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Abstract

A framework for carrying out 0nite deformation discrete dislocation plasticity calculations is
presented. The discrete dislocations are presumed to be adequately represented by the singular
linear elastic 0elds so that the large deformations near dislocation cores are not modeled. The
0nite deformation e3ects accounted for are: (i) 0nite lattice rotations and (ii) shape changes
due to slip. As a consequence of the nonlinearity, an iterative procedure is needed to solve
boundary value problems. Elastic anisotropy together with lattice curvature is shown to lead to
a polarization stress term in the rate boundary value problem. The general three-dimensional
framework is specialized to plane strain. The plane strain specialization is implemented in a
conventional 0nite element code and two numerical examples are given: plane strain tension
of a single crystal strip and combined bending and tension of that strip. The capabilities and
limitations of a conventional 0nite element framework for this class of problems are illustrated
and discussed.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

For a wide range of crystalline solids, room temperature plastic deformation occurs
due to the collective motion of dislocations gliding on speci0c slip planes. The mobility
of dislocations is what gives rise to plastic :ow at stress levels relatively low compared
to the theoretical strength. A consequence of dislocation glide is the rotation of the
crystal lattice which changes the resolved shear stress on the slip systems and which,
in turn, a3ects subsequent dislocation glide. The signi0cance of lattice reorientation for
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plastic :ow has long been recognized, both experimentally and theoretically, at least
within the context of continuum plasticity, see e.g. Asaro (1983).
Since the late 1980s, considerable activity has been directed at representing plastic

:ow in terms of the dynamics of large numbers of interacting dislocations, with the
dislocations represented as line singularities in an elastic solid, see e.g. Devincre and
Kubin (1994), Van der Giessen and Needleman (1995). This framework naturally ac-
counts for both the stress enhancement due to organized dislocation structures and the
stress relaxation arising from dislocation glide. Superposition of a complementary (or
image) 0eld, enables boundary value problems to be solved where plastic :ow arises
from the collective motion of discrete dislocations, Van der Giessen and Needleman
(1995). This discrete dislocation plasticity framework has been restricted to in0nitesimal
deformations; both the e3ect of lattice reorientation on dislocation glide and the e3ect
of geometry changes on the momentum balance have been neglected. The successes of
in0nitesimal deformation discrete dislocation plasticity, for example in application to
thermal stress evolution in thin 0lms, Nicola et al. (2003) and to fatigue crack growth,
Deshpande et al. (2003), together with increasing computational capabilities provide
the motivation for considering 0nite deformation e3ects.
Finite deformation e3ects in conjunction with dislocation plasticity have recently

been considered. Acharya (2003) developed a 0nite deformation 0eld theory for con-
tinuously distributed dislocations while El-Azab (2003) has developed a 0nite deforma-
tion statistical mechanics formalism for dislocation plasticity. Zbib et al. (2002) have
presented a formulation where volume average plastic strain rates and plastic rotation
rates, obtained from small deformation discrete dislocation plasticity, are used in a
conventional continuum 0nite deformation viscoplastic constitutive description, so that
the 0nite deformation e3ects are decoupled from the discrete dislocation dynamics.
In contrast, our aim is to provide a fully coupled framework for carrying out 0nite
deformation discrete dislocation plasticity analyses. However, the large deformations
that occur near the dislocation line (the dislocation core region), and which are not
well-represented by linear elasticity, are not modeled.
We focus attention on: (i) 0nite deformation-induced lattice rotations and (ii) the

shape change due to slip. The e3ect of lattice rotations and 0nite geometry changes
on the motion of the discrete dislocations is accounted for. The stress and deformation
0elds associated with individual dislocations are assumed to be accurately described,
outside of the dislocation core region, by linear elasticity. The key di3erence from
conventional continuum plasticity formulations, which average over the dislocations, is
that dislocations are treated individually while they move through the elastic continuum.
The displacement 0eld in this continuum is only piecewise continuous; the slip induced
by dislocation motion gives rise to a jump in the displacement 0eld. Except for these
jumps, the gradient of the displacement 0eld describes the deformation of the crystal
lattice. Furthermore, due to slip interior material points can become boundary material
points.
As in conventional continuum plasticity, a crystal is characterized by the orientation

of a set of lattice vectors at each material point as well as by the position of the
material points. At the current time, the geometry of the solid, the orientation of the
lattice vectors and the positions of all dislocations are assumed known. An increment
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of external loading is prescribed. The updated geometry, lattice vector orientation and
dislocation positions need to be determined. As in the in0nitesimal deformation case,
the solution of the 0nite deformation rate boundary value problem is represented in
terms of known, singular solutions for the discrete dislocations and a complementary
(image) solution that enforces the boundary conditions. This complementary solution
is non-singular. The 0nite geometry changes are strongly coupled with the discrete
dislocation dynamics. As a consequence, an iterative procedure is required at each
time step to obtain the complementary solution.
We begin by presenting the 0nite deformation discrete dislocation plasticity formula-

tion. Representing the shape change in 0nite deformation discrete dislocation plasticity
requires the development of numerical methods allowing for displacement 0elds that are
only piecewise continuous. Although an appropriate numerical method is not currently
available, this is a topic of current research, e.g. MoHes et al. (1999), Daux et al. (2000),
Wells et al. (2002) and Remmers et al. (2003). Awaiting such a method, an imple-
mentation within a conventional 0nite element framework is presented. This involves
averaging the slip over an element and is inherently approximate. It does, however,
permit some e3ects of 0nite lattice rotations and shape changes to be illustrated.

2. Finite strain discrete dislocation formulation

We consider a crystalline solid with plastic deformation taking place by glide of a
collection of discrete dislocations, each of which is represented as an elastic singular
0eld, along a speci0ed set of crystallographic directions.
As in continuum crystal plasticity, a distinction is made between deformation of the

lattice and deformation of the material. At each material point, a set of three orthonor-
mal vectors, de0ne the orientation of the lattice. Stress is related to the deformation
of the lattice by an elastic constitutive relation. The basic assumptions are: (i) dis-
location glide is the mechanism of plastic deformation; (ii) the elastic properties are
una3ected by dislocation glide; and (iii) outside the dislocation cores, the dislocation
stress, strain and displacement 0elds are well approximated by linear elasticity. All
0nite deformations arise as a consequence of the displacement jumps induced by dis-
location glide. These displacement jumps lead to lattice rotations that may be 0nite.
Hence, the 0nite deformation e3ects that the formulation aims to capture are those due
to deformation-induced lattice rotations and the change in shape of the body due to
slip. Additional phenomena that may be involved in 0nite plastic deformation, such as
modi0ed elastic properties, 0nite lattice strains and dislocation mobility mechanisms
other than slip, are not accounted for.
Attention is con0ned to quasi-static deformation histories, body forces are assumed

absent and an updated Lagrangian framework is used so that the current and reference
con0gurations coincide. Cartesian tensor notation is adopted and (:) denotes 9()=9t,
i.e., the material time derivative with the current con0guration as reference. In the
current con0guration, at time t, the orientation of the lattice vectors and the dislocation
con0guration are assumed known. The aim is to calculate the orientation of the lattice
vectors, the dislocation con0guration and the change in shape of the body at time t+dt.
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2.1. Kinematics

