution with a 3D-Gaussian,
representing the instrumental effects of a finite observing beam
and the finite resolution in the frequency domain, as well as the
internal dispersion within the tracer material of a galaxy.

The user specifies the number of rings and for each ring (see
also Fig. 1):

– the radius;
– the circular velocity;
– the scale height (for the specification of the vertical density

distribution see below);
– the surface brightness;
– the inclination;
– the position angle. Contrary to the usual convention (e.g.

GALMOD, ROTCUR), the position angle is defined as the
angle between the meridian and the minor axis of each
ring from north through east (see Fig. 1). In comparison to
GALMOD the TiRiFiC position angle is 90◦ larger. TiRiFiC
uses the same definition as used by Briggs (1990);

– the right ascension of the central positions of the rings, which
is allowed to vary from ring to ring;

– the declination of the central positions of the rings, which is
allowed to vary from ring to ring;

– the systemic velocity, which is also allowed to vary from ring
to ring.

The user specifies the following global parameters:

– a global isotropic velocity dispersion, which includes the in-
strumental dispersion. It is clear that such a treatment is not
entirely physical, as it is known that the dispersion changes
with radius in spiral galaxies and is also not the same in the
vertical and horizontal directions of the disk. On the other
hand, one has to keep in mind that the tilted-ring model itself
is in fact a geometric parametrisation of the galaxy kinemat-
ics, which still needs to be interpreted, even if it resembles
the true kinematics quite well. The reason to keep a velocity
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Fig. 1. Definition of the orientational parameters of TiRiFiC, i.e. inclination i and position angle pa. Left: view of a circular orbit of the tracer
material at an arbitrary position. A circular orbit appears to the observer as an ellipse as shown in the right graph. The three-dimensional orientation
of the orbit circle is parametrised by the position angle enclosed by the north axis and the “descending” line-of-nodes (LON, desc), and the
inclination. The descending line-of-nodes is the half-minor axis of the projected ellipse defined by the centre of the ellipse and the point where
the galaxy material switches from a higher recession velocity (than systemic) to a lower one, moving anti-clockwise along the ellipse. With the
inclination being the angle between the celestial plane and the orbital plane, the orientation of the orbit is fixed. LOS is the line-of-sight; MA, app
is the approaching half-major axis; MA, rec is the receding half-major axis; and LON, asc is the ascending line-of-nodes.

dispersion as a global parameter is to improve the computa-
tional speed. It provides the possibility of shifting the mod-
elling of the dispersion to a convolution instead of a (time-
expensive) Monte-Carlo integration;

– the second global parameter accounts for the vertical distri-
bution of the gas density. The user can choose between a
Gaussian, sech2, exponential, Lorentzian and a box layer;

– the constant total flux of a single point source (a “cloud”).
The number of Monte-Carlo point sources is approximately
the total flux of the model divided by this number. When cal-
culating the point sources for a subring, however, the cloud
flux is changed by a tiny fraction in order to keep the flux of
the subring accurate.

After calculating a point-source model and gridding of the
Monte-Carlo point sources onto a model cube, the cube is con-
volved with a 3D-Gaussian, a product of a 2D (anisotropic)
Gaussian in the x-y-plane, and a 1D Gaussian determined by
the global velocity dispersion. The form of the Gaussian in the
x-y-plane is determined by the observing beam of the input cube
(the CLEAN beam), which can be redefined by the user.

2.2. χ2 evaluation

The convolution routine implemented in TiRiFiC aims at com-
putational speed. The only possibility of reaching the required
speed is by an FFT-convolution, for which the FFTW (Frigo &
Johnson 2005) library is used. It seems to possess the highest
flexibility and quality (in terms of computational speed) of all
freely available FFT libraries.

TiRiFiC calculates the χ2 and, along with this, the relative
probability of two models. Usually, χ2 is calculated via

χ2 =
∑

k

(Mk − Ok)2

σ2
k

=
∑

k

(Mk − Ok)2

wk
, (1)

where k is an index running over all pixels in the cube, M is the
model data cube, O the original, and σk the noise of the original

data cube in the kth pixel. If the quantisation noise is treated
correctly, the weight wk of a pixel should be

w(k) = σ2
rms + (σq

k)2, (2)

where σrms is the rms noise of the original data cube and σq
k the

quantisation noise of the convolved artificial data cube. TiRiFiC
is able to calculate σq

k (for a mathematical treatment see Józsa
2006). It is, however, a larger computational effort to do so, and
the user might be inclined to modify the goodness-of-fit evalua-
tion. With a “weight parameter” W, a weight map is calculated
via

wk =
σ2

rms ·W2 + (σq
k)2

W2
· (3)

If W → ∞, the weight map becomes a constant, σ2
rms, giving

TiRiFiC the possibility of saving one convolution. If W = 1,
the noise will be estimated correctly, including the quantisation
noise (which can in principle exceed the rms noise of the data
cube). The parameter is kept continuous to give the user a kind
of weighting scheme at hand. With an increasing weight parame-
ter, the emphasis will be taken away more and more from regions
with high quantisation noise (and thus high surface density) to-
wards regions of low surface density.

2.3. χ2 minimisation

With the type of model generation in TiRiFiC, the usual
χ2 minimisation algorithms employing partial derivatives of the
model function with respect to the fitting parameters like the
Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt
1963; Press et al. 1986) are not easily realised, since the ana-
lytic form of the fitting function is unknown. The Monte-Carlo
method was chosen as a way to produce a model cube be-
cause an analytic form of the tilted-ring model does not ex-
ist. Furthermore, the model itself, for which a Jacobian would
have to be supplied, is the convolved tilted-ring model in three
dimensions.
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For TiRiFiC the simplest solution without the need for
derivatives was implemented first hand. The golden-section
search algorithm (Press et al. 1986, Chap. 10.1) is an uneco-
nomic but simple method (see below) to find local χ2-minima
in parameter space without the necessity of normalising the
χ2 evaluated with TiRiFiC; i.e. for this algorithm the knowledge
of the rms noise in the analysed data cube does not play a major
role.

A tentatively implemented Metropolis Monte-Carlo-
Markov-chain algorithm (Metropolis et al. 1953) proved not to
be applicable in tests using real H I data cubes, mainly because
a smooth disk as fitted to the data cubes is not close enough
to a realistic, clumpy galaxy disk. The Metropolis algorithm
requires an ideal parameter set to be able to reproduce the data
perfectly. For more details on the fitting procedure see Józsa
(2006, Chap. 2).

Parameter fitting in TiRiFiC is rather flexible. The user can
specify single parameters to be fitted, or groups of parameters
that will be fitted at once as one parameter. As an example, the
user has the possibility of fitting a changing projected centre
from ring to ring as is, e.g., expected for a galaxy disk with a
bowl-shaped warp. Such bowl-shaped warps result in an asym-
metric projected appearance. For rather symmetric galaxies this
might not be desirable, because in this case one would desire to
keep the number of free parameters low. With TiRiFiC the user
has the possibility of fitting a single centre for all rings, defining
their centres as a group and fitting the value of this group as a
whole.

3. Beam smearing and smoothing inherent
to velocity fields

The success of a tilted-ring fit to a velocity field depends on
how well the velocity field is able to represent the mid-plane
recession velocity of the rotating disk. In practice, to derive a
velocity field from a data cube one usually tries to determine
the peak positions of the velocity profiles (e.g. Swaters 1999,
Chap. 3). The simplest way to extract this peak velocity from a
noisy velocity profile is to compute the intensity-weighted mean
(the first moment, e.g. Rogstad & Shostak 1971; Simon et al.
2003, 2005), while a fit of full Gaussians (e.g. Begemann 1987;
Swaters 1999) or half-Gaussians (e.g. García-Ruiz et al. 2002)
is considered a better approach. Even more sophisticated meth-
ods exist to reliably derive the peak velocities from the line pro-
files (Gentile et al. 2004). With artificial data cubes, however,
one is restricted neither by noise nor by the velocity resolution.
Therefore, by producing a noiseless artificial observation with a
very high spectral resolution and reading out the peak velocities
from the profiles, one gets a velocity field which would ideally
be derived from a measured data cube.

It can be shown in a simple experiment that biases will oc-
cur in a velocity field-based tilted-ring analysis even when using
such an idealised case of a velocity field. A Gaussian beam with
a HPBW of 12′′ and a (total) velocity dispersion of 10 km s−1 was
used to produce with TiRiFiC two low-noise artificial observa-
tions of a galaxy with 17.6 × 106 point sources in a data cube
with a spatial pixel separation of 4′′ (for the parametrisation see
Fig. 2, a detailed description can be found in Józsa 2006). The
parameters were sampled with a separation of 12′′. Inclinations
of 60◦ and 75◦ were chosen, and the position angle was kept
fixed at all radii.

In order to produce a “perfect” velocity field, the cubes were
generated with an unrealistic channel separation of 0.26 km s−1.

Peak-velocity maps were created with these data cubes.
Analysing these velocity fields with the GIPSY routine
ROTCUR, rotation curves were produced. Two slightly differ-
ent approaches were tested with an input guess identical to the
model parameters, using a sampling of the rings identical to the
input model. The results of both fits can be seen in Fig. 2 (com-
pare to Teuben 2002).

The fitted rotation velocities are biased following a certain
pattern that depends on the shape of the surface brightness pro-
file, which in this test case is falling monotonically. In those re-
gions where the rotation curve is rising, the rotation velocities
are underestimated, while in regions where the rotation curve is
falling the rotation velocities are overestimated. The fitted rota-
tion velocity tends to be biased towards regions of higher surface
brightness. The reason for this lies in the fact that the measured
velocity profile at a certain position of the galaxy is a convo-
lution of the beam with the true intensity distribution. Thus, if
the intensity is not constant over the beam area, the resulting
“smeared” profile receives more contribution from areas with
higher intensity and hence becomes asymmetric, even if it would
be symmetric when observed with a pencil-beam. The position
of its maximum is dragged towards velocities with a higher as-
sociated surface brightness. This effect is cannot be treated in a
straightforward manner because it also depends on how veloci-
ties change within a beam. It is also visible at radii where both
the rotation curve and surface brightness are flat over a wide
range. This means that “smoothing” affects the rotation curve at
all radii. The reason for this lies in how in projection the galaxy
becomes fore shortened along the kinematical minor axis. Here,
the gradient of the velocity field becomes largest and the observ-
ing beam covers the widest range of velocities along the kine-
matical minor axis. Points in the vicinity of the kinematical mi-
nor axis are thus more strongly affected by beam smearing. This
is why usually a section of the velocity field is thus not regarded
(by specifying a “free-angle1”) in a rotation curve analysis and a
weighting of data points is applied, while our experiment shows
that this treatment does not help much for the analysis of the in-
ner regions, but improves matters in the outer ones. An extreme
choice for a free angle would be to only read out the velocities
along the major axis of the galaxy and to correct the velocities
for the inclination. This is equivalent to an extraction of a rota-
tion curve from a long-slit observation. The results from such a
“fit” are shown in the righthand panel of Fig. 2. It can be seen
that with such a choice the results get slightly better in the out-
skirts of the galaxy at the expense of far worse results in its inner
parts.

In order to demonstrate how a velocity field analysis is influ-
enced by the a-priori unknown distribution of the H i, we chose a
rather high inclination of at least i = 60◦ for our artificial obser-
vations. Since this covers only one third of all observable galax-
ies, we emphasise that not necessarily all velocity field analy-
ses are affected by beam smearing. Furthermore, the clumpiness
of the distribution of the interstellar medium (ISM) introduces
more errors into a tilted-ring analysis, which might well exceed
the ones arising from the shown variant of beam smearing.

However, using a velocity field as would be ideally derived in
a noiseless observation, we demonstrated how in analysing ve-
locity fields of galaxies with an inclination higher than i = 60◦
systematic errors might be introduced by beam smearing. Even
if the maximum deviation from the true rotation curve is not
very large (about 3.3 km s−1 for i = 60◦ and about 3.9 km s−1

1 angle defining cones around the minor axis within which radial ve-
locities are discarded from the computation.
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a)

Fig. 2. Testing the extraction of rotation curves from velocity fields. Filled circles and connecting lines (black) show the parametrisation with which
two artificial observations have been generated, a velocity field and a data cube (see text). Top panel: rotation curve. Centre panel: blow-up of the
rotation curve (same lay-out as above). Bottom panel: H I surface brightness. The inclinations are 60◦ (left) and 75◦ (right) respectively. Velocity
fields were generated as described in the text. Triangles and connecting lines (blue) indicate results from a ROTCUR fit with a free-angle of 0◦ and
a uniform weighting. Stars and connecting lines (red): results from a ROTCUR fit with a free angle of 30◦ and a cosine weighting. Diamonds and
connecting lines in the right panel (green): results from a cut along the galaxy major axis, corrected for inclination. Filled circles and connecting
lines (black) also denote the results of a TiRiFiC fit; they are identical to the parametrisations of the artificial observation.

for i = 75◦ in this experiment), this variant of beam smearing can
introduce a significant misinterpretation of the measurement, as
the resulting rotation curve is systematically biased. Moreover,
second-order treatments of the kinematics of gaseous disks, like
a harmonic analysis, require a precision in that range. An assign-
ment of a (large) statistical error to compensate for beam smear-
ing is thus not a solution. Results from mass decompositions in
which (unknown) density profiles are fitted to rotation curves de-
rived from velocity fields are very vulnerable in that respect. The
smoothing effect can lead to a preference of rotation curves with
a smaller curvature ∂2v/∂r2.