At time t, the body contains N dislocation lines and a point along a dislocation
line moves, with respect to the material, with velocity v(I)i (x(I)i ), where I = 1; : : : ; N
and x(I)i is a point along the line of dislocation I in the current con0guration. A
displacement discontinuity, the slip, is associated with dislocation I . The change in
position of dislocation I gives rise to a displacement rate 0eld ˙̃u(I)i (xj; t) at each material
point which is singular along the dislocation line. The locations of the material points
comprising the line of dislocation I at time t + dt depend on the lattice deformation
and on the slip associated with all dislocations.
The total displacement rate is written as the superposition

u̇ i(xj; t) = ˙̂u i(xj; t) + ˙̃u i(xj; t); (1)

where xj denotes the position of a material point in the current (reference) con0guration
and

˙̃u i =
N∑
I=1

˙̃u (I)
i : (2)

Here, ˙̃u (I)
i contains the singular terms along the line of dislocation I and ˙̂u i is the

displacement rate that arises from meeting the boundary conditions as in Van der
Giessen and Needleman (1995). The displacement rate 0eld ˙̃u (I)

i is taken to be an
explicitly known displacement rate 0eld that can be directly calculated from the glide of
dislocation I , either analytically or by carrying out some separate numerical calculation,
e.g. an integration along the dislocation line, which then needs to be corrected to
account for the e3ects of glide of all dislocations and of lattice deformation.
Because of slip, the displacement rate 0eld, u̇ i in Eq. (1) is not a single valued

function along the dislocation lines. As a consequence, the displacement rate gradient
u̇ i; j is not smooth. We use u̇∗i; j to denote the deformation rate 0eld with the singularity
along the dislocation line removed. This 0eld speci0es the rate of deformation of the
lattice. With the current con0guration as reference, we write

�̇∗ij =
1
2
[u̇∗i; j + u̇∗j; i]; !̇∗

ij =
1
2
[u̇∗i; j − u̇∗j; i]; (3)

where (); i is 9()=9xi. The 0elds �̇∗ij and !̇∗
ij give the rate of stretching and spin, re-

spectively, of lattice vectors. Excluding the singular part of u̇ i; j can be accomplished
by writing

u̇∗i; j(x
(I)
k ) = ˙̂u i; j +

∑
J �=I

˙̃u(J )i; j + �̇ (I)
i; j ; (4)

where x (I)
k denotes a point along dislocation line I and �̇ (I)

i; j are possible non-singular

components of ˙̃u (I)
i; j (e.g., if dislocation 0elds for a semi-in0nite solid are used). Further

speci0cation of this exclusion procedure will be given in conjunction with the numerical
implementation in Section 4.
In the undeformed lattice, there is a set of crystallographic planes in which the

dislocations lie and glide. The unit normal to slip plane � is denoted by m(�)
i and s(�)i
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denotes a unit vector in slip plane �. With the current orientations of s(�)i and m(�)
i

denoted by s∗(�)i and m∗(�)
i , respectively, the change in orientation of lattice vectors is

given by

ṡ∗(�)i = !̇∗
ijs

∗(�)
j ; ṁ∗(�)

i = !̇∗
ijm

∗(�)
j : (5)

In the current con0guration, due to lattice curvature, s∗(�)j and m∗(�)
j vary with position.

The position of a material point at t + dt is

xi(t + dt) = xi(t) + u̇ i dt: (6)

Since the displacement rate 0eld u̇ i includes the slip contribution, coming, for example,
from the expansion of dislocation loops, xi(t + dt) is not single valued along the
dislocation lines.

2.2. Continuing equilibrium

The body is in equilibrium at time t. The aim is to determine the equilibrium stress
0eld at time t + dt. The statement of equilibrium is

�ij;j = 0; (7)

where �ij is the symmetric Cauchy stress. In Eq. (7), the gradient is denoted by ();j
to emphasize that it represents 9()=9xj(t + dt).
It is convenient to introduce additional stress measures, the Kirchho3 stress �ij and

the 2nd Piola–Kirchho3 stress Sij, via

�ij = J�ij; (8)

and

�ij = (�im + ui;m)(�jn + uj;n)Smn: (9)

Here, �ij is the Kronecker delta and J =det(�ik + ui;k). Since the reference and current
con0gurations are taken to coincide, the values of the components �ij; �ij and Sij
coincide at time t. However, their rates do not coincide.
Analogous to the small strain formulation in Van der Giessen and Needleman (1995),

the stress 0eld is written as the superposition of the stress 0eld due to the dislocations,
in their current positions and with their current orientations, �̃ij, and an image 0eld
that enforces the boundary conditions, �̂ij. Since each individual dislocation stress 0eld
is an equilibrium 0eld (within the approximation of small elastic strains),

�̃ij;j = 0: (10)

Hence, due to the superposition �ij = �̂ij + �̃ij we have

�̂ij;j = 0: (11)

The (∼) 0elds are presumed known, but the (∧) 0elds need to be determined so
that the boundary conditions are satis0ed. Because of the geometric nonlinearity, in
general an iterative procedure is needed to solve Eq. (11). To this end a rate problem
is formulated for the (∧) 0elds that enforce the prescribed boundary conditions. We
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choose to formulate this rate problem in terms of the 2nd Piola–Kirchho3 stress Sij.
Using the rate forms of Eqs. (8) and (9), and with the current and reference states
coinciding, continuing equilibrium at time t implies

[Ṡ ij + Skju̇ i; k ]; j = 0: (12)

Using superposition, we write

Ṡ ij =
˙̂Sij +

˙̃Sij; (13)

where

˙̃Sij =
N∑
I=1

˙̃S (I)
ij : (14)

Here, ˙̃S (I)
ij is the stress rate 0eld associated with dislocation I . With the stress 0elds

�̂ij and �̃ij de0ned as

�̂ij = (�im + ui;m)(�jn + uj;n)Ŝmn and (15a)

�̃ij = (�im + ui;m)(�jn + uj;n)S̃mn; (15b)

respectively, the rate forms of Eqs. (10) and (11), with the current and reference
con0gurations coinciding, imply that

[ ˙̃Sij + S̃kju̇ i; k ]; j = 0 and (16a)

[ ˙̂Sij + Ŝkju̇ i; k ]; j = 0: (16b)

One complication in the 0nite deformation context arises from the term Skju̇ i; k in
Eq. (12), which includes the slip rate (and therefore u̇ i; k is not a smooth function).
Also, since the 0nite deformations that occur in a small core region around the dislo-
cation are not accounted for by the linear elastic description of dislocations, a volume
surrounding the dislocation core and the slip surface is excluded in formulating the
boundary value problem for ˙̂u i. We then take the limit where that volume becomes
vanishingly small.
The boundary value problem for ˙̂u i is expressed in weak form. We begin by mul-

tiplying Eq. (12) by � ˙̂u i (the variation in the displacement rate 0eld we are solving
for), integrating over the volume, and then using the divergence theorem to obtain∫

V̂
[Ṡ ij + Skju̇ i; k ]� ˙̂u i; j dV =

∫
S
Ṫ i� ˙̂u i dS −

N∑
I=1

∫
S (I)

Ṫ i� ˙̂u i dS; (17)

with C (I) a small volume surrounding the area swept by dislocation I in the time
interval dt, S (I) the surface of that volume and V̂ = V \ ∑N

I=1 C
(I), as sketched in

Fig. 1a.
Standard boundary conditions are considered so that

u̇ i = u̇0i on Su; (18a)

Ṫ i = Ṫ 0
i on ST : (18b)
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Fig. 1. (a) Body V with a volume C (I) around the dislocation core and slipped surface associated with
dislocation loop L (I) excluded, i.e. V = V̂ ∪C (I). (b) Open view of the excluded volume C (I) around
dislocation loop L (I). (c) Displacement circuit to de0ne the local Burgers vector.