4. Testing TiRiFiC

Figure 2 also shows the results of a fit with TiRiFiC to artificial
data cubes that are identical to the data cubes used to produce the
velocity fields, except for a larger channel width of 2.06 km s−1.
As for ROTCUR, the first-guess-parameters were identical to
the model parameters and sampled at identical radii. Naturally,
TiRiFiC makes a perfect fit, and the resulting model is identical

to the input model. It is however noticeable that, in principle,
with TiRiFiC it is thus possible to produce an artificial observa-
tion that can be reproduced over and over by a fitting process. For
routines working on the velocity field, this is not the case. First,
the surface brightness distribution, which is a free extra output
of TiRiFiC, has to be inferred using other information (e.g. by
fitting a tilted-ring model to the total intensity map). Second, an
artificial data cube will always have to be subject to a convolu-
tion with an artificial beam, thereby introducing beam smearing;
therefore, the artificial cube never reproduces a velocity field that
fits to the tilted-ring model found by the fitting routine.

4.1. Rotation curve of an edge-on disk

One of the strengths of TiRiFiC is supposed to lie in its ability to
perform reliable fits where velocity field methods are bound to
fail by definition. This is the case in particular when the line-of-
sight crosses the galaxy disk twice or more often. An extreme
case of such a situation is encountered when a galaxy is ob-
served (nearly) edge-on, because then the galaxy disk is crossed
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Fig. 3. Testing rotation curve extraction with TiRiFiC. Triangles and
connecting lines (red) show the parametrisation with which an artifi-
cial observation of a flat galaxy with 90◦ inclination has been generated
(edge-on case). Top panel: rotation velocity. Middle panel: rotation ve-
locity, blow-up. Bottom panel: surface brightness. The parametrisation
for the artificial observation is twice as dense as for the fit of the ar-
tificial observation performed with TiRiFiC. The fitted parameters are
represented by dots (black) and connecting lines.

not only twice but an infinite number of times. We simulated
a galaxy observation using the rotation curve and the surface
brightness profile shown in Fig. 3, a template cube and an artifi-
cial beam as in Sect. 4, putting it in an edge-on orientation. The
parameters for the artificial observation were sampled in steps
of 6′′. Then, the artificial observation was fitted with TiRiFiC,
taking the input model parameters as a first guess, but leaving
the rotation velocity, the surface density profile, and the orien-
tational parameters inclination and position angle as free pa-
rameters. In order to prevent a trivial solution, the fitting was
performed with a parameter sampling in steps of 12′′. TiRiFiC
reaches a nearly perfect fit, interpolating in the regions where the
fit results cannot reproduce the artificial observation by construc-
tion (see Fig. 3). Hence, TiRiFiC is able to figure out reliable
rotation curves from observations of edge-on galaxies. A slight
“beam-smearing” effect takes place at radii where it is not pos-
sible to follow the high curvature of the parametrisation of the
artificial observation, owing to the fact that in the fitting process
the parameters are sampled with half the rate as for the artificial
observation.

A caveat is that TiRiFiC assumes a galaxy to be translucent.
Observations of edge-on galaxies may suffer significantly from
self-absorption and scattering processes at certain wavelengths
(e.g. Baes et al. 2003). This has to be taken into account when
interpreting TiRiFiC results, especially when fitting to optical
spectroscopic data.

4.2. An edge-on warp

TiRiFiC has been constructed to be able to fit data cubes of ob-
servations of warped galaxies, which is one of the main applica-
tions of the tilted-ring model. In order to construct a case tailored
to put TiRiFiC to the test and for which no appropriate auto-
mated software exists yet, a warp in an edge-on galaxy was con-
structed. This is a situation where it is impossible to construct
an unambiguous velocity field, as the line-of-sight crosses the
disk several times. Again, the model observation was generated
using a template data cube and an artificial beam as described
in the previous subsections, sampling the model parameters in
steps of 6′′.

The input parameters to TiRiFiC were chosen to randomly
deviate from the input model parameters (see Fig. 4). Again,
in fitting the data, the model parameters were sampled in steps
of 12′′ to prevent the possibility of a trivial solution.

In fitting the data cube, the rotation velocity, surface bright-
ness, inclination, and position angle were fitted independently
for every single ring; the other parameters were fitted by let-
ting them vary together. An exception was made for the four
innermost rings where the orientation parameters were fitted
with the constraint to be the same for each ring. A number
of 3.5 × 106 point sources were chosen for the fitting process,
while the artificial observation was created with 17.6×106 point
sources. The result of the fit process (Fig. 4) shows that with
TiRiFiC, it is possible to fit to a data cube of an edge-on galaxy
with a large warp with a very high accuracy.

4.3. Sensitivity

Since a galactic disk (or any gaseous astronomical object with
disk symmetry) becomes fainter with increasing radius, the ex-
tent of a tilted-ring analysis is either limited by the observational
noise or by the fact that the ring symmetry breaks down. For a
conventional velocity field analysis, the radial velocities have to
be derived from the spectra in the single pixels in a data cube.
The extent of the velocity field and, with this, the maximal ra-
dius that can be addressed in a tilted-ring analysis is thus deter-
mined by the pixels where the signal-to-noise ratio significantly
exceeds unity. Since with the TiRiFiC approach one fits a global
model to the data cube, the number of pixels that determine the
parametrisation of a ring is large. Therefore, even if the emis-
sion from an object is well below the nominal noise per pixel,
one should still be able to derive a reliable parametrisation with
TiRiFiC. Provided the object follows a tilted-ring symmetry, the
detection limit should in theory scale with 1/

√
(N), where N is

the number of pixels with emission in a rotating ring projected
onto the 3D data cube.

In order to get an impression of the realistic performance
of TiRiFiC when fitting faint structures, we generated a large
number of artificial observations of gaseous rings with varying
uniform surface brightness and varying surface solid angle. The
rings were projected onto a data cube with a size of 512′′ ×
512′′ and a pixel size of 4′′, 64 channels with a separation of
4.12 km s−1 using an observational beam of 12′′ × 14′′ (HPBW),
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Fig. 4. Testing tilted-ring fitting with TiRiFiC. Triangles and connecting
lines (red) show the parametrisation with which an artificial observation
of a heavily warped galaxy has been generated. Stars and connecting
lines (blue) show the first-guess input to TiRiFiC. The fitted parameters
are represented by black filled circles and connecting lines.

and a global velocity dispersion of 7 km s−1. An H i observation
with the Westerbork Radio Synthesis Telescope (WSRT) is sim-
ulated with these specifications. In order to add realistic noise to
the model, we utilised line-free channels from a 2×12 h observa-
tion with the WSRT having an rms noise level of 3.6 mJy/beam.
The rings were chosen to have an inclination of 60◦, a rotation
velocity of 75 km s−1, and a scale height of 2′′ using a sech2-law
for the vertical distribution. While the maximal extent of each
ring was fixed at 200′′, the inner radius was varied between 45′′
and 195′′, linearly varying the face-on solid angle occupied by
the ring, which is roughly proportional to the number of pixels
containing emission in the projection of the ring onto the cube.

We fitted the artificial observations with rings of the
same extent, with an initial guess deviating significantly
from the artificial parametrisation (surface brightness 1 ×
10−5 Jy km s−1 arcsec−2, rotation velocity 65 km s−1, inclination
and position angle deviating by 10◦, all other input parameters
identical to the parametrisation of the artificial observation) in
a two-step process, first fitting all parameters except the surface
brightness, then fitting all parameters. In order to distinguish a
detection of such a ring from a non-detection, we also fitted a
data cube containing only noise and no emission. Calculating

Fig. 5. Testing the sensitivity of TiRiFiC. Each pixel represents a fit to
an artificial observation (including realistic noise) of an inclined rotat-
ing ring with a given solid angle and surface brightness, with the lowest
row only representing a fit to a data cube containing noise. The pixel
values represent the deviation of the fitted position angle from the true
position angle of the ring. Clearly distinguishable are regions where the
fit succeeded (bright regions) and where it failed (dark regions). Similar
plots can be generated for other fitting parameters (see Fig. 8).

the differences of the fitted parameters and the parameters used
for the artificial observation, one can clearly distinguish between
cases where the fit was successful and where it failed (Fig. 5
and Figs. 8). By setting a threshold for the deviations of the
parameters, i.e. rotation velocity (4 km s−1), surface brightness
(7×10−7 Jy km s−1 arcsec−2), position angle (2◦), and inclination
(2◦), a binary diagram could be constructed in which a detection
for combinations of ring surface brightness and ring solid angle
was marked (see lower right panel in Fig. 8). Finally, the detec-
tion limits as a function of the ring solid angle could be extracted
(Fig. 6). It turned out that, while the detection limit determined
that way shows a monotonic decrease with increasing ring solid
angle, the expected proportionality did not show up. Also when
trying to estimate the number of independent data points that the
projected ring occupies in the artificial observation, we could
not establish a simple law that connects the ring solid angle to
the detection limits.

However, Fig. 6 clearly shows how the sensitivity in detect-
ing faint symmetric structures in gaseous disks is enhanced using
the TiRiFiC approach. With a power law

σtir

Jy km s−1 arcsec−2
= 9.0 × 10−4 ·

Ω−0.82
ring

Ωmb
, (4)

where σtir is the detection limit andΩring is the ring surface solid
angle, and Ωmb = 202 arcsec2 the beam solid angle, we achieve
a reasonable fit. With this we can estimate the ring solid angle
of 141Ωmb that is needed to detect a ring that in projection onto
the cube has an intensity just below the noise σrms in the data
cube (1.6 × 10−5 Jy km s−1 (≈̂2 × 1019 atoms cm−2 in an H i ob-
servation, horizontal line in Fig. 6). At a radius of 200′′, this
corresponds to a ring width of 24′′.

A caveat arises from the fact that, even when no real emis-
sion is present, a fit with TiRiFiC will result in a detection a
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Fig. 6. Testing the sensitivity of TiRiFiC: detection limits as a func-
tion of ring-surface solid angle in units of the main beam solid angle
(Ωmb = 202 arcsec2, see text). The dependence is fairly well fitted by a
power law (curved line). The vertical line marks the surface brightness
where all pixels in the noiseless data cube lie below the 1-σrms level of
the noisy data cube. The righthand axis is scaled such that the surface
brightness of a ring is converted to the surface column density of an
H i observation.

Fig. 7. Resulting surface brightness from a fit of a ring to a cube that
contains only noise as a function of ring surface solid angle in units of
the beam solid angle (Ωmb = 202 arcsec2, see text). Over-plotted is the
detection limit determined from fits to faint rings (curved line, see text).
The erroneously detected surface brightness lies well below that line.

faint structures in the presence of noise: in a noisy data set a
residual offset in surface brightness can be found for a specific
optimal ring parametrisation, even if averaging over many pix-
els. This can be tested when fitting to a data cube that contains
only noise, as has been done in the experiment discussed here.
Figure 7 shows the detected surface brightnesses as a function
of ring width when fitting a data cube that contains only noise.
The erroneously detected surface brightnesses lie well below the
detection limit as quoted in Eq. (4), the detection limit exceed-
ing the erroneously detected surface brightnesses by a factor of a
few. However in analysing observations with TiRiFiC, one has to
be cautious when accepting a faint structure detected by TiRiFiC
as real, since then residual calibration and CLEANing errors be-
come more and more important; in particular cases one should
possibly apply additional tests such as analysing independent
observations.

Compared to e.g. H i observations of nearby spiral galaxies,
the size of the test data cube is rather small. Since the surface

solid angle of a ring with constant width scales with radius, the
detection limits will scale with radius for larger objects. We thus
conclude that with TiRiFiC, one is able to detect faint structures
well below the noise – provided the observed object shows the
symmetry inherent to the tilted-ring model. The detection limits
can be estimated as shown above.

4.4. Realistic tests

To test how TiRiFiC works in practice, we constructed a num-
ber of artificial H i observations of galaxies that had to be anal-
ysed with TiRiFiC by a author of this paper, the “observer”, but
which varied. The template cube and the observing beam had the
same specifications as given in Sect. 4.3. We performed fits to
artificial observations with and without realistic noise added to
the data cube, as described above, and with varying degrees of
symmetry. The observer was informed about the symmetry of
the object (like “flat disk” or “constant centre and systemic ve-
locity”), but strictly not about the specific parametrisation of the
artificial galaxy disk. We also included cases where all parame-
ters were kept variable so that a lopsided or a U-shaped galaxy
with a possible flare was analysed. Finally, we constructed a case
where the cloud flux was drastically enhanced in order to simu-
late the clumpiness of the gas in the observed object.