Here, Su ⊂ S is the part of the boundary on which displacement rates u̇0i are prescribed
and ST is the remaining part of the boundary on which traction rates Ṫ 0

i are prescribed.
More complex con0guration dependent boundary conditions, representing for example
pressure loading, can of course also be prescribed. Due to slip interior material points
can become boundary material points, and then Su and ST need to be appropriately
modi0ed to account for this geometry change.
The aim of the subsequent development is to derive a variational statement to serve

as the basis for a numerical implementation. For this purpose note that the variational
0eld in Eq. (17) is the continuous and di3erentiable 0eld � ˙̂u i. Variational statements
analogous to Eq. (17) can be obtained by using other trial 0elds; for example, the
work rate identity is based on using �u̇ i.
With the traction rate ˙̃T i on a surface with unit normal nj due to the (∼) dislocation

0elds given by

˙̃T i = ( ˙̃Sij + S̃kju̇ i; k)nj; (19)
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Eq. (16a) implies that∫
V̂
[ ˙̃Sij + S̃kju̇ i; k ]� ˙̂u i; j dV =

∫
S

˙̃T i� ˙̂u i dS −
N∑
I=1

∫
S (I)

˙̃T i� ˙̂u i dS: (20)

Using superposition, Eqs. (13) and (1), along with Eq. (20), Eq. (17) takes the form∫
V̂
[ ˙̂Sij + Ŝkj ˙̂u i;k ]� ˙̂u i;j dV =

∫
ST
(Ṫ 0

i − ˙̃T i)� ˙̂u i dS

−
∫
V̂
Ŝkj ˙̃u i;k� ˙̂u i; j dV −

N∑
I=1

∫
S (I)

˙̂T i� ˙̂u i dS; (21)

since � ˙̂u i = 0 on Su.
The boundary conditions for the ( ∧̇) 0elds are

˙̂u i = u̇0i − ˙̃u i on Su; (22a)

˙̂T i = Ṫ 0
i − ˙̃T i on ST : (22b)

where ˙̃T i is given by Eq. (19) and ˙̃u i is the discrete dislocation displacement rate on
Su including the contribution from slip.
Next, the integrals over the surfaces S (I) are expressed as volume integrals,

N∑
I=1

∫
S (I)

˙̂T i� ˙̂u i dS =
N∑
I=1

∫
C (I)

[
˙̂Sij + Ŝkj( ˙̂u i;k + ˙̃u i;k)

]
� ˙̂u i; j dV; (23)

so that Eq. (21) can be written as∫
V

[
˙̂Si; j + Ŝkj ˙̂u i;k

]
� ˙̂u i; j dV =

∫
ST
(Ṫ 0

i − ˙̃T i)� ˙̂u i dS

−
N∑
I=1

∫
(V\C (I))

Ŝkj ˙̃u
(I)
i; k � ˙̂u i; j dV

−
N∑
I=1

∫
C (I)

Ŝkj ˙̃u
(I)
i; k � ˙̂u i; j dV; (24)

where we have employed the relations V = V̂ ∪ ∑N
I=1 C (I) and ˙̃u i; j =

∑N
I=1

˙̃u (I)
i; j .

During the time interval dt, a dislocation line segment of length dl (I), moving with
velocity v (I)i sweeps through an area of magnitude |eijkv (I)i r∗(I)j |dl (I) dt, with r∗(I)j a
unit vector along the dislocation line segment dl (I) and eijk the permutation tensor.
The sense ascribed to r∗(I)j around the dislocation loop L (I) is arbitrary and can be

chosen in a right handed sense relative to m∗(�)
i as shown in Fig. 1b. The excluded

volume, C (I), around this dislocation line segment is h|eijkv (I)i r∗(I)j m∗(�)
k |dl (I) dt. Here,

h is the distance along the normal m∗(�)
i to the slip plane on which dislocation segment

dl (I) resides (see Fig. 1b). Since consideration is restricted to dislocation glide giving
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rise to a displacement gradient b∗(I)i =h across the slip plane, in the limit h → 0, in C (I)

we set

˙̃u (I)
i; k =

b∗(I)i

h dt
m∗(�)

k sign(epqrv (I)p r∗(I)q m∗(�)
r ); (25)

where b∗(I)i is the Burgers vector of dislocation line segment dl (I) in the current lattice:
the local Burgers vector b∗(I)i of line segment dl (I) is given by the line integral,

b∗(I)i =
∮
$

9ũ (I)
i

9c dc; (26)

around the dislocation segment dl (I) taken in a right-handed sense relative to r∗(I)j ,

which points into the plane in Fig. 1c. Since b∗(I)i lies in the slip plane b∗(I)i m∗(�)
i =0,

and ˙̃u (I)
i; i = 0 in C (I).

Using Eq. (25), the last integral on the right hand side of Eq. (24) can be
expressed as∫

C (I)
Ŝkj ˙̃u

(I)
i; k � ˙̂u i; j dV =

∮
L (I)

[
Ŝkjb

∗(I)
i m∗(�)

k (epqrv (I)p r∗(I)q m∗(�)
r )

]
� ˙̂u i; j dl (I); (27)

where dV = h|epqrv (I)p r∗(I)q m∗(�)
r | dl (I) dt has been used. Substituting Eq. (27) into

Eq. (24) gives the weak form of the equations for the ˙̂u i 0eld∫
V

[
˙̂Sij+ Ŝkj ˙̂u i;k

]
� ˙̂u i; jdV =

∫
ST
(Ṫ 0

i − ˙̃T i)� ˙̂u i dS −
N∑
I=1

∫
(V\C (I))

Ŝkj ˙̃u
(I)
i; k � ˙̂u i; j dV

−
N∑
I=1

∮
L (I)

[
Ŝkjb

∗(I)
i m∗(�)

k (epqrv (I)p r∗(I)q m∗(�)
r )

]
� ˙̂u i; jdl (I): (28)

Since |epqrr∗(I)q m∗(�)
r | is the magnitude of the pth-component of the unit normal to

the dislocation line in the slip plane, |epqrv (I)p r∗(I)q m∗(�)
r | is the magnitude of the glide

velocity normal to the dislocation line, V (I)
gln . The last term on the right-hand side of

Eq. (28) can then be written as
N∑
I=1

±
∮

L (I)

T̂jb
∗(I)
i V (I)

gln � ˙̂u i; j dl (I); (29)

where T̂j = Ŝkjm
∗(�)
k is the traction on the glide plane. The sign in Eq. (29) depends

on the sign convention for r∗(I)q .
The constitutive relation for lattice elasticity can be written as

Ṡ ij = Lijkl�̇∗kl in V; (30)

where Lijkl is the tensor of elastic moduli. Here, attention is con0ned to isotropic
elasticity so that the moduli are una3ected by lattice rotation and remain position
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independent. The consequences of elastic anisotropy are discussed in Section 2.3. Using

superposition, Eq. (13), ˙̂Sij and ˙̃Sij are given by

˙̂Sij = Lijkl ˙̂�kl;
˙̃Sij = Lijkl ˙̃�kl; (31)

where

˙̂�kl =
1
2

(
˙̂uk;l + ˙̂ul;k

)
; ˙̃�kl =

1
2

(
˙̃uk;l + ˙̃ul;k

)
: (32)

The 0rst of Eqs. (31) and (32) are substituted into Eq. (28) to complete the speci0-
cation of the weak form of the governing equations for the unknown ˙̂ui.