All fits were performed following the same pattern. First,
the observer estimated the rough geometry of the object from
the data cube, in order to then run a first iteration process with
TiRiFiC using only a few parameters (fitting a common cen-
tre and systemic velocity, a common scale height, a common
orientation, and a surface brightness distribution and a rotation
curve parametrised by a few data points). After that, the sam-
pling of the parameters was refined and, if necessary, the param-
eters were fitted independently. It turns out that a fitting process
with TiRiFiC needs the personal attention of an observer. In or-
der to achieve a good fit, it is necessary to inspect the results and
to correct single data points that are obviously “outliers” in order
to restart the fitting process. After a few such iterations (in the
range of 2−10), no improvement is achieved and the last fit is
the final result.

To compare TiRiFiC to methods, where a velocity field is de-
rived and fitted, i.e. a ROTCUR application together with an ide-
alised realistic construction of a velocity field, we also generated
data cubes with a ten times higher velocity resolution (a channel
width of 0.41 km s−1) and (if the cube given to the observer con-
tained noise) a ten times lower noise level. The data cubes were
flagged where the intensity in the noiseless data cube was be-
low 0.5σrms. Both a peak intensity and a first-moment velocity
field was generated from the flagged data cube using the GIPSY
routine MOMENTS. This way we simulated the construction
of a velocity field as would ideally be derived by an observer
(see Sect. 3) using common methods for extracting a velocity
field. The velocity fields were analysed with ROTCUR, the in-
put guesses either deviating slightly from the optimal guess or
being optimal.

A full documentation of all specific fitting results is
given at the end of the paper. Here, we provide a sum-
mary. Independent of the specific iteration method pre-
ferred by a single observer, TiRiFiC offers reliable results at
galactocentric radii greater than 1−1.5 HPBWs (in our example
greater than 20′′). Below that radius, the number of indepen-
dent data points is too low to allow a fit of the full parameter
set. In a statistical sense, TiRiFiC is thus not free from beam
smearing but by far less affected than the traditional method:
for the bulk of the data points, the ROTCUR results are worse
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than those of TiRiFiC, and the minimal radius where ROTCUR
produces reliable results (under idealised circumstances) lies be-
yond 4−5 HPBWs of the observing beam.

From Eq. (4) we estimate the detection limit for a ring
width of 15′′ at a radius of 200′′ to be 2.3 × 10−5 Jy km s−1

(≈̂ 2.9 × 1019 atoms cm−2 for an H i observation). This value is
a conservative upper limit. In most cases the detection limits are
significantly lower, especially when the observer could make use
of a certain symmetry, e.g. a common centre of all rings. TiRiFiC
reliably fits disks that possess shifting centres and systemic ve-
locities. Hence, with TiRiFiC one is able to fit asymmetric galax-
ies that maintain the tilted-ring symmetry.

A clumpy H i distribution simulated as described above does
not hamper the performance of TiRiFiC. TiRiFiC averages over
azimuth. Therefore, a random distribution of a still sizeable num-
ber of clouds results in a larger χ2, but not in a different result.
We did not simulate the case where the H i distribution is dis-
tinctly asymmetric. It is to be suspected that in some cases an
m = 2 harmonic in the distribution of the tracer material can
have an effect on the results.

Above a limit of 25◦ in inclination (which is close to face-
on), TiRiFiC reliably disentangles rotation velocity and inclina-
tion. In this respect, ROTCUR performed better, due to to the
fact that our derived velocity fields become very accurate at low
inclination. It was shown by Begemann (1987) that, for an incli-
nation lower than 60◦, inclination and rotation velocity become
significantly degenerate in a tilted-ring analysis of the velocity
field. For a velocity field analysis with ROTCUR, it is necessary
to apply the method on a velocity field with a statistical error
of less than 1 km s−1 to derive reliable rotation curves (and with
that, a reliable estimate for the inclination) of galaxies with an
inclination of less than 40◦. This level of accuracy is hard to
reach using real observational material. In cases with low incli-
nation, the surface density profile determined with TiRiFiC had
the smallest errors.

For most parameters a stable solution is found in the first it-
eration process. The fact that a few iterations are, nevertheless,
needed to reach a final model shows that, for some singular pa-
rameters, the algorithm used for the χ2 minimisation does not
perform an effective scan of the parameter space. Then, the user
takes the role of stirring up the parameters to enable the localisa-
tion of the better minimum (for a few data points). The success
and the quality of the fits in our tests was independent of the
observers’ identity, even though they used slightly differing ap-
proaches with regards to fitting the parameters and to choosing
how to approach the best-fit parametrisation from the start. Thus,
it seems that the actual way the user shifts singular data points
in order to start a next iteration process has no big influence on
the quality of results.

We fail to achieve good results in one particular case
with both TiRiFiC and ROTCUR. In the case of a galaxy
with a thick disk (a vertical scale height of 33′′ in a disk
with an H i radius of about 200′′, see Figs. 10 and 11),
a TiRiFiC fit will converge extremely slowly, since in this
case the degeneracy of inclination and rotation velocity is
enhanced. This slow convergence then leads to a misinter-
pretation of the results as already the final solution. Also
ROTCUR fails with extremely large errors, since the kinematical
information is smeared out along the kinematical minor axis,
making the χ2 minimum shallower in parameter space. In other
words, the iso-velocity contours get stretched artificially along
the minor axis. In the case of TiRiFiC, we have the hope of
overcoming this problem by implementing a more effective min-
imisation method. The user will in any case be able to detect a

thickened disk, and be aware of the problem. We expressively
caution, however, against over-interpretating rotation curves re-
gardless of the analysis method in the case of galaxies likely
to have a thickened disk as is the case for dIrr galaxies (see e.g.
Staveley-Smith et al. 1992; Bottema et al. 1986; Walter & Brinks
1999). Without showing a galactic disk to be thin enough, de-
rived rotation curves are extremely unreliable.

4.5. Solid-body rotation

Another problem occurring when extracting rotation curves us-
ing velocity fields occurs in the case of a solid-body rotation, as
can be found again in dIrr galaxies (e.g. Walter & Brinks 1999).
In that case, rotation velocity and inclination are completely de-
generate. Since with TiRiFiC one fits not only the kinematics
but also the radial surface brightness profile, this degeneracy is
broken, provided the gas distribution is symmetric enough and
shows a radial gradient, as we can show in a further experiment
(last viewgraph at the end of the paper) that we performed with
the same specifications for the artificial observation as given in
Sect. 4.4 using a noiseless data cube. TiRiFiC fits very reliably a
flat disk with solid-body rotation.

4.6. TiRiFiC performance

TiRiFiC is slow. Nearly 160 h computation time needed to per-
form the fit described in Sect. 4.2, working with an AMD Athlon
XP 2400+CPU, can serve as an indication. In practice, however,
the user has the possibility of reducing the computing time con-
siderably. In a first iteration process, the size of the data cube
can be reduced by binning data points. The model can be ported
easily from a low-resolution data cube to a high-resolution data
cube, since the model parameters are independent of the specifi-
cations of the data cube, unless the reference coordinate system
(the epoch and the velocity definition) changes. Assumptions
about symmetries can be made to reduce the number of param-
eters; e.g., if a disk is not warped, all position angles and in-
clinations can be fitted as one single parameter. A priori known
parameters like a surface brightness profile can be excluded from
the fitting process.

Up to now, we concentrated on implementing a working ver-
sion of the software in order to demonstrate its applicability.
Future development, however, will include a parallelisation of
the code in order to make the use of computer clusters possible.
Furthermore, the possibilities of using more effective fitting pro-
cedures will be explored. With this we certainly expect a jump
in the computing performance of TiRiFiC.

5. Results and discussion

We introduce TiRiFiC as a program that fits a tilted-ring model
directly to spectroscopic data cubes and we provide a number
of tests of the program. We show that the TiRiFiC tilted-ring
model has a high flexibility and even allows modelling of galaxy
disks that are asymmetric in projection. We are able to show that
TiRiFiC is not affected by the drawbacks of methods that work
on velocity fields. For galaxies with an inclination above 60◦, we
show that velocity fields are affected by systematics that depend
on a-priori unknown factors, such as the surface density distri-
bution. While the deviations of a rotation curve from the true
one derived with fits to the velocity field are small, they occur
in a systematic manner, possibly biasing the results of a rota-
tion curve analysis. Using a direct fit to the data cube, TiRiFiC
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reduces these systematics significantly, delivering the unknown
surface density profile as an extra. A finite observing beam af-
fects the reliability of the TiRiFiC results at the smallest radii in a
statistical sense, since the number of fit parameters becomes too
large in comparison to the number of independent data points.
In general, TiRiFiC delivers more reliable results than a fit to the
velocity field.

The biggest advantage of TiRiFiC lies in its applicability to
edge-on and warped galaxies. Several tests show that TiRiFiC is
able to reach a best-fit model that comes very close to artificial
input models having a large edge-on warp.

Since the approach of TiRiFiC is to fit a global model to the
data cube, a detection and quantification of a faint outer disk is
possible, even if the bulk of the emission of that disk is fainter
than the rms noise of the data cube, provided the outer disk fol-
lows the tilted-ring symmetry.

TiRiFiC fails to disentangle inclination and rotation velocity
below a disk inclination of 25◦ (i.e. close to face-on). In that
case, to estimate a more reliable rotation curve, a velocity field
approach is to be preferred.

The determination of rotation curves for galaxies with very
thick disks like dIrr galaxies is unreliable, regardless of the fit-
ting method, since the degeneracy of inclination and rotation ve-
locity is significantly enhanced. Since the surface-brightness dis-
tribution is also fitted by TiRiFiC, it is nevertheless possible to
derive reliable rotation curves with this approach in the case of
solid-body rotation that occurs predominantly in dIrr galaxies.

The major current drawback of TiRiFiC is its slowness. A
single fit when using a conventional PC takes a long time, so that
TiFiFiC cannot be used (yet) to perform many fits in a short time
unless a certain amount of computational power is available.

We present a series of practical tests in the course of which
an “observer” had to parametrise an unknown galactic disk with
TiRiFiC, and we are able to show that such a parametrisation is
reliable even when analysing data cubes with realistic noise. The
success in the limits stated above is independent of the specific
approach of the observer. It is of course the application to real
observational data, as will be presented in subsequent papers of
this series, that will show how useful TiRiFiC is in gaining new
insights into the kinematic structure of rotating disks, especially
galaxy disks. TiRiFiC can be considered as the most straight-
forward realisation of a tilted-ring fitting method, since with its
approach one does not require any careful analysis of the sin-
gle spectra in a data cube in order to extract a velocity field.
Hence, if TiRiFiC fails to produce a model data cube that fits
to an observation of a galactic disk, the implication is that its
kinematics cannot be represented by a tilted-ring model. The de-
velopment of fitting routines similar to TiRiFiC is a good step
towards improving analysis methods of observational data con-
taining kinematical information, as will be demonstrated in the
consecutive papers of this series. As secondary kinematical fea-
tures (and their influence on the analysis) not compliant with the
tilted-ring model have received more and more attention in the
recent literature, e.g. by applying harmonical analyses, the aim
must be to extend the analysis tools in order to put the theory of
galactic structure formation that includes non-circular motions
to the test. This work is already in progress.
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6. TiRiFiC sensitivity: additional plots

Fig. 8. Testing the sensitivity of TiRiFiC. Each pixel represents a fit to an artificial observation (including realistic noise) of an inclined rotating ring
with a given solid angle and surface brightness, the lowest row representing a fit to a data cube only containing noise. The pixel values represent
the deviation of the fitted surface brightness (upper left panel), the rotation velocity (upper right panel), and the inclination (lower left panel) from
the known true values. Clearly distinguishable are the regions where the fit succeeded (bright regions) and where the fit failed (dark regions). By
setting a threshold, a binary diagram can be generated (lower right panel), from which the detection limits in dependence of the ring surface solid
angle can be estimated (Fig. 6).



742 G. I. G. Józsa et al.: Kinematic modelling of disk galaxies. I.

7. Testing TiRiFiC: individual tests

TiRiFiC was tested by constructing a number of artificial
observations of a number of H i disks of a galaxy at a distance
of 4 Mpc. Here, we show the results of the fits, which were
performed by an “observer” using TiRiFiC. In addition, we
present the results derived with ROTCUR on idealised velocity
fields, which were extracted from an artificial observation of
the same disk with ten times lower noise and ten times higher
velocity resolution. ROTCUR was run on a peak-velocity field
and a first-moment velocity field, the input guesses reported in
the captions. The fit was performed using a free angle of 45◦,
fixing the expansion velocity of the rings to 0 km s−1. For each
test we provide a plot (left) containing the parametrisation of the
artificial disk (black dots and connecting black lines), the results
of the TiRiFiC fit (red triangles and connecting lines), and the
results of both ROTCUR fits (blue diamonds and connecting
lines: fit to first-moment velocity field, stars in magenta and
connecting lines: fit to the peak velocity field). From top to
bottom the panels contain: SD: H i face-on column density
and surface density in atoms cm−2 and M� pc−2, respectively.
VROT: rotation velocity in km s−1. INCL: inclination in degrees
and radians, respectively. PA: position angle in degrees and
radians. RA: the right ascension of the central position in
hh:mm:ss. RASH: the projected shift in right ascension in
kpc with respect to the centre of ring 1. DEC: the declination
of the central position in dd:mm:ss. DESH: the projected
shift in declination in kpc with respect to the centre of ring
1. VSYS: the systemic velocity in km s−1. SCHT: the scale
height in arcseconds and pc, respectively. The black vertical
line marks the end of the artificial disk, while the red vertical
line marks the end of the disk modelled by the observer. The
blue vertical line marks a radius of 1.5 HPBWs, beyond which
TiRiFiC produces reliable results in nearly all cases. The blue
horizontal line marks the detection limit for a ring of 15′′
width at a radius of 200′′ as derived in Sect. 4.3. The righthand
graph shows the deviations of the TiRiFiC fits from the model
parametrisations. Black dots and lines represent the deviation of
the black dots (the true parametrisation of the artificial galaxy)
in the left viewgraph from the red lines (the parametrisation

fitted with TiRiFiC) in the left panel, in red the deviation of the
red triangles (the parametrisation fitted with TiRiFiC) in the left
panel from the black lines (the true parametrisation of the artifi-
cial galaxy) in the left panel. Blue diamonds show the deviation
of the ROTCUR fit to the first-moment velocity field from the
parametrisation of the artificial galaxy, stars in magenta show
the deviation of the ROTCUR fit to the peak-velocity field from
the parametrisation of the artificial galaxy. The vertical lines in
the righthand plot have the same meaning as in the lefthand plot.

We analysed the quality of the TiRiFiC fits by means of
statistics. To this end, we extracted the deviations of the fits from
the parametrisationof the artificial galaxy and built the mean and
rms, and calculated the maximal error. The tables contain:

(1) The quantity listed. ∆: mean of deviations.
√
∆2: rms of devi-

ations. ∆max: Maximum deviation in the range described by (2).
(2) The range in which the deviations were determined. all: tak-
ing all data points into account. 70%: taking the 70% lowest de-
viations into account. n−σ: taking those data points into account
where the expected surface brightness is below the n − σ-level
of the artificial observation. The 1 − σ level is determined by
the face-on column density of a ring constructed as described
in Sect. 4.3, which in projection onto a data cube contains
no emission above the 1 − σrms level in the noisy data cube
(σ = 2 × 1019 atoms cm−2). excs: only for the surface column
density: deviations where the expected surface column density
is 0, i.e. where the artificial disk has already ended.
(3) Method to determine the quantities. tir: use of TiRiFiC. m1:
use of ROTCUR, fitting to the first-moment velocity field. pk:
use of ROTCUR, fitting to the peak-velocity field.
(4) Error in face-on H i column density (1018 atoms cm−2).
(5) Ratio of error in face-on H i column density and expected
face-on H i column density.
(6) Error in rotation velocity (km s−1).
(7) Error in inclination ( ◦).
(8) Error in position angle ( ◦).
(9) Error in right ascension of ring centre ( ′′).
(10) Error in declination of ring centre ( ′′).
(11) Error in systemic velocity (km s−1).
(12) Error in scale height (′′).
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Fig. 9. Test 1: flat disk with constant scale height without noise. The orientation parameters, centre, systemic velocity and scale height were fitted
“as one” with TiRiFiC. ROTCUR: input model with optimal guesses. Only the rotation velocity was fitted. For symbol- and colour-coding see the
introduction to this section.
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Table 1. Test 1: Flat disk with constant scale height without noise. The orientation parameters, centre, systemic velocity, and scale height were
fitted “as one” with TiRiFiC. Deviation in global dispersion: 0.01 km s−1. ROTCUR: input model with optimal guesses. Only the rotation velocity
was fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 257.32 0.710 1.4 0.4 0.0 0.2 0.2 0.1 0.3√
∆2 all tir 625.61 2.610 2.0 0.4 0.0 0.2 0.2 0.1 0.3
∆max all tir 2629.47 12.176 5.3 0.4 0.0 0.2 0.2 0.1 0.3
∆ 70% tir 4.00 0.058 0.6 0.4 0.0 0.2 0.2 0.1 0.3√
∆2 70% tir 8.17 0.071 0.8 0.4 0.0 0.2 0.2 0.1 0.3
∆max 70% tir 25.31 0.117 1.8 0.4 0.0 0.2 0.2 0.1 0.3
∆ hi tir 353.39 0.088 1.1 0.4 0.0 0.2 0.2 0.1 0.3√
∆2 hi tir 793.24 0.149 1.4 0.4 0.0 0.2 0.2 0.1 0.3
∆max hi tir 2629.47 0.481 2.9 0.4 0.0 0.2 0.2 0.1 0.3
∆ 8 − σ tir 0.99 0.140 1.3 0.4 0.0 0.2 0.2 0.1 0.3√
∆2 8 − σ tir 1.43 0.242 2.0 0.4 0.0 0.2 0.2 0.1 0.3
∆max 8 − σ tir 3.35 0.678 5.3 0.4 0.0 0.2 0.2 0.1 0.3
∆ 2 − σ tir 0.72 0.221 1.7 0.4 0.0 0.2 0.2 0.1 0.3√
∆2 2 − σ tir 1.27 0.312 2.5 0.4 0.0 0.2 0.2 0.1 0.3
∆max 2 − σ tir 3.35 0.678 5.3 0.4 0.0 0.2 0.2 0.1 0.3
∆ 0.5 − σ tir 0.34 0.241 1.9 0.4 0.0 0.2 0.2 0.1 0.3√
∆2 0.5 − σ tir 0.50 0.337 2.7 0.4 0.0 0.2 0.2 0.1 0.3
∆max 0.5 − σ tir 0.95 0.678 5.3 0.4 0.0 0.2 0.2 0.1 0.3
∆ excs tir 0.03√
∆2 excs tir 0.04
∆max excs tir 0.05
∆ all pk 3.1 0.0 0.0 0.0 0.0 0.0√
∆2 all pk 6.2 0.0 0.0 0.0 0.0 0.0
∆max all pk 0.0 0.0 0.0 0.0 0.0 0.0
∆ 70% pk 0.9 0.0 0.0 0.0 0.0 0.0√
∆2 70% pk 1.2 0.0 0.0 0.0 0.0 0.0
∆max 70% pk 2.4 0.0 0.0 0.0 0.0 0.0
∆ hi pk 1.3 0.0 0.0 0.0 0.0 0.0√
∆2 hi pk 1.7 0.0 0.0 0.0 0.0 0.0
∆max hi pk 3.0 0.0 0.0 0.0 0.0 0.0
∆ all m1 2.7 0.0 0.0 0.0 0.0 0.0√
∆2 all m1 5.5 0.0 0.0 0.0 0.0 0.0
∆max all m1 0.0 0.0 0.0 0.0 0.0 0.0
∆ 70% m1 0.6 0.0 0.0 0.0 0.0 0.0√
∆2 70% m1 0.8 0.0 0.0 0.0 0.0 0.0
∆max 70% m1 1.6 0.0 0.0 0.0 0.0 0.0
∆ hi m1 1.2 0.0 0.0 0.0 0.0 0.0√
∆2 hi m1 1.7 0.0 0.0 0.0 0.0 0.0
∆max hi m1 3.7 0.0 0.0 0.0 0.0 0.0
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Fig. 10. Test 2: flat disk with constant, large scale height; noise added to the cube. Orientation parameters, centre, systemic velocity, and scale height
fitted “as one” with TiRiFiC. In a first attempt, the observer failed to achieve a good fit. The large scale height enhances drastically the ambiguity
of inclination and rotation velocity. ROTCUR: input model with optimal guesses. Only the rotation velocity and the orientation parameters were
fitted. For symbol- and colour-coding see the introduction to this section.
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Table 2. Test 2: flat disk with constant, large scale height; noise added to the cube. Orientation parameters, centre, systemic velocity and scale
height fitted “as one” with TiRiFiC. In a first attempt the observer failed to achieve a good fit. The large scale height drastically enhances the
ambiguity of inclination and rotation velocity. Deviation in global dispersion: 0.57 km s−1. ROTCUR: input model with optimal guesses. Only the
rotation velocity and the orientation parameters were fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 327.61 0.536 61.6 55.2 0.0 0.1 0.3 0.0 30.6√
∆2 all tir 1038.29 0.624 66.7 55.2 0.0 0.1 0.3 0.0 30.6
∆max all tir 4323.01 1.052 93.2 55.2 0.0 0.1 0.3 0.0 30.6
∆ 70% tir 11.14 0.353 49.9 55.2 0.0 0.1 0.3 0.0 30.6√
∆2 70% tir 15.28 0.403 54.7 55.2 0.0 0.1 0.3 0.0 30.6
∆max 70% tir 32.42 0.646 72.0 55.2 0.0 0.1 0.3 0.0 30.6
∆ hi tir 80.80 0.579 72.0 55.2 0.0 0.1 0.3 0.0 30.6√
∆2 hi tir 114.15 0.642 75.6 55.2 0.0 0.1 0.3 0.0 30.6
∆max hi tir 237.01 1.052 93.2 55.2 0.0 0.1 0.3 0.0 30.6
∆ 8 − σ tir 15.72 0.662 61.3 55.2 0.0 0.1 0.3 0.0 30.6√
∆2 8 − σ tir 24.48 0.721 64.6 55.2 0.0 0.1 0.3 0.0 30.6
∆max 8 − σ tir 70.63 1.052 92.4 55.2 0.0 0.1 0.3 0.0 30.6
∆ 2 − σ tir 7.01 0.601 59.6 55.2 0.0 0.1 0.3 0.0 30.6√
∆2 2 − σ tir 8.80 0.669 62.3 55.2 0.0 0.1 0.3 0.0 30.6
∆max 2 − σ tir 19.74 0.983 83.7 55.2 0.0 0.1 0.3 0.0 30.6
∆ 0.5 − σ tir 3.75 0.953 48.5 55.2 0.0 0.1 0.3 0.0 30.6√
∆2 0.5 − σ tir 5.10 0.954 52.2 55.2 0.0 0.1 0.3 0.0 30.6
∆max 0.5 − σ tir 8.64 0.983 70.6 55.2 0.0 0.1 0.3 0.0 30.6
∆ excs tir 0.01√
∆2 excs tir 0.01
∆max excs tir 0.02
∆ all pk 25.7 29.9 2.8 0.0 0.0 0.0√
∆2 all pk 38.8 37.1 3.9 0.0 0.0 0.0
∆max all pk 92.6 60.0 8.0 0.0 0.0 0.0
∆ 70% pk 8.5 16.6 0.9 0.0 0.0 0.0√
∆2 70% pk 13.5 23.5 1.3 0.0 0.0 0.0
∆max 70% pk 28.6 42.3 2.5 0.0 0.0 0.0
∆ hi pk 18.4 31.7 2.5 0.0 0.0 0.0√
∆2 hi pk 24.8 37.3 4.1 0.0 0.0 0.0
∆max hi pk 40.2 48.4 8.0 0.0 0.0 0.0
∆ all m1 42.0 39.5 0.5 0.0 0.0 0.0√
∆2 all m1 61.5 46.2 0.8 0.0 0.0 0.0
∆max all m1 134.5 66.6 1.4 0.0 0.0 0.0
∆ 70% m1 9.3 24.5 0.1 0.0 0.0 0.0√
∆2 70% m1 13.8 32.4 0.1 0.0 0.0 0.0
∆max 70% m1 26.5 51.6 0.1 0.0 0.0 0.0
∆ hi m1 55.1 45.2 0.7 0.0 0.0 0.0√
∆2 hi m1 74.2 51.3 1.0 0.0 0.0 0.0
∆max hi m1 134.5 66.6 1.4 0.0 0.0 0.0
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Fig. 11. Test 2, after revision: same as 2, but this time started near to the correct result. The observer achieved a reasonable result, while TiRiFiC
approached the χ2 minimum in parameter space very slowly. It is to be hoped that this problem will vanish after the implementation of a more
effective χ2 minimiser. ROTCUR: input model with optimal guesses. Only the rotation velocity was fitted. For symbol- and colour-coding see the
introduction to this section.
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Table 3. Test 2, revised: same as 2, but this time started near to the correct result. The observer achieved a reasonable result, while TiRiFiC
approached the χ2 minimum very slowly in parameter space. It is to be hoped that this problem will vanish after the implementation of a more
effective χ2 minimiser. Deviation in global dispersion: 0.39 km s−1. ROTCUR: input model with optimal guesses. Only the rotation velocity was
fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 160.22 0.386 4.0 7.1 0.0 0.1 0.3 0.1 0.2√
∆2 all tir 435.21 0.483 6.7 7.1 0.0 0.1 0.3 0.1 0.2
∆max all tir 1752.18 0.975 18.8 7.1 0.0 0.1 0.3 0.1 0.2
∆ 70% tir 8.43 0.217 1.1 7.1 0.0 0.1 0.3 0.1 0.2√
∆2 70% tir 13.12 0.271 1.4 7.1 0.0 0.1 0.3 0.1 0.2
∆max 70% tir 30.33 0.608 2.9 7.1 0.0 0.1 0.3 0.1 0.2
∆ hi tir 87.62 0.485 2.2 7.1 0.0 0.1 0.3 0.1 0.2√
∆2 hi tir 147.64 0.573 2.9 7.1 0.0 0.1 0.3 0.1 0.2
∆max hi tir 361.90 0.975 6.6 7.1 0.0 0.1 0.3 0.1 0.2
∆ 8 − σ tir 11.54 0.478 5.5 7.1 0.0 0.1 0.3 0.1 0.2√
∆2 8 − σ tir 18.51 0.561 8.1 7.1 0.0 0.1 0.3 0.1 0.2
∆max 8 − σ tir 48.88 0.975 18.8 7.1 0.0 0.1 0.3 0.1 0.2
∆ 2 − σ tir 6.70 0.464 6.3 7.1 0.0 0.1 0.3 0.1 0.2√
∆2 2 − σ tir 10.64 0.546 9.1 7.1 0.0 0.1 0.3 0.1 0.2
∆max 2 − σ tir 29.82 0.975 18.8 7.1 0.0 0.1 0.3 0.1 0.2
∆ 0.5 − σ tir 2.40 0.523 9.5 7.1 0.0 0.1 0.3 0.1 0.2√
∆2 0.5 − σ tir 3.58 0.562 11.6 7.1 0.0 0.1 0.3 0.1 0.2
∆max 0.5 − σ tir 6.77 0.720 18.8 7.1 0.0 0.1 0.3 0.1 0.2
∆ excs tir 0.09√
∆2 excs tir 0.13
∆max excs tir 0.18
∆ all pk 5.2 0.0 0.0 0.0 0.0 0.0√
∆2 all pk 6.6 0.0 0.0 0.0 0.0 0.0
∆max all pk 0.0 0.0 0.0 0.0 0.0 0.0
∆ 70% pk 2.6 0.0 0.0 0.0 0.0 0.0√
∆2 70% pk 2.9 0.0 0.0 0.0 0.0 0.0
∆max 70% pk 4.7 0.0 0.0 0.0 0.0 0.0
∆ hi pk 6.6 0.0 0.0 0.0 0.0 0.0√
∆2 hi pk 7.8 0.0 0.0 0.0 0.0 0.0
∆max hi pk 12.0 0.0 0.0 0.0 0.0 0.0
∆ all m1 9.7 0.0 0.0 0.0 0.0 0.0√
∆2 all m1 11.9 0.0 0.0 0.0 0.0 0.0
∆max all m1 0.0 0.0 0.0 0.0 0.0 0.0
∆ 70% m1 5.9 0.0 0.0 0.0 0.0 0.0√
∆2 70% m1 7.6 0.0 0.0 0.0 0.0 0.0
∆max 70% m1 14.7 0.0 0.0 0.0 0.0 0.0
∆ hi m1 13.0 0.0 0.0 0.0 0.0 0.0√
∆2 hi m1 14.3 0.0 0.0 0.0 0.0 0.0
∆max hi m1 20.1 0.0 0.0 0.0 0.0 0.0
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Fig. 12. Test 3: symmetric warp without central shift and without shift in systemic velocity. Noise was added to the data cube. ROTCUR: in-
put model with optimal guesses. Only the rotation velocity and the orientation parameters were fitted. For symbol- and colour-coding see the
introduction to this section.