With the reference and current con0gurations coinciding, di3erentiation of Eq. (15a)
gives the relation between the components of the material rate of Kirchho3 stress, ˙̂�ij,

and ˙̂Sij as

˙̂�ij =
˙̂Sij + u̇∗i;mŜmj + u̇∗j;nŜ in (33)

after subtracting the singular part of u̇ i;m since u̇ i;m = u̇∗i;m in V . Using the 0rst of
Eqs. (31) in Eq. (33) gives

˙̂�ij = Lijkl ˙̂�kl + u̇∗i;mŜmj + u̇∗j;nŜ in; (34)

with which the stress is updated by �̂ij(t + dt) = �̂ij(t) + ˙̂�ij dt. Formally, there is a
relation analogous to Eq. (34) for the singular ˙̃�ij 0eld. However, it is more e3ective
to calculate �̃ij(t + dt) directly from the stress 0elds of the individual dislocations in
their positions and orientations at time t + dt.
We note that Eq. (34) can also be interpreted as the elastic constitutive relation

expressed in terms of the components of the lattice-convected Kirchho3 stress rate
˙̂�∗c = ˙̂Sije∗i ⊗ e∗j , where e∗i are base vectors that rotate and deform with the lattice.
At t + dt, the components of the 2nd Piola–Kirchho3 stress, Ŝ ij, are set equal to

�̂ij. Since outside the dislocation cores J ≈ 1, so that �̂ij ≈ �̂ij, the weak form of
Eq. (11) can be written as∫

V
Ŝij� ˙̂u i; j dV =

∫
ST
(T 0

i − T̃ i)� ˙̂ui dS: (35)

An iterative solution procedure is required since all terms in Eq. (28) are not known
at the beginning of the time step. In particular, contributions to the (∼̇) 0elds come
from: (i) glide of dislocation I which is obtained from a constitutive rule; (ii) rotation
of the lattice at the current position of dislocation I ; (iii) the change in the position of
dislocation I due to the glide of other dislocations; and (iv) the change in the position
of dislocation I due to the complementary 0eld ˙̂u i. In the 0rst iteration, the contributions
(ii) to (iv) are not known. In subsequent iterations, the dislocation positions are 0xed
with respect to the material, i.e. the glide velocities V (I)

gln of all dislocations are set zero

and the contribution, Rũ i, to ˙̃u i dt from (ii) to (iv) is obtained by solving Eq. (28)
repeatedly until Eq. (35) is satis0ed in the con0guration at time t + dt. The iterative
procedure alleviates numerical diSculties in evaluating the integral over V \ C (I) in
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Eq. (28); errors made in that integration will be resolved during the iterative process
based on Eq. (35). More details are given in Section 4.

2.3. Elastic anisotropy

In the 0nite deformation context, the boundary value problem formulation needs to
account for the e3ect of non-uniform lattice rotations on elastic anisotropy. Due to the
deformation induced change in lattice vectors, the components of the tensor of elastic
moduli, Lijkl, at time t + dt are given by

Lijkl(t + dt) = (�im + u̇∗i;m dt)(�jn + u̇∗j;n dt)(�kp + u̇∗k;p dt)(�lq + u̇∗l;q dt)Lmnpq(t):
(36)

For small elastic strains, the displacement gradient terms in Eq. (36) can be replaced
by the corresponding lattice rotations, i.e. u̇∗i;m ≈ !̇∗

im. Thus, anisotropic moduli Lijkl
are, in general, position dependent in the current con0guration, as a consequence of
lattice rotation, even if the Lijkl are position independent in the unstressed con0guration.
Furthermore, the moduli may vary along the dislocation lines.
In order to use the 0elds of dislocations in a homogeneous elastic solid as the (∼)

0elds, dislocation lines can be discretized into N dislocation segments. Denoting the
tensor of elastic moduli associated with dislocation line segment dl (I) by L (I)

ijkl(x
(I)
p ),

where x (I)
p is the position of the line segment dl (I), the dislocation stress rate 0eld ˙̃S (I)

ij

associated with the line segment dl (I) is given by

˙̃S (I)
ij = L (I)

ijkl(x
(I)
p ) ˙̃� (I)kl ; ˙̃� (I)kl =

1
2

(
˙̃u (I)
k; l + ˙̃u (I)

l; k

)
in V: (37)

Here, ˙̃u (I)
i is the singular displacement rate 0eld of dislocation line segment dl (I) in

a homogeneous elastic solid with elastic modulus L (I)
ijkl(x

(I)
p ). The sums in Eqs. (2)

and (14) are now interpreted as summations over the N dislocation line segments and

Eq. (28) is modi0ed accordingly. Furthermore, the elastic constitutive relation for ˙̂Sij

in Eq. (31) becomes

˙̂Sij = Lijkl(xp) ˙̂�kl + Ṗij in V; (38a)

where

Ṗij =
N∑
I=1

[
Lijkl(xp)− L (I)

ijkl(x
(I)
p )

]
˙̃� (I)kl : (38b)

The sum in Eq. (38b) is over all the dislocation segments along all the dislocations
lines. The polarization stress term, Ṗij, in Eq. (38) arises from the elastic inhomogeneity
of the body in the current con0guration and the fact that we employ (∼) 0elds for
dislocations in a homogeneous elastic solid. Relation (38) is used in the modi0ed
Eq. (28) in place of the 0rst of Eq. (31).
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3. Plane strain specialization

Here, we specialize the general three-dimensional framework to a two-dimensional
plane strain context. The x1–x2-plane is the plane of deformation and only straight
edge dislocations parallel to the x3-axis are considered. The crystallographic direction
s∗(�)i is taken as the slip direction and hence colinear with the Burgers vector of an
edge dislocation on the �th slip system. The glide velocity of dislocation I then is
V (I)
gln = v (I)p s∗(�)p . In plane strain, we use the convention that r∗(I)i is pointing out of the

plane of deformation, so that the contour in Eq. (26) is taken in the counter-clockwise
direction and de0ne r∗(I)k = eijks

∗(�)
i m∗(�)

j , where m∗(�)
j is the current local normal to the

slip plane on which dislocation I resides.
Employing the above de0nitions, in plane strain, the rate equation (28) has the form

∫
A

[
˙̂Sij + Ŝkj ˙̂u i;k

]
� ˙̂u i; j dA=

∫
ST
(Ṫ 0

i − ˙̃T i)� ˙̂u i dS −
N∑
I=1

∫
(A\c (I))