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Table 4. Test 3: symmetric warp without central shift and without shift in systemic velocity. Noise was added to the data cube. Deviation in global
dispersion: 0.03 km s−1. ROTCUR: input model with optimal guesses. Only the rotation velocity and the orientation parameters were fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 77.34 0.505 8.2 5.4 2.6 0.3 0.0 0.1 0.0√
∆2 all tir 144.86 0.757 12.5 9.2 3.6 0.3 0.0 0.1 0.0
∆max all tir 471.18 1.724 32.1 30.0 9.5 0.3 0.0 0.1 0.0
∆ 70% tir 18.61 0.155 2.5 1.7 1.1 0.3 0.0 0.1 0.0√
∆2 70% tir 27.45 0.201 3.8 2.2 1.4 0.3 0.0 0.1 0.0
∆max 70% tir 58.22 0.499 7.9 4.8 2.5 0.3 0.0 0.1 0.0
∆ hi tir 64.09 0.112 2.1 2.0 3.3 0.3 0.0 0.1 0.0√
∆2 hi tir 85.23 0.137 3.2 2.8 4.5 0.3 0.0 0.1 0.0
∆max hi tir 204.22 0.213 7.3 6.6 9.5 0.3 0.0 0.1 0.0
∆ 8 − σ tir 6.20 0.815 13.6 10.3 4.1 0.3 0.0 0.1 0.0√
∆2 8 − σ tir 7.68 1.035 16.6 13.3 4.9 0.3 0.0 0.1 0.0
∆max 8 − σ tir 13.83 1.724 32.1 30.0 9.5 0.3 0.0 0.1 0.0
∆ 2 − σ tir 5.32 1.015 16.4 11.9 2.8 0.3 0.0 0.1 0.0√
∆2 2 − σ tir 6.77 1.171 18.7 14.9 3.1 0.3 0.0 0.1 0.0
∆max 2 − σ tir 12.93 1.724 32.1 30.0 5.1 0.3 0.0 0.1 0.0
∆ 0.5 − σ tir 5.02 1.149 18.2 13.2 2.4 0.3 0.0 0.1 0.0√
∆2 0.5 − σ tir 6.67 1.262 20.0 16.0 2.6 0.3 0.0 0.1 0.0
∆max 0.5 − σ tir 12.93 1.724 32.1 30.0 4.2 0.3 0.0 0.1 0.0
∆ excs tir 0.00√
∆2 excs tir 0.00
∆max excs tir 0.00
∆ all pk 16.0 9.8 1.4 0.0 0.0 0.0√
∆2 all pk 21.5 11.9 2.0 0.0 0.0 0.0
∆max all pk 21.5 20.7 3.9 0.0 0.0 0.0
∆ 70% pk 6.0 4.7 0.2 0.0 0.0 0.0√
∆2 70% pk 7.6 6.2 0.3 0.0 0.0 0.0
∆max 70% pk 13.0 10.2 0.6 0.0 0.0 0.0
∆ hi pk 18.2 11.2 1.0 0.0 0.0 0.0√
∆2 hi pk 23.1 12.9 1.4 0.0 0.0 0.0
∆max hi pk 46.0 20.7 2.7 0.0 0.0 0.0
∆ all m1 16.6 12.4 0.9 0.0 0.0 0.0√
∆2 all m1 19.9 13.7 1.5 0.0 0.0 0.0
∆max all m1 37.7 19.9 3.5 0.0 0.0 0.0
∆ 70% m1 10.2 9.0 0.2 0.0 0.0 0.0√
∆2 70% m1 12.3 10.1 0.2 0.0 0.0 0.0
∆max 70% m1 17.5 14.5 0.3 0.0 0.0 0.0
∆ hi m1 19.2 12.9 0.2 0.0 0.0 0.0√
∆2 hi m1 21.8 13.6 0.2 0.0 0.0 0.0
∆max hi m1 37.7 18.9 0.3 0.0 0.0 0.0
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Fig. 13. Test 4: asymmetric warp with shift of centre and systemic velocity. The scale height is kept constant with radius, and noise was added
to the data cube. ROTCUR: input model with optimal guesses. All parameters except expansion velocity were left variable. For symbol- and
colour-coding see the introduction to this section.
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Table 5. Test 4: asymmetric warp with shift of centre and systemic velocity. The scale height is kept constant with radius and noise was added to
the data cube. Deviation in global dispersion: below 0.01 km s−1. ROTCUR: input model with optimal guesses. All parameters except expansion
velocity were left variable.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 119.82 0.126 1.8 1.2 0.7 0.9 0.7 0.5 0.1√
∆2 all tir 259.53 0.248 2.8 1.9 1.1 1.5 1.2 1.0 0.1
∆max all tir 965.85 0.966 8.7 4.3 3.4 4.2 4.3 3.9 0.1
∆ 70% tir 17.63 0.037 0.6 0.4 0.3 0.3 0.2 0.2 0.1√
∆2 70% tir 21.51 0.046 0.8 0.4 0.4 0.4 0.3 0.2 0.1
∆max 70% tir 43.33 0.088 1.4 0.8 0.9 0.9 0.7 0.5 0.1
∆ hi tir 36.71 0.083 1.4 0.8 0.7 1.0 0.8 0.6 0.1√
∆2 hi tir 56.58 0.129 2.1 1.4 1.1 1.6 1.3 1.1 0.1
∆max hi tir 187.26 0.375 5.4 4.3 3.4 4.2 4.3 3.9 0.1
∆ 8 − σ tir 14.20 0.192 2.7 2.0 1.7 2.1 1.9 1.4 0.1√
∆2 8 − σ tir 18.60 0.223 3.5 2.5 1.9 2.5 2.3 1.9 0.1
∆max 8 − σ tir 36.53 0.375 5.4 4.3 3.4 4.2 4.3 3.9 0.1
∆ excs tir 6.45√
∆2 excs tir 6.45
∆max excs tir 6.45
∆ all pk 34.0 12.8 0.4 1.7 1.1 0.2√
∆2 all pk 81.3 16.6 0.9 2.7 2.0 0.5
∆max all pk 253.2 39.9 2.7 7.7 5.4 1.4
∆ 70% pk 4.3 7.2 0.1 0.6 0.3 0.1√
∆2 70% pk 5.2 8.0 0.1 0.7 0.3 0.1
∆max 70% pk 8.6 12.9 0.2 1.2 0.6 0.2
∆ hi pk 37.8 12.7 0.2 1.0 0.6 0.1√
∆2 hi pk 85.6 16.9 0.2 1.3 1.1 0.1
∆max hi pk 253.2 39.9 0.5 2.9 3.2 0.3
∆ all m1 21.3 11.7 1.2 2.8 1.1 0.8√
∆2 all m1 34.9 14.6 3.5 5.1 1.8 2.2
∆max all m1 97.9 33.0 11.0 15.4 5.3 6.9
∆ 70% m1 7.6 6.7 0.1 0.9 0.4 0.1√
∆2 70% m1 9.7 6.9 0.1 1.0 0.5 0.1
∆max 70% m1 21.4 9.2 0.2 1.5 0.7 0.2
∆ hi m1 20.5 12.3 0.1 1.4 0.6 0.1√
∆2 hi m1 35.5 15.3 0.2 1.7 0.7 0.1
∆max hi m1 97.9 33.0 0.3 3.2 1.3 0.3
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Fig. 14. Test 5: asymmetric warp with central shift and shift in systemic velocity. The scale height is constant with radius, and the data cube
contains no noise. The results are unreliable at low inclination (i < 25◦). ROTCUR: first guess deviates by 10 km s−1 in rotation velocity, by 10◦
in inclination and position angle, by 10 km s−1 in systemic velocity, and by 10′′ in both central coordinates from the optimal guess. All parameters
except expansion velocity were left variable. For symbol- and colour-coding see the introduction to this section.
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Table 6. Test 5: asymmetric warp with central shift and shift in systemic velocity. The scale height is constant with radius, and the data cube
contains no noise. The scale height is constant. Deviation in global dispersion: 0.06 km s−1. The results get unreliable at low inclination (i < 25◦).
ROTCUR: the first guess deviates by 10 km s−1 in rotation velocity, by 10◦ in inclination and position angle, by 10 km s−1 in systemic velocity, and
by 10′′ in both central coordinates from the optimal guess. All parameters except expansion velocity were left variable.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 108.87 0.138 7.8 3.3 0.3 0.3 0.2 0.1 1.1√
∆2 all tir 237.61 0.270 10.8 3.9 0.3 0.3 0.4 0.2 1.1
∆max all tir 808.64 1.103 24.6 9.2 0.8 0.6 1.4 0.5 1.1
∆ 70% tir 8.97 0.042 3.5 2.1 0.2 0.2 0.1 0.1 1.1√
∆2 70% tir 14.27 0.052 4.2 2.3 0.2 0.2 0.1 0.1 1.1
∆max 70% tir 40.55 0.087 7.5 3.6 0.3 0.3 0.2 0.1 1.1
∆ hi tir 75.50 0.066 7.9 3.3 0.3 0.3 0.3 0.1 1.1√
∆2 hi tir 181.88 0.094 10.8 4.0 0.3 0.3 0.4 0.1 1.1
∆max hi tir 736.63 0.305 24.6 9.2 0.6 0.6 1.4 0.4 1.1
∆ 8 − σ tir 5.86 0.084 9.8 3.9 0.3 0.2 0.5 0.0 1.1√
∆2 8 − σ tir 10.51 0.123 13.9 5.0 0.4 0.3 0.6 0.1 1.1
∆max 8 − σ tir 30.54 0.305 24.6 9.2 0.5 0.6 1.4 0.1 1.1
∆ 2 − σ tir 1.90 0.074 0.1 0.5 0.0 0.2 0.2 0.0 1.1√
∆2 2 − σ tir 2.36 0.074 0.1 0.5 0.0 0.2 0.2 0.0 1.1
∆max 2 − σ tir 3.35 0.074 0.1 0.5 0.0 0.2 0.2 0.0 1.1
∆ excs tir 1.67√
∆2 excs tir 2.37
∆max excs tir 3.35
∆ all pk 23.8 8.5 2.3 7.4 6.1 2.7√
∆2 all pk 30.3 10.8 5.2 14.3 10.0 5.7
∆max all pk 33.6 22.9 16.2 36.1 23.7 16.7
∆ 70% pk 13.9 4.9 0.5 0.5 1.7 0.2√
∆2 70% pk 14.9 5.8 0.6 0.8 2.6 0.4
∆max 70% pk 22.8 9.8 0.8 1.9 6.4 0.9
∆ hi pk 22.7 6.9 0.7 8.2 4.7 1.1√
∆2 hi pk 29.9 8.4 0.9 15.1 8.5 2.2
∆max hi pk 72.7 17.1 1.8 36.1 23.7 6.1
∆ all m1 16.9 7.3 3.7 7.7 6.0 3.6√
∆2 all m1 20.0 9.9 9.6 13.1 9.8 7.9
∆max all m1 42.6 26.0 30.1 34.3 22.2 24.0
∆ 70% m1 11.7 4.2 0.5 1.9 1.6 0.5√
∆2 70% m1 12.8 4.9 0.7 3.2 2.7 0.9
∆max 70% m1 20.1 7.0 1.3 6.7 6.5 2.2
∆ hi m1 14.1 5.2 0.8 7.4 4.5 1.3√
∆2 hi m1 15.6 5.9 1.0 13.4 8.1 2.3
∆max hi m1 25.0 8.7 1.9 34.3 22.2 6.0
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Fig. 15. Test 6: warp with central/systemic velocity shift and variable scale height without noise added to the data cube. ROTCUR: first guess devi-
ates by 5 km s−1 in rotation velocity, by 5◦ in inclination and position angle, by 5 km s−1 in systemic velocity, and by 5′′ in both central coordinates
from the optimal guess. All parameters except expansion velocity were left variable. For symbol- and colour-coding see the introduction to this
section.
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Table 7. Test 6: warp with central/systemic velocity shift and variable scale height without noise added to the data cube. Deviation in global
dispersion: 0.06 km s−1. ROTCUR: first guess deviates by 5 km s−1 in rotation velocity, by 5◦ in inclination and position angle, by 5 km s−1 in
systemic velocity, and by 5′′ in both central coordinates from the optimal guess. All parameters except expansion velocity were left variable.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 265.41 0.083 2.5 1.7 0.7 3.2 0.4 0.2 5.4√
∆2 all tir 569.74 0.096 3.2 2.1 1.0 4.0 0.5 0.2 7.9
∆max all tir 1895.32 0.190 7.1 4.7 2.9 8.1 1.4 0.4 21.7
∆ 70% tir 12.61 0.058 1.4 1.1 0.2 1.8 0.2 0.1 2.4√
∆2 70% tir 15.59 0.066 1.6 1.2 0.3 2.2 0.2 0.1 2.9
∆max 70% tir 25.18 0.110 2.7 2.1 0.7 4.4 0.4 0.3 6.2
∆ hi tir 63.43 0.070 2.2 1.7 0.5 3.8 0.4 0.2 3.3√
∆2 hi tir 123.19 0.081 2.8 2.1 0.9 4.4 0.6 0.2 4.3
∆max hi tir 329.48 0.142 6.7 4.7 2.9 8.1 1.4 0.4 9.3
∆ 8 − σ tir 4.67 0.081 1.4 1.2 0.2 6.8 0.2 0.2 2.9√
∆2 8 − σ tir 6.10 0.088 1.4 1.2 0.2 6.8 0.3 0.2 4.0
∆max 8 − σ tir 11.50 0.115 2.0 1.5 0.4 8.1 0.4 0.4 7.6
∆ 2 − σ tir 2.03 0.112 1.6 1.0 0.0 7.0 0.4 0.1 7.6√
∆2 2 − σ tir 2.85 0.112 1.6 1.0 0.0 7.0 0.4 0.1 7.6
∆max 2 − σ tir 4.03 0.112 1.6 1.0 0.0 7.0 0.4 0.1 7.6
∆ excs tir 0.03√
∆2 excs tir 0.03
∆max excs tir 0.03
∆ all pk 5.9 3.7 0.6 2.5 1.3 0.3√
∆2 all pk 9.4 5.9 1.0 3.7 2.5 0.4
∆max all pk 21.6 15.1 2.6 7.0 7.7 1.1
∆ 70% pk 1.5 1.0 0.3 0.8 0.3 0.1√
∆2 70% pk 1.7 1.2 0.4 1.0 0.5 0.1
∆max 70% pk 3.1 2.3 0.6 1.9 0.9 0.2
∆ hi pk 4.2 3.1 0.6 2.0 1.3 0.2√
∆2 hi pk 6.8 5.5 1.0 3.1 2.7 0.4
∆max hi pk 17.1 15.1 2.6 6.9 7.7 1.1
∆ all m1 4.3 4.8 0.7 3.0 3.1 0.4√
∆2 all m1 6.3 8.9 1.2 5.4 6.3 0.8
∆max all m1 14.0 25.2 3.3 15.4 18.2 2.1
∆ 70% m1 1.4 0.9 0.3 0.8 0.5 0.1√
∆2 70% m1 1.7 1.0 0.4 1.0 0.7 0.1
∆max 70% m1 3.0 1.6 0.7 2.0 1.3 0.2
∆ hi m1 3.9 2.5 0.7 1.7 1.4 0.2√
∆2 hi m1 6.2 4.1 1.2 2.5 2.7 0.4
∆max hi m1 14.0 10.1 3.3 5.4 7.7 1.2
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Fig. 16. Test 7: asymmetric warp with central/systemic velocity shift and variable scale height. Noise was added to the data cube. ROTCUR:
optimal first guesses. All parameters except expansion velocity were left variable. For symbol- and colour-coding see the introduction to this
section.
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Table 8. Test 7: asymmetric warp with central/systemic velocity shift and variable scale height. Noise was added to the data cube. Deviation in
global dispersion: below 0.01 km s−1. ROTCUR: optimal first guesses. All parameters except expansion velocity were left variable.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 30.11 0.156 3.6 1.5 2.2 0.5 0.4 0.2 2.6√
∆2 all tir 48.80 0.315 4.7 1.8 3.1 1.1 0.6 0.3 3.9
∆max all tir 156.23 0.980 13.9 3.9 8.2 3.8 1.8 0.8 10.2
∆ 70% tir 8.62 0.039 2.1 0.9 1.1 0.1 0.2 0.1 1.0√
∆2 70% tir 11.87 0.048 2.4 1.0 1.3 0.2 0.2 0.1 1.3
∆max 70% tir 32.38 0.082 3.6 1.4 2.3 0.3 0.4 0.2 2.6
∆ hi tir 28.24 0.060 3.1 1.4 1.4 0.4 0.3 0.2 2.6√
∆2 hi tir 47.10 0.084 3.6 1.7 1.7 0.8 0.6 0.2 3.7
∆max hi tir 156.23 0.249 7.7 3.9 3.9 2.6 1.8 0.8 10.2
∆ 8 − σ tir 8.89 0.150 5.6 2.9 1.6 1.5 1.0 0.4 6.7√
∆2 8 − σ tir 14.00 0.166 5.7 3.1 1.8 2.1 1.2 0.5 7.2
∆max 8 − σ tir 32.38 0.249 7.7 3.9 2.7 3.8 1.8 0.8 10.2
∆ 2 − σ tir 0.95 0.210 5.4 3.5 2.7 3.8 1.7 0.7 8.5√
∆2 2 − σ tir 1.34 0.210 5.4 3.5 2.7 3.8 1.7 0.7 8.5
∆max 2 − σ tir 1.89 0.210 5.4 3.5 2.7 3.8 1.7 0.7 8.5
∆ 0.5 − σ tir 0.95 0.210 5.4 3.5 2.7 3.8 1.7 0.7 8.5√
∆2 0.5 − σ tir 1.34 0.210 5.4 3.5 2.7 3.8 1.7 0.7 8.5
∆max 0.5 − σ tir 1.89 0.210 5.4 3.5 2.7 3.8 1.7 0.7 8.5
∆ excs tir 0.00√
∆2 excs tir 0.00
∆max excs tir 0.00
∆ all pk 28.6 4.6 2.1 3.0 1.3 0.2√
∆2 all pk 59.5 7.3 3.2 4.3 1.6 0.5
∆max all pk 178.2 17.3 8.7 7.8 2.6 1.4
∆ 70% pk 3.4 1.2 1.1 1.3 0.7 0.1√
∆2 70% pk 4.9 1.8 1.2 1.9 0.9 0.1
∆max 70% pk 9.4 3.4 1.8 4.4 1.6 0.2
∆ hi pk 11.9 3.2 1.4 3.2 1.3 0.1√
∆2 hi pk 20.2 5.1 1.6 4.5 1.6 0.1
∆max hi pk 44.1 10.2 2.8 7.8 2.6 0.3
∆ all m1 15.3 3.2 2.1 3.0 1.4 0.3√
∆2 all m1 30.7 5.6 2.5 4.4 1.6 0.5
∆max all m1 92.5 15.7 4.8 8.1 2.6 1.6
∆ 70% m1 3.6 0.9 1.5 1.2 1.0 0.1√
∆2 70% m1 4.2 1.1 1.7 2.2 1.1 0.1
∆max 70% m1 7.0 1.7 2.9 5.5 1.6 0.2
∆ hi m1 15.9 3.4 1.8 3.2 1.5 0.1√
∆2 hi m1 32.1 5.9 2.1 4.6 1.7 0.2
∆max hi m1 92.5 15.7 3.2 8.1 2.6 0.3
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Fig. 17. Test 8: flat disk with constant scale height, centre, and systemic velocity. Noise was added to the data cube. ROTCUR: input model with
optimal guesses. Only the rotation velocity and the orientation parameters were fitted. For symbol- and colour-coding see the introduction to this
section.
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Table 9. Test 8: flat disk with constant scale height, centre, and systemic velocity. Noise was added to the data cube. Deviation in global dispersion:
0.12 km s−1. ROTCUR: input model with optimal guesses. Only the rotation velocity and the orientation parameters were fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 28.90 0.253 4.1 0.7 0.3 1.2 0.4 0.1 6.2√
∆2 all tir 55.43 0.358 8.6 0.7 0.3 1.2 0.4 0.1 6.2
∆max all tir 207.90 0.969 38.2 0.7 0.3 1.2 0.4 0.1 6.2
∆ 70% tir 6.87 0.116 1.4 0.7 0.3 1.2 0.4 0.1 6.2√
∆2 70% tir 9.57 0.147 1.6 0.7 0.3 1.2 0.4 0.1 6.2
∆max 70% tir 19.57 0.313 2.8 0.7 0.3 1.2 0.4 0.1 6.2
∆ hi tir 22.29 0.187 2.3 0.7 0.3 1.2 0.4 0.1 6.2√
∆2 hi tir 37.63 0.242 2.9 0.7 0.3 1.2 0.4 0.1 6.2
∆max hi tir 130.94 0.426 7.1 0.7 0.3 1.2 0.4 0.1 6.2
∆ 8 − σ tir 8.82 0.203 2.7 0.7 0.3 1.2 0.4 0.1 6.2√
∆2 8 − σ tir 12.77 0.249 3.2 0.7 0.3 1.2 0.4 0.1 6.2
∆max 8 − σ tir 32.78 0.426 7.1 0.7 0.3 1.2 0.4 0.1 6.2
∆ 2 − σ tir 3.31 0.248 2.6 0.7 0.3 1.2 0.4 0.1 6.2√
∆2 2 − σ tir 4.17 0.263 3.1 0.7 0.3 1.2 0.4 0.1 6.2
∆max 2 − σ tir 7.99 0.400 4.8 0.7 0.3 1.2 0.4 0.1 6.2
∆ 0.5 − σ tir 1.83 0.183 2.9 0.7 0.3 1.2 0.4 0.1 6.2√
∆2 0.5 − σ tir 2.25 0.183 3.4 0.7 0.3 1.2 0.4 0.1 6.2
∆max 0.5 − σ tir 3.71 0.186 4.8 0.7 0.3 1.2 0.4 0.1 6.2
∆ excs tir 3.03√
∆2 excs tir 3.11
∆max excs tir 3.71
∆ all pk 3.0 5.0 2.7 0.0 0.0 0.0√
∆2 all pk 3.9 7.1 3.5 0.0 0.0 0.0
∆max all pk 6.8 17.7 6.4 0.0 0.0 0.0
∆ 70% pk 1.5 2.4 1.6 0.0 0.0 0.0√
∆2 70% pk 2.0 3.0 2.2 0.0 0.0 0.0
∆max 70% pk 4.6 6.1 4.2 0.0 0.0 0.0
∆ hi pk 2.6 4.7 2.5 0.0 0.0 0.0√
∆2 hi pk 3.7 7.0 3.3 0.0 0.0 0.0
∆max hi pk 6.8 17.7 6.4 0.0 0.0 0.0
∆ all m1 2.3 3.0 1.0 0.0 0.0 0.0√
∆2 all m1 3.3 4.1 1.8 0.0 0.0 0.0
∆max all m1 6.7 8.3 5.3 0.0 0.0 0.0
∆ 70% m1 0.9 1.4 0.5 0.0 0.0 0.0√
∆2 70% m1 1.3 2.2 0.5 0.0 0.0 0.0
∆max 70% m1 3.1 5.3 0.7 0.0 0.0 0.0
∆ hi m1 2.2 2.7 0.5 0.0 0.0 0.0√
∆2 hi m1 3.3 4.0 0.6 0.0 0.0 0.0
∆max hi m1 6.7 8.3 1.0 0.0 0.0 0.0
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Fig. 18. Test 9: slight symmetric warp without central/systemic velocity shift and variable scale height, noise added. ROTCUR: input model with
optimal guesses. Only the rotation velocity and the orientation parameters were fitted. For symbol- and colour-coding see the introduction to this
section.
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Table 10. Test 9: slight symmetric warp without central/systemic velocity shift and variable scale height, noise added. Deviation in global disper-
sion: 0.09 km s−1. ROTCUR: input model with optimal guesses. Only the rotation velocity and the orientation parameters were fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 72.06 0.423 4.2 2.8 1.5 0.1 0.0 0.0 4.5√
∆2 all tir 157.30 0.625 6.1 5.0 2.8 0.1 0.0 0.0 7.5
∆max all tir 498.73 1.674 16.2 16.8 9.7 0.1 0.0 0.0 25.7
∆ 70% tir 12.01 0.157 1.5 0.6 0.4 0.1 0.0 0.0 1.5√
∆2 70% tir 14.93 0.232 2.0 0.7 0.6 0.1 0.0 0.0 2.3
∆max 70% tir 33.38 0.491 3.7 1.3 1.4 0.1 0.0 0.0 5.7
∆ hi tir 32.72 0.052 1.3 0.6 0.6 0.1 0.0 0.0 0.6√
∆2 hi tir 40.64 0.075 1.8 0.7 0.8 0.1 0.0 0.0 0.7
∆max hi tir 75.55 0.183 3.7 1.3 1.5 0.1 0.0 0.0 1.1
∆ 8 − σ tir 9.78 0.637 6.2 5.2 2.7 0.1 0.0 0.0 5.2√
∆2 8 − σ tir 12.02 0.797 7.5 7.1 3.9 0.1 0.0 0.0 6.0
∆max 8 − σ tir 25.56 1.674 16.2 16.8 9.7 0.1 0.0 0.0 9.2
∆ 2 − σ tir 8.56 0.786 6.9 6.4 3.2 0.1 0.0 0.0 6.3√
∆2 2 − σ tir 9.57 0.901 8.3 8.0 4.4 0.1 0.0 0.0 6.8
∆max 2 − σ tir 16.74 1.674 16.2 16.8 9.7 0.1 0.0 0.0 9.2
∆ excs tir 8.25√
∆2 excs tir 8.50
∆max excs tir 10.00
∆ all pk 4.3 8.5 0.8 0.0 0.0 0.0√
∆2 all pk 4.9 9.7 1.6 0.0 0.0 0.0
∆max all pk 2.2 15.0 4.3 0.0 0.0 0.0
∆ 70% pk 2.9 5.6 0.2 0.0 0.0 0.0√
∆2 70% pk 3.5 6.3 0.2 0.0 0.0 0.0
∆max 70% pk 5.7 9.1 0.3 0.0 0.0 0.0
∆ hi pk 4.5 7.7 0.2 0.0 0.0 0.0√
∆2 hi pk 5.1 8.9 0.3 0.0 0.0 0.0
∆max hi pk 7.3 13.7 0.6 0.0 0.0 0.0
∆ all m1 5.5 10.3 0.7 0.0 0.0 0.0√
∆2 all m1 7.6 13.0 1.4 0.0 0.0 0.0
∆max all m1 19.0 30.6 3.8 0.0 0.0 0.0
∆ 70% m1 2.8 6.4 0.2 0.0 0.0 0.0√
∆2 70% m1 3.0 6.6 0.2 0.0 0.0 0.0
∆max 70% m1 4.6 8.9 0.3 0.0 0.0 0.0
∆ hi m1 3.8 7.9 0.2 0.0 0.0 0.0√
∆2 hi m1 4.1 8.1 0.3 0.0 0.0 0.0
∆max hi m1 5.7 10.6 0.5 0.0 0.0 0.0
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Fig. 19. Test 10: slight warp without central/systemic velocity shift, and variable scale height, with noise added to the data cube. ROTCUR: input
model with optimal guesses. Only rotation velocity, position angle, and inclination were fitted. For symbol- and colour-coding see the introduction
to this section.
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Table 11. Test 10: slight warp without central/systemic velocity shift, and variable scale height, with noise added to the data cube. Deviation in
global dispersion: 0.12 km s−1. ROTCUR: input model with optimal guesses. Only rotation velocity, position angle, and inclination were fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 89.66 0.240 5.6 3.3 1.3 0.2 0.0 0.1 3.6√
∆2 all tir 215.03 0.362 13.3 4.4 1.6 0.2 0.0 0.1 5.1
∆max all tir 834.24 1.000 55.8 9.7 3.4 0.2 0.0 0.1 16.5
∆ 70% tir 10.46 0.094 1.5 1.6 0.8 0.2 0.0 0.1 2.0√
∆2 70% tir 12.46 0.116 1.8 1.9 0.9 0.2 0.0 0.1 2.4
∆max 70% tir 25.22 0.209 3.2 2.9 1.6 0.2 0.0 0.1 4.0
∆ hi tir 21.19 0.159 2.5 2.0 1.3 0.2 0.0 0.1 2.4√
∆2 hi tir 30.10 0.229 3.1 2.4 1.6 0.2 0.0 0.1 3.1
∆max hi tir 65.39 0.610 6.7 4.6 3.0 0.2 0.0 0.1 7.0
∆ 8 − σ tir 11.92 0.395 8.3 2.6 1.6 0.2 0.0 0.1 3.8√
∆2 8 − σ tir 16.09 0.491 18.0 3.7 1.9 0.2 0.0 0.1 4.3
∆max 8 − σ tir 42.69 1.000 55.8 9.7 3.4 0.2 0.0 0.1 7.0
∆ 2 − σ tir 9.38 0.520 13.0 3.7 1.7 0.2 0.0 0.1 5.2√
∆2 2 − σ tir 10.33 0.616 25.0 4.8 2.0 0.2 0.0 0.1 5.3
∆max 2 − σ tir 16.21 1.000 55.8 9.7 3.4 0.2 0.0 0.1 7.0
∆ excs tir 8.50√
∆2 excs tir 8.63
∆max excs tir 10.00
∆ all pk 4.1 6.2 0.4 0.0 0.0 0.0√
∆2 all pk 6.3 8.9 0.7 0.0 0.0 0.0
∆max all pk 16.0 20.7 2.1 0.0 0.0 0.0
∆ 70% pk 1.5 2.7 0.2 0.0 0.0 0.0√
∆2 70% pk 2.3 3.6 0.2 0.0 0.0 0.0
∆max 70% pk 5.5 8.0 0.3 0.0 0.0 0.0
∆ hi pk 4.4 6.8 0.2 0.0 0.0 0.0√
∆2 hi pk 6.6 9.3 0.3 0.0 0.0 0.0
∆max hi pk 16.0 20.7 0.6 0.0 0.0 0.0
∆ all m1 3.2 5.4 0.8 0.0 0.0 0.0√
∆2 all m1 4.6 7.2 2.0 0.0 0.0 0.0
∆max all m1 6.1 12.8 6.4 0.0 0.0 0.0
∆ 70% m1 1.2 2.6 0.1 0.0 0.0 0.0√
∆2 70% m1 2.0 3.7 0.1 0.0 0.0 0.0
∆max 70% m1 4.6 8.8 0.3 0.0 0.0 0.0
∆ hi m1 2.4 5.8 0.2 0.0 0.0 0.0√
∆2 hi m1 3.6 7.5 0.3 0.0 0.0 0.0
∆max hi m1 7.3 12.8 0.5 0.0 0.0 0.0
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Fig. 20. Test 11: symmetric warp without central/systemic velocity shift and with constant scale height. The data cube contains no noise. ROTCUR:
input model with optimal guesses. Only the rotation velocity and the orientation parameters were fitted. For symbol- and colour-coding see the
introduction to this section.
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Table 12. Test 11: symmetric warp without central/systemic velocity shift and with constant scale height. The data cube contains no noise.
Deviation in global dispersion: 0.01 km s−1. ROTCUR: input model with optimal guesses. Only the rotation velocity and the orientation parameters
were fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 193.54 0.629 5.5 4.4 2.7 0.0 0.0 0.0 0.1√
∆2 all tir 434.19 0.874 10.1 6.0 4.3 0.0 0.0 0.0 0.1
∆max all tir 1489.84 2.540 32.6 13.1 11.6 0.0 0.0 0.0 0.1
∆ 70% tir 9.06 0.307 1.6 1.8 0.7 0.0 0.0 0.0 0.1√
∆2 70% tir 15.98 0.378 2.0 2.5 1.0 0.0 0.0 0.0 0.1
∆max 70% tir 44.10 0.685 4.0 5.0 2.2 0.0 0.0 0.0 0.1
∆ hi tir 514.06 0.497 2.1 2.4 2.3 0.0 0.0 0.0 0.1√
∆2 hi tir 719.46 0.598 2.6 3.9 3.7 0.0 0.0 0.0 0.1