Ŝkj ˙̃u
(I)
i; k � ˙̂u i; j dA

+
N∑
I=1

[
Ŝkjb

∗(I)
i m∗(�)

k v (I)p s∗(�)p

]
x=x (I)

p

� ˙̂u i; j(x (I)
p ); (39)

where A is the area in the x1–x2-plane occupied by the body, x (I)
p is the location of

edge dislocation I , c (I) is the excluded area around dislocation I and ST is the portion
of the boundary of A on which traction rates are prescribed. In plane strain, with
edge dislocation lines parallel to the x3-axis, the last integral in Eq. (28) reduces to a
quantity evaluated at the dislocation position as given in Eq. (39).
Attention is restricted to elastically isotropic and homogeneous crystals with Young’s

modulus E and Poisson’s ratio *. Constitutive rules for dislocation dynamics in three
dimensions were given by Kubin et al. (1992) and subsequently employed by Van
der Giessen and Needleman (1995) in plane strain analyses. We summarize the plane
strain rules, highlighting the di3erences that arise due to the 0nite strain context.
One signi0cant change is that dislocations are no longer con0ned to a 0xed slip plane

due to slip on intersecting slip systems. Hence, the basic entity is a slip system (i.e.,
the orientation in the lattice of the slip plane normal and the slip direction) rather than
a slip plane. Furthermore, because of 0nite rotations, the orientation of a nucleated
dislocation dipole (the two-dimensional analog of a nucleated loop) varies with the
local deformation state.
The glide force work conjugate to in0nitesimal variations of the position of disloca-

tion I (i.e. the Peach–Koehler force) is given by

f (I) =


Ŝ ij +

∑
J �=I

S̃(J )
ij +V

(I)
ij


 b∗(I)j epqir∗(I)p s∗(�)q

≡

Ŝ ij +

∑
J �=I

S̃(J )
ij +V

(I)
ij


 b∗(I)j m∗(�)

i ; (40)
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where S̃(J )
ij the stress 0eld of dislocation J and V(I)

ij are the non-singular components of

S̃ (I)
ij , for example, if dislocation 0elds for a semi-in0nite solid are used. In the updated
Lagrangian scheme employed here, the components Sij in the current con0guration are
equal to those of the Kirchho3 stress or Cauchy stress so that Eq. (40) could also be
expressed in terms of �ij or �ij. The Peach–Koehler force enters the constitutive rules
for dislocation glide, dislocation nucleation, and dislocation pinning at and releasing
from obstacles.
The magnitude of the glide velocity V (I)

gln along the current slip direction s∗(�)i of
dislocation I is taken to be linearly related to the Peach–Koehler force through the
drag relation

V (I)
gln =

1
B
f (I); (41)

where B is the drag coeScient. Here, we assume that the drag coeScient B is constant
throughout the body. We also do not account for any change in the resistance to
dislocation motion near a free surface associated with the energy required to create
new free surface when the dislocation exits.
New dislocation pairs are generated by simulating Frank–Read sources. In two di-

mensions, this is mimicked by discrete point sources on a slip system � which generate
a dislocation dipole with their Burgers vectors aligned with s∗(�)i . This occurs when
the magnitude of the Peach–Koehler force at that source exceeds a critical value �nucb
during a time period tnuc. The distance Lnuc between the dislocations is taken to be
speci0ed by

Lnuc =
E

4-(1− *2)
b
�nuc

; (42)

where b the magnitude of the Burgers vector in this elastically homogeneous isotropic
solid. This choice of Lnuc ensures that the shear stress of one dislocation acting on
the other is balanced by the slip system shear stress �nuc. Since lattice strains are
assumed to remain small outside the dislocation cores, the magnitude b is una3ected
by deformation.
Annihilation of two opposite signed dislocations on slip system � occurs when they

are suSciently close together. This is modeled by eliminating the two dislocations
when they are within a material-dependent critical annihilation distance Le. Note that
unlike the small strain formulation where only opposite signed dislocations on a given
slip plane can annihilate each other, in the 0nite strain context opposite signed dis-
locations on a given slip system can annihilate each other. Thus, annihilation of two
opposite signed dislocations on a particular slip system occurs when they are within
Le irrespective of their current slip planes.
Obstacles to dislocation motion are modeled as points associated with a slip system.

Dislocations on the obstacle slip system get pinned as they try to pass through that
point. Again, unlike in the small deformation case, dislocations and obstacles are asso-
ciated with a slip system rather than a slip plane. Thus, dislocations on the obstacle slip
system that pass within a speci0ed distance, taken to be Le, get pinned to that obstacle.
Pinned dislocations can only pass through an obstacle when their Peach–Koehler force
exceeds an obstacle dependent value �obsb.
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4. A conventional �nite element implementation

Because the displacement 0eld is only piecewise continuous as sketched in Fig. 2b,
a 0nite element formulation allowing for discontinuous displacement 0elds is needed.
Since such 0nite element procedures are not yet available for discrete dislocation plas-
ticity, we explore the use of a conventional 0nite element method, based on displace-
ment continuity. Accordingly, the geometry change is represented by a continuous 0eld,
which is obtained from averaging the slip over a 0nite element, and is thus inherently
approximate. Nevertheless, this permits e3ects of lattice rotation and shape change to
be explored.
The displacement rate 0eld, u̇ i, enters the formulation in two ways: (i) as a con-

sequence of geometry changes, with the slip rates included, e.g. in Eq. (6), and (ii)
through deformation gradients in which the slip rates do not enter, e.g. in Eq. (3),
which are associated with the lattice deformation rate. In the conventional 0nite ele-
ment formulation here, the material and lattice velocity gradients are given by

u̇ i; j = ˙̂u i; j + u̇di; j ; and (43a)

u̇∗i; j = ˙̂u i; j + ˙̃u i; j : (43b)

The gradient u̇di; j is calculated by numerically di3erentiating the velocity 0eld ˙̃u i with
respect to xj using the 0nite element shape functions in the current con0guration and

active slip

plane

(a) (b)

(c)

Fig. 2. (a) Undeformed lattice with one active slip plane. (b) Schematic showing the geometry change due
to a slip discontinuity across the active slip plane. (c) E3ect of smearing the slip on a 0nite element mesh
comprised of bilinear quadrilaterals.
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thereby including the slip contribution. The displacement rate 0eld ˙̃u i; j is calculated
by analytically di3erentiating the individual discrete dislocation displacement 0elds so
that slip is not included.
The weak form of the rate equations governing the ˙̂u i 0eld is written as∫

A

[
˙̂Sij + Ŝkj ˙̂u i;k

]
� ˙̂u i; j dA=

∫
ST
(Ṫ 0

i − ˙̃T i)� ˙̂u i dS −
∫
A
Ŝkju̇di; k� ˙̂u i; j dA; (44)

where the last two integrals on the right-hand side of Eq. (28) are combined in the
last integral on the right-hand side of Eq. (44) as a result of the approximation in
Eq. (43a). The iterative procedure uses Eq. (44) to enforce equilibrium in the updated
con0guration, i.e. Eq. (35).
The e3ect of the approximation in Eq. (43a) is that slip is smeared out so that the

change in geometry of the body due to slip is only represented approximately. This is
shown schematically in Fig. 2 where the square grid represents the 0nite element mesh:
the undeformed mesh with an active slip plane is shown in Fig. 2a, Fig. 2b depicts
the deformation with a slip discontinuity across the slip plane while the approximate
deformed geometry assuming bilinear elements is shown in Fig. 2c. An important
consequence of the approximation is that volume constancy of the individual elements
is not maintained as seen clearly in Fig. 2c. Although this volume change does not
directly induce stress changes, it does limit the range of deformations that can be
modeled using a conventional 0nite element formulation because of the approximate
manner in which the geometry change is represented.
The deformation history is calculated in an incremental manner. At time t, the equi-

librium 0elds are known and they are employed to calculate the Peach–Koehler forces
on the dislocations, sources and obstacles. The rate of change of the dislocation struc-
ture caused by dislocation glide, dislocation annihilation, nucleation of new dislocations,
pinning at and releasing from obstacles is determined by employing the constitutive
rules.
The implementation is for plane strain using in0nite medium 0elds for the edge

dislocations, e.g. Hirth and Lothe (1968). An iterative procedure is used at each time
step to satisfy Eq. (35). In the 0rst iteration, the only contribution to the (∼̇) 0elds is
from dislocation glide and the contributions from the rotation rates of the dislocations
and from the change in dislocation position due to the glide of other dislocations are not
accounted for. The boundary traction and displacement rates ˙̃T i and ˙̃u i, respectively, are
obtained from these 0elds. The quantities Ṫ 0

i − ˙̃T i and u̇0i− ˙̃u i are used to set the traction
and displacement boundary conditions in solving Eq. (44). With the ( ∧̇) solution thus
obtained, the positions of dislocation sources and obstacles are updated using Eq. (1)
while the dislocation positions are incremented by (V (I)

gln s
∗(�)
i (t) + ˙̂u i +

∑
J �=I

˙̃u(J )i ) dt.
The orientations of the dislocations are tied to the lattice. Thus, the orientation of an
edge dislocation on slip system � is given by .(�) + ’∗, where .(�) is the orientation
of slip system � in the undeformed con0guration and

’∗ =
∫ t

0
!̇∗

21 dt; (45a)
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where

!̇∗
21 =

1
2

[
˙̂u 2;1 + ˙̃u 2;1 − ˙̂u 1;2 − ˙̃u 1;2

]
: (45b)

The sign convention in Eq. (45a) is such that a counter-clockwise rotation corresponds
to positive ’∗. In Eq. (45b), ˙̃u i; j is calculated in two steps: 0rst, by analytically
di3erentiating the individual discrete dislocation displacement 0elds with respect to xj
to remove the slip contribution and then numerically taking the di3erence in time dt
to calculate the increment in ũ i; j. This numerical di3erence procedure was followed so
as not to build up errors associated with the numerical time integration of the singular
˙̃u i; j. In the current computer code, the exclusion scheme in Eq. (4) is not implemented.
Rather, the singularity in the discrete dislocation 0elds is eliminated by evaluating ˙̃u (I)

i; j
from the analytical 0elds outside a dislocation core of radius 4b around dislocation I .
Inside the core, the value of ˙̃u (I)

i; j is set equal to its value at the core boundary so that

the singularity associated with ˙̃u (I)
i; j at the location of dislocation I is removed.

Using Eq. (34), the components of the Kirchho3 stress, �̂ij(t + dt), at time t + dt
are calculated as

�̂ij(t + dt) = �̂ij(t) +
[
Lijkl ˙̂�kl + u̇∗i;mŜmj(t) + u̇∗j;nŜ in(t)

]
dt; (46)

where u̇∗i;m is calculated in a manner similar to that used to calculate !̇∗
21. The geometry

is updated using Eq. (6) and, in the updated con0guration, the components of the 2nd
Piola–Kirchho3 stress 0eld, Ŝ ij, are equal to �̂ij. The stress 0eld S̃ ij(t+dt) is calculated
from the analytical stress 0elds of the dislocations in their positions and orientations
at t + dt.
In the con0guration at time t + dt, the image 0eld Ŝ ij must satisfy Eq. (35). In

general, at time t + dt Eq. (35) and the displacement boundary conditions will not be
satis0ed by solving Eq. (44) and updating the con0guration. Denoting this 0rst iteration
by k = 0, the (k + 1)th iteration involves solving

∫
A(k)

[
RŜ(k+1)

ij + Ŝ(k)
kj Rû(k+1)

i; k

]
�û i; j dA

=
∫
S(k)
T

(T 0
i − T̃ (k)

i )�û i dS −
∫
A(k)

Ŝ(k)
ij �û i; j dA−

∫
A(k)

Ŝ(k)
kj Rud(k)i; k �û i; j dA; (47)

with Rû(k+1)
i =−Rũ(k)i on S(k)

u . Here, Ŝ(k)
kj , S

(k)
T and S(k)

u refer to quantities associated

with the state after the kth iteration while Rû(k+1)
i and RŜ(k+1)

ij are the corrections to
(∧) 0elds in the (k + 1)th iteration. In these iterations the dislocations do not glide
(V (I)

gln =0) and the increments Rũ(k)i on Su and Rud(k)i; k on the right-hand side of Eq. (47)
are solely the result of changes in the (∼) 0elds in the kth iteration: even though there
is no slip contribution to Rũ(k)i , for consistency Rud(k)i; k in each iteration is calculated

by numerically di3erentiating Rũ(k)i using the 0nite element shape functions in the
con0guration after the kth iteration. Also, V (I)

gln is set equal to zero in calculating Rũ(k)i
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on Su. For k =0, the glide contributions to Rud(k)i; k in Eq. (47) and to Rũ(k)i on Su are
explicitly subtracted out.
The positions of material points and stress Ŝ ij are then updated via Eqs. (6) and

(46), respectively with the (:) dt terms interpreted as increments in the (k + 1)th iter-
ation. With no glide of the dislocations (V (I)

gln = 0) in these iterations, the dislocations,
the dislocation sources and the dislocation obstacles are attached to material points,
while the orientations of the dislocations and sources are tied to the lattice. Thus, the
positions and orientations of these points are also updated. With k¿ 0, the iterations
are repeated until

‖Rû(k+1)
i ‖∥∥∥∑(k+1)

m=0 Rû(m)i

∥∥∥ ¡�r ; (48a)

and

‖R Wu i‖∥∥∥∑(k+1)
m=0 Rû(m)i

∥∥∥ ¡�r ; (48b)

where �r is a speci0ed tolerance, Rû(m)i is the displacement increment in the mth
iteration, ‖ ‖ denotes the Euclidean norm and R Wu i is the solution of

∫
A(k)

[
1
2
Lijkl(R Wuk;l +R Wul;k) + Ŝ(k)

kj R Wu i;k

]
�û i; j dA=

∫
S(k)
T

(T 0
i − T̃ (k)

i )�û i dS

−
∫
A(k)

Ŝ(k)
ij �û i; j dA (49)

with R Wu i = 0 on S(k)
u .

In the current calculations, �r was taken as 0.01. Relation (48b) implies that equilib-
rium, Eq. (35), is satis0ed to within a speci0ed tolerance. In addition, at several stages
of loading, Eq. (35) was checked directly.
Special treatment is needed for dislocations that exit the material through a free

surface as they leave behind a step but no elastic stress or deformation 0eld. When
dislocation I exits from a free surface, dislocation I is removed from the sums in
Eqs. (2) and (14). This requires subtracting out the elastic deformation 0eld ũ (I)

i; j of
dislocation I but retaining the slip displacement of dislocation I . Numerically, this is
achieved by moving the dislocation along its current slip direction far away from the
region being analyzed and then updating the nodal positions and the lattice orientations
by the increments that result from this virtual glide of dislocation I . In addition, the
image 0eld, Ŝ ij, also needs to be corrected as the stress 0eld of dislocation I is removed
from the sum in Eq. (14): this correction is a3ected directly by the iteration procedure.
Similarly when two opposite signed dislocations annihilate each other, these dislocations
are removed from the sums in Eqs. (2) and (14). However, no further updating is
needed in this case as the elastic 0elds of these two opposite-signed dislocations cancel
each other.
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5. Numerical examples