∆max hi tir 1489.84 0.995 4.8 8.9 9.4 0.0 0.0 0.0 0.1
∆ 8 − σ tir 5.79 0.448 3.8 4.2 2.7 0.0 0.0 0.0 0.1√
∆2 8 − σ tir 13.35 0.572 4.7 4.9 4.0 0.0 0.0 0.0 0.1
∆max 8 − σ tir 44.10 0.995 10.2 9.2 9.4 0.0 0.0 0.0 0.1
∆ 2 − σ tir 2.31 0.370 3.6 3.9 1.7 0.0 0.0 0.0 0.1√
∆2 2 − σ tir 4.22 0.482 4.6 4.7 2.4 0.0 0.0 0.0 0.1
∆max 2 − σ tir 10.57 0.902 10.2 9.2 4.5 0.0 0.0 0.0 0.1
∆ 0.5 − σ tir 1.48 0.317 2.5 3.0 1.3 0.0 0.0 0.0 0.1√
∆2 0.5 − σ tir 2.90 0.439 2.8 3.4 2.0 0.0 0.0 0.0 0.1
∆max 0.5 − σ tir 8.12 0.902 4.0 5.0 4.5 0.0 0.0 0.0 0.1
∆ excs tir 0.02√
∆2 excs tir 0.03
∆max excs tir 0.05
∆ all pk 17.3 11.1 1.0 0.0 0.0 0.0√
∆2 all pk 25.2 13.7 1.5 0.0 0.0 0.0
∆max all pk 53.8 25.4 2.6 0.0 0.0 0.0
∆ 70% pk 5.4 6.6 0.3 0.0 0.0 0.0√
∆2 70% pk 7.3 8.3 0.4 0.0 0.0 0.0
∆max 70% pk 14.6 13.6 0.6 0.0 0.0 0.0
∆ hi pk 24.5 11.0 0.7 0.0 0.0 0.0√
∆2 hi pk 30.6 12.7 1.1 0.0 0.0 0.0
∆max hi pk 53.8 19.7 2.6 0.0 0.0 0.0
∆ all m1 15.0 8.7 0.9 0.0 0.0 0.0√
∆2 all m1 23.8 11.6 1.2 0.0 0.0 0.0
∆max all m1 22.4 24.6 2.1 0.0 0.0 0.0
∆ 70% m1 3.1 4.0 0.4 0.0 0.0 0.0√
∆2 70% m1 4.6 5.3 0.7 0.0 0.0 0.0
∆max 70% m1 8.6 8.9 1.5 0.0 0.0 0.0
∆ hi m1 22.4 8.9 0.8 0.0 0.0 0.0√
∆2 hi m1 29.2 10.1 1.1 0.0 0.0 0.0
∆max hi m1 53.5 15.5 2.1 0.0 0.0 0.0
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Fig. 21. Test 12: flat disk with constant scale height, with noise added to the data cube. ROTCUR: input model with optimal guesses. Only the
rotation velocity was fitted. For symbol- and colour-coding see the introduction to this section.
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Table 13. Test 12: flat disk with constant scale height, with noise added to the data cube. Deviation in global dispersion: 0.08 km s−1. ROTCUR:
input model with optimal guesses. Only the rotation velocity was fitted.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 486.53 0.678 5.0 0.4 0.0 0.0 0.0 0.1 0.1√
∆2 all tir 2020.45 1.118 7.6 0.4 0.0 0.0 0.0 0.1 0.1
∆max all tir 9446.95 2.810 15.1 0.4 0.0 0.0 0.0 0.1 0.1
∆ 70% tir 4.54 0.198 1.5 0.4 0.0 0.0 0.0 0.1 0.1√
∆2 70% tir 5.69 0.325 2.4 0.4 0.0 0.0 0.0 0.1 0.1
∆max 70% tir 10.50 0.773 6.6 0.4 0.0 0.0 0.0 0.1 0.1
∆ hi tir 81.15 0.086 0.4 0.4 0.0 0.0 0.0 0.1 0.1√
∆2 hi tir 107.39 0.115 0.6 0.4 0.0 0.0 0.0 0.1 0.1
∆max hi tir 208.61 0.242 1.0 0.4 0.0 0.0 0.0 0.1 0.1
∆ 8 − σ tir 4.89 0.951 7.7 0.4 0.0 0.0 0.0 0.1 0.1√
∆2 8 − σ tir 6.46 1.235 9.2 0.4 0.0 0.0 0.0 0.1 0.1
∆max 8 − σ tir 14.21 2.810 15.1 0.4 0.0 0.0 0.0 0.1 0.1
∆ 2 − σ tir 4.46 1.052 8.7 0.4 0.0 0.0 0.0 0.1 0.1√
∆2 2 − σ tir 6.04 1.317 9.9 0.4 0.0 0.0 0.0 0.1 0.1
∆max 2 − σ tir 14.21 2.810 15.1 0.4 0.0 0.0 0.0 0.1 0.1
∆ 0.5 − σ tir 3.65 1.062 9.6 0.4 0.0 0.0 0.0 0.1 0.1√
∆2 0.5 − σ tir 4.77 1.364 10.6 0.4 0.0 0.0 0.0 0.1 0.1
∆max 0.5 − σ tir 8.92 2.810 15.1 0.4 0.0 0.0 0.0 0.1 0.1
∆ excs tir 2.70√
∆2 excs tir 4.06
∆max excs tir 8.92
∆ all pk 19.9 15.2 0.3 0.0 0.0 0.0√
∆2 all pk 44.8 23.7 0.6 0.0 0.0 0.0
∆max all pk 131.0 56.5 1.5 0.0 0.0 0.0
∆ 70% pk 1.9 4.4 0.0 0.0 0.0 0.0√
∆2 70% pk 3.0 6.9 0.1 0.0 0.0 0.0
∆max 70% pk 6.3 12.2 0.1 0.0 0.0 0.0
∆ hi pk 32.7 14.1 0.2 0.0 0.0 0.0√
∆2 hi pk 65.5 28.3 0.5 0.0 0.0 0.0
∆max hi pk 131.0 56.5 0.9 0.0 0.0 0.0
∆ all m1 42.8 29.9 0.4 0.0 0.0 0.0√
∆2 all m1 73.2 35.5 0.8 0.0 0.0 0.0
∆max all m1 93.9 61.8 2.1 0.0 0.0 0.0
∆ 70% m1 10.9 19.4 0.1 0.0 0.0 0.0√
∆2 70% m1 14.4 23.5 0.1 0.0 0.0 0.0
∆max 70% m1 28.4 37.8 0.2 0.0 0.0 0.0
∆ hi m1 84.6 47.6 0.3 0.0 0.0 0.0√
∆2 hi m1 108.7 48.6 0.4 0.0 0.0 0.0
∆max hi m1 192.3 61.8 0.7 0.0 0.0 0.0
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Fig. 22. Test 13: asymmetric warp with variable scale height, central shift, and shift in systemic velocity. Noise was added to the data cube.
ROTCUR: optimal first guess. All parameters except expansion velocity were left variable. For symbol- and colour-coding see the introduction to
this section.
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Table 14. Test 13: asymmetric warp with variable scale height, central shift, and shift in systemic velocity. Noise was added to the data cube.
Deviation in global dispersion: 0.08 km s−1. ROTCUR: optimal first guess. All parameters except expansion velocity were left variable.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 58.49 0.089 2.1 2.1 2.0 0.9 0.5 0.5 3.7√
∆2 all tir 156.54 0.145 2.6 3.8 4.3 1.5 0.7 0.6 8.8
∆max all tir 667.63 0.442 5.5 10.6 16.8 4.3 1.8 1.5 35.9
∆ 70% tir 12.31 0.029 1.3 0.5 0.5 0.3 0.2 0.2 1.0√
∆2 70% tir 15.05 0.036 1.5 0.6 0.6 0.4 0.3 0.2 1.1
∆max 70% tir 27.88 0.069 2.6 0.8 1.1 0.6 0.4 0.5 1.7
∆ hi tir 18.82 0.079 2.3 0.8 0.9 0.7 0.6 0.5 1.8√
∆2 hi tir 22.50 0.137 2.8 1.2 1.5 1.1 0.7 0.6 2.5
∆max hi tir 36.76 0.442 5.5 3.6 4.9 3.1 1.8 1.5 7.1
∆ 8 − σ tir 16.76 0.215 3.3 1.5 0.7 1.5 1.2 1.0 3.4√
∆2 8 − σ tir 19.86 0.257 3.4 2.0 0.8 2.0 1.2 1.1 4.3
∆max 8 − σ tir 33.35 0.442 5.1 3.6 1.2 3.1 1.8 1.5 7.1
∆ excs tir 7.70√
∆2 excs tir 10.89
∆max excs tir 15.40
∆ all pk 4.9 5.0 0.4 1.8 2.3 0.4√
∆2 all pk 12.7 10.3 0.6 4.1 3.5 0.9
∆max all pk 39.7 30.7 1.7 12.6 6.9 2.7
∆ 70% pk 0.5 0.7 0.1 0.3 0.6 0.1√
∆2 70% pk 0.5 1.0 0.1 0.4 0.7 0.2
∆max 70% pk 0.8 1.9 0.3 1.0 1.2 0.3
∆ hi pk 1.1 2.1 0.2 1.9 2.4 0.2√
∆2 hi pk 1.8 3.7 0.4 4.3 3.7 0.2
∆max hi pk 5.2 10.2 0.8 12.6 6.9 0.4
∆ all m1 0.5 0.9 0.3 2.1 3.1 0.1√
∆2 all m1 1.0 1.5 0.5 3.6 4.1 0.2
∆max all m1 3.0 3.9 1.1 10.0 6.6 0.4
∆ 70% m1 0.1 0.3 0.0 0.6 1.6 0.1√
∆2 70% m1 0.2 0.5 0.0 0.8 2.4 0.1
∆max 70% m1 0.6 1.1 0.1 1.7 5.3 0.2
∆ hi m1 0.6 1.0 0.3 1.8 2.7 0.1√
∆2 hi m1 1.1 1.6 0.5 3.4 3.7 0.2
∆max hi m1 3.0 3.9 1.1 10.0 6.6 0.4
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Fig. 23. Test 14: asymmetric warp with variable scale height, central shift, and shift in systemic velocity. Noise was added to the data cube. The
cloud flux used was 10−3 Jy km s−1 for a radius below 48′′ , 10−4 Jy km s−1 for a radius between 48′′ and 114′′, and 10−4 Jy km s−1 beyond 114′′ ,
corresponding to H i masses of 3.8 · 104 M�, 3.8 · 103 M�, and 3.8 · 102 M�, respectively, for a galaxy at a distance of 4 Mpc, the cloud masses
scaling with the distance squared. With this setup, an inhomogeneous distibution of the H i was simulated. Since the orientation of the galactic disk
is near to edge-on, no attempt was made to perform a fit to the velocity field. For symbol- and colour-coding see the introduction to this section.
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Table 15. Test 14: asymmetric warp with variable scale height, central shift, and shift in systemic velocity. Noise was added to the data cube. The
cloud flux used was 10−3 Jy km s−1 for a radius below 48′′, 10−4 Jy km s−1 for a radius between 48′′ and 114′′, and 10−4 Jy km s−1 beyond 114′′ ,
corresponding to H i masses of 3.8 × 104 M�, 3.8 × 103 M�, and 3.8 × 102 M�, respectively, for a galaxy at a distance of 4 Mpc, the cloud masses
scaling with the distance squared. With this setup, an inhomogeneous distibution of the H i was simulated. Since the orientation of the galactic
disk is near to edge-on, no attempt was made to perform a fit to the velocity field.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
∆ all tir 26.60 0.471 6.9 8.2 12.1 7.9 13.1 3.7 9.2√
∆2 all tir 44.24 1.013 11.4 10.0 16.7 13.2 22.5 4.7 20.0
∆max all tir 110.27 4.126 34.4 17.5 36.9 35.9 52.6 10.2 76.4
∆ 70% tir 5.88 0.130 2.6 5.0 5.5 2.1 1.1 2.1 2.5√
∆2 70% tir 8.52 0.161 2.9 6.0 8.1 2.4 1.5 2.6 3.3
∆max 70% tir 21.57 0.385 4.2 10.4 18.0 3.7 4.0 4.9 6.6
∆ hi tir 42.58 0.122 2.8 3.0 2.2 2.5 0.7 1.1 2.6√
∆2 hi tir 58.27 0.142 3.0 3.5 2.6 3.6 0.9 1.3 3.4
∆max hi tir 110.27 0.252 4.2 6.4 4.7 8.4 1.4 2.4 5.8
∆ 8 − σ tir 4.10 0.795 10.5 9.1 16.0 12.9 24.1 4.6 5.1√
∆2 8 − σ tir 5.76 1.390 15.4 10.9 20.6 18.0 31.1 5.6 5.7
∆max 8 − σ tir 11.99 4.126 34.4 17.5 36.9 35.9 52.6 10.2 8.2
∆ 2 − σ tir 3.79 0.969 12.1 10.9 19.0 15.0 29.9 5.4 5.1√
∆2 2 − σ tir 5.61 1.554 17.0 12.1 22.9 19.9 34.7 6.2 5.8
∆max 2 − σ tir 11.99 4.126 34.4 17.5 36.9 35.9 52.6 10.2 8.2
∆ 0.5 − σ tir 2.36 1.279 17.7 13.9 28.0 18.0 41.1 4.6 7.1√
∆2 0.5 − σ tir 4.36 1.933 21.4 14.4 28.7 21.9 42.0 5.2 7.1
∆max 0.5 − σ tir 11.99 4.126 34.4 17.5 36.9 35.9 52.6 9.5 8.2
∆ excs tir 0.00√
∆2 excs tir 0.00
∆max excs tir 0.00
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Fig. 24. Test 15: flat disk with constant scale height and solid-body rotation, and no noise added to the data cube. While the fitting was not performed
in this case without the knowledge of the parametrisation of the fake observation, convergence was reached very quickly. Since TiRiFiC fits the
surface brightness profile, the degeneracy of inclination and rotation velocity is broken. For symbol- and colour-coding see the introduction to
this section.
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Table 16. Test 15: flat disk with constant scale height and solid-body rotation, no noise added to the data cube. Deviation in global dispersion:
0.01 km s−1. While the fitting was not performed in this case without the knowledge of the parametrisation of the fake observation, convergence
was reached very quickly. Since TiRiFiC fits the surface brightness profile, the degeneracy of inclination and rotation velocity is broken.

Quantity Range method NH i
NH i

NH i ,exp vrot i PA RA Dec vsys z0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ all tir 2.98 0.001 0.0 0.0 0.0 0.5 0.4 0.2 0.2√
∆2 all tir 4.74 0.002 0.1 0.0 0.0 0.5 0.4 0.2 0.2
∆max all tir 9.99 0.004 0.1 0.0 0.0 0.5 0.4 0.2 0.2
∆ 70% tir 0.52 0.000 0.0 0.0 0.0 0.5 0.4 0.2 0.2√
∆2 70% tir 0.80 0.000 0.0 0.0 0.0 0.5 0.4 0.2 0.2
∆max 70% tir 1.67 0.000 0.0 0.0 0.0 0.5 0.4 0.2 0.2
∆ hi tir 0.93 0.001 0.0 0.0 0.0 0.5 0.4 0.2 0.2√
∆2 hi tir 1.41 0.001 0.1 0.0 0.0 0.5 0.4 0.2 0.2
∆max hi tir 2.95 0.002 0.1 0.0 0.0 0.5 0.4 0.2 0.2
∆ excs tir 9.99√
∆2 excs tir 9.99
∆max excs tir 9.99