The 0nite deformation conventional 0nite element implementation is illustrated by
considering two plane strain boundary value problems—tension and combined ten-
sion and bending. In both problems, we analyze an elastically isotropic crystal with
Young’s modulus E = 70 GPa and Poisson’s ratio * = 0:33, which are representa-
tive values for aluminum. All dislocations have the same Burgers vector, b= 0:25 nm
(which does not change during deformation since the elastic stretch of the lattice is
assumed to be negligible). The undeformed crystal is of dimensions 2H × 2W , with
H = 4 �m and W = 1 �m, and has two slip systems making angles .(1) = 30◦ and
.(2) = −30◦ with the positive x1-axis as sketched in Fig. 3. In the undeformed con-
0guration the origin of the coordinate system is placed so that the specimen occupies
a region 06 x16 2H and −W 6 x26W , and the potentially active slip planes are
equally spaced at 100b. The slip planes are distributed such that none intersects the
edges where displacements are prescribed in order to avoid numerical complications
that would occur if dislocations were to attempt to exit the material through these
edges.
Initially, the two slip systems are free of mobile dislocations, but dislocations can

be generated from 240 discrete sources that are equally dispersed over the slip planes.
The sources nucleate a dipole when the Peach–Koehler force exceeds a critical value
of �nucb during a period of time tnuc = 10 ns; �nuc for the sources is taken to have
a Gaussian distribution with a mean source strength Y�nuc = 50 MPa and a standard
deviation of 1 MPa. There is also a random distribution of 120 point obstacles. The
obstacles pin dislocations as long as the Peach–Koehler force is below the obstacle
strength b�obs, where �obs = 150 MPa. The drag coeScient for glide is B= 10−4 Pa s,
a representative value for several fcc crystals, Kubin et al. (1992), and the critical
distance for annihilation is Le = 6b.
The 0nite deformation results are compared with results from small deformation

calculations on identical crystals subject to the same boundary conditions, carried out
as described in Cleveringa et al. (1999).

Fig. 3. Sketch of the single crystal analyzed showing the slip systems and the coordinate system. The sign
convention employed for the edge dislocations is also indicated.



V.S. Deshpande et al. / J. Mech. Phys. Solids 51 (2003) 2057–2083 2075

5.1. Tension of a single crystal

The tensile axis is aligned with the x1-direction, see Fig. 3, and tension is imposed
by prescribing

u̇ 1 = U̇ ; Ṫ 2 = 0 on x1 = 2H + U; (50a)

and

u̇ 1 =−U̇ ; Ṫ 2 = 0 on x1 =−U; (50b)

where U =
∫
U̇ dt. The lateral edges, those initially on x2 =±W , are traction free, i.e.

Ṫ 1 = Ṫ 2 = 0: (51)

Also, u̇ 2=0 is imposed on two material points located at (x�; 0) and (2H−x�; 0) in the
undeformed con0guration, where x� = 0:1 �m. This simulates the constraint imposed
by the grips which prevents the rotation of the specimen with respect to the loading
axis in a tensile test. In addition to the boundary conditions Eqs. (50) and (51), we
specify that dislocation exit from the lateral edges is unrestrained.
Since a conventional 0nite element method is used, interior material points do not

become boundary points (see Fig. 2c). Thus, the traction free boundary conditions on
the lateral edges are prescribed on the same material points throughout the deformation
history. In a formulation allowing for slip, where internal points may become surface
points, the material points on which the traction free condition need to be imposed can
vary over the course of the deformation history.
A time step of Rt=0:5 ns is needed to resolve the dislocation dynamics so a rather

high loading rate U̇ =H = 2000=s is used to obtain a strain of 0.01 in 10,000 time
steps. A uniform 0nite element grid was employed in the numerical calculations and
comprised of 80×35 quadrilaterals, each built up of four triangular elements with linear
displacement 0elds: this slightly rectangular shape of the quadrilaterals was chosen so
that the orientation of the element diagonals would be near the most favorable angle
for the shear bands in order to minimize the errors depicted in Fig. 2c.
We consider uniaxial tension of a single crystal oriented for symmetric double slip.

The nominal stress, �nom, versus strain, U=H , response of this single crystal using the
0nite strain discrete dislocation plasticity with the conventional (continuous displace-
ment) 0nite element method is shown in Fig. 4a. The stress, �nom, is computed as

�nom(t) =− 1
2W

∫
SL

T1 ds; (52)

where the integration is performed along the boundary SL where x1 =−U .
The 0rst dislocation activity occurs when �nom ≈ 105 MPa and at �nom ≈ 115 MPa

there is a sharp drop in the load. Subsequently, the overall behavior is essentially ideally
plastic up to U=H ≈ 0:04 with the :uctuations a result of the relatively small volume
over which the discrete dislocation activity is averaged. The corresponding dislocation
density (number of dislocations per unit area in a central 3 �m×2 �m region) is shown
in Fig. 4b: the dislocation density rises approximately linearly with strain up to the
strain levels computed. For comparison purposes, the small strain discrete dislocation
plasticity prediction of the tensile stress versus strain response of an identical crystal is
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Fig. 4. Plane strain tension with .(1) = 30◦ and .(2) = −30◦. (a) Nominal tensile stress versus nominal
tensile strain U=H . (b) Evolution of the total dislocation density with U=H .

also shown in Fig. 4. The small and 0nite strain predictions of the stress versus strain
response are very similar up to a strain U=H ≈ 0:04. However, the small strain analysis
does not predict any hardening at the larger strains with the dislocation density 4dis
remaining approximately constant at 175=�m2 for U=H ¿ 0:03.
The dislocation structures predicted by the 0nite and small strain analyses at U=H ≈

0:05 are shown in Figs. 5a and c, respectively. The + symbols denote dislocations
with Burgers vector +b and the − symbols denote dislocations with Burgers vector
−b as shown schematically in Fig. 3. A dislocation symbol is black if it corresponds
to a dislocation on the slip system with .(1) = 30◦ and it is white if it corresponds
to a dislocation on the slip system with .(2) = −30◦. Contours of the lattice rotation
’∗ at U=H ≈ 0:05 are also plotted in Figs. 5a and c. Fig. 5b shows the distribution
of the maximum principal logarithmic strain ln(6max), where 6max is the maximum
principal extension, obtained from the 0nite strain calculation. The 0nite strain calcu-
lation predicts lattice rotations of approximately +1:5◦ and −1◦, above and below the
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Fig. 5. Contours at U=H ≈ 0:05 for a crystal subject to plane strain tension with .(1)=30◦ and .(2)=−30◦.
(a) Lattice rotation ’∗ and the dislocation structure as predicted by a 0nite strain analysis. (b) Logarithm
of the maximum principal extension 6max as predicted by a 0nite strain analysis. (c) Lattice rotation ’∗ and
the dislocation structure as predicted by a small strain analysis.

central axis of the specimen while the small strain calculation shows negligible lattice
rotations at this strain level. Thus, the lattice rotations that emerge in the 0nite strain
calculations are a result of accounting for geometry changes. Necking of the crystal at
U=H ≈ 0:05 is seen in Figs. 5a and b. For strains larger than U=H ≈ 0:04, the 0nite
deformation analysis exhibits a linear hardening response, with a very high hardening
rate of d�=d(U=H) ≈ G=10, where G is the elastic shear modulus of the crystal. There
are several factors that contribute to this high hardening rate including the increasing
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dislocation density and the lattice rotations in the necking region tending to rotate the
crystal into a harder orientation. One signi0cant contribution may come from the small,
8 �m × 2 �m, crystal size in which stress concentrations left by exiting dislocations
inhibit easy glide of dislocations on the dominant slip band in Fig. 5b.
Numerical results for the 0nite strain tension calculation are limited to U=H ≈ 0:05

because of the computer time required for the calculation. At U=H ≈ 0:05, the distortion
of the 0nite element mesh, due to the smearing out of slip depicted in Fig. 2c, is not
acute and the calculations could have been continued further. However, it is expected
that at some higher strain level elements along a shear band will be suSciently distorted
so as to signi0cantly a3ect the accuracy of the calculations.

5.2. Combined bending and tension of a single crystal

Combined bending and tension of a crystal identical to the one analyzed in Section
5.1 is considered. The axis of bending is aligned with the x1-direction in the undeformed
state and the loading is imposed via

u̇ 1 =−8̇x02 ; Ṫ 2 = 0 on x1 ∈ SR = {x01 = 2H}; (53a)

and

u̇ 1 = 8̇x02 ; Ṫ 2 = 0 on x1 ∈ SL = {x01 = 0}: (53b)

Here, x0i are the coordinates of material points in the undeformed con0guration and 8̇
the imposed rotation rate. Also, the lateral sides remain traction free via Eq. (51) and
u̇ 2 =0 at (x�; 0) and (2H − x�; 0), with x�=0:1 �m, to prevent rigid body motion of the
specimen in the x2 direction. As in Section 5.1, dislocation exit from the lateral edges
is unrestrained.
The imposed boundary conditions give rise to combined tension and bending. The

bending moment is calculated as

M (t) =
∫
SL

T1x2 ds; (54)

while the axial stress is de0ned as

�ax(t) =− cos8
2W

∫
SL

T1 ds: (55)

The cos 8 term ensures that the axial stress �ax is normal to the rotating ends of the
specimen.
For presentation of the results, the moment M is normalized by a reference moment,

Mref , de0ned by

Mref =
1
W

∫ W

−W
�Yx22 dx2 =

2
3
�YW 2; (56)

where �Y=115 MPa is the peak stress in uniaxial tension, from Fig. 4a. This reference
moment is the moment that would result from a linear stress distribution �Yx2=W at
the onset of yield.
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Fig. 6. Combined bending and tension with .(1) = 30◦ and .(2) =−30◦. (a) Normalized bending moment
versus imposed rotation 8. (b) Evolution of total dislocation density with 8.

The curves of normalized moment, M=Mref , and dislocation density versus imposed
rotation are shown in Figs. 6a and b, respectively, for the small and 0nite strain analyses
with 8̇=4000=s. Consistent with the uniaxial tension results, the 0rst dislocation activ-
ity occurs when M=Mref ≈ 1 in both the small and 0nite strain calculations. However,
unlike in the uniaxial tension case where the material exhibits ideally plastic behavior,
the crystal exhibits a hardening response in bending with the bending moment increas-
ing with rotation due to the accumulation of geometrically necessary dislocations which
induce large back stresses; see Cleveringa et al. (1999) for a detailed discussion on
these e3ects. The 0nite and small strain analyses predict very similar moment versus
rotation responses and dislocation densities up to 8 ≈ 0:05 (≈ 3◦): beyond this level of
rotation the geometry changes become signi0cant and the 0nite strain analysis predicts
no continued hardening. In contrast to the tension calculation, in this bending calcu-
lation, 0nite strain e3ects give rise to a softer response than obtained from a small
strain analysis. The di3erence between the predictions of the small strain and 0nite
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Fig. 7. Contours at 8 ≈ 0:1 for a crystal subject to combined bending and tension with .(1) = 30◦ and
.(2) = −30◦. (a) Lattice rotation ’∗ and the dislocation structure as predicted by a 0nite strain analysis.
(b) Logarithm of the maximum principal extension 6max as predicted by a 0nite strain analysis. (c) Lattice
rotation ’∗ and the dislocation structure as predicted by a small strain analysis.

strain analyses arises, at least in part, from the di3erence in boundary conditions; in
the small strain analysis the rotational displacements are imposed in the undeformed
con0guration, while in the 0nite strain analysis they are imposed in the current, rotated
con0guration.
The dislocation structure and contours of lattice rotation ’∗ at an imposed rotation

8 ≈ 0:1 (≈ 6◦) are shown in Figs. 7a and c for the 0nite and small strain calculations,
respectively. While both the analyses predict similar levels of lattice rotation, the curv-
ing of the slip systems due to lattice rotations occurs only in the 0nite strain analysis.
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Fig. 8. The axial stress, �ax, versus imposed rotation 8 for combined bending and tension as predicted by
the 0nite strain and small strain analyses.

Fig. 7b shows contours of maximum principal logarithmic strain, ln(6max). A dominant
deformation band is emerging.
The axial stress �ax as a function of the imposed rotation is shown in Fig. 8 for

both the small and the 0nite strain analyses. Similar levels of tensile axial stress are
obtained until 8 ≈ 0:09 where there is a signi0cant drop in the magnitude of the axial
stress in the 0nite deformation calculation.

6. Concluding remarks

A framework has been presented for analyzing 0nite deformation plasticity problems
where plastic :ow arises from the collective motion of discrete dislocations. The main
assumptions are: (i) lattice strains remain small away from dislocation cores and (ii)
the elastic properties are una3ected by slip. The formulation then accounts for: (i) 0nite
deformation-induced lattice rotations and (ii) the shape change due to slip.
The analysis reveals a strong coupling between the lattice rotations and 0nite ge-

ometry changes and the discrete dislocation dynamics. Even in the absence of cross
slip, dislocations can change slip planes because of slip on intersecting slip systems. In
addition, the orientation of a dislocation loop varies with the local deformation state. If
the crystal is elastically anisotropic, this variation in orientation gives rise to position
dependent moduli which results in a polarization stress term in the boundary value
problem for the complementary (image) 0elds.
Because of slip,∮

$

ui; j dxj �= 0 (57)

for any closed path $ that encompasses slip in the current con0guration. The dis-
placement 0eld is only piecewise continuous. Implications of the failure to satisfy the
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compatibility condition (57) in the in0nitesimal deformation context have been dis-
cussed by Eshelby (1956). By way of contrast, in phenomenological continuum
plasticity, either local or nonlocal, an underlying assumption is that the total defor-
mation gradient F can be derived from a single valued, continuous displacement 0eld.
Phenomenological nonlocal plasticity theories, such as those of Acharya and Bassani
(2000), Huang et al. (2000), Fleck and Hutchinson (2001), Gurtin (2002), based on
this assumption, are aimed at representing plastic :ow phenomena of crystalline solids
over size scales of the order of microns. The circumstances under which the assumption
of a continuous displacement 0eld is appropriate for crystal plasticity at micron size
scales remain to be delineated. In this regard it is worth noting that a mathematical
framework for characterizing plastic deformation with non-smooth geometry changes
has been developed by Deseri and Owen (2002).
In addition to theoretical implications, the lack of continuity for the displacement rate

0eld has a signi0cant e3ect on the suitability of numerical solution methods for 0nite
deformation discrete dislocation plasticity. We have implemented the 0nite deformation
formulation in a conventional plane strain 0nite element program. The solution of two
simple boundary value problems was aimed at illustrating 0nite deformation e3ects
on discrete dislocation predictions. Accounting for lattice rotations and 0nite geometry
changes increased the computational e3ort at each time step so that the computing
time for a 0nite deformation analysis exceeded that for an in0nitesimal deformation
analysis by about a factor of 5–10 (however, no attempt has yet been made to optimize
the 0nite deformation computational procedure). In any case, ultimately, computations
using a conventional 0nite element method are limited by the numerics requiring a
continuous displacement 0eld. Fortunately, 0nite element formulations are being de-
veloped that allow arbitrary displacement discontinuities within a 0nite element, e.g.
MoHes et al. (1999), Daux et al. (2000), Wells et al. (2002), Remmers et al. (2003).
Although devised for crack growth problems, this methodology seems very promising
for representing the shape changes that occur in 0nite deformation discrete dislocation
plasticity.
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